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Introduction

Beside the original definition due to Kusunoki [3], there are several differ-

ent ways to define semiexact canonical differentials (see Kusunoki [4, 5], Mori

[9]; cf. also Ahlfors-Sario [2], Mizumoto [8] and Yoshida [13]). Above all,

the following characterization of semiexact canonical differentials also by Kusu-

noki ([4]) is remarkable: Let R be an open Riemann surface and φ a mero-

morphic semiexact differential on R. Then φ is a semiexact canonical differential

if and only if there is a canonical region R' on R such that (i) the real part du of

φ is exact and square integrable on R — R\ and (ii) for any square integrable real

harmonic semiexact differential ω on R — R' the mixed Dirichlet integral (du,

ω*)R-R' of du and ω* over R — R' is equal to the contour integral \ uω.
JδR'

A similar characterization is obtained for harmonic differentials with Γχ-

behavior in the sense of Yoshida ([13], in particular, pp. 186-187). Since, as is

well known (cf. [5], [9]), semiexact canonical differentials correspond to one of

the special extreme cases, the case Γχ — Γhm (the space of real harmonic measures

on R), the results in [13] is certainly a generalization of Kusunoki's characteri-

zation. On the other hand, we considered in [11] spaces of (complex) harmonic

semiexact differentials with certain simple properties and called them behavior

spaces. We also showed that we can use such a behavior space Λo to describe a

more general boundary behavior, Λ0-behavior, of analytic (meromorphic) differ-

entials.

The aim of the present article is to show some properties of behavior spaces.

It is easy to see that we can apply the very same definition of Λ0-behavior not only

to analytic differentials but also to C1-differentials (defined near the ideal bound-

ary of R). See Definition 3. We shall generalize some of Kusunoki's charac-

terizations of semiexact canonical differentials to the case of C1-differentials with

Λ0-behavior. Then we shall introduce an equivalence relation among behavior

spaces on R. We can easily see that Λo- and vT0-behaviors are the same if and

only if Λo is equivalent to Λo. In other words, Λ0-behavior is determined by the

equivalence class of Λo. As an immediate consequence of this, we know that
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generalized singularities introduced in [12] are also divided into equivalence

classes.

We shall also consider transformations of behavior spaces and show that

every transformation changes a behavior space into another behavior space.

Furthermore, we prove that two behavior spaces are equivalent if and only if any

one is the image of the other under some transformation.

Such consideration actually offers some advantages to us. For instance, we

can choose the most suitable behavior space(s) among the equivalence class(es)

in accordance with the nature of individual problem which we are concerned with.

1. Let R be an open Riemann surface of genus g ( < oo), J the set {1, 2,...,

g}. Take a fixed canonical exhaustion & = {Rn}™=i of R. We denote by gn the

genus of Rn and set JM = {1, 2,..., gn}. Let Ξ(R) = {Aj, Bj}jeJ be a canonical

homology basis of R modulo dividing cycles such that (i) {Ap Bj}jeJn is a canon-

ical homology basis of Rn modulo its border, and (ii) Aj9 Bj<^R — Rn for every

jeJ — Jn (cf. [2], p. 72). For convenience' sake we set # 0 = Φ a n d «/o=Φ

For a Lebesgue measurable complex differential λ on R we denote by 1 the

complex conjugate of λ and by A* the conjugate differential of λ. Let A = A(R)

be the real Hubert space of square integrable complex differentials on R with the

inner product <λl9 A 2 > = R e \ \ λίAXζ9 λuλ2eA. The norm of λeA is

given by \\λ\\ = yj <λ, λ>. We set Ah = Ah(R) = {λeA\λ is harmonic on R} and

Ah5e = Ahse(R) = {λeAh\λ is semiexact}. We also set A%) = A(

e

1

0

)(R) = {λeA\3f

eC2(R)9

 3/«eCg(Λ) such that d/ = λ a n d | |d/-d/J|->0,n->όo}. Finally let

A). = Aι

c(R) be the totality of closed C1-differentials on R and set Aί

c0 = Aί

i:0(R) =

{λ eAl\λ = 0 outside a compact set on R}.

Let L be a straight line in the complex plane C which passes through the

coordinate origin. For brevity, we shall refer to such an L as a line in C. We

denote by L the complex conjugate of L: L = { z e C | z e L } . For zi9 z 2 e C we

write zι = z2 modL to express that zt — z2 belongs to L.

DEFINITION 1 ([7], [11]). A (closed) subspace A0 = A0(R9 &) of Ahse is

called a behavior space associated with & = {Lj}jeJ, a family of lines in C, if

(i) iA$ = Λi [/. έ?., Ah = Ao

(ii) \ λ0 = \ λ0 = 0 mod L, , j e J, for every λ0 e Λθ9

J Aj JBj

where A^ denotes the orthogonal complement of Ao in Ah.

We denote by $8 the set of all behavior spaces on R.

DEFINITION 2 ([11]). Let L be a line in C. Two behavior spaces Ao and
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Λ'o associated with & = {Lj}jej and 3" = {L'j}jej respectively are called dual to
each other with respect to L(pr L-duaΐ) if

Γ ) < λ0, !'o* > + i < λθ9 iX'o* > Ξ O modL for any pair (λOi λf

0)eAQ x

2°) LfL'j = { z e C | z = zμ), ZjeLj9 z) e L } } = L for every jeJ

are satisfied.

For the sake of simplicity, we shall henceforth consider mainly the case L

= R, the real axis. Then it is obvious that a behavior space Λo and its complex

conjugate Λ0 = {λeΛh\λeΛ0} are mutually R-dual (cf. [7], [11]). Conversely

we have

PROPOSITION 1. Let Λo and Λ'Q be two behavior spaces which are R-dual

to one another. Then Λf

0 = Λ0.

PROOF. Since L = R , condition 1°) in Definition 2 means <A0, il'o*>=0

for any pair (Ao, λ'o)eΛoxΛΌ. Therefore ΛocziΛo*1 = ΛQ. Similarly we have

Λ'oczΛo. Hence Λ'o = Λo, which is to be proved.

COROLLARY. For any behavior space Λo there exists a unique behavior

space ΛQ ( = ΛO) which is dual to Λo with respect to R.

More generally we have

PROPOSITION Γ. Let Lθ = {zeC\z = teiθ, teR} be a line in C,0e[O, π).

Then two behavior spaces Λo and A'o are Lθ~dual to each other if and only if

The following proposition will be proved in sec. 4.

PROPOSITION 2. In Definition 2 condition 1°) implies condition 2°).

2. Fix an Rne&9 n>\ and set V = R — Rn where £Π is the closure of Rn.

We denote by F k ( k = l , 2,..., κ:Π) the components of V. Let φ, ψ be semiexact

C1-differentials on V. Then, because of semiexactness of φ, there is a single-

valued C2-function Φ on V- yjjej-jn(^j U Bj) such that dΦ = φ on V. The func-

tion Φ consists of κn functions Φk which are separately defined on Ffc— \Jjej-jn(Aj

\jBj)(] Ffc, fe = l, 2,..., κn. Furthermore, each Φk is determined only up to an

additive constant. Nevertheless the quantity

Φkφ (m > ή)
)5Rm k=lJdRm

is well defined, since φ is also semiexact. We shall call such Φ a primitive func-

tion of φ on V.
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For later use we shall state the following lemma without proof (cf. [1], [11]).

LEMMA. Let φ, φ be semiexact Cι-differentials on V=R — Rn(n>0).

Then for every m>n we have

«P,iψ*>sm-Rn

= - I m ( Φφ+ lm[ Φφ+ lm Σ ([ <p[ Φ-[ ψ[ φ),
JdRm JdRn jeJm-JnXJAj JBj J Bj J Aj /

Φ being a primitive function of φ on V.

3. Let Λ0 = Λ0(R, S£) be a behavior space on R associated with S£ = {Lj}JeJ.

We shall first prove the following

THEOREM l.*> Let Rne@ and V = R-Rn. Let φ be a semiexact Cx-dif-

ferential on V such that \\φ\\v<oo and \ φ=\ φ = 0 modL. for all j eJ — Jn.

Let Φ be a primitive function of φ on V. Then the following three conditions

are equivalent to one another.

( I ) There exist λ0 e Λθ9 λe0 e A(

e^ such that φ = λo + λeO on V.

(II) < φ, iω* >v = — Im \ Φω foranyωeΛ0.
J dV

(III) lim Im \ Φω = 0 for every ω e Λo.
m-*oo JdRm

PROOF. Before carrying out the proof, we recall that ΛoczΛhse.

First we shall show that (II)o(ΠI). Let m>n. Then by Lemma we have

= - Im \ Φ ω - I m \ Φω + Im Σ (\ <P\ ω —\ <̂ \ ω ) .
JeV JdRm jeJm-Jn\JAj JBj JBj J Aj J

The last term on the right vanishes, since

p j e J ~~ Jn'

By letting m tend to infinity, we obtain the equivalence (Π)o(III).

Next we shall prove that (I) implies (III). Suppose that φ = λo + λeO on F,

λoeAo, ),eOeΛ{J^. Set ̂  = ̂ 0 + ̂ 0 o n ^ Clearly φ is semiexact. Let Ψ be a

primitive function of φ on V. For any ra ( > n) and ω e Λo we have

Im \ Φω = Im \ Ψω
JdRnt JdRm

*] cf. Theorem 4 in sec. 9.
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, ιω*> Rm I I m X Φ\ ω — \ ι/Λ ω ) .
jeJm\JAj JBj JBj JAj /

Since φ GAQ + A^J and zω*e iAξ = A%9 the term <φ, iω*>Rm tends to zero as

ra-»oo. The period sum vanishes for every m, because 1^^=1.4,^0 = 0, L ω
JBj J β] JBJJ

= 0 mod Lj, j e J. Thus we have proved (I)=Φ(III).

Finally we assume (III). Since \ <p = 0, we can extend φ\v to a closed C1-
JdV

differential on the whole of R (cf. e.g., [10], [13]), which is denoted by φ. Be-

cause of the semiexactness of φ, φ = d$ can be assumed to be exact on R—V

= Rn (see Remark below). Take an arbitrary COGA0. Then, since the Λj- and

By-periods of φ and ω vanish mod Lj9 j GJ — Jn, Lemma yields

<φ, iω*>Rm= <φ,iω*>Rn+ <<p, /ω*> Λ m _ J R n

= — Im \ Φώ — Im\ Φω + Im Σ (\ Φ\ ω —\ <p\ ω )
J5/ln Ja(Λm-Λn) jeJm-Jn\JAj JBj JBj JAj /

= — Im \ Φ ω .

On letting m-^oo, we know that φ is orthogonal to iΛξ = Λ%. (Note that φ

belongs to A.) Now the Dirichlet principle (cf. Lemma 5 in [11]; cf. also [2])

implies the existence of differentials λ0 G AO, λe0 G A[^ such that φ = λo + λeO

holds on R. This completes the proof of (IΠ)=>(I). q. e. d.

REMARK. We could dispence with the exactness of φ on Rn. Indeed, if

φ is not exact on Rn, we take a regular analytic differential φ0 with Λ0-behavior

(see [11], Theorem 2) such that \AJ(Φ~ΨO) = ̂  modLy, JGJ. Applying a rea-

soning similar to that in the above proof for φ — φ0 instead of φ, we know that

φ — φ0, and hence φ itself, has the property stated in (I).

4. In [11] we defined Λ0-behavior for only analytic (meromorphic) differ-

entials [defined near the ideal boundary of K]. Similarly, Γχ-behavior in

Yoshida's sense ([13]) was defined for harmonic functions only. However, it

is easy to see that the same definition can be applied to any C1-differential (cf.

[6]). Namely, we have

DEFINITION 3. A C1-differential φ defined near the ideal boundary of R

is said to have A0-behavior if there exist λ0GA0, I^GA^JQ and RnG& such that

φ = λo + λeO on R-Rn.

A characterization of C1-differentials with Λ0-behavior is given by Theorem

1, which is considered a generalization of Kusunoki's results ([4]). See also [13].

Particularly we have
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PROPOSITION 3 (cf. [13], p. 187). Let φ be a semiexact ^-differential on

V=R — Rn, Rne&9 such that \ φ=\ φ = 0 modL. , jeJ — Jn. Suppose that φ
JAJ JBj

has Λ0-behavior. Then φ admits a representation φ = λQ + λeQy λoeΛo, λeOe

^ on the whole of V.

Now the following proposition was proved in [11].

PROPOSITION 4. Let φ be a regular analytic differential on R which has

Λo-behavior. If there is a family of lines in C, J? = {Lj}jej, such that \ φ =

\ φ = 0 mod Lj for every j eJ, then φ should be identically zero [Lj = Lj for all
JBj

but a finite number of jeJ~\.

It should be noted, however, that a similar theorem does not hold for har-

monic differentials (and a fortiori C1-differentials) with Λ0-behavior. In fact, we

have the following well known

PROPOSITION 5. There exist harmonic semiexact differentials ωAp ωBj on

R such that

(i) for some dυ', dυ" e Λι

e0 and λf

e0, Ko e Λ^ ωAj = dv'+ λ'eOi ωBj = dv" +

λ"eQ on R (in particular, ωAj and ωBj have Λ0-behavior),

(ii) \ ωAj = \ ωB. = δJk, \ ωAj = \ ωB. = 0, j \ keJ.
JAfc JBk JBk JΛu

PROOF. Omitted (cf., e.g., [2], [5]).

PROPOSITION 6. Let Λo be a behavior space associated with J? = {Lj}jeJ

and Zj be (non-zero) complex numbers such that Zj = 0 modLy, jeJ. Then

Aj9 ZjωBj E Λo.

PROOF. Take a sufficiently large integer n ( > 0 ) and a primitive function

ΩAj of ωAj on R — Rn. Since Zj(oAj has yl0-behavior, we have by Theorem 1

R-Rn = ""\ *j\ ΩΛJ O
JoRn

for any λ0 e Λo. On the other hand, Lemma yields

< ZjωΛj9 iλt > Rn =
 lm[zj\B ^o] ~ lm\_zj\dR °Λ

It follows that <z/oAj9 i 7 J > = 0 for any λoeΛo. Therefore ZjωAje i/lJ1 = yl0.

Similarly we have ZjωBj e Λo. q. e. d.

PROOF OF PROPOSITION 2. Let L = LΘ. Let Λ0 = Λ0 (R, &) and Λ'o =
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Λ0(R, 3") be behavior spaces associated with & = {Lj}JeJ and S£' = {L'j}jej re-

spectively, and assume that they satisfy condition 1°). Then by Proposition Γ

Λ'0 = eiθΛ0. If Zj is a non-zero complex number such that Zj = 0 modLj9 then

ZJ(UAJ is an element of Λo by Proposition 6. Hence eiez}ωAj e Λ'o so that

OτM eiθZjωAj = eiθZj=0 modL}. Therefore L'j = eiθLj9 jeJ. This implies 2°).
J
 Λ

q.e.d.
Theorem 1 also suggests that Λ0-behavior actually defines boundary be-

havior of differentials. Namely, if Λo and Λo are two behavior spaces which

coincide (yet in an ambiguous sense) near the ideal boundary, then Λo- and Λo-

behaviors will be the same; a differential with Λ0-behavior will have y40-behavior

and vice versa. Later we shall see that this is really true.

5. For our purposes, it will be convenient to introduce the following

DEFINITION 4. Two behavior spaces Λo and Λo are said to be equivalent

(Λ0~Λ0) if and only if conditions (i), (ii) below are fulfilled:

(i) every λoeΛo has Λ0-behavior,

(ii) every Xo e Λo has Λ0-behavior.

The relation ~ obviously defines an equivalence relation in 3S. Also, it is

an immediate consequence of the definition that two behavior spaces define the

same boundary behavior if and only if they are equivalent to each other. In other

words, there is a one-to-one correspondence between 31 j ~ and the family 38 Q

of boundary behaviors which are defined by means of behavior spaces.

Now let Λo = Λ0(R, &) e @, Se = {Lj}jeJ. Let J* be a finite subset of J and

* = {LJ}jeJ a family of lines in C. We set

Lj, jeJ-J*,

and & = {Lj}j€j. We then define

λ has Λ0-behavior and

[ λ = [ I Ξ O m o d i , . , JGJ '
J Aj J Bj )

Later we shall prove that every element of T£*Λ0 can be obtained from some

element of ΛQ by subtracting a suitable finite linear combination of ωAj and ωBj

(Proposition 5) with complex coefficients. See Corollary 2 to Theorem 3. We

shall call such a T ^ a transformation determined by J* and J£?*. In fact, we

shall soon prove that T £*Λ0 belongs to & so long as Λo does. We set

j - = {τ= T § |J* is a finite subset of J and JSP* is a family of lines in C}
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and

= {Λo = Λ0(R, J?)e@\Lj = L*jJeJ*}.

We state a theorem whose proof is given in the next section.

THEROEM 2. Every T-£*(e&~) maps & onto &[J*, &*~\.

6. PROOF OF THEOREM 2. We set Λo = T-£*Λ0, Λo e 8§. By the definition

of T £* it is obvious that Λo is contained in Λhse and that \ I = \ λo = 0

mod Lj, jeJ, for every XoeΛo. Therefore we only need to show the equality

iλ* = λ%. (Note that this implies the closedness of Λo.)

In the first place, let ω' and ω" be any two elements of Λo. Then there are

λ'θ9 λ'ό e Λo λ'eθ9 λ"e0 e Λ{J$ and an Rn e & such that

ω' = λ'o + A;o> ω" = /IS + AJo on Λ - JRM.

Making use of Lemma twice, we have for m > n

<ω',iω"*>R = - I m ί β'ω" + Im Σ ([ ω'( ω;/ - [ ω'[ ω")
JdRm jeJm\jAj JBj JBj JAJ /

JBj JBj J
l f ( 0[ S ( o ( o ) Σ ( (

JeJm\JAj JBj JBj JAj / jeJm\JAj JBj JBj JAj

where Ω' is a primitive function of ω' on R — Rn. But the last term tends to zero

as m-»oo, for Ao is a behavior space (hence ίA* = A&) and any two of Ao, A
{^9

A^J* are orthogonal to each other. Thus we have proved iA*czA^

Assume, conversely, that λeAh is orthogonal to Ao. We have to show α)

the semiexactness of U*, β) \ ίλ* = \ iλ* = 0 modL , jeJ and γ) iλ* has Ao~
JAj JBj

behavior. To prove α), we set Ahm = Γhm+iΓhm9 where Γhm is the space of real

harmonic measures on R (see [2], p. 294). It is easily seen that Ahm = A*^e (cf.

[11]). Due to this property, we have for any duhme Ahm and ωeA0 (cAhse)9

Im \ uhmω = < duhm9 iω* > Rm -• 0 (m -^ oo).
JdRm

Now Theorem 1 yields that duhm has v!0-behavior. Since the period conditions

\ duhm = \ duhm = 0 mod Lj9 j e J, are trivially satisfied, we know that duhm e Ao

JAj J Bj ^ ^

and hence Ahm<=A0. Consequently Aξ1 c A%^ = Ahse and this proves α).

Next let ωAj be the differential constructed in Proposition 5: ωA. = dvf4-λf

eOi

dv'e Alθ9 λ'e0 e A^J. The differential ZjωAj belongs to Ao for every complex

number zj9 Zj = 0 moάLj (cf. Proposition 6). Because iλ* has been known to
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be semiexact, we can apply Lemma to ίA* and ZjωAj and obtain

0 = < A, Zj ωAj > = < A*, Zjdv'* >

= -Rt\zjΣ({ λ*[ dϋ'-[ λ*[ rfϋ'YI = RefzΛ A*V
L keJ\JAk JBk JBk J Ak / J \ JBj /

Therefore we see that \ iA* = 0 modLj. Similarly we have \ ιA* = 0 modLj.
JBj J Aj

We have proved β).

Finally we shall prove y). Take an arbitrary ω in Ao. By means of Prop-

osition 5 we see that there are ώeλθ9 dueΛlo and λeOeΛ{$ such that ώ = ω

+ du + λe0 on R. Let Φ be a primitive function of iλ* on R — Rn, n being a suffi-

ciently large integer. Then, by Lemma, for m > n we have

I m ί Φ ω = - < λ * , ω*>R + Re Σ ([ λ*[ ω-[ λ*[ ω)
JdRm m jeJm\JAj JBj JBj JAj J

= - < A , ώ - du - λ e 0 > R + R e Σ ( [ λ*[ (ώ - du)
jeJm\jAj JBj

~ ( A*( (ώ - du))
JBj JAj J

= <A, du>R -Re Σ (1 A*\ du - \ A*\ du) + εm,
jeJm\JAj JBj JBj JAj J

where limm^ooε/π = 0. A further use of Lemma implies

I m L κ Φm = <A' du>R™ ~ <A*' dM*>Λ- + Sm = ε^
Theorem 1 now allows us to conclude that dΦ = iλ* has yl0-behavior. We have

thus proved that Ύ3&*@ c ^ [ J * , jδf * ] .

Finally let Λoe@[J*, 3?*~\. Then it is easy to see that TJ^Λoe^ and

TJM T-£Λ0) = Λo. This completes the proof of Theorem 2.

COROLLARY. If Λoe@ and Te^, then TΛ0~Λ0.

7. We shall now define the product of two transformations. Suppose that

T f c= TJJ» is a transformation determined by Jf and &* = {L^} i e J > /c = 1, 2. Then

the product T 2 °T 1 of 7\ and T 2 is defined as a transformation T^* determined

by J * = J * u J* and if* = {L*} jeJ, where

L*2 otherwise.

The transformation determined by JJ = φ and any jδf * gives the identity (neu-
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tral element) with respect to the product. We note that the product defined above

is non-commutative. Indeed, T^T^ΦT^^ if JfnJζΦty and L^φLJ2 for

some j e Jf Π J$, for example. Since the associative law Tzo(T2oTι) = (T2oT2)

oTu Tke&~, is obviously satisfied, f becomes a monoid which operates on B.

Now we shall prove

THEOREM 3. Two behavior spaces Λo and Λo are equivalent if and only

ίfΛ0 = TΛ0 for some

PROOF. The if part is obvious (cf. Corollary to Theorem 2). We shall now

prove the only if part.

Let Λ0 = Λ0(R,&),J? = {Lj}jeJ and X0 = Λ0(R, &\ J? = {Lj}jeJ. Let ωA.

and ωBj (j e J) be the differentials constructed in Proposition 5. If ξp ηj are non-

zero complex numbers such that ξj = ηj = O modLy, and |ξJ |<(2 / | |ω j 4 i | | ) " 1 , \ηj\

<(2 / | |ω B j | | ) - 1 , je J, then the series

ω = ΣfljCOΛj + ηjωBj)

is convergent and belongs to Λo. Furthermore, \ ω = ξj^0,\ ω = ηjφθ for
JAj JBj

every j e J.

By our assumption ω has yT0-behavior and therefore there are differentials

l0 e Λo, Xe0 G Λ^ such that ω = X0+Xe0 outside some Rn. Hence for jsJ—
Λ \Aj^o — \Ajω a r e non-zero complex numbers which are = 0 modL, as well as

J Bj ^ J BJj ^

= 0 mod Lj. Consequently we have L} = L} for every j eJ — Jn.

Now the set J* = {jeJ\Lj&Lj} is a finite subset of J. If we set T=Tg9

then we can easily verify that TΛ0 = Λ0. In fact, the inclusion TΛOZDΛO is ob-

vious. To prove the converse inclusion relation, let λ be any element of TΛ0.

By the definition of TΛ0, λ has Λ0-behavior. Since Λo is equivalent to Λo, we

see that λ has yT0-behavior. Therefore there are X'o e Λo, X'e0 e Λ^ for which

λ = X^+X'e0 outside some Rm.

If we set λ' = λ-X'o, λ' is harmonic on R and is equal to X'e0 on R-Rm. Fur-

thermore, \ λ' = \ λ' = 0 mod Lj for j eJm, because \ λ = \ λ = 0 modL,-,
JAj JBj J Aj J Bj

je J, We can choose complex numbers xj9 yp Xj = yj = 0 mod Lp j e Jm, so that
r = λ' - Σ (xjωAj + yjωBj)

has vanishing Af and l^-periods, j e Jm. Without loss of generality, we may

assume that Σjejm(xjωAj + yj^Bj) = Ko on R-Rm, where λ'e0eΛ^ (cf. Prop-

osition 5). Then λ" is a harmonic semiexact differential on R such that λ"=^λ"e0

outside Rm9 λl0 e Λitf. It follows that λ" is identically zero on R. Since

j e Λo, we now conclude that λ=λr + X'o = Σjejm(χjωAj + yj^Bj) + ̂ ό



Behavior Spaces on an Open Riemann Surface 161

belongs to Λo. q.e. d.

COROLLARY 1. There is a one-to-one correspondence between @Q and

COROLLARY 2. Let Λoe@ and Te 3~. Then for every λ e TΛ0 there exist

λ0 G Λo and xj9 yj e C such that

(i) Xj = y. = 0 for all but a finite number ofjeJ,

(ii) λ = λ0 - Σ (XjO>Aj + yj<0Bj) -
jeJ

PROOF. Since TΛ0 is equivalent to Λo, there is a transformation

such that Λ0 = T'(TΛ0). Therefore every element λ of TΛ0 can be written as

with λoeΛo and xj9 j j eC, where xJ = <yJ = 0 except for a finite number of jeJ.

q. e.d.

8. A similar argument as above shows the following

PROPOSITION 7. Suppose that Λo,Λ'oe& are dual to each other with

respect to a line L in C and T — TJ^* e SΓ. Let T' be another transformation de-

termined by J* and ^*' = {LJf\Lf is a line in C such that LJΌLJ = LJeJ}.

Then TΛ0 and T'Λ'O are dual to each other with respect to the line L.

For an open set DaR, let jf(D) be the family of analytic differentials on D.

Let P be a regular partition of the ideal boundary of R and set (P)<sf#>,n = {φ

es/(R — Rn)\φ is (P)semiexact and \ φ=\ φ = 0 modL. , jeJ — Jn}. We
JAj jBj

identify two elements φί9 φ2 in \J™=ι(P) sf&§n when the difference φι — φ2 has

Λ0-behavior. Each equivalence class is called a (P)Λ0-singularity (see [12]).

As an easy consequence of Definition 4 we have

PROPOSITION 8. Let P be a regular partition of the ideal boundary of R

and let Ao, Λoe&, Λ0~Λ0. Then a (P)Λ0-singularity is a (P)Λ0-singularity

and vice versa.

Theorem 3, Propositions 7 and 8 allow us to choose a most suitable behav-

ior space among the equivalence class when we deal with a concrete problem con-

cerning boundary behavior (of differentials). Replacing the given behavior

space by a new one which is equivalent to the original, formulation of the problem

may be sometimes considerably simplified. (One of such examples will be found

in another paper.)
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9. Finally we shall mention the case of semiexact canonical differentials.

Let Λκ = Λκ(R) = Γhm+iΓhsβ, Γhsβ being the space of square integrable real har-

monic semiexact differentials on R. We know that Λκ is a behavior space which

is (R-) dual to itself ([11]). A semiexact canonical differential is a meromorphic

differential on R which has A ̂ -behavior ([3-5], [9] etc.).

Theorem 1 implies the following theorem due to Kusunoki:

THEOREM 4. ([4,5]) Let φ=du + idu* be a meromorphic semiexact

differential on R. Suppose that for some Rneέ% du is exact on V=R — Rn and

\\du\\v< co. Then the following two assertions are equivalent:

( Γ ) φ is a semiexact canonical differential.

(II') For any square integrable (real) harmonic semiexact differential τv

on V, <du, τv

ι>v= — \ UXγ.
)dV

For the proof we only need to show the equivalence of (IΓ) and (II) in The-

orem 1 under the assumption Λ0 — Λκ.

In the first place, let ω = σ+iτeΛκ. Then we have <φ9 iω*>v= — <du,

τ*>v+ <du, σ>v and Im\ Φω = \ u*σ— \ uτ. (Note that du* is semi-
JdV JdV JdV

exact.) Thus condition (II) is equivalent to

(*) < du, τ* > v = — \ uτ for every τ e Γhse9

(**) <du9 σ>v — — \ u*σ for every σeΓhm.
JdV

Assume (II). Let τv be a (real) harmonic semiexact differential on V such

that | | τ κ | | F < o o . Then there is a closed C1-differential τR on R whose restriction

to F i s equal to τv (cf. [10], [13]; see also the proof of Theorem 1). By the

Dirichlet principle ([2], [5], [11] etc.) there are τhseeΓhse9 τhmeΓhm and τ^eΓ^

such that τR = τhse-\-τ*m + τeθ9 where Γ^^tyeΛ^^λ is real}. Since tR\v = τv

is semiexact (on V), τJ m eΓJ m n Γhse = {0} and hence τΛm = 0.

Now let ύ be a (real valued) C1-function on R such that ύ\v — u. Clearly

\dύ\ < oo. For any ε > 0 we can find a (real valued) function / e C%(R) such that

\<dύ, τ*0 - df*>Rk\ < \\dύ\\ | |τ β 0 - df\\ < ε

holds for every k. One can choose k so large that <dύ, df*>Rk=-\ ύdf

= 0, for the function/has compact support. Then we have

<du9 τ*0>v(]Rk + \ uτe0 = | \ uτe0 = | <dύ, τ*0>Rk\
JdV IJdRk
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It follows that <du, τ*Q>v= — \ uτe0. Consequently we have <du,τf>v

r JdV

= — \ uτv. We have shown that (II) implies (IΓ).
JdV

Conversely assume (IΓ). Then every τeΓhse satisfies (*), for τ is certainly

square integrable and harmonic semiexact on V. Next let σ = dseΓhm. Then

by the definition of Γhm there are σm = dsmeΓhm(Rm) such that \\σm — σ\\Rm-+0 as

m-»oo. We note that under appropriate normalization {sm} is uniformly con-

vergent to the function s on dV(cϊ. [2], p. 147). Also we have \<du,σ — σm>vnRm\

<||dw||F ||cr — σJ|Λ m->0, m->oo. Since du* is semiexact, it follows that
<du, σ>v = Hm <du9 σm>vr]Rm

= lim \ smdu* — \ sdu*.
m-+aoJdV JdV

The last term (Stieltjes integral) can be integrated by parts (cf. [6]) and thus (**)

follows. This completes the proof of Theorem 4.
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