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50. Introduction

The theory of differential calculus in Banach spaces has been already

established (cf. e.g., J. Dieudonne [1, Ch. VIII]), and there have been various

attempts to construct differential calculus in more general linear spaces. For ex-

ample, A. Frδhlicher and W. Bucher [2] have studied in linear spaces with limit

structures based on filters, H. H. Keller [3] has studied the notion of Cp-maρpings

in locally convex spaces, and S. Yamamuro [7] has introduced the notion of equi-

continuous differentiability in topological linear spaces.

In this paper, we try to develop differential calculus in linear ranked spaces.

The notion of ranked spaces was first introduced by K. Kunugi [4]; and M.

Yamaguchi [6] considered differentiation in linear ranked spaces. Using a

modified formulation of linear ranked spaces given in M. Washihara [5, II],

we shall study differentiation further than [6] and show that many important

results in differential calculus can be included in our theory. In many respects,

our construction of the theory and the methods of proofs are analogous to those

in [2] and [7], though the underlying structures of the spaces are different.

We prepare in § 1 some notions and results on linear ranked spaces. We

define the notion of R-differentiability in § 2, and prove the chain rule (Theorem

2.2) and the mean value theorem (Theorem 3.1). Further we study the Gateaux

differentiability in §4, and the invertibility of differentiable mappings in §5

(Theorems 5.2-5). Finally in § 6, the higher derivatives are considered.

The author would like to thank Professors M. Sugawara and F-Y. Maeda

for their many helpful comments in reading the whole manuscripts.

§1. Linear ranked spaces

Let £ be a linear space over the real field R. Suppose that a sequence

{93Λ}£=o of families of subsets in E is given to satisfy the following condition

(E.I):

(E.I) OeVfor any Fe33 = W*=O95Π, Ee%Q; and for any Fe93 and for any

integer n^O, there are another integer m>n and Ue58m such that UaV.

Sets in 33Π are called preneighborhoods of the origin 0 with rank n.
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A sequence {FJ™=0 of subsets of E is called a fundamental sequence at 0,

if

(1) V1=>V2=>-=,Vk=>
(2) Vke%ttk(k=l, 2,...)vWίftn1 ^ n 2 g - ^ n * ^ • oo.

Hereafter, we simply call any fundamental sequence at 0 a f.s.. Given a f.s.

{Vk}9 let

E({FJ) = {x e EI for each /c, there is Λfc > 0 such that x e λkVk}.

If (E, {93J) satisfies the following conditions (E.2-5) in addition to (E.I),

then E = (E, {93Π}) is called a linear ranked space (cf. K. Kunugi [4], M.

Washihara [5] and M. Yamaguchi [6]):

(E.2) For any two f.s.'s {Vk} and {Uk}, there is another f.s. {Wk} such that

Vk+UkczWk for each k.

(E.3) For any f.s. {Vk} and λ>0, there are integers l ^ m ( l ) ^ m ( 2 ) ^ > oo

and fco^l such that λVkcVm(k)for k^k0.

(E.4) ForanyVe®and\λ\£l9λV<zV.

(E. 5) For any x e £ , there is a f.s. {Vk} such that x e E({FJ).

REMARK 1.1. (E.4) follows from the condition that λV<^Vΐoτ

and the symmetricity — V= V. We assume condition (E. 4), since the symmetricity

is essential for the study in this paper.

A linear ranked space E is said to be Tf, if

(T?) ΓΛΐ=iVk = {0} for any fs.{Vk}.

DEFINITION 1.1. Given a f.s. {Vk}9 a sequence {xj in E is said to be {Vk}-

conυergent to xeE, in symbols xn-+x({Vk}), if for any k there is nk such that

nϊ£nk implies xnex+Vk. Also, {xn} is said to be ^-convergent to x, in symbols

xrt-+x(R), if xn-*x({Vk}) for some f.s. {Vk}; and then x is called an RΊimit of{xn}.

PROPOSITION 1.1. If E is a Tf linear ranked space, then an RΊimit of a

sequence {xn} is unique if it exists.

PROOF. Suppose xn-+x({Vk}) and xn->x'({Uk}), and choose a f.s. {Wk}

such that Vk+UkaWk by (E.2). Then there is some nk such that n^nk implies

xnex+Vk and xnex'+Uk, and so x — x ' e Vk+Uk^Wk since —Vk=Vk by (E.4).

Thus x - x ' e Γ\k=1Wk9 and hence x = x' since E is Tf.

LEMMA 1.1. (a) Let {Vk} be a f.s.. Then for any λ>0 and fe, there is k'

such that λVk=>Vv.

(b) If {Vk} is a convex f.s., then for each k, there is k' such that VWΛ-Vk>

<= Vk. (Here, we say that a f.s. {Vk} is convex, if each Vk is convex.)
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PROOF, (a) By (E. 3), there are integers l ^ m ( l ) ^ m ( 2 ) ^ — > o o and

ko^l such that λ~1VkczVm(k) for fc^fe0. Thus, for each k, choosing fc'^fc0 with

m(k')tk, we obtain λVkz*λVmikΊ=>Vk>.

(b) If Vk is convex, then 2- 1F f c+2- 1F f ec Vk. Thus we see (b) by (a).

LEMMA 1.2. Let {Vk} be af.s.. Then there are a sequence {λk} of positive

numbers and a sequence {Nk} of positive integers such that

λki0 and Vj^λjVk if j}>Nk.

PROOF. Put j i = l. By induction, using Lemma 1.1 (a) we can choose

{jk} such that kVjk<=.Vjk_ί and j1<j2<"' Put λj=l/k if jk^j<jk+ί ( A ^ l ) .

Then λj 10. For each fc, choose the smallest m ^ 2 such that k^jm_x and put

Nk=jm. If j^Nk, then jι^j<ji+ί for some l^m. Then k^jm_1<^jι_1, so

that λ jίVj=IVjc Whcz Vjι_1 cz Vk.

LEMKA 1.3. (a) For any /.s.'s {FJ and {(7fc}, let {Wk} be a fs. as in

(E.2). Ifxn-+x({Vk}) and yu-+y({Uk})9 then xn+yH-+x + y({Wk}).

(a') Ifxn-+xφ) and yu-*y(R)9 then xn + yn->x + y(R).

(b) Let {Vk} be a fs.. // xn^x({Vk}) and λ>09 then λxn-*λx{{Vk}).

(c) 7/xπ-^x(R) and λn-+λ(λn9 λeR), then λnxn-+λx(R).

(d) If xn-+0({Vk}) and {λn} is a bounded sequence of real numbers, then

PROOF. We see easily (a) and (a') by definition, and (b) using Lemma 1.1

(a).

(c) Assume xn-+x({Vk}). Then λoxn-+λox({Vk}) by (b), where A0 = sup|Art|.
n

Hence for each k there is nx{k) such that n^n^k) implies λoxneλox-f Vk and so

K(*n-x)eKλZ^k^-Vk by ( E 4 ) A l s o , choose a f.s. {Uk} such that xeE({C7J),

i.e., xeμkUk for some μ fc>0, by (E. 5). Since AΠ->A, there is n2(fc) such that n

^ n2(fe) implies |λ n - λ| < l/μΛ and so (Aπ - λ)x e (λn - A)μfcL/Λ <= Uk by (E. 4). Then

n^msίxin^k), n2(k)) implies

λnxn -λx = λn(xn -x) + (λn - λ)xeVk +Uka Wk,

where {Wk} is a f.s. in (E.2). Thus λnxn-*λx(R).

(d) follows easily from Lemma 1.1 (a) and (E.4).

LEMMA 1.4. Let xn->0({Vk}) for some f.s. {Vk}. Then there is a sequence

{μk} of positive numbers such that μk t oo and μnxn

PROOF. By Definition 1.1, there are positive integers m(l) ̂  m(2) ̂  •

such that n^m(k) implies xne Vk. Choose sequences {λk} and {Nk} as in Lemma

1.2, and ρutj f c = m(iVfc) and
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μn = 1 f o r 1 ^ n < j u μn = l/λNk f o r jk^n< j k + 1 (k = 1, 2 , . . . ) .

Then μn t oo. Also, we see that μnxneVk if jk^n<jk+ί9 which implies μnxn

DEFINITION 1.2. Given a f.s. {Vk}9 a sequence {xn} in £ is called a Cauchy

sequence by {Vk}9 if for each A: there is nk such that m>n^.nk implies xm — xne Vk.

A sequence {xπ} in E is called an R-Cauchy sequence if it is a Cauchy sequence by

some f.s. {Vk}. Also, £ is said to be R-complete, if for each Cauchy sequence

{xn} by {Vk} there is x e £ such that xn-+x({Vk}).

LEMMA 1.5. Ifxn-+x(R), then {xn} is an R-Cauchy sequence.

PROOF. If xn-+x({Vk}) and {Uk} is a f.s. such that Vk+VkczUk9 then we see

easily that {xn} is a Cauchy sequence by {Uk}.

Now, we consider the following additional assumptions for a linear ranked

space E=(E, {33J), which will be assumed frequently:

(A. 1) For each f.s. {Vk}9 there is k0 such that VkoczE({Vk}).

(A.2) Let{Vk}beaf.s.. If xw->0(R) and {*„}<=£({Vk}\ then xn^0({Vk}).

(A. 3) Let {Vk} be a f.s.. Then for each k and xeVk there is m such that x+Vm

The following are some examples of linear ranked spaces which satisfy

(A.l-3)(cf. [4], [5], [6]).

EXAMPLE 1. Normed linear spaces. Let £ be a normed linear space, and

let V(ε) = {xeE\\\x\\<ε} for e>0. Put

23O = {F(ε) I ε > 1} U {£}, 2*n = {V(ε) \ l/(n + 1) < ε ^ 1/n}

Then (E, {33J) is a Tf linear ranked space. Hereafter we shall always regard

a normed linear space as a linear ranked space with this structure. The R-

convergence coincides with the norm-convergence, and any R-Cauchy sequence

is a Cauchy sequence with respect to the norm. Hence E is R-complete if and only

if £ is a Banach space. It is easy to see that E satisfies (A. 1-3).

EXAMPLE 2. The Schwartz space Q>. Let Rn be the n-dimensional

Euclidean space and put Ωi = { x e R w | |x |</} (|(x l5..., x n ) |=(x?+ . 4 xj)1 / 2).

For integers m^O, Z>0 and a real number ε>0, let

U(m9 I, ε) = {φ e Q> \ supp φ <= Ωl9 \Daφ\ < ε

for all multi-indices α with |α| 5s m}.
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Put 8 0 ={l7(0, /, ε)j J = l, 2,...; ε > l } U {0} and

93Π = {U(n, I, 6) |/ = 1, 2,...; l/(n + 1) < ε ^ 1/n} (n = 1, 2,...).

Then (^, {23J) is a Γf linear ranked space. For a sequence {φn} in 0 , φπ->0(R)

means that supp(pπ is contained in a fixed bounded set and \Daφn\-*0 uniformly

for each α. Of is R-complete and satisfies (A. 1-3).

EXAMPLE 3. Inductive limits of metrizable topological vector spaces.

Let {(En, dn)} be a sequence of metrizable topological vector spaces such that dn

is an invariant absorbing metric of En for each n, JE1gjB2S*-# and dn+i(x, 0)

^dn(x, 0) for xeEn. Consider the inductive limit £=WjLi-Bll, and put 33O

= {F(/;ε) |J=l,2,. . . ;8>l}U{£} and 33Π={K(Z; ε)| 1=1, 2,...; l/(n + l)<β

^1/n} (n = l, 2,...), where F(Z; ̂ { x e E J φ , 0)<ε}. Then (E, {«„}) is a Tf

linear ranked space satisfying (A. 1-3), and xn->Ό(R) if and only if there is some k

such that {xn}cEk and dk(xn, 0)->0 (n->oo). Also, if each (En, dn) is complete,

then E is R-complete. The space Θ of the above example is a special case.

Now, we define several notions for a linear ranked space E = (E, {33n}).

DEFINITION 1.3. For a subset S of E and a f.s. {Vk} in £, the

S({Vk}) ofS is the set of all x e £ such that there is {xn} in S with xn->

5 = U {5({Vk})\{Vk} is a f.s. in £}

is called the R-closure of S. S is said to be {Vk} or R-closed if S=S({FJ) or

S=S. Also, a set DczE is said to be R-open if E\D is R-closed.

LEMMA 1.6. (a) x e 5({Vk}) if and only if (x+Vk) [\Sφφ for each k.

(a') xeS if and only if there is some /.s. {Vk} such that (x + Vk)(]SΦφ

for each k.

(b) JS({Vk}) = λ5({Vk}),IS = λSJor any λ>0.

(c) Jx + S)({Vk}) = x + S({Vk}), x+_S = x + S,for anyxeE.

(d) If{Vk} is a convex f.s., then 5({Vk}) is {Vk}-closed.

(e) If{Vk} is a convex f.s. and S is convex, then S({Vk}) is also convex.

(e') // S is convex, then so is S.

PROOF. We see easily (a)-(c) by the above definition and Lemma 1.3 (b).

(d) Let T=S({Vk}). Then f({Fk)}=>Γ is obvious. For each k, choose m

such that Vm+VmaVk by Lemma 1.1 (b). If xe T({Vk}), then (a) implies that

there exist x'e(x + Vm) n Tand x"e(x' + Vm)nS. Hence x"ex + F m + F m c χ + F f c

and x" e S, and so x e T. Thus T({Vk})c T.

(e) and (e') are seen easily by (a) and (E. 2).

LEMMA 1.7. If{Vk} is a convex f.s., then Vn({Vk})czλVnfor any λ>l and n.
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PROOF By Lemma 1.1 (a), there is an integer m such that (λ-l)Vn=>Vm.

If xeVn({Vk}), then there exists xf e(x+Vm)(]Vn by Lemma 1.6(a). Thus x

= x-x' + x'eVm+Vncz(λ--l)Vn+Vn=λVn since Vn is symmetric and convex.

DEFINITION 1.4. Let {Vk} be a f.s. in E. A subset ScE is said to be

{Vk}-bounded if there is a sequence {Λ,fc} of positive numbers such that SaλkVk

for each fc. S c £ is said to be R-bounded if it is {Ffe}-bounded for some f.s. {Vk}.

A sequence {xn} in E is called a {FjJ-gwαsί bounded sequence ({Vk}-q.b.s.) if

Anxn->O({Ffc}) for any sequence {λn} of positive numbers such that λn-+0 (n->oo).

{xj is called an R-quasi bounded sequence (R-q.b.s.) if it is a {Ffc}-q.b.s. for some

f.β. {Vk} (cf. [6, II]).

REMARK 1.2. If £ is a normed linear space, then S is R-bounded if and

only if it is norm-bounded, and a sequence {xj is an R-q.b.s. if and only if it is

norm-bounded (cf. Lemma 1.10 below).

LEMMA 1.8. (a) // S± and S2 are R-bounded, then so are St U S2 and

(b) Any finite set is R-bounded.

(c) If S is R-bounded and λ>0, then λS is R-bounded.

(d) Let {Vk} be a convex f.s.. If S is {Vk}-bounded, then so is S({Vk}).

PROOF, (a) We see easily that if St and S2 are R-bounded, then so is Sx

+ S2, by using (E.2). Thus Sί[)S2 is R-bounded since S1[j S2cz(Sί[) {0})

+ (S2U{0}).

(b) By (E.5), given xeE there is a f.s. {Vk} such that xeΈ({Vk}). Then

{x} is {Ffc}-bounded and so R-bounded. Thus we see (b) by (a).

(c) is obvious from definition, and (d) is immediate from Lemma 1.7.

LEMMA 1.9. (a) // {xn} and {yn} are R-q.b.s.'s, then so is {xn + yn}.

(b) // {x j is an R-q.b.s. and {αM} is a bounded sequence of non-negative

numbers, then {ocnxn} is an R-q.b.s..

PROOF, (a) follows from Lemma 1.3 (a) and definition.

(b) If λn^>0 (n->oo), then λnocn-+O (n-+oo). Thus we have (b).

LEMMA 1.10. (a) Given a f.s. {Vk}, any {Vk}-bounded sequence is a {Vk}-

q.b.s..

(a') Any R-bounded sequence is an R-q.b.s..

(b) Conversely, if {xn} is a {Vk}-q.b.s. and {xΛ}c=E({Fk}), then {xn} is

{Vk}-bounded.

(b') If E satisfies (A.I) and {xn} is a {Vk}-q.b.s., then {xn}n*no is {Vk}-

bounded for some n0.

(b") If E satisfies (A. 1), then any R-q.b.s. is R-bounded.
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PROOF, (a), (a') Suppose {xn} is {FJ-bounded. Then there is a sequence

{μk} of positive numbers such that xn e μkVk for all n, fc. Let {λn} be a sequence

of positive numbers such that λM-»0 (w-»oo). For each k there is an integer

n(k) such that n ̂  n(k) implies λn ^ l/μk. Hence n ̂  n(k) implies λnxn e λnμkVk c Ffc.

Hence λnxn-+0({Vk}). Thus {xM} is a {Ffe}-q.b.s..

(b) Assume that {xn} c=E({Ffc}) and {xj is not {FJ-bounded. Then there

is k such that {xπ}ς£λFΛ for all λ>0, and we can choose Πj such that xn.ξfcjVk

for each j = l, 2, Since {xn}cE({Fk}), we see that {j\rij — n} is a finite set.

Hence {rij} is unbounded, so that we can choose a subsequence {n7/}, njx<nj2ι

< •oo. Since ji~+co, we can choose {λn} such that λnj=llj for j = JΊ, / = 1 ,

2,..., and λw->0 (n-»oo). Then λnjxnjφ.Vk iϊ j=jt (/=1, 2,...), and hence /Lπxn̂ >0

({Ffc}). Thus {xπ> is not a {FJ-q.b.s..

(b') Assume that {xj is a {Ffc}-q.b.s.. By (A.I), there is k0 such that

F f c ocE({FJ). Since n~1xJI->0 ({Ffe}), there is n 0 such that n ^ n 0 implies n^x,,

6 Ffc0, i.e., xπ e E({FJ). Then { x j π ^ o is {Ffc}-bounded by (b).

(b'O follows from (b') and Lemma 1.8 (a), (b).

LEMMA 1.11. (a) Each ^-convergent sequence is an R-q.b.s..

(b) //xw-»0 ({Ffe}), then {xn} is a {Vk}-q.b.s..

PROOF, (a) follows from Lemma 1.3 (c); and (b) from Lemma 1.3 (d).

The continuity of a mapping between two linear ranked spaces is defined as

follows.

DEFINITION 1.5. Let £ = ( £ , {93J) and F = ( F , {2BJ) be two linear ranked

spaces and D be a subset of E. A mapping/: D-+F is said to be ^.-continuous at

aeD (relative to D) if for each f.s. {FJ in E, there is a f.s. {Wk} in F such that

/ ( O + Vk) Π D) cf(a) + Wk for each fc.

If/ is R-continuous at every aeD'c^D, then we say that / i s R-continuous on D'

(relative to D).

Let L(£, F) be the set of all R-continuous linear mappings from E to F.

LEMMA 1.12. Let £=>D and F be as in Definition 1.5.

(a) If f:D-+F is R-continuous at aeD and xπ-»α(R) with xneD, then

(b) / / / : D-+F and g: D->F are R-continuous at aeD and if λ>0, then

jΛ g and λf are R-continuous at aeD.

(c) Let D be a linear subspace ofE. Iff: D^F is linear and R-continuous

at 0, then f is R-continuous on D.

(d) Let f: F-^F be a linear R-continuous mapping. If S is R-bounded

in E, then so ίsf(S) in F. If{xn} is an R-q.b.s. in E9 then so is {/(xπ)} in F.
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PROOF. This lemma is seen easily by definition.

REMARK 1.3. If E and F are both normed linear spaces, then the R-con-

tinuity coincides with the continuity with respect to norms.

DEFINITION 1.6. Let E=(E9 {93Π}) and F=(F9 {2Bn}) be two linear ranked

spaces. For the product linear space E x F9 we take

Xn = {VxW\Ve 23,, We%&m9 min(/, m) = n}

as the family of preneighborhoods of rank n.

LEMMA 1.13. (a) // {Vk} and {Wk} are /.s.'s in E and F, respectively,

then {VkxWk} is af.s. inExF.

(b) // {VkxWk} is a f.s. in ExF, then there exist /.s.'s {F£} in E and

{Wt} in F such that Vkcz V* e {Vk} and Wka W£ e {Wk} for each k.

PROOF, (a) is obvious by definition.

(b) Assume VkxWke Xnk9 Vk e 33Zk, Wk e 2BWfc with nk=min (Zfc, mk). De-

fine k(j) inductively as follows: Let fc(l) = l. Choose k(j+l)>k(j) such that

hu+ί)>lk(j) and mkU+1)>mk(j). Then k(j)^j and {Vk(j)}j9 {Wk(j)}j are f.s.'s

in E9 F9 respectively. Put V^ = Vk(J) and Wt = Wk(j) if k(j)^k<k(j + ϊ). Then

{Vt} and {Wt} are the desired f.s.'s.

THEOREM 1.1 (cf. [6,1]). ExF = (ExF9 {£„}) is a linear ranked space.

PROOF. Let {VkxWk} and {Vkx W'k) be f.s.'s in ExF. Then by Lemma

1.13(b), there are f.s.'s {Vf}9 {V'k*} in E and {Wt}9 {W'k*} in F such that Vk

c F?, F^cz Fi* and WkaWt9 W'ka W'k*. Also, by (E.2) for E and F, there are

f.s.'s {VI} in £ and {W'D in F such that Vt + V'faVl and Wt + W'faW'ί for

each fe. Then {F^ x Wk} is a f.s. in E x F by Lemma 1.13 (a), and

VkxWk+V'kxW'k = (Ffc + V'k) x (Wk + W'k) c Fj; x PF2 for each k.

Thus (£ x F9 {Xn}) satisfies (E. 2).

Let {Ffc x Wi} be a f.s. in £ x F and A>0. Choose f.s.'s {F?} in £ and {W%}

in F as in Lemma 1.13 (b). Then, by (E. 3) for E and F, there are integers 1 ̂  m(l)

^ m ( 2 ) ^ ->oo, 1^/(1)^/(2)^...-•oo and k0 such that AFf c F * ( k ) , IP ĵf

ciff ( Λ ) for fe^fe0. Thus A(Ffcx ίFfe) = λVkxλWka V*w x W*w for k^fc0, where

n(fe) = min(m(fc), Z(fc)). These show (E.3) for ( E x F , {3En}).

(E. 4) and (E. 5) for (E x F, {£„}) are verified easily.

LEMMA 1.14. (a) If E and F are both Tf9 then so is ExF.

(b) (*„> )U->0(R) in ExF if and only if xn->0(R) in E and 3>π->0(R) in F.

(c) IfE and F both satisfy (A. 1), (A.2) or (A.3), then so does ExF.
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(d) // E and F are R-complete, then so is ExF.

(e) S=SίxS2(SίaE, S2cF) is R-bounded in ExF if and only if

and S2 are R-bounded in E and F, respectively.

(f) The projections pί: ExF^E and p2\ ExF->F are R-contίnuous.

PROOF. Let {Uk} = {VkxWk} be a f.s. in E x F , and choose f.s.'s {F£} in

E and {Wf) in F such that VkaV%e{Vk} and WkczW^e{Wk} for each fe, by

Lemma 1.13 (b). Then we see easily that E({Ufe}) = E({F£x

(a) Since Γ\kUk c (Γ\kVf) x (Λ* Wj?), we see (a).

(b) If (xrt, yπ)->0({t/J), then xB->0({7?}) and yπ-*O({JFfc*}). This shows

the Only i f part. The 'if part is clear by Lemma 1.13 (a).

(c) If E and F satisfy (A. 1), then there is fc0 such that F? ocE({F£}) and

WΐoaΈ({Wt}). Put fc' = max(fe!, fe2), where Vfo = Vki and PF*0 = ΪFfc2. Then

l/fc,= Ffc, x ^ c E ( { 7 ί } ) x E({Wt}) = E({Uk}). Thus E x F satisfies (A. 1).

Suppose that E and F satisfy (A.2). If (xπ, yn)-+0(R) in ExF, then xM->0(R)

in E and j>M->0(R) in F by (b). If (xn, yn)eE({Uk}) for all n in addition, then

xneE({Vn) and yneE{{Wt}\ and so xn->0({Ffc*}) and yH-+<K{Wt}) by (A.2)

for E and F. Thus we see that (xM, yn)^0({(7J).

Finally suppose E and F satisfy (A. 3), and (x, j ; )e ί/ f c =F f c x PPfc. Then, there

is m such that x+V*czVk and j>+ PΓ*c Wk by (A. 3) for E and F. Thus (x, y)

+ Umcz(χ, y) + (V* x W*)aUk9 and (A. 3) holds for ExF.

(d) Suppose E and F are R-complete. If {(xn, yπ)} is a Cauchy sequence by

{Uk}, then we see easily by definition that {xn} and {yn} are Cauchy sequences by

{FJ} and {JP*}> respectively. Thus there are x e E and yeF such that xn-+

x({Fj£}) and yn^y{{Wt}\ and hence (xm yj-+(x, y)({Uk}). Hence E x F is

also R-complete.

(e) and (f) are seen easily by definition.

LEMMA 1.15. Let E, F be linear ranked spaces and let T be an R-con-

tinuous bilinear mapping of the product linear ranked space E2 = ExE into

F. Then for any f.s.'s {Vk} and {Uk} in E, there is a f.s. {Wk} in F such that

T(χn,yn)—+θ({Wk})

for any sequence {xn} with xM-»0({Fk}) and any {Uk}-q.b.s. {yn}.

PROOF. Since {Vkx Uk} is a f.s. in E 2 by Lemma 1.13 (a), the R-continuity

of Tat 0 = (0, 0) implies that there is a f.s. {Wk} in F with

T(Vk x Uk) c Wk for each k.

If xπ->0({Ffc}), then there is a sequence {μn} such that μ π >0, μn t oo and μnxn

by Lemma 1.4. Thus if {yή} is a {Uk}-q.b.s., then we see Γ(xn, yn)
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= T(μnxn, μϊιyJ-+(K{Wk}) as desired.

§2. Differentiation

In the sequel, let E and F be linear ranked spaces and let D be a non-empty
R-open subset of E (cf. Definition 1.3).

DEFINITION 2.1 (cf. [6, V]). A mapping / : D-+F is said to be R-differ-

entiable at xeD, if there exists an R-continuous linear mapping I: E-*F for which

(2.1) r : D - x > F, r(h)=f(x + h)-f(x)-l(h) (heD-x).

satisfies the following condition:

(2.2) For any f.s. {Vk} in E, there exists a f.s. {Um} in F such that

for each {Ffc}-q.b.s. {hn} in E and each sequence {λn} of positive numbers with

REMARK 2.1. Since D is R-open, for each xeD and each f.s. {Vk}, there

is k0 such that k^k0 implies VkczD — x by Lemma 1.6(a'). Hence, if {hn} is a

{Fk}-q.b.s. and λn-+0 (λn>0), then λnhn->0({Vk}) and so λnhneD-x for large n.

LEMMA 2.1. // (2.2) holds, then for any sequence {λk} of positive numbers

with λk-+0 and for any m, there is fc0 such that

Kxr{λkVk) c Um for each k ̂  fe0.

PROOF. Suppose there are m 0 and a sequence {λk} with λk>0, λk-*0 such that

for each k there is k'>k with λk}r(λkVk)ς£ Umo. Then we can choose kί<k2<~

and hj e Vkj such that

KjKXkjhj)^Umo for each j .

Thus hj->0({Vk}) and so {hj} is a {FΛ}-q.b.s. by Lemma 1.11 (b). Also, λkj-+0

O'->oo), but λj;}r(λkjhjy»O({Um})9 which contradicts (2.2).

THEOREM 2.1. If f\Ό->F is R-differentίable at xeD, then it is R-con-

tinuous at x.

PROOF. Let a f.s. {Vk} in E be given. By Lemma 1.2, there exist {λk}

(λx = l9 0<λk^U λk i 0) and {Nk} ( ^ = 1, Nk T oo) such that VjdλjVk if j^Nk.

If we put fc(j)=max{fe|j^iVfc} and Vj = Vkϋ), then we see that {F}} is a f.s. in

E and FfCl-F} for all j . Let leL(E, F) and r be as in Definition 2.1. By
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(2.1),

f((x + Vk) fl D) <=/(χ) + l{Vk) + r(Vk n (D - x)),

where VkaD — x for large /c, by Remark 2.1. By Lemma 2.1, there is a f.s. {£7m}
in F such that

Λ j M W ^ * , if j*Km),

for some sequence {j(m)} of integers with j(m) t oo. Hence

r(Vj) c= r(λjV'j) c λjUm cz I7m if j ^ j(m).

Put m(j) = max{m |7^j(m)} (m(j) = 0 if j<j(m) for all m) and Uj = UmU)

(17O = F). Then {I/}} is a f.s. in F. On the other hand, since I is R-continuous
at 0, there is a f.s. {U'ή} in F such that l(Vj)c:U'j for each . Choose a f.s.
in F such that U) + l/J cz Wj by (E. 2). Then

/((x + ^ ) Π D) c/(x) + /(^) + r(Vj) c/(x) + I/} + 175 c/(χ) + ^

for large j . Hence / is R-continuous at x.

LEMMA 2.2. If F is Tf and iff: D-^F is R-dijferentiable at xeD, then
leL(E9 F) in Definition 2.1 is uniquely determined.

PROOF. Let lί9 l2 e UE, F),

= fix + Λ) - fix) - lj(h) (heD-x)9 j = 1, 2,

and suppose r1 and r2 both satisfy (2.2).
For any heE, we can find a f.s. {Vk} in £ such that heE({Vk}) by (E.5).

Then {h} is {Ffc}-bounded and hence is a {Ffe}-q.b.s. by Lemma 1.10 (a). Thus
by (2.2), there are f.s.'s {Um(l)} and {UJ2)} in F such that

^ r / V O — * 0 HUJU)}) 0 = 1,2)

for any sequence {λn} with AM>0, /lΛ^0. Then for any m, there is n such that
^V/V0eί7 M C/)α=l,2) . Let {WJ be a f.s. in F such that t7m(l)+l7lll(2)
c PFm. Then

-r2iλM G UJl) + UJ2) c= PFm.

This implies lxih) = l2ih) as desired, since F is Tf, i.e., ΛMl^m = {0}.

DEFINITION 2.2. Suppose F is Tf and a mapping f:D->F is R-differ-
entiable at xeD. Then the unique leL(E,F) in Definition 2.1 is called the
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R-derivative offat x and is denoted by / ' (*) .

Hereafter, we shall always assume that F is Tf.

REMARK 2.2 (cf. [6, V]). If E and F are normed linear spaces, then R-

differentiability of/: E-»F with E and F being regarded as linear ranked spaces

coincides with Frechet differentiability of / and f'(x) is the Frechet derivative of

/ a t x (see Theorem 2.3 below).

LEMMA 2.3. Any R-continuous linear mapping leL(E,F) is R-differ-

entίable at every aeE and l'(a)(x) = l(x).

PROOF. Since l(a + x) — l(a) = l(x), we see immediately the lemma by defini-

tion.

THEOREM 2.2. Let Ebea linear ranked space, F and G be T? linear ranked

spaces. Let Dt and D2 be R-open subsets of E and F, respectively. Suppose

f: Dx-+F andg: D2-+G are R-differentiable at aeD1 andf(a)eD2, respectively,

and f(Dί)czD2. Then the composed mapping gof-.D^G is R-differentiable

at aeO^ and

PROOF. Consider the remainders

Γi(x) = /(α + x) - f(a) - f'(a) (x) (xeD.-a),
r2(y) = 9(f(a) + y)- g(f(a)) - g'(f(a)) (y) (yeD2- /(α)).

Then we see easily that

(2.3) r(x) EE (gof)(a + x) - (gof)(a) - (<7'(/(α)>

= g'(f(a)) (^(x)) + r2(ff(a) (x) + rt(x)) (xeD.-a).

Let {Vk} be a f.s. in E. Choose a f.s. {Um} in F such that

for any {Ffc}-q.b.s. {hn} and any sequence {λn} with λn>0, λn->0. Since /'(α)

is R-continuous at 0, there is a f.s. {U'm} in F such that f'(a)(Vm)czU'm for each

m. Let {CO be a f.s. in F such that Um+U'mc:U^ for each m. By the R-

differentiability of g, there is a f.s. {Wt} in G such that

for any {L/^}-q.b.s. {/cπ} and any sequence {λn} with Aw>0, An->0. Also, since

g'(f(a))eL(F, G), there is a f.s. {FF'J in G such that ^ ( / ( α ί X ^ c : ^ for each

/. Choose a f.s. W } in G such that w;+ W\ c ŴJ for each /.

Now, let {hn} be a {Ffe}-q.b.s. in £ and {λn} be a sequence such that λn>0,
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λn^>0. Since λ-^iλJtJ-tO ({Um}), we see that

(2.4) λ-^(KaMri(λnhn)) = gXKaMλ-h^λX)) —> 0 ({FF',}).

Next, we shall show that the sequence {kn} given by

is a {l/£}-q.b.s.. For any sequence {μn} with μ r t>0 and μrt->0, μnhn->0({Vk})

by definition, so that

μ / W W =f'(a)(μnhn)—>0({V'm}).

On the other hand, μ1fa
1r1(λnhJ-+O({Um}) by Lemma 1.3(d). Hence μnkn

->O({172,}) by Lemma 1.3 (a). Thus {kn} is a {IQ-q.b.s.. Therefore,

(2.5) λ

By (2.3-5) and Lemma 1.3 (a), we have

Hence we have proved the theorem.

In the case that £ is a normed linear space, we have the following

THEOREM 2.3. Let E be a normed linear space, D be an open subset of E

and F be a T% linear ranked space. Thenf: D->F is R-dijferentίable at xeD

with E being regarded as a linear ranked space, if and only if there exists

16 L(£, F) such that

(2.6) for any sequence {hn} in E with hn-+09 hnΦ0,

I I U - W — 0(R) (KΛ) = fix + h) - f(x) - /(fc)).

PROOF. The necessity follows immediately from Definition 2.1; note that

Conversely, suppose (2.6) holds. If {hn} is an R-q.b.s. in E, then {hn} is

bounded by Remark 1.2 (cf. Lemma 1.10 (b")), and so λnhn-*O for any {λn} with

λn>0, V + 0 . Thus | |AAI|-M^A)->0(R) by (2.6), which implies λ~n

ιr{λnhn)

->0(R) by Lemma 1.3 (d). Hence / is R-differentiable at x.

COROLLARY 2.4. IfE=R in the above theorem, then (2.6) is the following:

(2.6') For any sequence {δn} with δn-+0, δnΦ0,
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In this case, we denote Z(l)=/'(x)(l) by f\x). Obviously f'(x)(λ)=λf\x)

for all A e JR.

§3. The mean value theorem

THEOREM 3.1 (cf. [2, §5.1], [7, (1.3.1)]). Let E be a T? linear ranked

space satisfying (A.2). Let oc<β and let f:[μ9β]-+E and φ: [α, j?]-*Λ satisfy

the following conditions:

(a) / and φ are R-continuous on [a, /?]

(b) / and φ are R-differentiable at each point t e (a, β) \ Di9 where Dx is at

most countable;

(c) φ is monotone non-decreasing.

Furthermore, let {Vk} be a convex fs. in E and B be a subset of E satisfying

(d) /([a, β}) <= /(a) + E({FJ),/'((a, β) \Dx) a E({Vk});

(e) B is {Vk}-closed and convex, and B D Έ{{Vk})φφ.

Iff\t)eφ'(t)B for all te(μ9β)\Du then

f(β)-f(*)e(φ(β)-φ(*))B.

PROOF. First remark that E({Vk}) is a linear subspace, since each Vk is

symmetric and convex. Thus, we may assume without loss of generality that

α=0, <p(0)=0 and /(0)=0. Furthermore, for xoeB() E({Ffe}), consider ft(t)

=f(i)-φ(t)x0 and Bi=B-x0. Then Bx is convex and {Kfc}-closed by Lemma

1.6(c),/x satisfies (a), (b) and (d) and OeBt n E({Vk}). Therefore, we may assume

that OeB. For simplicity, let Sa = S({Vk}) for each 5 ( c £ ) . Note that if S is

convex, then so is Sa (Lemma 1.6 (e)). Also (Sa)a = Sa (Lemma 1.6 (d)).

Now, to prove f(β) e φ(β)B9 it is enough to show

f(β)eφ(β)(Vk + B)° for each k, if φ(β) Φ 0;
(3.1)

f(β)e(Vk)
a for each k, if φ(j?) = 0.

For, in case <p(β) = O, (3.1), Lemma 1.7, Lemma 1.1 (a) and (T?) for £ imply that

f(β) = 0eφ(β)B. In case φ(β)φθ, if f(β)<£φ(β)B, then there would exist fc'

such that (φ(β)~1f(β) + Vk>)(]B = φ by Lemma 1.6 (a), since β is {FJ-closed.

Then there would exist k such that (φ(βT1f(β)-¥Vk)(](B+Vk)^=φ by Lemma

1.1 (b), or φiβ^fffl&iB+Vk)* by Lemma 1.6(a), which contradicts (3.1).

To prove (3.1), fix k and set V=Vk. Let ε>0 be arbitrary and fixed for a

while. Let Dx = {pί9 ρ2,>>.} and consider the function

χ(s) = φ(s) + εs + eΣPn<s^
n (O^s^β).

Then χ(0)=0 and χ(s) > 0 if s > 0. Put
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Λ = {te [0, jS] |/(s) e χ(s) (F + B) for all s e [0, ί]}.

Obviously, 0 e A and [0, ί] <zA if ί e X. We shall show that

(3.2) y = s u p ^ e ^ and y = β, i.e., ,4 = [0, jS] .

If y>0 and tn ΐ y, then χ(ίn) ί χ(y)>0 by definition, and f(tn)->f(y)(R) since
/ is R-continuous at y. Hence xrt = χ(ίM)~1/(ίιι)-^();)~1/(y)^0(R) by Lemma
1.3(c). Since E({Ffe}) is a linear subspace, {*„}<= E({Ffe}) by the first condition of
(d). Thus

*„—> 0({FJ), i.e., tfO-i/α,)—>χ(y)-V(r)({FJ)

by (A.2). Hence χ(y)-1/(y)e((F+B)β)fl = (F+5)Λ, and yei4. If y = 0, then
y e A is clear. Thus we see y = sup AeA. Next we shall prove that y = β.

Suppose γ<β and y£Dt. Set

- Λ/'ω, r2(fc) = φ(y + A) -

If frM->O(O</ι,I<jS-y), then li-ir^ΛJ-^OCR) by Theorem 2.3. Thus h^r^h^
-+0({Vk}) by (A.2), since {rtQO}czΈ{{Vk}) by (d). Obviously, Kh2(hn)^0.
Hence, we can find h>0 (h<β—y) such that

h-'r^eεVβ and Ifc-^A)! < β/2.

Since ye>l, i.e., f(y)eχ(y)(V+B)a and (K+B)β is convex by (e), by using the
assumption /'(y) e φ'(y)B9 we have

hφ'(y)B

By the definition of χ and (c),

0 < χ(y) + hφ\y) + βA/2 = φ(y) + εy + εΣPrt<y2-" + hφ\y) + εA/2

= φ(y + h) + ε(y + A) + εΣPn<y2-» - r2(A) - εA/2 ^ χ(y + A).

Hence /(y + A)eχ(y + A)(F+J3)α, i.e., y + Ae^4, which contradicts y =
Suppose y<β and y = ρmeD1. By the R-continuity of/at y, the condition

(d) and (A.2), we can choose δ>0 (<5<minO5-y, y)) such that

f(ξ)-f(y)eeVI2» for \ξ - y| < 5.

Let y < { < y + δ. Since 0 < χ(y) + ε/2m < χ(ξ) and /(y) e χ(y) (V+ B)a, we have

+ χ(y)(F+ B)
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so that ξeA, which contradicts γ = supA again. Thus we have shown (3.2).
Now, we prove (3.1). If φ(β) = 0, then φ(t)==O by (c), so that φ'(t) = O for all

te(0, β). Hence/'(0 = 0 for te(0,β)\Dί by the assumption f'(t)e φ'(t)B, so
that the above arguments are valid with B = {0}. Hence by (3.2),

f(β)eχ(β)V°czε(β+l)V°.

Choosing ε>0 such that ε(β + l)^l, we obtain (3.1).
If φ(β)>0, then 0<χ(β)^φ(β) + ε(β+l), so that

Let εn > 0 and εn 4 0. Then, since f(β) e E({ Vk}\ we see that

(1 + εn(β

by Lemma 1.3 (c) and (A. 2). Thus φ(β)-1f(β)e((V+B)a)a = (V+B)a

9 and we
obtain (3.1). Therefore, Theorem 3.1 is proved completely.

§4. Gateaux differentiation

DEFINITION 4.1. Let D be an R-open subset of a linear ranked space E9

and/: D-+F be a mapping into a Tf linear ranked space F. Then we say that
/is Gateaux R-differentiable at x e D if there exists / e L(£, F) such that

r:D-x > F, r(/i) = / ( * + fc) -/(x) - l(h) (heD - x),

satisfies the following condition:

(4.1) For each /i#0, there is a f.s. {Um} in F such that

λ-h(λnh)—

for each sequence {ΛJ of positive numbers with λn-+0.
As in the case of the R-differentiation, if/ is Gateaux R-differentiable, then

/ e L(E, F) in the above definition is uniquely determined, and is denoted by f'g(x).
If E and F are normed linear spaces, then Gateaux R-differentiability coin-

cides with ordinary Gateaux differentiability.
Obviously, R-differentiability implies Gateaux R-differentiability and /'(x)

=f'g(x). In order to state a condition under which the inverse is valid, we intro-
duce

DEFINITION 4.2. Let E, F and G be linear ranked spaces and DaE. A
mapping T: D->L(F, G) is said to be R-hypo-continuous at aeD, if for any
f.s.'s {Vk} in E and {Um} in F, there is a f.s. {W^ in G satisfying the following
condition:
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(4.2) For any {£/m}-q.b.s. {yj} and any /, there is fe0 such that

x e ( D - α ) n Vko implies T(a + x)(yj) - T(ά)(yj)e Wt for each j .

DEFINITION 4.3. We say that a linear ranked space F is convex, if each pre-

neighborhood of 0 in F is convex.

THEOREM 4.1 (cf. [7, (1.4.4)]). Let E be a linear ranked space satisfying

(A. 1) and F be a convex Tf linear ranked space satisfying (A. 1-2). Let D be

an R-open subset of E, and a mapping f: D^F be Gateaux R-differentiable

at every point of D. Suppose that for any fs. {Vk} in E, there are k0 and a f.s.

{Wm} in F such that f(D 0(a+Vko))czE({Wm}) and that f'g\ D-*L(E, F) is R-

hypo-continuous at aeD. Then f: D-+F is R-differentiable at aeD.

PROOF. Let a f.s. {Vk} in E be given. By assumption, there are k0 and a

f.s. {WJ in F such that a + VkoczDJ(a+Vko)czE({Wm}). Also, by the R-hypo-

continuity off'g at a, there is a f.s. {W'm} in F having the following property:

(4.3) For any {FJ-q.b.s. {hj} and any m, there is km such that

xe(D - a) Π Vkm implies [ / > + x) - / ; ( * )

Since/^(α) is R-continuous at 0, there is a f.s. {W'ή} in F such that/^(α)(Ffe)cz Wk

for each fc. Choose a f.s. { l/J in F such that Wm+W'm+ W'ή<=Um for each m by

(E. 2).

Now, let {hj} be a {FΛ}-q.b.s. and {λj} be a sequence such that λj>09 λj-+O.

Since λjhj-+O({Vk}), there is j 0 such that

0<*λ^λj implies λ ^ e Ffco and /ίy e E({FJ) for j ^ j 0 ,

by (A. 1) for E. For j ^ 70, put

AΛ ̂ ) - f ( a ) - λf'g{ά) (hj) ( O S λ ^ λj).

Then f{a + λhj)-f(ά)eΈ{{Wm}). Also, Γβ{ά){hj)eΈ(iW"m})9 since /;(α
c W'ί and Λ7 e E({ Vk}). Thus

On the other hand, if 0<.λ<Lλj and O^Λ + e^λ,., then

β) -

where r(h)=f(a + λhj + h)-f(a + λhj)-f'g(a + λhj)(h). By Definition 4.1, there
is a f.s. {U'm} in F such that if εn^>0 (εw>0), then

) (n —-> oo).
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Thus, we see by Corollary 2.4 that gy. [0, λj]-*F is R-continuous on [0, λj],

R-differentiable at λe(0, λj) and

(4.4) g j(λ) = [/;(« + λh}) -/;(α)](hj).

By (A.I) for F, there is m0 such that ra^m0 implies UmczΈ({Um}). Given

m^.mθ9 since λjhj->O({Vk}), there is jm^j0 such that 7^jT O implies λjhj€Vkm,
so that A^ e Ffcm for 0^λ<*λj9 where fcm is the one in (4.3). Then by (4.4) and

(4.3),

g'j(λ) eW'^czUnC: E({Um}) for 0 £ λ g λ,, j ^ Λ,.

Apply Theorem 3.1 with φ(λ) = λ(O^λ^λj) and £ = £7m({£/w}). Then we obtain

or λjHfia + AΛ) - f(a) - f'g(a)(λjhj)} e Um({Um}) (j ^ jm).

In view of Lemma 1.7 and Lemma 1.1 (a), this means that / is R-differentiable

at a.

% 5. Invertible mappings

DEFINITION 5.1. Let E be a linear ranked space and DcE. f: D-+E is

called an ^-contraction if for any f.s. {Vk}9 there is a sequence {Lk} of positive

numbers such that 0<L f c< 1 and

a — beVk implies f(a) — /(£>) e LkVk for each fc.

THEOREM 5.1 (cf. [7, (3.3.4)]). Let E be convex R-complete Tf linear

ranked space. IfueL(E9E) is an ^-contraction, then I — u (/ is the identity

mapping) has the inverse (/ — M ) " 1 : E->E9

(I - w)"1^) = Σ£=oww(x)(R) for every x e £ ,

w°=/, un = uo ou (n-times9 n ^ l ) , and } ; =Σ? > =O M W ( : X : )(R) means

Σι

n=oUn(x)-+y(R)(l^>co). If E satisfies (A.I) iw addition, then (I-uYιe

L(E9 E).

PROOF. Let xeE9 and choose a f.s. {Vk} such that x e E({Vk}). Then there

is {βjj such that βk>09 xeβkVk for each k. Since u is an R-contraction, there

is a sequence {LJ such that 0 < L f c < l and u(Vk)<=LkVk for each fc. Then un(x)

eβkLlVk for each n. Put 5z(x) = Σ»=oW"W. Choose /(l)</(2)< such that

AcΣ£=z(k)+Λ!^l Then, since Vk is convex, s r ( x ) - φ ) e F k for lf>l^l(k).

Hence {s,(x)} is a Cauchy sequence by {Vk}. Since E is R-complete, there is/(x)

eE such that s ^ - ^ /
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Then M(SZ(X))->M(/(X))(R) since u is R-continuous. Also wn(x)->Ό(R) since
un(x) e βkL%Vk. Thus, in view of Proposition 1.1, the equalities

(/ - u)st(x) = Sι(x - u(x)) = x - uι+i(x)

imply (/ — ύ)f(x) =/(x — u(x)) = x, so that

It is easy to see that/is linear. To show that/is R-continuous, let {Uk} be
any f.s. in E. Since u is an R-contraction, there is a sequence {λk} such that
0<Λfc<l and u(Uk)czλkUk for each fc. By Lemma 1.1 (a) and (A.I), choose
1 <; j(l) < j(2) < such that

Um c 2-H1 - λk)Uk and Um c E({l/J) for each fe.

Let x e ί / j W . Then by the above proof, Si(x)->/(x)({£/Λ}) since xeE({Uk})9

and also s/(x) = Σi=o"πWe2- 1(l-4)ΣUo^^fc c :2- 1l7 J f e. Thus, by Lemma
1.7,f(x)e2-iϋά{Uk})czUk. Hence

f(Uj(k)) c ί/fc for each k.

If we choose a f.s. {Wk} in £ so that Wn=E if l ^ n < ; ( l ) and Jfw=l/fc if 7(fe)^n
), then/(C7fc)c:PFfe for each k. Hence / = ( / —w)""1 is R-continuous.

DEFINITION 5.2. Let £ and F be linear ranked spaces and D be an R-open
subset of E. Then / : D-+F is called an R-q.b. preserving mapping at aeD,
if for any f.s. {Vk} in E there exists a f.s. {Um} in F satisfying the following condi-
tion:

(5.1) If {hn} is a {KΛ}-q.b.s. and {λn} is a sequence such that λn-*0, λΛ>0 and
eD, then V?(f(a + WJ-f(a))}n is a {C/m}-q.b.s..

We see easily that if/: D-*F is R-differentiable at αeD, then it is R-q.b.
preserving at aeD.

DEFINITION 5.3. Two linear ranked spaces E and F are said to be R-
isomorphic if there exists a bijective linear mapping T: £->F such that for any
f.s. {Vk} in £, {T(FΛ)} is a f.s. in F, and for any f.s. {I/,} in F, {Γ" 1 ^)} is a f.s.
in E. In this case, Tis called an ^.-isomorphism of E onto F.

In the rest of this section, let E and F be two R-isomorphic Tf linear ranked
spaces, D be an R-open subset of E, and

(5.2) / : D — > F

be a mapping such thatf(D) is R-open in F. We shall study a (local) inverse of/
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under suitable assumptions.

THEOREM 5.2 (cf. [7, (3.2.4)]). Suppose that f of (5.2) is R-differentiable
at aeD and f'(a) is an R-isomorphism of E onto F. If in addition f is injective
and f"1:f(D)-^E is R-q.b. preserving at f(a), then f"1 is R-differentiable at
f{a) and

PROOF. Let b=f(ά), and put

r(h) = /(« + ft) - f(a) - f'(a)(h) (heD-a),

R(k) = f~\b + k)- f~\b) - f\a)-\k) (fc ef(D) - b).

Given a f.s. {Um} in F, since/"1 is R-q.b. preserving at b, there is a f.s. {Vk} in
E such that if {kn} is a {Um}-q.b.s. and AB>0, λn-+0, then {hH} given by

K = KKf'Kb + λnkn) - /-i(4»

is a {FJ-q.b.s.. Note that the above equality implies a+λnhn

==f~ι(b + λnkn)9

or

K = λ-\f(a + XX) -/(α)) =f\ά){hn) + λ-ah(λχ).

Since/is R-differentiable at α, there is a f.s. {U'm} such that

K - f'(a)(hn) = λ~h(λnhn) —> 0({UfJ).

Let V'k=f'(a)-\U'k). Since/'(α)"1 is an R-isomorphism, {Fĵ } is a f.s. in E and

Now, f'(a)-Kkn)-hn=-λ^R(λnkn). Hence λ-^(AA)-0({n». Thus /-*
is R-differentiable at ί> and (f~ιy(b)=fXa)-K

THEOREM 5.3 (cf. [7, (3.4.4)]). Let E and F be convex and satisfy (A. 1-2).
Suppose that f: D-+F of (5.2) is R-differentiable at every point of D and injec-
tive. Let aeD and suppose in addition that f'1 is R-continuous at f(a\f'{a)
is an R-isomorphism of E onto F and g=f'(a)~ίof: D->E satisfies the following
condition (5.3):

(5.3) For anyfs.'s {Vk}, {Uk} in E, there exist fe0, a f.s. {Wk} in E and a sequence
{Ln} such that a + Vko<=D, UkcWkfor each k,0<Ln<l and

LnWn for all xeVko, n

Thenf-ι:f(D)-+E is R-differentiable at /(α).
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REMARK 5.1. In case E and F are normed linear spaces, if/: D->F is R-
differentiable at every point of D and/': D-*L(E9 F) is continuous at a eD, then
g satisfies (5.3).

PROOF OF THEOREM 5.3. By Lemma 2.3 and Theorem 2.2, g:D-+E is
R-differentiable at every xeD and

in particular g'(a)=IeL(E9 E). g is obviously injective and g(D)=f\a)~\f(D))
is R-open since f'(a) is an R-isomorphism. We shall show that g~x is R-q.b.
preserving at b=g(ά). Then, by the above theorem, we conclude that g"1 is
R-differentiable at b, and again by Lemma 2.3 and Theorem 2.2, f-1=g~1o
/'(α)- 1 is R-differentiable at/'(α)(b)=/(α).

Let {Vk} be any f.s. in E. Since/"1 is R-continuous at f(a) and f'(a) is an
R-isomorphism, g~ί=f~1°f'(a) is R-continuous at b. Hence there is a f.s.
{V'k} in E such that

(5.4) g~l((b + Vk) n g(D)) c a + V'k for each k.

Also, since/, and hence g9 is R-continuous at α, there is another f.s. {VI} in E
such that

(5.5) g((a + V'k) n D ) c g(a) + V"k for each fc.

By condition (5.3) and (E.2), there exist k0, a f.s. {Wk} in £ and a sequence {Ln}
such that a + V'koc:D9 Vk+Vk + Vlc:Wk for each k, 0<Ln<l and

(5.6) [^(α + x)-^(α)](^ π )c :L n W; for all xe V'ko, n = 1, 2,....

Let {ftj be a {Fk}-q.b.s. and {2Π} be a sequence such that λπ>0, λn->0 and
eg(D) — b, and put

Λ = λ H β " 1 ^ + KK) - flf-K*)}, n = 1, 2,....

If we show that {yn} is a {WjJ-q.b.s., then we can conclude that g"1 is R-q.b.
preserving at b.

The above equality implies

(5.7) λnhn = g(a + λnyn) - β(α), n = 1, 2,....

Since λn/ιπ->0({Fk}), for each fc there is n(fc) such that n^n(k) implies λnhneVk.
Thus, by (5.4), if n ̂  n(fc), then ^( fc + λnhn) ea + V'k9 i.e., λnjΛ e 7ί. Therefore,
if n ̂  n(fc0) and ί 6 [0, AJ, then α + tyn e a + Fί 0 a D. Put

tyn - g(a + tyn) + g(a)9 t e [0, λ j , n ^ n(k0).
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Each Fn is R-continuous on [0, λ j , R-differentiable at each t e (0, λn) and

(5.8) F'n(t) = ;;„ - g'(a + tyn)(yn) = lg'(a)-g'(a + ίyw)] (yn).

By (A.I), there is kt^k0 such that WkίaE({Wk}). If n^nik^, then

(α + V'kί)0D9 so that g(a + tyn)-g(a)e V"kl by (5.5). Hence Fn(ί) e V'kl + F ^

cz^Λ lc:E({^}) for ίe[0, AJ, n^KfcO.

Next, let φk{y)=mί{λ>0\λ-1yeWk} be the Minkowski functional for Wk.

Since yweE({Pffe}) for n ^ n ^ ! ) , ^ ( y j is finite for each k and n^n(k^). Thus

W f° r a n y ε>0> n^Kfc!). Hence, by (5.6) and (5.8), we see that

F'n(t)eLk(φk(yn) + s)Wk> 0 < t < λH9 n ^ n(fcχ), fc = 1, 2,...,

for any ε>0. In particular, F'n(t)eE({Wk}) for 0 < ί < λ n , n£n(kt%" Hence we

can apply Theorem 3.1 and obtain

for any ε>0. Since Fn(λn)-Fn(0)=Kyn-9(cι+λnyn)i-g(a) = λn(yn^hn) by (5.7),

this shows

(5.9) yn - hn e (Lkφk(yn) + έ)Wk9 n ^ n{kx)9 k = 1, 2,...,

for any ε>0, by Lemma 1.7.

If μn>0 and μn->09 then μnhn-+0({Wk}) since {hn} is a {Ffc}-q.b.s. and VkczWk

(fe=l, 2,...). Hence for each fc there is m(/c) such that n^.m(k) implies μnhn

e2"1(l-Lfc)Pffc by Lemma 1.1 (a). Thus if n^max(m(fe), n{k^))9 then by (5.9)

μnyn e μnK + (μnLkφk(ytt) •

which implies

φk(μnyn) ^ 2"1 + εμw(l -

for any ε>0. Hence it follows that

μ i Λ 6 ^k f° r n ^ max(m(

which means that {yn} is a {Pffc}-q.b.s..

DEFINITION 5.4. Let E and F be linear ranked spaces, F be Tf and D be an

R-open subset of E. f: D-+F is called a Catnapping at aeD9 if / is R-differen-

tiable at every point of D and further / ' : D-+L(E9 F) is R-hypo-continuous at a.

THEOREM 5.4 (cf. [7, (3.4.4)]). Let E and F be convex, R-complete and

satisfy (A. 1-2). Suppose f: D^F of (5.2) is a C1-mapping at every point of D,
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/ is injective, f~ί is K-continuous on f(D), f'(ά) is an R-isomorphism of E onto
F for every aeD and g=ff(cϊ)~ίof: D-+E satisfies condition (5.3) for each aeD.

- 1 :/(£>)-»£ is a ^-mapping at every bef(D).

PROOF. By the above theorem we have to prove that

is R-hypo-continuous at every bef(D). Fix aeD and let b=f(a). Since g\z)
=f'(a)~ί °/'(z) for zeD, Theorem 5.2 implies

σ-WCO) = 9\z)~ι *Πa)-\ z e D.

Since f'{ά) is an R-isomorphism, in order to prove that (/"*)' is R-hypo-continu-
ous at b, it is enough to show the following: Given a f.s. {Vk} in E and a f.s. {Uk}
in F9 there is a f.s. {Wk} in E satisfying

(5.10) for any {FJ-q.b.s. {hn} and for each /, there is k(l) such that a + xeD
and f(a + x) -/(α) 6 Um imply

[g'(a + x)-1-g'(a)-1li{hJeWι for all n.

Thus, let a f.s. {Vk} in E and a f.s. {Uk} in F be given. Since f'1 is R-
continuous at/(α), there is a f.s. {F^} in E such that

(5.11) f-K(f(a) + C/fc) n/(D)) c £i + n for each k.

Since/is a C1-mapping at a, g'\ D-*L(E9 E) is R-hypo-continuous at a. Hence
there is a f.s. {Vk} in E such that for any {Ffc}-q.b.s. {hn} and for each /, there is
k'(l) such that

(5.12) x e.(D - α) n F; / ( z ) implies [g'(a + x) - ^'(α)] (/iΛ) e 7J for all n.

By (5.3), there exist fc0, a f.s. {ί7fe} in E and a sequence {LΛ} such that a + Fi
Fi£aWk,0<Lk< 1 for each fc and

(5.13) lg'(a + x)-Π(Wk)czLkWk for all x e F ^ fc=l,2,....

By (A. 1), we may assume that Wtc:Έ{{Wk}). We shall show that with this {Wk},
(5.10) is satisfied.

Let {hn} be a {FJ-q.b.s.. By (5.12), for each / there is k"(l)^k'(l) such that

(5.14) x e ( D - f l ) n n - ( l ) implies [<?'(* + x) - J](ftM) c 2^(1 - LZ)F?

for all π. We may assume that fc"(l) ̂  fc"(2) g . . Let k(ϊ)=max (fc0, fc"(0). If
xeF' k ( 1 ) , then

[flf'(£i + x) - /] (ΛJ 6 Fΐ c W± c
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by (5.12). Hence, in view of (5.13), as in the proof of Theorem 5.1, we see that

- g'(a + x)^[g'(a + x) - /](K) = [g'(a + x)-1 - Γ\(K)«Wk})

as m-*co, for each xeV'k(1) and n. Furthermore, by (5.14) and (5.13), if xe

V'kW, then

Σ7-i(- l)v[0'(« + *) - mK)e2-\ί - Lt)(ί - Ld-W, =

for all m and n, so that

[g'(a + x)~ι - / ] (hn) G l-WtiWJ) <= Wx for all n,

by Lemma 1.7. Since a + xeD and f(a + x)-f(a)e Uk(l) imply x e F ί ( 0 by

(5.11), we have shown that (5.10) is satisfied.

LEMMA 5.1. Let E and F be linear ranked spaces and suppose F is convex

and satisfies (A. 2). Let D be an R-open subset of E and f: D^F be R-continu-

ous at aeD. If{Uk} is af.s. in E and {Vk} is af.s. in F, then for each k there is

m(k) such that

f(a + Umm) Π [/(α) + E({F t})] c f(a) + Vk.

PROOF. Suppose the contrary. Then there are k0 and a sequence {xm}

in E such that

xmeUm,a + xmeD, f(a + xm) -/(α)eE({Vk})\Vko for all m.

Since / is R-continuous, /(fl+xm)->/(α)(R). Since /(α+x m )-/(α)eE({F k }) ,
f(a + xm)^f(a)({Vk}) by (A.2), which contradicts

THEOREM 5.5 (cf. [7, (3.4.5)]). Let E and F be convex, R-complete and

satisfy (A. 1-2). Suppose that f:D-*F of (5.2) is R-dijferentiable at every

point of D and f'{a)\ E-+F is an R-isomorphism at a given aeD. Suppose

furthermore that g=f'(a)~ί of and af.s. {Wk} in E satisfy the following conditions

(5.15-16) for some k0:

(5.15) a + Wkoc=:D and g(a + Wko) c g(a) + E({ Wk}).

(5.16) For each Z, there is Lx\ 0 < L z < l such that

lg'(a + x) - n(Wt) <= LtWt for all xeWko.

Then, there are a set U with Wk> c Ucz Wkofor some k' ̂  k0 and a preneighbor-

hood VofO in F such that the restriction
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Λ =/!(* +U): β + U — > F

is an injection of a + U onto f(a)+V and fj1:f(a)+V-+E is R-contίnuous at

/(α). //, in addition, E and F satisfy (A. 3), thenfj1 is R-continuous onf{ά)+V.

PROOF. By (A. 1), we may assume that WkoaΈ({Wk}). We divide the proof

into several steps.

(a) If v + tueWko for O ^ ί ^ l and ueμffl, μ,>0, then

u - g{a + v + ύ) + g(a + v

where LX<L\<\.

Proof of (a): By (5.15), we see that

F i t ) = v + t u - g ( a + v + tu) + g ( a ) e E ( { W h } ) 9 O ^ t ^ L

By (5.16), we have

F'(t) = u - g'(a +.Ό + tuWeLtoWi for 0 ^ t ^ 1, / = 1, 2,...,

so that F'(t) G B({Wk}) for 0 < ^ 1. Hence we can apply Theorem 3.1 and obtain

u - g(a + v + u) + g(a + v) = F(l) - F(0) e LιμιWι{{Wk}).

Thus, in view of Lemma 1.7, we have (a).

(b) Put L=Uk0 and choose We{Wk} such that Wa2-\\-L)Wko. Then,

for any yQeb + W(b=g(a)), there is x 0 e Wko such that yo = g(a + xo).

Proof of (b): Given yoeb+W9 put

τ(χ) = yo + χ-g(a + x), χewko.

Define {um} by Mo = j ; o " b and um=T(um.ί), m = l, 2,.... Since u o e J F c :

2""1(1— L)FFfcoc:E({PΓfc}), there is a sequence {αj of positive numbers such that

u0 e aLffi for all Z. By induction we shall prove

um - nm-ie(Lί)"α|Wΐ, m = 1, 2,...; / = 1, 2,...,

(5.17) um - ii.,.! 62-Kl

Since M0 €(xιWl9 u0 e2"K1 - L J I ^ c l ^ and

Mi - M0 = u0 - ^f(α + M 0 ) + 6f(α),

(a) implies that uί — uoGLr

ιoίιWι and Mi — M O G 2 " 1 ( 1 — L)LWko. Then,

ί(M 1-Mo)e2- 1(l-L)(l+L)PF f c o . Thus (5.17) holds with m = l. Suppose (5.17)

holds for m = l, 2,..., n. Since
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K»+I - "» = un - «„_! - g(a + Mn) + g(a + w ^ J ,

(5.17) for m ^ w and (a) imply the first two relations in (5.17) with m = n +1 and

e 2-^(1 - L)(l + Σn

mt\L>»)Wk0 c Ϊ7fco

for 0 ̂  ί ̂  1. Thus we obtain (5.17).

From the first relation in (5.17), it follows that {um} is a Cauchy sequence by

{ Wk}. Since E is assumed to be R-complete, there is x0 e E such that um-+x0({ Wk}).

By the second relation in (5.17), we see that ume2~1Wko and hence xoeWko.

Since g9 and hence T, is R-continuous, from the definition of Tand {um}, we derive

that

x0 = T(x0) = )>o + *o ~ 0(fl + *o)>

i.e., y o = ^ + ̂ o)

(c) For each I, let ^(j;)=inf {λ>01 A"1); e Wt} be the Minkowski functional

for Wx. Then for any zi9 z2 e PFfco,

φ^Zi - z 2 - flf(α + zO + gr(α + z2)) ^ LJ^^Z! - z 2 ) .

Proof of (c): For any ε > 0, since z x - z 2 e (^/(Z! - z2)+β)W|,

^i ~ z2 - flf(α + z θ + g(a + z2) e L'lφ^ - z2) + ε)Wι

by (a). Thus φ ί ( z 1 ~ z 2 - ^ ( α + z1)H-^(α + z 2 ))^Lί(ς9 ί (z 1 ~z 2 ) + ε) for any e>0,

and we obtain (c).

(d) Put U=Wkon{g-\b+W)-a}. Then βl =g\(a +17): a + U->E is
injective, gί(a + U) = b+Wand there is fc'^fe0 such that Wwc 17.

Proof of (d): If x0, x± e Wko and g(a + x0) = ̂ (α + xx), then by (c)

φfa0 - x±) ^ LJφXxo - ^i)» / = 1, 2,....

Since LJ<1, this means that (pi(xo — Xi)=0 for all Z, i.e., xo — x1eWι for all /.

Hence xo=xi9 Thus ^i is injective. By (b), gf1(α + ί7) = b + PΓ. Applying

Lemma 5.1, we find fc'^fc0 such that

g(a + FΓr) Π [ft + E({PFJ)] c ft + W.

By (5.15), r̂(α + Wk)ab + W, which implies WwcU.

(e) gf J"1: b + W-+a + U is R-continuous at b if we assume (A. 3) for E and F9

then gϊ1 is R-continuous on fe + W.

Proof of (e): Let y0 e b + flPand j>0=#(α -f x0) with x 0 e 17. If y0 Φ b, choose

k* ̂  k0 such that y0 + Pffc* c ft + W by (A. 3). If y 0 = &> then let Wk* = W. First

we show that
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(5.18) for each /, there is k(ϊ)^ fe* satisfying g^\y0 + Wm))cx0 + a + Wt.
Let ueb+Wand u=g1(a + z) with zel/. By (c)

<Pι((z - *o) - (u - y0)) ύ LΊφfe - x 0 ) .

Since <pz is subadditive, it follows that

- x0) ^ <pz(u - j 0 ) ,

so that ueyo + l-^l-LβWi implies zex o + ̂ . Hence (5.18) is valid with k(l)
^fc* such that Wma2-\\-U^.

Now, given a f.s. {l/k} in E, applying Lemma 5.1 with / = / , we find m(ΐ)
such that

umil) n E({wk}) c wm

for each /. Since b-yo + WczW+ WaB({Wk}\ (5.18) shows that

g^ίiyo + ^m(o) Π (6 + tf)] c: x0 + a + W,,

which shows that gfj"1 is R-continuous at y0.
(f) Since/'(α) is an R-isomorphism, V=f'(a)(W) is a preneighborhood of 0

in F. Thus we have the theorem by (d) and (e).

§6. Higher derivatives

Let E and F be Tf linear ranked spaces and D be an R-open subset of E.
Let E2 = E x E be the product linear ranked space of 2-copies of E.

DEFINITION 6.1. A mapping/: D^F is said to be twice R-differentiable
at aeD, if/is R-differentiable at every point of D and if there is an R-continuous
bilinear mapping f"(a) of E2 into F such that r1: D — a-+L(E, F), given by

rKΛ) (x) = (/'(α + h) - /'(*)) (x) - /"(α) (fc, x) (Λ e D - α, x e £),

satisfies the following condition:

(6.1) For any f.s.'s {Vk} and {V'k} in E, there is a f.s. {Ŵ } in F such that

for every {Tfe}-q.b.s. {hn}, every {FJJ-q.b.s. {h'n} and every sequence {λn} with

We can prove the following as in the proof of Lemma 2.3.

LEMMA 6.1. f"(ά) in the above definition is uniquely determined.
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THEOREM 6.1 (cf. [2, §9.1], [7,(1.8.2)]). Let F be a convex Tf linear

ranked space satisfying (A. 1-2) and D be an R-open subset of E. Iff: D^F

is twice R-dijferentiable at ae D, then

f\a) (x, y) = f\a) (y, x) for all x,yeE.

PROOF. By (E.5) and (E.2) for E, there is a f.s. {Vk} in E such that x, y

eE({FJ). Since / is R-differentiable at aeD,f is R-continuous at asD by

Theorem 2.1. Thus there is a f.s. {Uk} in F such that

K(fl + Vύ Π D)cz f(μ) + Uk for all k.

Choose k0 such that UkocE({Uk}) by (A.I). Then

(6.2) f((a + Vn) n D) czf(a) + E({Uk}) if n ^ fc0.

Let {Vf} be a f.s. in £ such that Vk+ VkaVί for all k. Since D is R-open, there

is fcx ^ k0 such that β + V%t czD. Choose λ0 >0 such that Aox e Ffcl and λoy e Vkί.

Then

λξx + ^ > e AAoJ KR cz Z) - a if {, {' 6 [0, 1] and A e [0, Ao].

For any ξ e [0, 1] and λ e [0, Ao], put

(6.3) 0 « ; 2) = f(a + Aξx + λy) - f(a

Then, by Theorem 2.2 and Corollary 2.4, the R-derivative g\ξ; λ) of g(ξ\ λ)

with respect to ξ is given by

(6.4) g\ξ; λ) = (/'(β + λξx 4- Ay) - / ' ( α + λξx))(λx) (0 < ξ < ί,

By the definition of the remainder r1 in Definition 6.1, we see easily that

(6.5) (f'(a + λξx + λy) - /'(α + λξx)) (x)

= Γ(μ)(λy, x) + r\λξx + λy)(x) -

Now, by (6.1) choose a f.s. {Wk} in F such that

for every {Ff}-q.b.s. {hn}, every {FJ-q.b.s. {Λ;} and every {λn} with λB>0, A,-»0.

Then, for any {λn} with λo>λn>0, λn-*0 and for any k, there is iV(fc) such that

(6.6) λ-1r1(λmξx + λmy)(x)eWk if m Z N(k) and ξe[0, 1].

In fact, suppose the contrary. Then there are ku m(l);£m(2):g >oo and {£„}

such that A ^ . j r ^ . ^ + A ^ y X x ) ^ ^ , and ξΛe[0, 1] for all n. Since
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x, yeE({Vk}) and ξne[O, 1], we see that {ξnx + y} is {F£}-bounded and hence

{F£}-q.b. by Lemma 1.10(a). Thus the above definition of {Wk} implies that

Kln)rKλm(n)ξnx + λm(n)y)(x)-*0({Wk})9 which is a contradiction. Hence we see

(6.6).

By (6.6) and (A. 1) for F, there is an integer Nt such that

(6.7) λ^r\λnξx + λny){x)eE{{Wk}) if n ^ Nt and ξe[0, 1].

Similarly, there are {N'(k)} and N2 such that

(6.8) λ-^(λmξx)(x)eWk if mZNXk) and {e[0, l];

(6.9) λ^r\λnξx)(x)eE({Wk}) if n^N2 and £e[0,l].

Let {W'k} be a f.s. in F such that /"(α)(x, y)9f"(a)(y, x)eE({W'k}) and

{Pff} be a f.s. in F such that Uk + 2Wk+ W'kc PFf for each k. Then, by (6.2-5,

7, 9) there is an integer No such that n^N0 implies

g{ξ; λn)eE({Wt}) for all {e[0, 1]; g\ξ; λn)eE({WΪ})

for all ξe(0, 1).

Also by (6.4-6) and (6.8), there is {n'(fc)} such that n^n'(k) and £e(0, 1) imply

0-«; An)eA2(r(α)(j;, JC) + 2Wk) cz λ2

n(f"(a)(y9 x) 4- Wfi.

Thus Theorem 3.1 and Lemma 1.7 show that

(6.10) 0(1; An) - 0(0; An) e W (α) (y, x) + ΪFf({^}))

for large n.

On the other hand, (6.3) shows that g(l; λn) — g(0; λn) is symmetric with re-

spect to x and y. Thus by repeating the above discussion, we see that

(6.11) 0(1 λn) - 0(0; λn) e Xyj\a)(x, y) + IWf) for large n.

(6.10-11) show th3tf"(a)(y9 x)-//'(α)(x, y)e4Wt for all fc, and hence

by (Tf) as desired.

THEOREM 6.2 (cf. [7, (1.8.3)]). Let E, F and G be Tflinear ranked spaces

and D9 Dί be R-open subsets of E, F9 respectively. Iff: D-*F and g: Dt-^G

with f(D)cD1 are twice R-dijferentiable at aeD and at b=f(a)eDί9 respec-

tively, then the composed mapping gof: D-+G is twice R-differentiable at aeD

and

(β°Ω\aXx, y) = 9"(b)(f'(a)(x), Γ(a)(y)) + g'(b)(f(a)(x, y)).
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PROOF. By Theorem 2.2, g°f is R-differentiable and (g°f)'(a+x)-g'(f(a
+ x»/'(α+x) for xeD-a. Put /=/'(α), L=f"(a), h=g'(b), L^g"{b) and

r(x) =f(a + x)-b- l(x), r\x) (y) = (f'(a + χ)-ΐ)(y)- L(x, y),

s(z) = g(b + z) - g(b) - h(z),

Si(z)(w) = (9'Φ + z) - Ww) - Lx{z, w),

R(χ)(y) = ((

for xeD — a9 yeE, zeDί — b and weF. Then for ε>0 with εxeD — a, we see
easily that

(6.12) ε-iR(εx)(y) = Σ?=i^, 5, = 5f(x, y, ε),

where

S! = L^ε-hiεxl l(y% S2 = ε~V(/(α + εx) -

S3 = /iίε-VKεx) (y)), 5 4 = Lx

S7 = Lx(έ-ιr(εx\ L(εx9 y)),

S8 = B~W(f(a + εx) - b) (L(εx, >;) + εCε-V^

Now, let {Vk} and {V'k} be given f.s.'s in E. Then by using Lemma 1.15,
we can show easily the following:

(6.13) For any l ^ i ^ 8 , there is a f.s. {W^} in G such that

for any {FJ-q.b.s. {*„}, any {FjJ-q.b.s. {yn} and any {εw} with εM>0, επ^0.
Thus if we choose a f.s. {Wk} with Σ ? = i ^ i ί > c : Wfc for all fc, then we see

by (6.12-13) that e^i^AXyJ-^CKW}), which shows the theorem.
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