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Recently there have been many results ([1], [4]) concerning the properties

of B-groups, but few informations about the location of the fixed points of their

elliptic elements.

In this paper we shall give some properties of fixed points of these elements.

Before stating our theorem we shall explain notation.

Let G be a B-group, Λ(G) the limit set of G, and E(G) the set of fixed points

of elliptic elements in Λ(G). Let Ed(G) (resp. Ee(G)) be the subset of E(G) con-

sisting of the fixed points of the elements conjugate in G to the elliptic elements

in some degenerate (resp. elementary) group in {Gί9...9 Gt) (see section 1).

Our main result is the following theorem.

THEOREM. Let G be a B-group with a simply connected invariant com-

ponent Ao. Then the following three propositions hold:

(1) E(G)=Ed(G) U Ee(G) and Ed(G) n E£G) = 0.

(2) IfEd(G)Φ0, then G is not regular.

(3) For any zeEd(G)9 its stability subgroup G2 = {£|£(z) = z, EeG} is an

elliptic cyclic group and z can not lie on the boundaries of components except Ao.

1. Let us begin with recalling some notation and definitions.

Let G be a kleinian group. Denote by Ω(G) the region of discontinuity of G,

and Ω(G)' the set of points z with the property that each z has a neighborhood

Wsuch that V(W)0 W=0 for all VeG9VΦ\. Then Ω(G)-Ω(G)' consists of

isolated fixed points of elliptic elements of G and the stability group Gz={E\E(z)

= z, EeG} for any zeΩ{G) — Ω{G)r is an elliptic cyclic group.

The components of Ω(G) are called components of G. A component Δo

of G is called invariant if V(A0)=A0 for every VeG. For each component A

of G, let GΔ be the subgroup of G which keeps A invariant, and set Af — A n β(G)\

Then S=A'IGΔ is a Riemann surface and the canonical projection A'-*S is con-

formal. If {Ao, Aί9...} is a complete list of non-conjugate components of G

and if Si=A\\GΔi9 then Ω(G)'\G=So + Sί + . The surfaces So, Sί9... are called

the factors of G.

A finitely generated, non-elementary kleinian group G with a simply con-
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nected invariant component Ao is called a J3-grouρ. A B-group G is called

quasifuchsian if there are a fuchsian group F and a global quasiconformal homeo-

morphism w: C-*C so that G = w°F<>w~ί

9 where C = C U{oo}. A β-group G

for which A0 = Ω(G) is called degenerate. If a B-group G satisfies Area(Ω(G)'/G)

=2Area(Jό/G), then G is called regular, where Area denotes the Poincarέ area.

From now on we shall denote by G a J3-group with a simply connected

invariant component Ao. Since there is a conformal mapping w: U-+Aθ9 F

= w~1oGovv is a fuchsian group, where U is the upper half-plane. Such group

F is called the fuchsian equivalent of G. In this case the canonical isomorphism

φ: G->F is defined by φ(V) = w~1oVow. Here we note that φ is not uniquely

determined by Aθ9 but for every Ve G, trace2φ(F) is determined by Ao. If there

is a parabolic element PeG such that φ(P) is hyperbolic, then P is called an acci-

dental parabolic transformation. If H is a hyperbolic element of F9 then H has

an axis AH in U; this is the non-euclidean line in U joining the fixed points of H.

If φ(V) is hyperbolic, then the axis Av of Vin Ao is defined by Av=w(Aφ^V)).

Let S0 = AQIG9 and let {P l5..., P J be a basis for the accidental parabolic

transformations in G. We use [PJ to denote the conjugacy class of P f . Let

{<*!,..., αfc} be the homotopically independent set of loops corresponding to

[^i]> > U*k\> respectively. The associated 2-complex will be denoted by

K(S0; otl9...9 ock). Denote by Sl9..., St the factors of K(S0; α^..., αΛ). For

l ^ i ^ ί , let Gf be the image of π^Sj, Of) under the natural homomorphism Φt\

π^So, O^-^G, where each Ot is a point on St and Sf is regarded as a subset of So

(cf. [4, §§6,7]).

2. At first we shall give

PROPOSITION 1. Let l ^ i r g ί . Then one and only one of the following

three statements holds:

(a) G{ is a quasifuchsian group.

(b) Gf is a degenerate group without accidental parabolic transformations.

(c) Gf is an elementary group with the signature (0, 3; 2, 2, oo).

PROOF. The proof of Theorem 5 in [4] gives that each Gt is a finitely

generated kleinian group which has a simply connected invariant component

and which contains no accidental parabolic transformation. Hence Gt is a

quasifuchsian group, a degenerate group without accidental parabolic transfor-

mations, or an elementary group.

Assume that (a) and (b) do not hold. It follows that Gf is elementary.

We shall show that its signature must be (0, 3 2, 2, oo). Let its signature be

(#, n; v l f..., vn). Then ^ = 2 ( ^ - l ) + Σ ? = 1 ( l - ( l / v i ) ) is not positive. By the

construction of K(S0; a1..., αfc), there is at least one v, among vl9...9vn such

that Vy = oo. If # # 0 , then it implies that ^4>0. Hence g must be 0. If n ^ 4 ,
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then A would be positive. Hence we have n ^ 3 . Since St is the factor of K(S0;

ccu...9 αfc), n is greater than 2. Hence n = 3. So the signature must be (0, 3;

2, 2, oo).

REMARK. When G is an elementary group with the signature (0, 3; 2, 2,

oo), G contains an elliptic element with the period 2 and a parabolic element which

have a common fixed point.

PROPOSITION 2. Assume that Gu...9 Gr(r<*i) are quasifuchsian. Then

non-invariant factors of G are topologically equal to Si9..., Sr.

PROOF. Let l g i ^ r . Since Gf is quasifuchsian, it has two invariant

components Δn, Δi2. We may assume An^A0. As 6Δ0 = A(G)^>A(G^dAiu

it is seen that Δi2 Π A(G) = 0. Hence Δi2 is a component of G.

In the same manner as in the proof of Theorem 5 in [4], we can show that

{Aθ9 Aί2, A22,...9 Δr2) is a complete list of non-conjugate components of G,

that GΔi2 = Gh and that Δ'i2IGt is topologically equal to Sf. Thus non-invariant

factors of G are topologically equal to 5 1 ?..., Sr.

PROPOSITION 3. G is regular if and only if each Gt ( l ^ i ^ ί ) is quasi-

fuchsian or elementary.

PROOF. We denote by Area(#, n; vx,..., vM) the area of the surface with

the signature (g, n;vu...9vj9.. namely Area (gf n\ v^..., vn) = 2π{2(# - 1 ) +

Σ?=i(l—(1/Vi))}. We easily obtain the following three relations:

(1) Areafc , n; v l s..., v Π )=Area(^- l , n + 2; vl9:..9 vw, 00, 00).

(2) Area(gf, n; v l5..., vΠ)=Area(^f1, m + 1; v l9..., vm, 00)

+ Area(sr2, n-m + l; vm+1,..., vΠ, 00), where g1 + g2=g.

(3) Area(#, n; 2, 2, v l5..., vΠ_2) = Area(^, n - 1 ; v^..., vn_2, 00).

Using the above (1), (2), (3) and Proposition 2, we see that induction on fe, the

number of elements in the basis for the accidental parabolic transformations in

G, leads to our conclusion.

Considering the fuchsian equivalent of G, we can easily show the next pro-

position.

PROPOSITION 4. Any elliptic element in G has one of its fixed points in

Δo. In particular, if G is degenerate, then another fixed point of this element

lies in A(G).

PROPOSITION 5. Any elliptic element in G is conjugate in G to an elliptic

element in only one of Gj's.

PROOF. We note that G can be built up in k steps from G l 5 G2,..., Gt
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(if necessary, we consider the conjugate group instead of G7 ) by using the Combi-

nation Theorems I, II (cf. [4, § 9]). Taking an elliptic element E in G, we derive

from Proposition 4 that one of the fixed points of E9 say z, is in Ao. There is

some factor St with the removed point corresponding to z in K(S0; oq,..., cck).

Hence E is conjugate in G to some element of Gf corresponding to S f.

3. As the proof of our theorem is complicated, we shall divide it into five

lemmas.

LEMMA 1. An elliptic element E in G does not have a common fixed

point with a loxodromic element V in G.

PROOF. Let z and w be the fixed points of E. Then one of them, say z,

lies in Ao by Proposition 4. Hence Fdoes not fix z. If Fhas the fixed point w,

then the subgroup of G generated by E and Fis not discrete (cf. [3, Chapter III]).

This is a contradiction.

LEMMA 2. Let Pί andP2 be two parabolic elements in G which have a com-

mon fixed point. Then there exist non-zero integers m and n such that Pψ=P%.

PROOF. By a suitable conjugation in SL'(2, C), we may assume that the

common fixed point of Pt and P2 is at oo. If our conclusion is not true, then we

may consider that Pt(z) and P2(z) have the forms z + 1, and z + τ with Imτ>0,

respectively. Let S be a parallelogram whose vertices are 0, 1, τ and 1 + τ. If

SaA09 then it is obvious that \JJ\JkP
J

1P2

:(S) = Cc=:A0. This contradicts the

assumption that G is non-elementary. Hence S is not contained in Ao. If S

czA§, then \Jj\JkP{P%(S) = Cc:Aξ, which is also a contradiction. If S Π AoΦ0,

then Ao can not be simply connected. However, this contradicts our assumption

that G is a 5-group. Thus there exist non-zero integers m and n such that Py =PJ.

LEMMA 3. Let E and P be elliptic and parabolic elements in G, respec-

tively. If the period mofE is not 2, then they do not have a common fixed point.

PROOF. Assume that this conclusion is not true. Without loss of generality,

we may assume that the common fixed point of E and P is at oo. Then P and E

have the following forms:

E =

1

0

exi

r

α

1

^ β

m
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The commutator C of P and E is of the form:

2iπ '

405

C =
1 — exp-

1

m

It is evident that C also fixes oo and is parabolic. If m is not equal to 2, then

we can show that CrφPn for any non-zero integers r and n. This contradicts

Lemma 2.

COROLLARY. Lei P be an accidental parabolic transformation with a

fixed point z in G. If an elliptic element E in G also fixes z, then the period

of E is 2.

LEMMA 4. Let Et and E2 be elliptic elements in G which have one and

only one fixed point in common. Then both periods are 2.

PROOF. Without loss of generality, we may assume that the common fixed

point is at oo. Then Et and E2 may be written in the following forms:

^ - 0

exp-
— in

0 exp — in

where rt is the period of £ f ( i = l, 2). It is easily seen that the commutator C

of Et and E2 is of the form:

C = EιE2EΊ1E2-
1

1

Hence C is parabolic and fixes oo. It follows from this fact that Et (i = 1, 2) and

C have a common fixed point. Thus Lemma 3 leads immediately to our conclu-

sion.

LEMMA 5. Let P and E be parabolic and elliptic elements in G, respec-

tively. IfP and E have a common fixed point, then P is an accidental parabolic

transformation and E is contained in some elementary group conjugate in G
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to some group in {Gu..., GJ.

PROOF. Let F be the fuchsian equivalent of G. Then there is a canonical
isomorphism φ: G->F. It is well known that if E is an elliptic element in G,
then φ{E) is elliptic and of the same period with E; and also that if P is parabolic
in G, then φ(P) is parabolic or hyperbolic.

Now we derive from Lemma 3 that the period of E is 2. We shall show that
EP is an elliptic element with the period 2. Without loss of generality, we may
assume that

ί α 1 Γ 1 β

Lo - ί j Lo l
It is easily seen that

i iβ + α
EP

0 - i

Hence EP is an elliptic element with the period 2.
Set E=φ(E) and P=φ(P). Since <p is the canonical isomorphism, EP is

also an elliptic element with the period 2. Since F is fuchsian, we may write

0 - 1 1 V a b
\9P-\

1 0 J L c d

where ad—be=I and a, b, c, deR. Therefore EP is of the form:

- c -

It follows that b = c, since the period of EP is 2.
Let us assume that P is parabolic. Substituting b = c into ad—be = I and

using a + d=±2, we obtain α = d= + l and b = c = 0. Hence P is the identity
and this contradicts the hypothesis that P is parabolic. Therefore P must be
hyperbolic. It follows from this fact that P is an accidental parabolic transfor-
mation.

In the same manner as in the proof of Theorem 7 in [4], we can show that
an elliptic element with a fixed point on the axis of an accidental parabolic trans-
formation is contained in some elementary group conjugate in G to some group
in {Gx,..., Gt}. Thus it suffices to prove that one of the fixed points of E lies
on the axis of P. One sees that the axis of P is

a-d _ sJ(a+d)2-4
2b "" 2\b\
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This equation is satisfied by i which is a fixed point of E. Our lemma is now

completely proved.

4. Now we are ready to prove our theorem.

PROOF OF (1). Take a point zeE(G). Let E be an elliptic element with

z as a fixed point. It follows from Proposition 5 that E is conjugate in G to an

element in some group in {G1?..., Gt}. Assume that E is conjugate in G to an

element E' in some quasifuchsian group Gj. It is found from Proposition 2

that there exists a component A of G such that GΔ = Gj. Then the fixed points

of E' are in Ω(G). This is a contradiction. Hence E is conjugate in G to an

element in some elementary group or some degenerate group in {G l5..., Gf}.

Thus z is contained in Ed(G) U E£G). Since it is obvious that £(G)=)£d(G)U

E£G\ it follows that E(G) = Ed(G) U Ee(G).

Next assume that Ed(G) Γ) E£G) φ 0, and take a point w in £/G) n £e(G).

Since w is contained in Ed(G) (resp. £e(G)), there exists an elliptic element Ex

(resp. JB2) with w as a fixed point in some degenerate group (resp. some elementary

group) which is conjugate in G to some group in {G^..., Gt}. From Remark

given after Proposition 1, it follows that there exists a parabolic element in G

which has a common fixed point with E2. Lemma 5 implies that Et is contained

in some elementary group. This contradicts Proposition 5. Thus Ed(G) Π Ee(G)

is empty.

PROOF OF (2). If Ed(G)Φ0, then there is at least one degenerate group in

{Gj,..., GJ. It follows from Proposition 3 that Area (Ω(G)'/G)<2 Area(zlό/G).

Hence G is not regular.

PROOF OF (3). At first we derive from Lemma 1 that no loxodromic element

belongs to Gz. Moreover we know from Lemma 5 that any parabolic element

in G does not fix z. Since it is found from Lemma 4 and the above fact that all

elliptic elements in Gz have two common fixed points, Gz is an elliptic cyclic group.

Next assume that z e Ed(G) lies on the boundary of some component A(Φ Ao).

Let E be an elliptic element which fixes z. Since GΔ = {T\T(Δ) = A, TeG} is a

quasifuchsian group, we know that the fixed points of the elliptic elements in GΔ

lie in Ω(GΔ). Hence E does not belong to GΔi and so E(A)ΦA. On the other

hand E(A) is also a component of G and its boundary contains z. It is known

that, if dE(A)θdAΦ0, then dE(A)f]δA consists of only one point which is a

fixed point of a parabolic cyclic subgroup of G (cf. [5, § 5]). This fact leads to

a contradiction. Therefore the points in Ed(G) can not lie on the boundaries of

components except Ao.

Thus our theorem is completely proved.

REMARK. Let G be a finitely generated function group and let z be a limit
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point which is fixed by an elliptic element with the period r ( r ^ 3 ) in G. Then

we can show that z does not lie on the boundaries of components except an

invar iant component.
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