Differential Calculus in Linear Ranked Spaces

Yasujirô Nagakura
(Received December 26, 1977)

§0. Introduction

The theory of differential calculus in Banach spaces has been already established (cf. e.g., J. Dieudonné [1, Ch. VIII]), and there have been various attempts to construct differential calculus in more general linear spaces. For example, A. Fröhlicher and W. Bucher [2] have studied in linear spaces with limit structures based on filters, H. H. Keller [3] has studied the notion of C^{p}-mappings in locally convex spaces, and S. Yamamuro [7] has introduced the notion of equicontinuous differentiability in topological linear spaces.

In this paper, we try to develop differential calculus in linear ranked spaces. The notion of ranked spaces was first introduced by K. Kunugi [4]; and M. Yamaguchi [6] considered differentiation in linear ranked spaces. Using a modified formulation of linear ranked spaces given in M. Washihara [5, II], we shall study differentiation further than [6] and show that many important results in differential calculus can be included in our theory. In many respects, our construction of the theory and the methods of proofs are analogous to those in [2] and [7], though the underlying structures of the spaces are different.

We prepare in $\S 1$ some notions and results on linear ranked spaces. We define the notion of R-differentiability in §2, and prove the chain rule (Theorem 2.2) and the mean value theorem (Theorem 3.1). Further we study the Gâteaux differentiability in $\S 4$, and the invertibility of differentiable mappings in $\S 5$ (Theorems $5.2-5$). Finally in $\S 6$, the higher derivatives are considered.

The author would like to thank Professors M. Sugawara and F-Y. Maeda for their many helpful comments in reading the whole manuscripts.

§1. Linear ranked spaces

Let E be a linear space over the real field \boldsymbol{R}. Suppose that a sequence $\left\{\mathfrak{B}_{n}\right\}_{n=0}^{\infty}$ of families of subsets in E is given to satisfy the following condition (E.1):
(E.1) $0 \in V$ for any $V \in \mathfrak{B}=\cup_{n=0}^{\infty} \mathfrak{B}_{n}, E \in \mathfrak{B}_{0}$; and for any $V \in \mathfrak{B}$ and for any integer $n \geqq 0$, there are another integer $m>n$ and $U \in \mathfrak{B}_{m}$ such that $U \subset V$.

Sets in \mathfrak{V}_{n} are called preneighborhoods of the origin 0 with rank n.

A sequence $\left\{V_{k}\right\}_{k=0}^{\infty}$ of subsets of E is called a fundamental sequence at 0 , if
(1) $V_{1} \supset V_{2} \supset \cdots \supset V_{k} \supset \cdots$, and
(2) $V_{k} \in \mathfrak{B}_{n_{k}}(k=1,2, \ldots)$ with $n_{1} \leqq n_{2} \leqq \cdots \leqq n_{k} \leqq \cdots \longrightarrow \infty$.

Hereafter, we simply call any fundamental sequence at 0 a f.s. . Given a f.s. $\left\{V_{k}\right\}$, let

$$
\mathrm{E}\left(\left\{V_{k}\right\}\right)=\left\{x \in E \mid \text { for each } k \text {, there is } \lambda_{k}>0 \text { such that } x \in \lambda_{k} V_{k}\right\} .
$$

If ($E,\left\{\mathfrak{B}_{n}\right\}$) satisfies the following conditions (E.2-5) in addition to (E.1), then $E=\left(E,\left\{\mathfrak{B}_{n}\right\}\right)$ is called a linear ranked space (cf. K. Kunugi [4], M. Washihara [5] and M. Yamaguchi [6]):
(E.2) For any two f.s.'s $\left\{V_{k}\right\}$ and $\left\{U_{k}\right\}$, there is another f.s. $\left\{W_{k}\right\}$ such that $V_{k}+U_{k} \subset W_{k}$ for each k.
(E.3) For any f.s. $\left\{V_{k}\right\}$ and $\lambda>0$, there are integers $1 \leqq m(1) \leqq m(2) \leqq \cdots \rightarrow \infty$ and $k_{0} \geqq 1$ such that $\lambda V_{k} \subset V_{m(k)}$ for $k \geqq k_{0}$.
(E.4) For any $V \in \mathfrak{B}$ and $|\lambda| \leqq 1, \lambda V \subset V$.
(E.5) For any $x \in E$, there is a f.s. $\left\{V_{k}\right\}$ such that $x \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$.

Remark 1.1. (E.4) follows from the condition that $\lambda V \subset V$ for $0<\lambda \leqq 1$ and the symmetricity $-V=V$. We assume condition (E.4), since the symmetricity is essential for the study in this paper.

A linear ranked space E is said to be T_{1}^{*}, if
(T_{1}^{*}) $\cap_{k=1}^{\infty} V_{k}=\{0\} \quad$ for any f.s. $\left\{V_{k}\right\}$.
Definition 1.1. Given a f.s. $\left\{V_{k}\right\}$, a sequence $\left\{x_{n}\right\}$ in E is said to be $\left\{V_{k}\right\}-$ convergent to $x \in E$, in symbols $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$, if for any k there is n_{k} such that $n \geqq n_{k}$ implies $x_{n} \in x+V_{k}$. Also, $\left\{x_{n}\right\}$ is said to be R -convergent to x, in symbols $x_{n} \rightarrow x(\mathrm{R})$, if $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$ for some f.s. $\left\{V_{k}\right\}$; and then x is called an R-limit of $\left\{x_{n}\right\}$.

Proposition 1.1. If E is a T_{1}^{*} linear ranked space, then an R-limit of a sequence $\left\{x_{n}\right\}$ is unique if it exists.

Proof. Suppose $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$ and $x_{n} \rightarrow x^{\prime}\left(\left\{U_{k}\right\}\right)$, and choose a f.s. $\left\{W_{k}\right\}$ such that $V_{k}+U_{k} \subset W_{k}$ by (E.2). Then there is some n_{k} such that $n \geqq n_{k}$ implies $x_{n} \in x+V_{k}$ and $x_{n} \in x^{\prime}+U_{k}$, and so $x-x^{\prime} \in V_{k}+U_{k} \subset W_{k}$ since $-V_{k}=V_{k}$ by (E.4). Thus $x-x^{\prime} \in \cap_{k=1}^{\infty} W_{k}$, and hence $x=x^{\prime}$ since E is T_{1}^{*}.

Lemma 1.1. (a) Let $\left\{V_{k}\right\}$ be a f.s.. Then for any $\lambda>0$ and k, there is k^{\prime} such that $\lambda V_{k} \supset V_{k^{\prime}}$.
(b) If $\left\{V_{k}\right\}$ is a convex f.s., then for each k, there is k^{\prime} such that $V_{k^{\prime}}+V_{k^{\prime}}$ $\subset V_{k}$. (Here, we say that a f.s. $\left\{V_{k}\right\}$ is convex, if each V_{k} is convex.)

Proof. (a) By (E.3), there are integers $1 \leqq m(1) \leqq m(2) \leqq \cdots \rightarrow \infty$ and $k_{0} \geqq 1$ such that $\lambda^{-1} V_{k} \subset V_{m(k)}$ for $k \geqq k_{0}$. Thus, for each k, choosing $k^{\prime} \geqq k_{0}$ with $m\left(k^{\prime}\right) \geqq k$, we obtain $\lambda V_{k} \supset \lambda V_{m\left(k^{\prime}\right)} \supset V_{k^{\prime}}$.
(b) If V_{k} is convex, then $2^{-1} V_{k}+2^{-1} V_{k} \subset V_{k}$. Thus we see (b) by (a).

Lemma 1.2. Let $\left\{V_{k}\right\}$ be a f.s. . Then there are a sequence $\left\{\lambda_{k}\right\}$ of positive numbers and a sequence $\left\{N_{k}\right\}$ of positive integers such that

$$
\lambda_{k} \downarrow 0 \text { and } V_{j} \subset \lambda_{j} V_{k} \text { if } j \geqq N_{k} .
$$

Proof. Put $j_{1}=1$. By induction, using Lemma 1.1 (a) we can choose $\left\{j_{k}\right\}$ such that $k V_{j_{k}} \subset V_{j_{k-1}}$ and $j_{1}<j_{2}<\cdots$. Put $\lambda_{j}=1 / k$ if $j_{k} \leqq j<j_{k+1}\left(\lambda_{1}=1\right)$. Then $\lambda_{j} \downarrow 0$. For each k, choose the smallest $m \geqq 2$ such that $k \leqq j_{m-1}$ and put $N_{k}=j_{m}$. If $j \geqq N_{k}$, then $j_{l} \leqq j<j_{l+1}$ for some $l \geqq m$. Then $k \leqq j_{m-1} \leqq j_{l-1}$, so that $\lambda_{j}^{-1} V_{j}=l V_{j} \subset l V_{j_{l}} \subset V_{j_{l-1}} \subset V_{k}$.

Lemma 1.3. (a) For any f.s.'s $\left\{V_{k}\right\}$ and $\left\{U_{k}\right\}$, let $\left\{W_{k}\right\}$ be a f.s. as in (E. 2). If $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$ and $y_{n} \rightarrow y\left(\left\{U_{k}\right\}\right)$, then $x_{n}+y_{n} \rightarrow x+y\left(\left\{W_{k}\right\}\right)$.
(a') If $x_{n} \rightarrow x(\mathrm{R})$ and $y_{n} \rightarrow y(\mathrm{R})$, then $x_{n}+y_{n} \rightarrow x+y(\mathrm{R})$.
(b) Let $\left\{V_{k}\right\}$ be a f.s. . If $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$ and $\lambda>0$, then $\lambda x_{n} \rightarrow \lambda x\left(\left\{V_{k}\right\}\right)$.
(c) If $x_{n} \rightarrow x(\mathrm{R})$ and $\lambda_{n} \rightarrow \lambda\left(\lambda_{n}, \lambda \in \boldsymbol{R}\right)$, then $\lambda_{n} x_{n} \rightarrow \lambda x(\mathrm{R})$.
(d) If $x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$ and $\left\{\lambda_{n}\right\}$ is a bounded sequence of real numbers, then $\lambda_{n} x_{n} \rightarrow O\left(\left\{V_{k}\right\}\right)$.

Proof. We see easily (a) and (a') by definition, and (b) using Lemma 1.1 (a).
(c) Assume $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$. Then $\lambda_{0} x_{n} \rightarrow \lambda_{0} x\left(\left\{V_{k}\right\}\right)$ by (b), where $\lambda_{0}=\sup \left|\lambda_{n}\right|$. Hence for each k there is $n_{1}(k)$ such that $n \geqq n_{1}(k)$ implies $\lambda_{0} x_{n} \in \lambda_{0} x+V_{k}{ }^{n}$ and so $\lambda_{n}\left(x_{n}-x\right) \in \lambda_{n} \lambda_{0}^{-1} V_{k} \subset V_{k}$ by (E.4). Also, choose a f.s. $\left\{U_{k}\right\}$ such that $x \in \mathrm{E}\left(\left\{U_{k}\right\}\right)$, i.e., $x \in \mu_{k} U_{k}$ for some $\mu_{k}>0$, by (E. 5). Since $\lambda_{n} \rightarrow \lambda$, there is $n_{2}(k)$ such that n $\geqq n_{2}(k)$ implies $\left|\lambda_{n}-\lambda\right|<1 / \mu_{k}$ and so $\left(\lambda_{n}-\lambda\right) x \in\left(\lambda_{n}-\lambda\right) \mu_{k} U_{k} \subset U_{k}$ by (E.4). Then $n \geqq \max \left(n_{1}(k), n_{2}(k)\right)$ implies

$$
\lambda_{n} x_{n}-\lambda x=\lambda_{n}\left(x_{n}-x\right)+\left(\lambda_{n}-\lambda\right) x \in V_{k}+U_{k} \subset W_{k}
$$

where $\left\{W_{k}\right\}$ is a f.s. in (E. 2). Thus $\lambda_{n} x_{n} \rightarrow \lambda x(\mathrm{R})$.
(d) follows easily from Lemma 1.1 (a) and (E.4).

Lemma 1.4. Let $x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$ for some f.s. $\left\{V_{k}\right\}$. Then there is a sequence $\left\{\mu_{k}\right\}$ of positive numbers such that $\mu_{k} \uparrow \infty$ and $\mu_{n} x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$.

Proof. By Definition 1.1, there are positive integers $m(1) \leqq m(2) \leqq \cdots$ such that $n \geqq m(k)$ implies $x_{n} \in V_{k}$. Choose sequences $\left\{\lambda_{k}\right\}$ and $\left\{N_{k}\right\}$ as in Lemma 1.2, and put $j_{k}=m\left(N_{k}\right)$ and

$$
\mu_{n}=1 \quad \text { for } \quad 1 \leqq n<j_{1}, \quad \mu_{n}=1 / \lambda_{N_{k}} \text { for } \quad j_{k} \leqq n<j_{k+1} \quad(k=1,2, \ldots) .
$$

Then $\mu_{n} \uparrow \infty$. Also, we see that $\mu_{n} x_{n} \in V_{k}$ if $j_{k} \leqq n<j_{k+1}$, which implies $\mu_{n} x_{n}$ $\rightarrow 0\left(\left\{V_{k}\right\}\right)$.

Definition 1.2. Given a f.s. $\left\{V_{k}\right\}$, a sequence $\left\{x_{n}\right\}$ in E is called a Cauchy sequence by $\left\{V_{k}\right\}$, if for each k there is n_{k} such that $m>n \geqq n_{k}$ implies $x_{m}-x_{n} \in V_{k}$. A sequence $\left\{x_{n}\right\}$ in E is called an R-Cauchy sequence if it is a Cauchy sequence by some f.s. $\left\{V_{k}\right\}$. Also, E is said to be R-complete, if for each Cauchy sequence $\left\{x_{n}\right\}$ by $\left\{V_{k}\right\}$ there is $x \in E$ such that $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$.

Lemma 1.5. If $x_{n} \rightarrow x(\mathrm{R})$, then $\left\{x_{n}\right\}$ is an R -Cauchy sequence.
Proof. If $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$ and $\left\{U_{k}\right\}$ is a f.s. such that $V_{k}+V_{k} \subset U_{k}$, then we see easily that $\left\{x_{n}\right\}$ is a Cauchy sequence by $\left\{U_{k}\right\}$.

Now, we consider the following additional assumptions for a linear ranked space $E=\left(E,\left\{\mathfrak{B}_{n}\right\}\right)$, which will be assumed frequently:
(A.1) For each f.s. $\left\{V_{k}\right\}$, there is k_{0} such that $V_{k_{0}} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$.
(A.2) Let $\left\{V_{k}\right\}$ be a f.s. . If $x_{n} \rightarrow 0(\mathrm{R})$ and $\left\{x_{n}\right\} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$, then $x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$.
(A.3) Let $\left\{V_{k}\right\}$ be a f.s. . Then for each k and $x \in V_{k}$ there is m such that $x+V_{m}$ $\subset V_{k}$.

The following are some examples of linear ranked spaces which satisfy (A. 1-3) (cf. [4], [5], [6]).

Example 1. Normed linear spaces. Let E be a normed linear space, and let $V(\varepsilon)=\{x \in E \mid\|x\|<\varepsilon\}$ for $\varepsilon>0$. Put

$$
\begin{aligned}
\mathfrak{B}_{0}=\{V(\varepsilon) \mid \varepsilon>1\} \cup\{E\}, \quad \mathfrak{B}_{n}=\{V(\varepsilon) \mid 1 /(n+1)<\varepsilon \leqq & 1 / n\} \\
& (n=1,2, \ldots) .
\end{aligned}
$$

Then $\left(E,\left\{\mathfrak{B}_{n}\right\}\right)$ is a T_{1}^{*} linear ranked space. Hereafter we shall always regard a normed linear space as a linear ranked space with this structure. The Rconvergence coincides with the norm-convergence, and any R-Cauchy sequence is a Cauchy sequence with respect to the norm. Hence E is R-complete if and only if E is a Banach space. It is easy to see that E satisfies (A.1-3).

Example 2. The Schwartz space \mathscr{D}. Let \boldsymbol{R}^{n} be the n-dimensional Euclidean space and put $\Omega_{l}=\left\{x \in \boldsymbol{R}^{n}| | x \mid<l\right\}\left(\left|\left(x_{1}, \ldots, x_{n}\right)\right|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}\right)$. For integers $m \geqq 0, l>0$ and a real number $\varepsilon>0$, let

$$
\begin{aligned}
U(m, l, \varepsilon)=\{\varphi \in \mathscr{D} \mid \operatorname{supp} \varphi & \subset \Omega_{l},\left|D^{\alpha} \varphi\right|<\varepsilon \\
& \text { for all multi-indices } \alpha \text { with } \quad|\alpha| \leqq m\} .
\end{aligned}
$$

Put $\mathfrak{B}_{0}=\{U(0, l, \varepsilon) \mid l=1,2, \ldots ; \varepsilon>1\} \cup\{\mathscr{D}\}$ and

$$
\mathfrak{B}_{n}=\{U(n, l, \varepsilon) \mid l=1,2, \ldots ; 1 /(n+1)<\varepsilon \leqq 1 / n\} \quad(n=1,2, \ldots) .
$$

Then $\left(\mathscr{D},\left\{\mathfrak{B}_{n}\right\}\right)$ is a T_{1}^{*} linear ranked space. For a sequence $\left\{\varphi_{n}\right\}$ in $\mathscr{D}, \varphi_{n} \rightarrow 0(\mathrm{R})$ means that $\operatorname{supp} \varphi_{n}$ is contained in a fixed bounded set and $\left|D^{\alpha} \varphi_{n}\right| \rightarrow 0$ uniformly for each α. \mathscr{D} is R -complete and satisfies (A. 1-3).

Example 3. Inductive limits of metrizable topological vector spaces. Let $\left\{\left(E_{n}, d_{n}\right)\right\}$ be a sequence of metrizable topological vector spaces such that d_{n} is an invariant absorbing metric of E_{n} for each $n, E_{1} \subsetneq E_{2} \subsetneq \cdots$ and $d_{n+1}(x, 0)$ $\leqq d_{n}(x, 0)$ for $x \in E_{n}$. Consider the inductive limit $E=\cup_{n=1}^{\infty} E_{n}$, and put \mathfrak{B}_{0} $=\{V(l ; \varepsilon) \mid l=1,2, \ldots ; \varepsilon>1\} \cup\{E\} \quad$ and $\quad \mathfrak{B}_{n}=\{V(l ; \varepsilon) \mid l=1,2, \ldots ; 1 /(n+1)<\varepsilon$ $\leqq 1 / n\}(n=1,2, \ldots)$, where $V(l ; \varepsilon)=\left\{x \in E_{l} \mid d_{l}(x, 0)<\varepsilon\right\}$. Then $\left(E,\left\{\mathfrak{B}_{n}\right\}\right)$ is a T_{1}^{*} linear ranked space satisfying (A. 1-3), and $x_{n} \rightarrow 0(\mathrm{R})$ if and only if there is some k such that $\left\{x_{n}\right\} \subset E_{k}$ and $d_{k}\left(x_{n}, 0\right) \rightarrow 0(n \rightarrow \infty)$. Also, if each $\left(E_{n}, d_{n}\right)$ is complete, then E is R-complete. The space \mathscr{D} of the above example is a special case.

Now, we define several notions for a linear ranked space $E=\left(E,\left\{\mathfrak{B}_{n}\right\}\right)$.
Definition 1.3. For a subset S of E and a f.s. $\left\{V_{k}\right\}$ in E, the $\left\{V_{k}\right\}$-closure $\bar{S}\left(\left\{V_{k}\right\}\right)$ of S is the set of all $x \in E$ such that there is $\left\{x_{n}\right\}$ in S with $x_{n} \rightarrow x\left(\left\{V_{k}\right\}\right)$.

$$
\bar{S}=U\left\{\bar{S}\left(\left\{V_{k}\right\}\right) \mid\left\{V_{k}\right\} \text { is a f.s. in } E\right\}
$$

is called the R-closure of S. S is said to be $\left\{V_{k}\right\}$ - or R-closed if $S=\bar{S}\left(\left\{V_{k}\right\}\right)$ or $S=\bar{S}$. Also, a set $D \subset E$ is said to be R-open if $E \backslash D$ is R-closed.

Lemma 1.6. (a) $x \in \bar{S}\left(\left\{V_{k}\right\}\right)$ if and only if $\left(x+V_{k}\right) \cap S \neq \phi$ for each k.
($\left.\mathrm{a}^{\prime}\right) \quad x \in \bar{S}$ if and only if there is some f.s. $\left\{V_{k}\right\}$ such that $\left(x+V_{k}\right) \cap S \neq \phi$ for each k.
(b) $\overline{\lambda S}\left(\left\{V_{k}\right\}\right)=\lambda \bar{S}\left(\left\{V_{k}\right\}\right), \overline{\lambda S}=\lambda \bar{S}$, for any $\lambda>0$.
(c) $\overline{(x+S)}\left(\left\{V_{k}\right\}\right)=x+\bar{S}\left(\left\{V_{k}\right\}\right), \overline{x+S}=x+\bar{S}$, for any $x \in E$.
(d) If $\left\{V_{k}\right\}$ is a convex f.s., then $\bar{S}\left(\left\{V_{k}\right\}\right)$ is $\left\{V_{k}\right\}$-closed.
(e) If $\left\{V_{k}\right\}$ is a convex f.s. and S is convex, then $\bar{S}\left(\left\{V_{k}\right\}\right)$ is also convex.
(e') If S is convex, then so is \bar{S}.
Proof. We see easily (a)-(c) by the above definition and Lemma 1.3 (b).
(d) Let $T=\bar{S}\left(\left\{V_{k}\right\}\right)$. Then $\bar{T}\left(\left\{V_{k}\right)\right\} \supset T$ is obvious. For each k, choose m such that $V_{m}+V_{m} \subset V_{k}$ by Lemma 1.1(b). If $x \in \bar{T}\left(\left\{V_{k}\right\}\right)$, then (a) implies that there exist $x^{\prime} \in\left(x+V_{m}\right) \cap T$ and $x^{\prime \prime} \in\left(x^{\prime}+V_{m}\right) \cap S$. Hence $x^{\prime \prime} \in x+V_{m}+V_{m} \subset x+V_{k}$ and $x^{\prime \prime} \in S$, and so $x \in T$. Thus $\bar{T}\left(\left\{V_{k}\right\}\right) \subset T$.
(e) and (e') are seen easily by (a) and (E. 2).

Lemma 1.7. If $\left\{V_{k}\right\}$ is a convex f.s., then $\bar{V}_{n}\left(\left\{V_{k}\right\}\right) \subset \lambda V_{n}$ for any $\lambda>1$ and n.

Proof By Lemma 1.1 (a), there is an integer m such that $(\lambda-1) V_{n} \supset V_{m}$. If $x \in \bar{V}_{n}\left(\left\{V_{k}\right\}\right)$, then there exists $x^{\prime} \in\left(x+V_{m}\right) \cap V_{n}$ by Lemma 1.6(a). Thus x $=x-x^{\prime}+x^{\prime} \in V_{m}+V_{n} \subset(\lambda-1) V_{n}+V_{n}=\lambda V_{n}$ since V_{n} is symmetric and convex.

Definition 1.4. Let $\left\{V_{k}\right\}$ be a f.s. in E. A subset $S \subset E$ is said to be $\left\{V_{k}\right\}$-bounded if there is a sequence $\left\{\lambda_{k}\right\}$ of positive numbers such that $S \subset \lambda_{k} V_{k}$ for each $k . \quad S \subset E$ is said to be R-bounded if it is $\left\{V_{k}\right\}$-bounded for some f.s. $\left\{V_{k}\right\}$. A sequence $\left\{x_{n}\right\}$ in E is called a $\left\{V_{k}\right\}$-quasi bounded sequence ($\left\{V_{k}\right\}$-q.b.s.) if $\lambda_{n} x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$ for any sequence $\left\{\lambda_{n}\right\}$ of positive numbers such that $\lambda_{n} \rightarrow 0(n \rightarrow \infty)$. $\left\{x_{n}\right\}$ is called an R-quasi bounded sequence (R-q.b.s.) if it is a $\left\{V_{k}\right\}$-q.b.s. for some f.s. $\left\{V_{k}\right\}$ (cf. [6, II]).

Remark 1.2. If E is a normed linear space, then S is R-bounded if and only if it is norm-bounded, and a sequence $\left\{x_{n}\right\}$ is an R-q.b.s. if and only if it is norm-bounded (cf. Lemma 1.10 below).

Lemma 1.8. (a) If S_{1} and S_{2} are R-bounded, then so are $S_{1} \cup S_{2}$ and $S_{1}+S_{2}$.
(b) Any finite set is R-bounded.
(c) If S is R -bounded and $\lambda>0$, then λS is R -bounded.
(d) Let $\left\{V_{k}\right\}$ be a convex f.s. . If S is $\left\{V_{k}\right\}$-bounded, then so is $\bar{S}\left(\left\{V_{k}\right\}\right)$.

Proof. (a) We see easily that if S_{1} and S_{2} are R-bounded, then so is S_{1} $+S_{2}$, by using (E.2). Thus $S_{1} \cup S_{2}$ is R-bounded since $S_{1} \cup S_{2} \subset\left(S_{1} \cup\{0\}\right)$ $+\left(S_{2} \cup\{0\}\right)$.
(b) By (E.5), given $x \in E$ there is a f.s. $\left\{V_{k}\right\}$ such that $x \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$. Then $\{x\}$ is $\left\{V_{k}\right\}$-bounded and so R-bounded. Thus we see (b) by (a).
(c) is obvious from definition, and (d) is immediate from Lemma 1.7.

Lemma 1.9. (a) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are R-q.b.s.'s, then so is $\left\{x_{n}+y_{n}\right\}$.
(b) If $\left\{x_{n}\right\}$ is an R-q.b.s. and $\left\{\alpha_{n}\right\}$ is a bounded sequence of non-negative numbers, then $\left\{\alpha_{n} x_{n}\right\}$ is an R-q.b.s. .

Proof. (a) follows from Lemma 1.3(a) and definition.
(b) If $\lambda_{n} \rightarrow 0(n \rightarrow \infty)$, then $\lambda_{n} \alpha_{n} \rightarrow 0(n \rightarrow \infty)$. Thus we have (b).

Lemma 1.10. (a) Given a f.s. $\left\{V_{k}\right\}$, any $\left\{V_{k}\right\}$-bounded sequence is a $\left\{V_{k}\right\}$ q.b.s. .
(a') Any R-bounded sequence is an R-q.b.s. .
(b) Conversely, if $\left\{x_{n}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s. and $\left\{x_{n}\right\} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$, then $\left\{x_{n}\right\}$ is $\left\{V_{k}\right\}$-bounded.
($\left.\mathrm{b}^{\prime}\right)$ If E satisfies (A.1) and $\left\{x_{n}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s., then $\left\{x_{n}\right\}_{n \geqq n_{0}}$ is $\left\{V_{k}\right\}-$ bounded for some n_{0}.
(b") If E satisfies (A. 1), then any R-q.b.s. is R-bounded.

Proof. (a), (a') Suppose $\left\{x_{n}\right\}$ is $\left\{V_{k}\right\}$-bounded. Then there is a sequence $\left\{\mu_{k}\right\}$ of positive numbers such that $x_{n} \in \mu_{k} V_{k}$ for all n, k. Let $\left\{\lambda_{n}\right\}$ be a sequence of positive numbers such that $\lambda_{n} \rightarrow 0(n \rightarrow \infty)$. For each k there is an integer $n(k)$ such that $n \geqq n(k)$ implies $\lambda_{n} \leqq 1 / \mu_{k}$. Hence $n \geqq n(k)$ implies $\lambda_{n} x_{n} \in \lambda_{n} \mu_{k} V_{k} \subset V_{k}$. Hence $\lambda_{n} x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$. Thus $\left\{x_{n}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s. .
(b) Assume that $\left\{x_{n}\right\} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$ and $\left\{x_{n}\right\}$ is not $\left\{V_{k}\right\}$-bounded. Then there is k such that $\left\{x_{n}\right\} \not \subset \lambda V_{k}$ for all $\lambda>0$, and we can choose n_{j} such that $x_{n_{j}} \notin j V_{k}$ for each $j=1,2, \ldots$. Since $\left\{x_{n}\right\} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$, we see that $\left\{j \mid n_{j}=n\right\}$ is a finite set. Hence $\left\{n_{j}\right\}$ is unbounded, so that we can choose a subsequence $\left\{n_{j_{1}}\right\}, n_{j_{1}}<n_{j_{2}}$ $<\cdots \rightarrow \infty$. Since $j_{l} \rightarrow \infty$, we can choose $\left\{\lambda_{n}\right\}$ such that $\lambda_{n_{j}}=1 / j$ for $j=j_{l}, l=1$, $2, \ldots$, and $\lambda_{n} \rightarrow 0(n \rightarrow \infty)$. Then $\lambda_{n_{j}} x_{n_{j}} \notin V_{k}$ if $j=j_{l}(l=1,2, \ldots)$, and hence $\lambda_{n} x_{n} \nrightarrow 0$ ($\left\{V_{k}\right\}$). Thus $\left\{x_{n}\right\}$ is not a $\left\{V_{k}\right\}$-q.b.s. .
(b') Assume that $\left\{x_{n}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s.. By (A.1), there is k_{0} such that $V_{k_{0}} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$. Since $n^{-1} x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$, there is n_{0} such that $n \geqq n_{0}$ implies $n^{-1} x_{n}$ $\in V_{k_{0}}$, i.e., $x_{n} \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$. Then $\left\{x_{n}\right\}_{n \geqq n_{0}}$ is $\left\{V_{k}\right\}$-bounded by (b).
($b^{\prime \prime}$) follows from (b^{\prime}) and Lemma 1.8 (a), (b).
Lemma 1.11. (a) Each R-convergent sequence is an R-q.b.s..
(b) If $x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$, then $\left\{x_{n}\right\}$ is $a\left\{V_{k}\right\}$-q.b.s..

Proof. (a) follows from Lemma 1.3(c); and (b) from Lemma 1.3(d).
The continuity of a mapping between two linear ranked spaces is defined as follows.

Definition 1.5. Let $E=\left(E,\left\{\mathfrak{B}_{n}\right\}\right)$ and $F=\left(F,\left\{\mathfrak{M}_{n}\right\}\right)$ be two linear ranked spaces and D be a subset of E. A mapping $f: D \rightarrow F$ is said to be R-continuous at $a \in D$ (relative to D) if for each f.s. $\left\{V_{k}\right\}$ in E, there is a f.s. $\left\{W_{k}\right\}$ in F such that

$$
f\left(\left(a+V_{k}\right) \cap D\right) \subset f(a)+W_{k} \quad \text { for each } \quad k .
$$

If f is R-continuous at every $a \in D^{\prime} \subset D$, then we say that f is R -continuous on D^{\prime} (relative to D).

Let $L(E, F)$ be the set of all R-continuous linear mappings from E to F.
Lemma 1.12. Let $E \supset D$ and F be as in Definition 1.5.
(a) If $f: D \rightarrow F$ is R -continuous at $a \in D$ and $x_{n} \rightarrow a(\mathrm{R})$ with $x_{n} \in D$, then $f\left(x_{n}\right) \rightarrow f(a)(\mathrm{R})$.
(b) If $f: D \rightarrow F$ and $g: D \rightarrow F$ are R-continuous at $a \in D$ and if $\lambda>0$, then $f+g$ and λf are R-continuous at $a \in D$.
(c) Let D be a linear subspace of E. Iff: $D \rightarrow F$ is linear and R -continuous at 0 , then f is R -continuous on D .
(d) Let $f: E \rightarrow F$ be a linear R-continuous mapping. If S is R-bounded in E, then so is $f(S)$ in F. If $\left\{x_{n}\right\}$ is an R-q.b.s. in E, then so is $\left\{f\left(x_{n}\right)\right\}$ in F.

Proof. This lemma is seen easily by definition.
Remark 1.3. If E and F are both normed linear spaces, then the R-continuity coincides with the continuity with respect to norms.

Definition 1.6. Let $E=\left(E,\left\{\mathfrak{B}_{n}\right\}\right)$ and $F=\left(F,\left\{\mathfrak{W}_{n}\right\}\right)$ be two linear ranked spaces. For the product linear space $E \times F$, we take

$$
\mathfrak{X}_{n}=\left\{V \times W \mid V \in \mathfrak{B}_{l}, W \in \mathfrak{W}_{m}, \min (l, m)=n\right\}
$$

as the family of preneighborhoods of rank n.
Lemma 1.13. (a) If $\left\{V_{k}\right\}$ and $\left\{W_{k}\right\}$ are f.s.'s in E and F, respectively, then $\left\{V_{k} \times W_{k}\right\}$ is a f.s. in $E \times F$.
(b) If $\left\{V_{k} \times W_{k}\right\}$ is a f.s. in $E \times F$, then there exist f.s.'s $\left\{V_{k}^{*}\right\}$ in E and $\left\{W_{k}^{*}\right\}$ in F such that $V_{k} \subset V_{k}^{*} \in\left\{V_{k}\right\}$ and $W_{k} \subset W_{k}^{*} \in\left\{W_{k}\right\}$ for each k.

Proof. (a) is obvious by definition.
(b) Assume $V_{k} \times W_{k} \in \mathfrak{X}_{n_{k}}, V_{k} \in \mathfrak{B}_{l_{k}}, W_{k} \in \mathfrak{B}_{m_{k}}$ with $n_{k}=\min \left(l_{k}, m_{k}\right)$. Define $k(j)$ inductively as follows: Let $k(1)=1$. Choose $k(j+1)>k(j)$ such that $l_{k(j+1)}>l_{k(j)}$ and $m_{k(j+1)}>m_{k(j)}$. Then $k(j) \geqq j$ and $\left\{V_{k(j)}\right\}_{j},\left\{W_{k(j)}\right\}_{j}$ are f.s.'s in E, F, respectively. Put $V_{k}^{*}=V_{k(j)}$ and $W_{k}^{*}=W_{k(j)}$ if $k(j) \leqq k<k(j+1)$. Then $\left\{V_{k}^{*}\right\}$ and $\left\{W_{k}^{*}\right\}$ are the desired f.s.'s.

Theorem 1.1 (cf. [6, I]). $E \times F=\left(E \times F,\left\{\mathfrak{X}_{n}\right\}\right)$ is a linear ranked space.
Proof. Let $\left\{V_{k} \times W_{k}\right\}$ and $\left\{V_{k}^{\prime} \times W_{k}^{\prime}\right\}$ be f.s.'s in $E \times F$. Then by Lemma $1.13(\mathrm{~b})$, there are f.s.'s $\left\{V_{k}^{*}\right\},\left\{V_{k}^{\prime *}\right\}$ in E and $\left\{W_{k}^{*}\right\},\left\{W_{k}^{\prime *}\right\}$ in F such that V_{k} $\subset V_{k}^{*}, V_{k}^{\prime} \subset V_{k}^{\prime *}$ and $W_{k} \subset W_{k}^{*}, W_{k}^{\prime} \subset W_{k}^{\prime *}$. Also, by (E.2) for E and F, there are f.s.'s $\left\{V_{k}^{\prime \prime}\right\}$ in E and $\left\{W_{k}^{\prime \prime}\right\}$ in F such that $V_{k}^{*}+V_{k}^{\prime *} \subset V_{k}^{\prime \prime}$ and $W_{k}^{*}+W_{k}^{\prime *} \subset W_{k}^{\prime \prime}$ for each k. Then $\left\{V_{k}^{\prime \prime} \times W_{k}^{\prime \prime}\right\}$ is a f.s. in $E \times F$ by Lemma 1.13 (a), and

$$
V_{k} \times W_{k}+V_{k}^{\prime} \times W_{k}^{\prime}=\left(V_{k}+V_{k}^{\prime}\right) \times\left(W_{k}+W_{k}^{\prime}\right) \subset V_{k}^{\prime \prime} \times W_{k}^{\prime \prime} \quad \text { for each } \quad k
$$

Thus ($E \times F,\left\{\mathfrak{X}_{n}\right\}$) satisfies (E. 2).
Let $\left\{V_{k} \times W_{k}\right\}$ be a f.s. in $E \times F$ and $\lambda>0$. Choose f.s.'s $\left\{V_{k}^{*}\right\}$ in E and $\left\{W_{k}^{*}\right\}$ in F as in Lemma 1.13 (b). Then, by (E. 3) for E and F, there are integers $1 \leqq m(1)$ $\leqq m(2) \leqq \cdots \rightarrow \infty, 1 \leqq l(1) \leqq l(2) \leqq \cdots \rightarrow \infty$ and k_{0} such that $\lambda V_{k}^{*} \subset V_{m(k)}^{*}, \lambda W_{k}^{*}$ $\subset W_{l(k)}^{*}$ for $k \geqq k_{0}$. Thus $\lambda\left(V_{k} \times W_{k}\right)=\lambda V_{k} \times \lambda W_{k} \subset V_{n(k)}^{*} \times W_{n(k)}^{*}$ for $k \geqq k_{0}$, where $n(k)=\min (m(k), l(k))$. These show (E.3) for ($E \times F,\left\{\mathfrak{X}_{n}\right\}$).
(E.4) and (E.5) for ($E \times F,\left\{\mathfrak{X}_{n}\right\}$) are verified easily.

Lemma 1.14. (a) If E and F are both T_{1}^{*}, then so is $E \times F$.
(b) $\left(x_{n}, y_{n}\right) \rightarrow 0(\mathrm{R})$ in $E \times F$ if and only if $x_{n} \rightarrow 0(\mathrm{R})$ in E and $y_{n} \rightarrow 0(\mathrm{R})$ in F.
(c) If E and F both satisfy (A.1), (A.2) or (A.3), then so does $E \times F$.
(d) If E and F are R -complete, then so is $E \times F$.
(e) $S=S_{1} \times S_{2}\left(S_{1} \subset E, S_{2} \subset F\right)$ is R-bounded in $E \times F$ if and only if S_{1} and S_{2} are R -bounded in E and F, respectively.
(f) The projections $p_{1}: E \times F \rightarrow E$ and $p_{2}: E \times F \rightarrow F$ are R-continuous.

Proof. Let $\left\{U_{k}\right\}=\left\{V_{k} \times W_{k}\right\}$ be a f.s. in $E \times F$, and choose f.s.'s $\left\{V_{k}^{*}\right\}$ in E and $\left\{W_{k}^{*}\right\}$ in F such that $V_{k} \subset V_{k}^{*} \in\left\{V_{k}\right\}$ and $W_{k} \subset W_{k}^{*} \in\left\{W_{k}\right\}$ for each k, by Lemma 1.13(b). Then we see easily that $\mathrm{E}\left(\left\{U_{k}\right\}\right)=\mathrm{E}\left(\left\{V_{k}^{*} \times W_{k}^{*}\right\}\right)=\mathrm{E}\left(\left\{V_{k}^{*}\right\}\right)$ $\times \mathrm{E}\left(\left\{W_{k}^{*}\right\}\right)$.
(a) Since $\cap_{k} U_{k} \subset\left(\cap_{k} V_{k}^{*}\right) \times\left(\cap_{k} W_{k}^{*}\right)$, we see (a).
(b) If $\left(x_{n}, y_{n}\right) \rightarrow 0\left(\left\{U_{k}\right\}\right)$, then $x_{n} \rightarrow 0\left(\left\{V_{k}^{*}\right\}\right)$ and $y_{n} \rightarrow 0\left(\left\{W_{k}^{*}\right\}\right)$. This shows the 'only if' part. The 'if' part is clear by Lemma 1.13(a).
(c) If E and F satisfy (A.1), then there is k_{0} such that $V_{k_{0}}^{*} \subset \mathrm{E}\left(\left\{V_{k}^{*}\right\}\right)$ and $W_{k_{0}}^{*} \subset \mathrm{E}\left(\left\{W_{k}^{*}\right\}\right)$. Put $k^{\prime}=\max \left(k_{1}, k_{2}\right)$, where $V_{k_{0}}^{*}=V_{k_{1}}$ and $W_{k_{0}}^{*}=W_{k_{2}}$. Then $U_{k^{\prime}}=V_{k^{\prime}} \times W_{k^{\prime}} \subset \mathrm{E}\left(\left\{V_{k}^{*}\right\}\right) \times \mathrm{E}\left(\left\{W_{k}^{*}\right\}\right)=\mathrm{E}\left(\left\{U_{k}\right\}\right)$. Thus $E \times F$ satisfies (A.1).

Suppose that E and F satisfy (A. 2). If $\left(x_{n}, y_{n}\right) \rightarrow 0(\mathrm{R})$ in $E \times F$, then $x_{n} \rightarrow 0(\mathrm{R})$ in E and $y_{n} \rightarrow 0(\mathrm{R})$ in F by (b). If $\left(x_{n}, y_{n}\right) \in \mathrm{E}\left(\left\{U_{k}\right\}\right)$ for all n in addition, then $x_{n} \in \mathrm{E}\left(\left\{V_{k}^{*}\right\}\right)$ and $y_{n} \in \mathrm{E}\left(\left\{W_{k}^{*}\right\}\right)$, and so $x_{n} \rightarrow 0\left(\left\{V_{k}^{*}\right\}\right)$ and $y_{n} \rightarrow 0\left(\left\{W_{k}^{*}\right\}\right)$ by (A.2) for E and F. Thus we see that $\left(x_{n}, y_{n}\right) \rightarrow 0\left(\left\{U_{k}\right\}\right)$.

Finally suppose E and F satisfy (A. 3), and (x, y) $\in U_{k}=V_{k} \times W_{k}$. Then, there is m such that $x+V_{m}^{*} \subset V_{k}$ and $y+W_{m}^{*} \subset W_{k}$ by (A.3) for E and F. Thus (x, y) $+U_{m} \subset(x, y)+\left(V_{m}^{*} \times W_{m}^{*}\right) \subset U_{k}$, and (A.3) holds for $E \times F$.
(d) Suppose E and F are R-complete. If $\left\{\left(x_{n}, y_{n}\right)\right\}$ is a Cauchy sequence by $\left\{U_{k}\right\}$, then we see easily by definition that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences by $\left\{V_{k}^{*}\right\}$ and $\left\{W_{k}^{*}\right\}$, respectively. Thus there are $x \in E$ and $y \in F$ such that $x_{n} \rightarrow$ $x\left(\left\{V_{k}^{*}\right\}\right)$ and $y_{n} \rightarrow y\left(\left\{W_{k}^{*}\right\}\right)$, and hence $\left(x_{n}, y_{n}\right) \rightarrow(x, y)\left(\left\{U_{k}\right\}\right)$. Hence $E \times F$ is also R-complete.
(e) and (f) are seen easily by definition.

Lemma 1.15. Let E, F be linear ranked spaces and let T be an R -continuous bilinear mapping of the product linear ranked space $E^{2}=E \times E$ into F. Then for any f.s.'s $\left\{V_{k}\right\}$ and $\left\{U_{k}\right\}$ in E, there is a f.s. $\left\{W_{k}\right\}$ in F such that

$$
T\left(x_{n}, y_{n}\right) \longrightarrow 0\left(\left\{W_{k}\right\}\right)
$$

for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$ and any $\left\{U_{k}\right\}$-q.b.s. $\left\{y_{n}\right\}$.
Proof. Since $\left\{V_{k} \times U_{k}\right\}$ is a f.s. in E^{2} by Lemma 1.13(a), the R-continuity of T at $0=(0,0)$ implies that there is a f.s. $\left\{W_{k}\right\}$ in F with

$$
T\left(V_{k} \times U_{k}\right) \subset W_{k} \quad \text { for each } \quad k
$$

If $x_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$, then there is a sequence $\left\{\mu_{n}\right\}$ such that $\mu_{n}>0, \mu_{n} \uparrow \infty$ and $\mu_{n} x_{n}$ $\rightarrow 0\left(\left\{V_{k}\right\}\right)$ by Lemma 1.4. Thus if $\left\{y_{n}\right\}$ is a $\left\{U_{k}\right\}$-q.b.s., then we see $T\left(x_{n}, y_{n}\right)$
$=T\left(\mu_{n} x_{n}, \mu_{n}^{-1} y_{n}\right) \rightarrow 0\left(\left\{W_{k}\right\}\right)$ as desired.

§2. Differentiation

In the sequel, let E and F be linear ranked spaces and let D be a non-empty R-open subset of E (cf. Definition 1.3).

Definition 2.1 (cf. [6, V]). A mapping $f: D \rightarrow F$ is said to be R-differentiable at $x \in D$, if there exists an R -continuous linear mapping $l: E \rightarrow F$ for which

$$
\begin{equation*}
r: D-x \longrightarrow F, \quad r(h)=f(x+h)-f(x)-l(h) \quad(h \in D-x) . \tag{2.1}
\end{equation*}
$$

satisfies the following condition:
(2.2) For any f.s. $\left\{V_{k}\right\}$ in E, there exists a f.s. $\left\{U_{m}\right\}$ in F such that

$$
\lambda_{n}^{-1} r\left(\lambda_{n} h_{n}\right) \longrightarrow 0\left(\left\{U_{m}\right\}\right)
$$

for each $\left\{V_{k}\right\}$-q.b.s. $\left\{h_{n}\right\}$ in E and each sequence $\left\{\lambda_{n}\right\}$ of positive numbers with $\lambda_{n} \rightarrow 0(n \rightarrow \infty)$.

Remark 2.1. Since D is R-open, for each $x \in D$ and each f.s. $\left\{V_{k}\right\}$, there is k_{0} such that $k \geqq k_{0}$ implies $V_{k} \subset D-x$ by Lemma $1.6\left(\mathrm{a}^{\prime}\right)$. Hence, if $\left\{h_{n}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s. and $\lambda_{n} \rightarrow 0\left(\lambda_{n}>0\right)$, then $\lambda_{n} h_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$ and so $\lambda_{n} h_{n} \in D-x$ for large n.

Lemma 2.1. If (2.2) holds, then for any sequence $\left\{\lambda_{k}\right\}$ of positive numbers with $\lambda_{k} \rightarrow 0$ and for any m, there is k_{0} such that

$$
\lambda_{k}^{-1} r\left(\lambda_{k} V_{k}\right) \subset U_{m} \quad \text { for each } \quad k \geqq k_{0} .
$$

Proof. Suppose there are m_{0} and a sequence $\left\{\lambda_{k}\right\}$ with $\lambda_{k}>0, \lambda_{k} \rightarrow 0$ such that for each k there is $k^{\prime}>k$ with $\lambda_{k^{\prime}}^{-1} r\left(\lambda_{k^{\prime}}, V_{k^{\prime}}\right) \not \subset U_{m_{0}}$. Then we can choose $k_{1}<k_{2}<\cdots$ and $h_{j} \in V_{k_{j}}$ such that

$$
\lambda_{k_{j}}^{-1} r\left(\lambda_{k_{j}} h_{j}\right) \notin U_{m_{0}} \quad \text { for each } \quad j
$$

Thus $h_{j} \rightarrow 0\left(\left\{V_{k}\right\}\right)$ and so $\left\{h_{j}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s. by Lemma $1.11(\mathrm{~b})$. Also, $\lambda_{k j} \rightarrow 0$ ($j \rightarrow \infty$), but $\lambda_{k_{j}}^{-1} r\left(\lambda_{k_{j}} h_{j}\right) \nrightarrow 0\left(\left\{U_{m}\right\}\right)$, which contradicts (2.2).

Theorem 2.1. If $f: D \rightarrow F$ is R -differentiable at $x \in D$, then it is R -continuous at x.

Proof. Let a f.s. $\left\{V_{k}\right\}$ in E be given. By Lemma 1.2, there exist $\left\{\lambda_{k}\right\}$ ($\lambda_{1}=1,0<\lambda_{k} \leqq 1, \lambda_{k} \downarrow 0$) and $\left\{N_{k}\right\}\left(N_{1}=1, N_{k} \uparrow \infty\right)$ such that $V_{j} \subset \lambda_{j} V_{k}$ if $j \geqq N_{k}$. If we put $k(j)=\max \left\{k \mid j \geqq N_{k}\right\}$ and $V_{j}^{\prime}=V_{k(j)}$, then we see that $\left\{V_{j}^{\prime}\right\}$ is a f.s. in E and $V_{j} \subset \lambda_{j} V_{j}^{\prime}$ for all j. Let $l \in L(E, F)$ and r be as in Definition 2.1. By
(2.1),

$$
f\left(\left(x+V_{k}\right) \cap D\right) \subset f(x)+l\left(V_{k}\right)+r\left(V_{k} \cap(D-x)\right)
$$

where $V_{k} \subset D-x$ for large k, by Remark 2.1. By Lemma 2.1, there is a f.s. $\left\{U_{m}\right\}$ in F such that

$$
\lambda_{j}^{-1} r\left(\lambda_{j} V_{j}^{\prime}\right) \subset U_{m} \quad \text { if } \quad j \geqq j(m)
$$

for some sequence $\{j(m)\}$ of integers with $j(m) \uparrow \infty$. Hence

$$
r\left(V_{j}\right) \subset r\left(\lambda_{j} V_{j}^{\prime}\right) \subset \lambda_{j} U_{m} \subset U_{m} \quad \text { if } \quad j \geqq j(m)
$$

Put $m(j)=\max \{m \mid j \geqq j(m)\}(m(j)=0$ if $j<j(m)$ for all $m)$ and $U_{j}^{\prime}=U_{m(j)}$ $\left(U_{0}=F\right)$. Then $\left\{U_{j}^{\prime}\right\}$ is a f.s. in F. On the other hand, since l is R-continuous at 0 , there is a f.s. $\left\{U_{m}^{\prime \prime}\right\}$ in F such that $l\left(V_{j}\right) \subset U_{j}^{\prime \prime}$ for each j. Choose a f.s. $\left\{W_{j}\right\}$ in F such that $U_{j}^{\prime}+U_{j}^{\prime \prime} \subset W_{j}$ by (E. 2). Then

$$
f\left(\left(x+V_{j}\right) \cap D\right) \subset f(x)+l\left(V_{j}\right)+r\left(V_{j}\right) \subset f(x)+U_{j}^{\prime}+U_{j}^{\prime \prime} \subset f(x)+W_{j}
$$

for large j. Hence f is R-continuous at x.
Lemma 2.2. If F is T_{1}^{*} and if $f: D \rightarrow F$ is R -differentiable at $x \in D$, then $l \in L(E, F)$ in Definition 2.1 is uniquely determined.

Proof. Let $l_{1}, l_{2} \in L(E, F)$,

$$
r_{j}(h)=f(x+h)-f(x)-l_{j}(h) \quad(h \in D-x), \quad j=1,2,
$$

and suppose r_{1} and r_{2} both satisfy (2.2).
For any $h \in E$, we can find a f.s. $\left\{V_{k}\right\}$ in E such that $h \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$ by (E.5). Then $\{h\}$ is $\left\{V_{k}\right\}$-bounded and hence is a $\left\{V_{k}\right\}$-q.b.s. by Lemma 1.10 (a). Thus by (2.2), there are f.s.'s $\left\{U_{m}(1)\right\}$ and $\left\{U_{m}(2)\right\}$ in F such that

$$
\lambda_{n}^{-1} r_{j}\left(\lambda_{n} h\right) \longrightarrow 0 \quad\left(\left\{U_{m}(j)\right\}\right) \quad(j=1,2)
$$

for any sequence $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>0, \lambda_{n} \rightarrow 0$. Then for any m, there is n such that $\lambda_{n}^{-1} r_{j}\left(\lambda_{n} h\right) \in U_{m}(j)(j=1,2)$. Let $\left\{W_{m}\right\}$ be a f.s. in F such that $U_{m}(1)+U_{m}(2)$ $\subset W_{m}$. Then

$$
\begin{aligned}
l_{1}(h)-l_{2}(h) & =\lambda_{n}^{-1}\left\{l_{1}\left(\lambda_{n} h\right)-l_{2}\left(\lambda_{n} h\right)\right\} \\
& =\lambda_{n}^{-1}\left\{r_{1}\left(\lambda_{n} h\right)-r_{2}\left(\lambda_{n} h\right)\right\} \in U_{m}(1)+U_{m}(2) \subset W_{m}
\end{aligned}
$$

This implies $l_{1}(h)=l_{2}(h)$ as desired, since F is T_{1}^{*}, i.e., $\cap_{m} W_{m}=\{0\}$.
Definition 2.2. Suppose F is T_{1}^{*} and a mapping $f: D \rightarrow F$ is R-differentiable at $x \in D$. Then the unique $l \in L(E, F)$ in Definition 2.1 is called the

R -derivative of f at x and is denoted by $f^{\prime}(x)$.
Hereafter, we shall always assume that F is T_{1}^{*}.
Remark 2.2 (cf. [6, V]). If E and F are normed linear spaces, then Rdifferentiability of $f: E \rightarrow F$ with E and F being regarded as linear ranked spaces coincides with Fréchet differentiability of f and $f^{\prime}(x)$ is the Fréchet derivative of f at x (see Theorem 2.3 below).

Lemma 2.3. Any R-continuous linear mapping $l \in L(E, F)$ is R -differentiable at every $a \in E$ and $l^{\prime}(a)(x)=l(x)$.

Proof. Since $l(a+x)-l(a)=l(x)$, we see immediately the lemma by definition.

Theorem 2.2. Let E be a linear ranked space, F and G be T_{1}^{*} linear ranked spaces. Let D_{1} and D_{2} be R-open subsets of E and F, respectively. Suppose $f: D_{1} \rightarrow F$ and $g: D_{2} \rightarrow G$ are R-differentiable at $a \in D_{1}$ and $f(a) \in D_{2}$, respectively, and $f\left(D_{1}\right) \subset D_{2}$. Then the composed mapping $g \circ f: D_{1} \rightarrow G$ is R-differentiable at $a \in D_{1}$ and

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \circ f^{\prime}(a)
$$

Proof. Consider the remainders

$$
\begin{aligned}
& r_{1}(x)=f(a+x)-f(a)-f^{\prime}(a)(x) \quad\left(x \in D_{1}-a\right), \\
& r_{2}(y)=g(f(a)+y)-g(f(a))-g^{\prime}(f(a))(y) \quad\left(y \in D_{2}-f(a)\right) .
\end{aligned}
$$

Then we see easily that

$$
\begin{align*}
r(x) & \equiv(g \circ f)(a+x)-(g \circ f)(a)-\left(g^{\prime}(f(a)) \circ f^{\prime}(a)\right)(x) \tag{2.3}\\
& =g^{\prime}(f(a))\left(r_{1}(x)\right)+r_{2}\left(f^{\prime}(a)(x)+r_{1}(x)\right) \quad\left(x \in D_{1}-a\right)
\end{align*}
$$

Let $\left\{V_{k}\right\}$ be a f.s. in E. Choose a f.s. $\left\{U_{m}\right\}$ in F such that

$$
\lambda_{n}^{-1} r_{1}\left(\lambda_{n} h_{n}\right) \longrightarrow 0\left(\left\{U_{m}\right\}\right)
$$

for any $\left\{V_{k}\right\}$-q.b.s. $\left\{h_{n}\right\}$ and any sequence $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>0, \lambda_{n} \rightarrow 0$. Since $f^{\prime}(a)$ is R -continuous at 0 , there is a f.s. $\left\{U_{m}^{\prime}\right\}$ in F such that $f^{\prime}(a)\left(V_{m}\right) \subset U_{m}^{\prime}$ for each m. Let $\left\{U_{m}^{\prime \prime}\right\}$ be a f.s. in F such that $U_{m}+U_{m}^{\prime} \subset U_{m}^{\prime \prime}$ for each m. By the Rdifferentiability of g, there is a f.s. $\left\{W_{l}\right\}$ in G such that

$$
\lambda_{n}^{-1} r_{2}\left(\lambda_{n} k_{n}\right) \longrightarrow 0\left(\left\{W_{l}\right\}\right)
$$

for any $\left\{U_{m}^{\prime \prime}\right\}$-q.b.s. $\left\{k_{n}\right\}$ and any sequence $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>0, \lambda_{n} \rightarrow 0$. Also, since $g^{\prime}(f(a)) \in L(F, G)$, there is a f.s. $\left\{W_{l}^{\prime}\right\}$ in G such that $g^{\prime}(f(a))\left(U_{l}\right) \subset W_{l}^{\prime}$ for each l. Choose a f.s. $\left\{W_{l}^{\prime \prime}\right\}$ in G such that $W_{l}+W_{l}^{\prime} \subset W_{l}^{\prime \prime}$ for each l.

Now, let $\left\{h_{n}\right\}$ be a $\left\{V_{k}\right\}$-q.b.s. in E and $\left\{\lambda_{n}\right\}$ be a sequence such that $\lambda_{n}>0$,
$\lambda_{n} \rightarrow 0$. Since $\lambda_{n}^{-1} r_{1}\left(\lambda_{n} h_{n}\right) \rightarrow 0\left(\left\{U_{m}\right\}\right)$, we see that

$$
\begin{equation*}
\lambda_{n}^{-1} g^{\prime}(f(a))\left(r_{1}\left(\lambda_{n} h_{n}\right)\right)=g^{\prime}(f(a))\left(\lambda_{n}^{-1} r_{1}\left(\lambda_{n} h_{n}\right)\right) \longrightarrow 0\left(\left\{W_{l}^{\prime}\right\}\right) . \tag{2.4}
\end{equation*}
$$

Next, we shall show that the sequence $\left\{k_{n}\right\}$ given by

$$
k_{n}=f^{\prime}(a)\left(h_{n}\right)+\lambda_{n}^{-1} r_{1}\left(\lambda_{n} h_{n}\right)
$$

is a $\left\{U_{m}^{\prime \prime}\right\}$-q.b.s. . For any sequence $\left\{\mu_{n}\right\}$ with $\mu_{n}>0$ and $\mu_{n} \rightarrow 0, \mu_{n} h_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$ by definition, so that

$$
\mu_{n} f^{\prime}(a)\left(h_{n}\right)=f^{\prime}(a)\left(\mu_{n} h_{n}\right) \longrightarrow 0\left(\left\{U_{m}^{\prime}\right\}\right) .
$$

On the other hand, $\mu_{n} \lambda_{n}^{-1} r_{1}\left(\lambda_{n} h_{n}\right) \rightarrow 0\left(\left\{U_{m}\right\}\right)$ by Lemma 1.3(d). Hence $\mu_{n} k_{n}$ $\rightarrow 0\left(\left\{U_{m}^{\prime \prime}\right\}\right)$ by Lemma 1.3(a). Thus $\left\{k_{n}\right\}$ is a $\left\{U_{m}^{\prime \prime}\right\}$-q.b.s. . Therefore,

$$
\begin{equation*}
\lambda_{n}^{-1} r_{2}\left(f^{\prime}(a)\left(\lambda_{n} h_{n}\right)+r_{1}\left(\lambda_{n} h_{n}\right)\right)=\lambda_{n}^{-1} r_{2}\left(\lambda_{n} k_{n}\right) \longrightarrow 0\left(\left\{W_{l}\right\}\right) \tag{2.5}
\end{equation*}
$$

By (2.3-5) and Lemma 1.3(a), we have

$$
\lambda_{n}^{-1} r\left(\lambda_{n} h_{n}\right) \longrightarrow 0\left(\left\{W_{l}^{\prime \prime}\right\}\right) .
$$

Hence we have proved the theorem.
In the case that E is a normed linear space, we have the following
Thborem 2.3. Let E be a normed linear space, D be an open subset of E and F be a T_{1}^{*} linear ranked space. Then $f: D \rightarrow F$ is R -differentiable at $x \in D$ with E being regarded as a linear ranked space, if and only if there exists $l \in L(E, F)$ such that for any sequence $\left\{h_{n}\right\}$ in E with $h_{n} \rightarrow 0, h_{n} \neq 0$,

$$
\begin{equation*}
\left\|h_{n}\right\|^{-1} r\left(h_{n}\right) \longrightarrow 0(\mathrm{R}) \quad(r(h)=f(x+h)-f(x)-l(h)) . \tag{2.6}
\end{equation*}
$$

Proof. The necessity follows immediately from Definition 2.1; note that $\left\{h_{n} /\left\|h_{n}\right\|\right\}$ is an R-q.b.s. .

Conversely, suppose (2.6) holds. If $\left\{h_{n}\right\}$ is an R-q.b.s. in E, then $\left\{h_{n}\right\}$ is bounded by Remark 1.2 (cf. Lemma $1.10\left(\mathrm{~b}^{\prime \prime}\right)$), and so $\lambda_{n} h_{n} \rightarrow 0$ for any $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>0, \lambda_{n} \rightarrow 0$. Thus $\left\|\lambda_{n} h_{n}\right\|^{-1} r\left(\lambda_{n} h_{n}\right) \rightarrow 0(\mathrm{R})$ by (2.6), which implies $\lambda_{n}^{-1} r\left(\lambda_{n} h_{n}\right)$ $\rightarrow 0(\mathrm{R})$ by Lemma 1.3 (d). Hence f is R -differentiable at x.

Corollary 2.4. If $E=\boldsymbol{R}$ in the above theorem, then (2.6) is the following:
For any sequence $\left\{\delta_{n}\right\}$ with $\delta_{n} \rightarrow 0, \delta_{n} \neq 0$,

$$
\delta_{n}^{-1}\left(f\left(x+\delta_{n}\right)-f(x)\right) \longrightarrow l(1)(\mathrm{R}) .
$$

In this case, we denote $l(1)=f^{\prime}(x)(1)$ by $f^{\prime}(x)$. Obviously $f^{\prime}(x)(\lambda)=\lambda f^{\prime}(x)$ for all $\lambda \in \boldsymbol{R}$.

§3. The mean value theorem

Theorem 3.1 (cf. [2, §5.1], [7, (1.3.1)]). Let E be a Ti* linear ranked space satisfying (A.2). Let $\alpha<\beta$ and let $f:[\alpha, \beta] \rightarrow E$ and $\varphi:[\alpha, \beta] \rightarrow \boldsymbol{R}$ satisfy the following conditions:
(a) fand φ are R -continuous on $[\alpha, \beta]$;
(b) f and φ are R -differentiable at each point $t \in(\alpha, \beta) \backslash D_{1}$, where D_{1} is at most countable;
(c) φ is monotone non-decreasing.

Furthermore, let $\left\{V_{k}\right\}$ be a convex f.s. in E and B be a subset of E satisfying
(d) $f([\alpha, \beta]) \subset f(\alpha)+\mathrm{E}\left(\left\{V_{k}\right\}\right), f^{\cdot}\left((\alpha, \beta) \backslash D_{1}\right) \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$;
(e) B is $\left\{V_{k}\right\}$-closed and convex, and $B \cap \mathrm{E}\left(\left\{V_{k}\right\}\right) \neq \phi$. If $f^{\cdot}(t) \in \varphi^{\cdot}(t) B$ for all $t \in(\alpha, \beta) \backslash D_{1}$, then

$$
f(\beta)-f(\alpha) \in(\varphi(\beta)-\varphi(\alpha)) B
$$

Proof. First remark that $\mathrm{E}\left(\left\{V_{k}\right\}\right)$ is a linear subspace, since each V_{k} is symmetric and convex. Thus, we may assume without loss of generality that $\alpha=0, \varphi(0)=0$ and $f(0)=0$. Furthermore, for $x_{0} \in B \cap E\left(\left\{V_{k}\right\}\right)$, consider $f_{1}(t)$ $=f(t)-\varphi(t) x_{0}$ and $B_{1}=B-x_{0}$. Then B_{1} is convex and $\left\{V_{k}\right\}$-closed by Lemma 1.6 (c), f_{1} satisfies (a), (b) and (d) and $0 \in B_{1} \cap \mathrm{E}\left(\left\{V_{k}\right\}\right)$. Therefore, we may assume that $0 \in B$. For simplicity, let $S^{a}=\bar{S}\left(\left\{V_{k}\right\}\right)$ for each $S(\subset E)$. Note that if S is convex, then so is S^{a} (Lemma $1.6(\mathrm{e})$). Also $\left(S^{a}\right)^{a}=S^{a}$ (Lemma 1.6(d)).

Now, to prove $f(\beta) \in \varphi(\beta) B$, it is enough to show

$$
\begin{array}{lllll}
f(\beta) \in \varphi(\beta)\left(V_{k}+B\right)^{a} & \text { for each } & k, & \text { if } \varphi(\beta) \neq 0 \\
f(\beta) \in\left(V_{k}\right)^{a} & \text { for each } & k, & \text { if } & \varphi(\beta)=0 \tag{3.1}
\end{array}
$$

For, in case $\varphi(\beta)=0$, (3.1), Lemma 1.7, Lemma 1.1 (a) and (T_{1}^{*}) for E imply that $f(\beta)=0 \in \varphi(\beta) B$. In case $\varphi(\beta) \neq 0$, if $f(\beta) \notin \varphi(\beta) B$, then there would exist k^{\prime} such that $\left(\varphi(\beta)^{-1} f(\beta)+V_{k^{\prime}}\right) \cap B=\phi$ by Lemma $1.6(\mathrm{a})$, since B is $\left\{V_{k}\right\}$-closed. Then there would exist k such that $\left(\varphi(\beta)^{-1} f(\beta)+V_{k}\right) \cap\left(B+V_{k}\right)=\phi$ by Lemma 1.1 (b), or $\varphi(\beta)^{-1} f(\beta) \notin\left(B+V_{k}\right)^{a}$ by Lemma 1.6 (a), which contradicts (3.1).

To prove (3.1), fix k and set $V=V_{k}$. Let $\varepsilon>0$ be arbitrary and fixed for a while. Let $D_{1}=\left\{\rho_{1}, \rho_{2}, \ldots\right\}$ and consider the function

$$
\chi(s)=\varphi(s)+\varepsilon s+\varepsilon \sum_{\rho_{n}<s^{2}} 2^{-n} \quad(0 \leqq s \leqq \beta) .
$$

Then $\chi(0)=0$ and $\chi(s)>0$ if $s>0$. Put

$$
A=\left\{t \in[0, \beta] \mid f(s) \in \chi(s)(V+B)^{a} \quad \text { for all } \quad s \in[0, t]\right\}
$$

Obviously, $0 \in A$ and $[0, t] \subset A$ if $t \in A$. We shall show that

$$
\begin{equation*}
\gamma=\sup A \in A \quad \text { and } \quad \gamma=\beta, \quad \text { i.e., } \quad A=[0, \beta] . \tag{3.2}
\end{equation*}
$$

If $\gamma>0$ and $t_{n} \uparrow \gamma$, then $\chi\left(t_{n}\right) \uparrow \chi(\gamma)>0$ by definition, and $f\left(t_{n}\right) \rightarrow f(\gamma)(\mathrm{R})$ since f is R -continuous at γ. Hence $x_{n}=\chi\left(t_{n}\right)^{-1} f\left(t_{n}\right)-\chi(\gamma)^{-1} f(\gamma) \rightarrow 0(\mathrm{R})$ by Lemma 1.3 (c). Since $\mathrm{E}\left(\left\{V_{k}\right\}\right)$ is a linear subspace, $\left\{x_{n}\right\} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$ by the first condition of (d). Thus

$$
x_{n} \longrightarrow 0\left(\left\{V_{k}\right\}\right), \quad \text { i.e., } \quad \chi\left(t_{n}\right)^{-1} f\left(t_{n}\right) \longrightarrow \chi(\gamma)^{-1} f(\gamma)\left(\left\{V_{k}\right\}\right)
$$

by (A.2). Hence $\chi(\gamma)^{-1} f(\gamma) \in\left((V+B)^{a}\right)^{a}=(V+B)^{a}$, and $\gamma \in A$. If $\gamma=0$, then $\gamma \in A$ is clear. Thus we see $\gamma=\sup A \in A$. Next we shall prove that $\gamma=\beta$.

Suppose $\gamma<\beta$ and $\gamma \notin D_{1}$. Set

$$
r_{1}(h)=f(\gamma+h)-f(\gamma)-h f^{\prime}(\gamma), \quad r_{2}(h)=\varphi(\gamma+h)-\varphi(\gamma)-h \varphi \cdot(\gamma) .
$$

If $h_{n} \rightarrow 0\left(0<h_{n}<\beta-\gamma\right)$, then $h_{n}^{-1} r_{1}\left(h_{n}\right) \rightarrow 0(\mathrm{R})$ by Theorem 2.3. Thus $h_{n}^{-1} r_{1}\left(h_{n}\right)$ $\rightarrow 0\left(\left\{V_{k}\right\}\right)$ by (A.2), since $\left\{r_{1}\left(h_{n}\right)\right\} \subset \mathrm{E}\left(\left\{V_{k}\right\}\right)$ by (d). Obviously, $h_{n}^{-1} r_{2}\left(h_{n}\right) \rightarrow 0$. Hence, we can find $h>0(h<\beta-\gamma)$ such that

$$
h^{-1} r_{1}(h) \in \varepsilon V / 2 \quad \text { and } \quad\left|h^{-1} r_{2}(h)\right|<\varepsilon / 2 .
$$

Since $\gamma \in A$, i.e., $f(\gamma) \in \chi(\gamma)(V+B)^{a}$ and $(V+B)^{a}$ is convex by (e), by using the assumption $f^{\cdot}(\gamma) \in \varphi^{\cdot}(\gamma) B$, we have

$$
\begin{aligned}
f(\gamma+h) & =f(\gamma)+h f^{\cdot}(\gamma)+r_{1}(h) \\
& \in \chi(\gamma)(V+B)^{a}+h \varphi \cdot(\gamma) B+\varepsilon h V / 2 \\
& \subset(\chi(\gamma)+h \varphi \cdot(\gamma)+\varepsilon h / 2)(V+B)^{a} .
\end{aligned}
$$

By the definition of χ and (c),

$$
\begin{aligned}
0 & <\chi(\gamma)+h \varphi \cdot(\gamma)+\varepsilon h / 2=\varphi(\gamma)+\varepsilon \gamma+\varepsilon \sum_{\rho_{n}<\gamma^{2}} 2^{-n}+h \varphi \cdot(\gamma)+\varepsilon h / 2 \\
& =\varphi(\gamma+h)+\varepsilon(\gamma+h)+\varepsilon \sum_{\rho_{n}<\gamma^{2}} 2^{-n}-r_{2}(h)-\varepsilon h / 2 \leqq \chi(\gamma+h) .
\end{aligned}
$$

Hence $f(\gamma+h) \in \chi(\gamma+h)(V+B)^{a}$, i.e., $\gamma+h \in A$, which contradicts $\gamma=\sup A$.
Suppose $\gamma<\beta$ and $\gamma=\rho_{m} \in D_{1}$. By the R-continuity of f at γ, the condition (d) and (A. 2), we can choose $\delta>0(\delta<\min (\beta-\gamma, \gamma))$ such that

$$
f(\xi)-f(\gamma) \in \varepsilon V / 2^{m} \quad \text { for } \quad|\xi-\gamma|<\delta
$$

Let $\gamma<\xi<\gamma+\delta$. Since $0<\chi(\gamma)+\varepsilon / 2^{m}<\chi(\xi)$ and $f(\gamma) \in \chi(\gamma)(V+B)^{a}$, we have

$$
f(\xi)=(f(\xi)-f(\gamma))+f(\gamma) \in \varepsilon V / 2^{m}+\chi(\gamma)(V+B)^{a} \subset \chi(\xi)(V+B)^{a},
$$

so that $\xi \in A$, which contradicts $\gamma=\sup A$ again. Thus we have shown (3.2).
Now, we prove (3.1). If $\varphi(\beta)=0$, then $\varphi(t) \equiv 0$ by (c), so that $\varphi^{\circ}(t)=0$ for all $t \in(0, \beta)$. Hence $f^{\cdot}(t)=0$ for $t \in(0, \beta) \backslash D_{1}$ by the assumption $f^{\cdot}(t) \in \varphi^{\cdot}(t) B$, so that the above arguments are valid with $B=\{0\}$. Hence by (3.2),

$$
f(\beta) \in \chi(\beta) V^{a} \subset \varepsilon(\beta+1) V^{a} .
$$

Choosing $\varepsilon>0$ such that $\varepsilon(\beta+1) \leqq 1$, we obtain (3.1).
If $\varphi(\beta)>0$, then $0<\chi(\beta) \leqq \varphi(\beta)+\varepsilon(\beta+1)$, so that

$$
f(\beta) \in(\varphi(\beta)+\varepsilon(\beta+1))(V+B)^{a} .
$$

Let $\varepsilon_{n}>0$ and $\varepsilon_{n} \downarrow 0$. Then, since $f(\beta) \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$, we see that

$$
\left(1+\varepsilon_{n}(\beta+1) \varphi(\beta)^{-1}\right)^{-1} \varphi(\beta)^{-1} f(\beta) \longrightarrow \varphi(\beta)^{-1} f(\beta)\left(\left\{V_{k}\right\}\right)
$$

by Lemma 1.3 (c) and (A.2). Thus $\varphi(\beta)^{-1} f(\beta) \in\left((V+B)^{a}\right)^{a}=(V+B)^{a}$, and we obtain (3.1). Therefore, Theorem 3.1 is proved completely.

§4. Gâteaux differentiation

Definition 4.1. Let D be an R-open subset of a linear ranked space E, and $f: D \rightarrow F$ be a mapping into a T_{1}^{*} linear ranked space F. Then we say that f is Gâteaux R -differentiable at $x \in D$ if there exists $l \in L(E, F)$ such that

$$
r: D-x \longrightarrow F, r(h)=f(x+h)-f(x)-l(h) \quad(h \in D-x),
$$

satisfies the following condition:
(4.1) For each $h \neq 0$, there is a f.s. $\left\{U_{m}\right\}$ in F such that

$$
\lambda_{n}^{-1} r\left(\lambda_{n} h\right) \longrightarrow 0\left(\left\{U_{m}\right\}\right)
$$

for each sequence $\left\{\lambda_{n}\right\}$ of positive numbers with $\lambda_{n} \rightarrow 0$.
As in the case of the R-differentiation, if f is Gâteaux R-differentiable, then $l \in L(E, F)$ in the above definition is uniquely determined, and is denoted by $f_{g}^{\prime}(x)$.

If E and F are normed linear spaces, then G âteaux R -differentiability coincides with ordinary Gâteaux differentiability.

Obviously, R-differentiability implies Gâteaux R-differentiability and $f^{\prime}(x)$ $=f_{g}^{\prime}(x)$. In order to state a condition under which the inverse is valid, we introduce

Definition 4.2. Let E, F and G be linear ranked spaces and $D \subset E$. A mapping $T: D \rightarrow L(F, G)$ is said to be R-hypo-continuous at $a \in D$, if for any f.s.'s $\left\{V_{k}\right\}$ in E and $\left\{U_{m}\right\}$ in F, there is a f.s. $\left\{W_{l}\right\}$ in G satisfying the following condition:
(4.2) For any $\left\{U_{m}\right\}$-q.b.s. $\left\{y_{j}\right\}$ and any l, there is k_{0} such that
$x \in(D-a) \cap V_{k_{0}}$ implies $T(a+x)\left(y_{j}\right)-T(a)\left(y_{j}\right) \in W_{l}$ for each j.
Definition 4.3. We say that a linear ranked space F is convex, if each preneighborhood of 0 in F is convex.

Theorem 4.1 (cf. [7, (1.4.4)]). Let E be a linear ranked space satisfying (A.1) and F be a convex T_{1}^{*} linear ranked space satisfying (A.1-2). Let D be an R-open subset of E, and a mapping $f: D \rightarrow F$ be Gâteaux R-differentiable at every point of D. Suppose that for any f.s. $\left\{V_{k}\right\}$ in E, there are k_{0} and a f.s. $\left\{W_{m}\right\}$ in F such that $f\left(D \cap\left(a+V_{k_{0}}\right)\right) \subset \mathrm{E}\left(\left\{W_{m}\right\}\right)$ and that $f_{g}^{\prime}: D \rightarrow L(E, F)$ is R-hypo-continuous at $a \in D$. Then $f: D \rightarrow F$ is R -differentiable at $a \in D$.

Proof. Let a f.s. $\left\{V_{k}\right\}$ in E be given. By assumption, there are k_{0} and a f.s. $\left\{W_{m}\right\}$ in F such that $a+V_{k_{0}} \subset D, f\left(a+V_{k_{0}}\right) \subset \mathrm{E}\left(\left\{W_{m}\right\}\right)$. Also, by the R-hypocontinuity of f_{g}^{\prime} at a, there is a f.s. $\left\{W_{m}^{\prime}\right\}$ in F having the following property:
(4.3) For any $\left\{V_{k}\right\}$-q.b.s. $\left\{h_{j}\right\}$ and any m, there is k_{m} such that

$$
x \in(D-a) \cap V_{k_{m}} \text { implies } \quad\left[f_{g}^{\prime}(a+x)-f_{\theta}^{\prime}(a)\right]\left(\left\{h_{j}\right\}\right) \subset W_{m}^{\prime}
$$

Since $f_{g}^{\prime}(a)$ is R-continuous at 0 , there is a f.s. $\left\{W_{m}^{\prime \prime}\right\}$ in F such that $f_{g}^{\prime}(a)\left(V_{k}\right) \subset W_{k}^{\prime \prime}$ for each k. Choose a f.s. $\left\{U_{m}\right\}$ in F such that $W_{m}+W_{m}^{\prime}+W_{m}^{\prime \prime} \subset U_{m}$ for each m by (E. 2).

Now, let $\left\{h_{j}\right\}$ be a $\left\{V_{k}\right\}$-q.b.s. and $\left\{\lambda_{j}\right\}$ be a sequence such that $\lambda_{j}>0, \lambda_{j} \rightarrow 0$. Since $\lambda_{j} h_{j} \rightarrow 0\left(\left\{V_{k}\right\}\right)$, there is j_{0} such that

$$
0 \leqq \lambda \leqq \lambda_{j} \quad \text { implies } \quad \lambda h_{j} \in V_{k_{0}} \quad \text { and } \quad h_{j} \in \mathrm{E}\left(\left\{V_{k}\right\}\right) \quad \text { for } \quad j \geqq j_{0},
$$

by (A. 1) for E. For $j \geqq j_{0}$, put

$$
g_{j}(\lambda)=f\left(a+\lambda h_{j}\right)-f(a)-\lambda f_{g}^{\prime}(a)\left(h_{j}\right) \quad\left(0 \leqq \lambda \leqq \lambda_{j}\right) .
$$

Then $f\left(a+\lambda h_{j}\right)-f(a) \in \mathrm{E}\left(\left\{W_{m}\right\}\right)$. Also, $f_{g}^{\prime}(a)\left(h_{j}\right) \in \mathrm{E}\left(\left\{W_{m}^{\prime \prime}\right\}\right)$, since $f_{g}^{\prime}(a)\left(V_{k}\right)$ $\subset W_{k}^{\prime \prime}$ and $h_{j} \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$. Thus

$$
g_{j}\left(\left[0, \lambda_{j}\right]\right) \subset \mathrm{E}\left(\left\{U_{m}\right\}\right)
$$

On the other hand, if $0 \leqq \lambda \leqq \lambda_{j}$ and $0 \leqq \lambda+\varepsilon \leqq \lambda_{j}$, then

$$
g_{j}(\lambda+\varepsilon)-g_{j}(\lambda)=\varepsilon\left[f_{g}^{\prime}\left(a+\lambda h_{j}\right)-f_{g}^{\prime}(a)\right]\left(h_{j}\right)+r\left(\varepsilon h_{j}\right),
$$

where $r(h)=f\left(a+\lambda h_{j}+h\right)-f\left(a+\lambda h_{j}\right)-f_{g}^{\prime}\left(a+\lambda h_{j}\right)(h)$. By Definition 4.1, there is a f.s. $\left\{U_{m}^{\prime}\right\}$ in F such that if $\varepsilon_{n} \rightarrow 0\left(\varepsilon_{n}>0\right)$, then

$$
\varepsilon_{n}^{-1} r\left(\varepsilon_{n} h_{j}\right) \longrightarrow 0\left(\left\{U_{m}^{\prime}\right\}\right) \quad(n \longrightarrow \infty) .
$$

Thus, we see by Corollary 2.4 that $g_{j}:\left[0, \lambda_{j}\right] \rightarrow F$ is R-continuous on $\left[0, \lambda_{j}\right]$, R-differentiable at $\lambda \in\left(0, \lambda_{j}\right)$ and

$$
\begin{equation*}
g_{j}^{\prime}(\lambda)=\left[f_{g}^{\prime}\left(a+\lambda h_{j}\right)-f_{g}^{\prime}(a)\right]\left(h_{j}\right) . \tag{4.4}
\end{equation*}
$$

By (A.1) for F, there is m_{0} such that $m \geqq m_{0}$ implies $U_{m} \subset \mathrm{E}\left(\left\{U_{m}\right\}\right)$. Given $m \geqq m_{0}$, since $\lambda_{j} h_{j} \rightarrow 0\left(\left\{V_{k}\right\}\right)$, there is $j_{m} \geqq j_{0}$ such that $j \geqq j_{m}$ implies $\lambda_{j} h_{j} \in V_{k_{m}}$, so that $\lambda h_{j} \in V_{k_{m}}$ for $0 \leqq \lambda \leqq \lambda_{j}$, where k_{m} is the one in (4.3). Then by (4.4) and (4.3),

$$
g_{j}^{\dot{j}}(\lambda) \in W_{m}^{\prime} \subset U_{m} \subset \mathrm{E}\left(\left\{U_{m}\right\}\right) \quad \text { for } \quad 0 \leqq \lambda \leqq \lambda_{j}, j \geqq j_{m} .
$$

Apply Theorem 3.1 with $\varphi(\lambda)=\lambda\left(0 \leqq \lambda \leqq \lambda_{j}\right)$ and $B=\bar{U}_{m}\left(\left\{U_{m}\right\}\right)$. Then we obtain

$$
\begin{gathered}
g_{j}\left(\lambda_{j}\right)-g_{j}(0) \in \lambda_{j} \bar{U}_{m}\left(\left\{U_{m}\right\}\right) \quad\left(j \geqq j_{m}\right) \\
\lambda_{j}^{-1}\left\{f\left(a+\lambda_{j} h_{j}\right)-f(a)-f_{g}^{\prime}(a)\left(\lambda_{j} h_{j}\right)\right\} \in \bar{U}_{m}\left(\left\{U_{m}\right\}\right) \quad\left(j \geqq j_{m}\right) .
\end{gathered}
$$

or
In view of Lemma 1.7 and Lemma 1.1 (a), this means that f is R-differentiable at a.

§5. Invertible mappings

Definition 5.1. Let E be a linear ranked space and $D \subset E . f: D \rightarrow E$ is called an R-contraction if for any f.s. $\left\{V_{k}\right\}$, there is a sequence $\left\{L_{k}\right\}$ of positive numbers such that $0<L_{k}<1$ and

$$
a-b \in V_{k} \text { implies } f(a)-f(b) \in L_{k} V_{k} \quad \text { for each } k .
$$

Theorem 5.1 (cf. [7, (3.3.4)]). Let E be convex R-complete T_{1}^{*} linear ranked space. If $u \in L(E, E)$ is an R-contraction, then $I-u$ (I is the identity mapping) has the inverse $(I-u)^{-1}: E \rightarrow E$,

$$
(I-u)^{-1}(x)=\sum_{n=0}^{\infty} u^{n}(x)(\mathrm{R}) \quad \text { for every } \quad x \in E,
$$

where $u^{0}=I, u^{n}=u_{0} \cdots \circ u$ (n-times, $n \geqq 1$), and $y=\sum_{n=0}^{\infty} u^{n}(x)(\mathrm{R})$ means $\sum_{n=0}^{l} u^{n}(x) \rightarrow y(\mathrm{R})(l \rightarrow \infty)$. If E satisfies (A.1) in addition, then $(I-u)^{-1} \in$ $L(E, E)$.

Proof. Let $x \in E$, and choose a f.s. $\left\{V_{k}\right\}$ such that $x \in E\left(\left\{V_{k}\right\}\right)$. Then there is $\left\{\beta_{k}\right\}$ such that $\beta_{k}>0, x \in \beta_{k} V_{k}$ for each k. Since u is an R-contraction, there is a sequence $\left\{L_{k}\right\}$ such that $0<L_{k}<1$ and $u\left(V_{k}\right) \subset L_{k} V_{k}$ for each k. Then $u^{n}(x)$ $\in \beta_{k} L_{k}^{n} V_{k}$ for each n. Put $s_{l}(x)=\sum_{n=0}^{l} u^{n}(x)$. Choose $l(1)<l(2)<\cdots$ such that $\beta_{k} \sum_{n=l(k)+1}^{\infty} L_{k}^{n} \leqq 1$. Then, since V_{k} is convex, $s_{l}(x)-s_{l}(x) \in V_{k}$ for $l^{\prime}>l \geqq l(k)$. Hence $\left\{s_{l}(x)\right\}$ is a Cauchy sequence by $\left\{V_{k}\right\}$. Since E is R-complete, there is $f(x)$ $\in E$ such that $s_{l}(x) \rightarrow f(x)\left(\left\{V_{k}\right\}\right)$.

Then $u\left(s_{l}(x)\right) \rightarrow u(f(x))(R)$ since u is R-continuous. Also $u^{n}(x) \rightarrow 0(R)$ since $u^{n}(x) \in \beta_{k} L_{k}^{n} V_{k}$. Thus, in view of Proposition 1.1, the equalities

$$
(I-u) s_{l}(x)=s_{l}(x-u(x))=x-u^{l+1}(x)
$$

imply $(I-u) f(x)=f(x-u(x))=x$, so that

$$
\sum_{n=0}^{\infty} u^{n}(x)=f(x)=(I-u)^{-1}(x) \quad(x \in E)
$$

It is easy to see that f is linear. To show that f is R-continuous, let $\left\{U_{k}\right\}$ be any f.s. in E. Since u is an R-contraction, there is a sequence $\left\{\lambda_{k}\right\}$ such that $0<\lambda_{k}<1$ and $u\left(U_{k}\right) \subset \lambda_{k} U_{k}$ for each k. By Lemma 1.1 (a) and (A.1), choose $1 \leqq j(1)<j(2)<\cdots$ such that

$$
U_{j(k)} \subset 2^{-1}\left(1-\lambda_{k}\right) U_{k} \quad \text { and } \quad U_{j(k)} \subset \mathrm{E}\left(\left\{U_{k}\right\}\right) \quad \text { for each } k
$$

Let $x \in U_{j(k)}$. Then by the above proof, $s_{l}(x) \rightarrow f(x)\left(\left\{U_{k}\right\}\right)$ since $x \in \mathrm{E}\left(\left\{U_{k}\right\}\right)$, and also $s_{l}(x)=\sum_{n=0}^{l} u^{n}(x) \in 2^{-1}\left(1-\lambda_{k}\right) \sum_{n=0}^{l} \lambda_{k}^{n} U_{k} \subset 2^{-1} U_{k}$. Thus, by Lemma 1.7, $f(x) \in 2^{-1} \bar{U}_{k}\left(\left\{U_{k}\right\}\right) \subset U_{k}$. Hence

$$
f\left(U_{j(k)}\right) \subset U_{k} \quad \text { for each } \quad k .
$$

If we choose a f.s. $\left\{W_{k}\right\}$ in E so that $W_{n}=E$ if $1 \leqq n<j(1)$ and $W_{n}=U_{k}$ if $j(k) \leqq n$ $<j(k+1)$, then $f\left(U_{k}\right) \subset W_{k}$ for each k. Hence $f=(I-u)^{-1}$ is R-continuous.

Definition 5.2. Let E and F be linear ranked spaces and D be an R-open subset of E. Then $f: D \rightarrow F$ is called an $\mathrm{R}-q . b$. preserving mapping at $a \in D$, if for any f.s. $\left\{V_{k}\right\}$ in E there exists a f.s. $\left\{U_{m}\right\}$ in F satisfying the following condition:
(5.1) If $\left\{h_{n}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s. and $\left\{\lambda_{n}\right\}$ is a sequence such that $\lambda_{n} \rightarrow 0, \lambda_{n}>0$ and $a+\lambda_{n} h_{n} \in D$, then $\left\{\lambda_{n}^{-1}\left(f\left(a+\lambda_{n} h_{n}\right)-f(a)\right)\right\}_{n}$ is a $\left\{U_{m}\right\}$-q.b.s. .

We see easily that if $f: D \rightarrow F$ is R -differentiable at $a \in D$, then it is R-q.b. preserving at $a \in D$.

Definition 5.3. Two linear ranked spaces E and F are said to be Risomorphic if there exists a bijective linear mapping $T: E \rightarrow F$ such that for any f.s. $\left\{V_{k}\right\}$ in $E,\left\{T\left(V_{k}\right)\right\}$ is a f.s. in F, and for any f.s. $\left\{U_{l}\right\}$ in $F,\left\{T^{-1}\left(U_{l}\right)\right\}$ is a f.s. in E. In this case, T is called an R-isomorphism of E onto F.

In the rest of this section, let E and F be two R-isomorphic T_{1}^{*} linear ranked spaces, D be an R-open subset of E, and

$$
\begin{equation*}
f: D \longrightarrow F \tag{5.2}
\end{equation*}
$$

be a mapping such that $f(D)$ is R-open in F. We shall study a (local) inverse of f
under suitable assumptions.
Theorem 5.2 (cf. [7, (3.2.4)]). Suppose that f of (5.2) is R-differentiable at $a \in D$ and $f^{\prime}(a)$ is an R -isomorphism of E onto F. If in addition f is injective and $f^{-1}: f(D) \rightarrow E$ is $\mathrm{R}-q . b$. preserving at $f(a)$, then f^{-1} is R-differentiable at $f(a)$ and

$$
\left(f^{-1}\right)^{\prime}(f(a))=f^{\prime}(a)^{-1}
$$

Proof. Let $b=f(a)$, and put

$$
\begin{aligned}
r(h) & =f(a+h)-f(a)-f^{\prime}(a)(h) \quad(h \in D-a), \\
R(k) & =f^{-1}(b+k)-f^{-1}(b)-f^{\prime}(a)^{-1}(k) \quad(k \in f(D)-b) .
\end{aligned}
$$

Given a f.s. $\left\{U_{m}\right\}$ in F, since f^{-1} is R-q.b. preserving at b, there is a f.s. $\left\{V_{k}\right\}$ in E such that if $\left\{k_{n}\right\}$ is a $\left\{U_{m}\right\}$-q.b.s. and $\lambda_{n}>0, \lambda_{n} \rightarrow 0$, then $\left\{h_{n}\right\}$ given by

$$
h_{n}=\lambda_{n}^{-1}\left(f^{-1}\left(b+\lambda_{n} k_{n}\right)-f^{-1}(b)\right)
$$

is a $\left\{V_{k}\right\}$-q.b.s. . Note that the above equality implies $a+\lambda_{n} h_{n}=f^{-1}\left(b+\lambda_{n} k_{n}\right)$, or

$$
k_{n}=\lambda_{n}^{-1}\left(f\left(a+\lambda_{n} h_{n}\right)-f(a)\right)=f^{\prime}(a)\left(h_{n}\right)+\lambda_{n}^{-1} r\left(\lambda_{n} h_{n}\right) .
$$

Since f is R-differentiable at a, there is a f.s. $\left\{U_{m}^{\prime}\right\}$ such that

$$
k_{n}-f^{\prime}(a)\left(h_{n}\right)=\lambda_{n}^{-1} r\left(\lambda_{n} h_{n}\right) \longrightarrow 0\left(\left\{U_{m}^{\prime}\right\}\right) .
$$

Let $V_{k}^{\prime}=f^{\prime}(a)^{-1}\left(U_{k}^{\prime}\right)$. Since $f^{\prime}(a)^{-1}$ is an R-isomorphism, $\left\{V_{k}^{\prime}\right\}$ is a f.s. in E and

$$
f^{\prime}(a)^{-1}\left(k_{n}\right)-h_{n} \longrightarrow 0\left(\left\{V_{k}^{\prime}\right\}\right) .
$$

Now, $f^{\prime}(a)^{-1}\left(k_{n}\right)-h_{n}=-\lambda_{n}^{-1} R\left(\lambda_{n} k_{n}\right)$. Hence $\lambda_{n}^{-1} R\left(\lambda_{n} k_{n}\right) \rightarrow O\left(\left\{V_{k}^{\prime}\right\}\right)$. Thus f^{-1} is R-differentiable at b and $\left(f^{-1}\right)^{\prime}(b)=f^{\prime}(a)^{-1}$.

Theorem 5.3 (cf. [7, (3.4.4)]). Let E and F be convex and satisfy (A. 1-2). Suppose that $f: D \rightarrow F$ of (5.2) is R-differentiable at every point of D and injective. Let $a \in D$ and suppose in addition that f^{-1} is R -continuous at $f(a), f^{\prime}(a)$ is an R -isomorphism of E onto F and $g=f^{\prime}(a)^{-1} \circ f: D \rightarrow E$ satisfies the following condition (5.3):
(5.3) For any f.s.'s $\left\{V_{k}\right\}$, $\left\{U_{k}\right\}$ in E, there exist k_{0}, af.s. $\left\{W_{k}\right\}$ in E and a sequence $\left\{L_{n}\right\}$ such that $a+V_{k_{0}} \subset D, U_{k} \subset W_{k}$ for each $k, 0<L_{n}<1$ and

$$
\left[g^{\prime}(a+x)-I\right]\left(W_{n}\right) \subset L_{n} W_{n} \quad \text { for all } \quad x \in V_{k_{0}}, \quad n=1,2, \ldots
$$

Then $f^{-1}: f(D) \rightarrow E$ is R-differentiable at $f(a)$.

Remark 5.1. In case E and F are normed linear spaces, if $f: D \rightarrow F$ is R differentiable at every point of D and $f^{\prime}: D \rightarrow L(E, F)$ is continuous at $a \in D$, then g satisfies (5.3).

Proof of Theorem 5.3. By Lemma 2.3 and Theorem 2.2, $g: D \rightarrow E$ is R-differentiable at every $x \in D$ and

$$
g^{\prime}(x)=f^{\prime}(a)^{-1} \circ f^{\prime}(x)
$$

in particular $g^{\prime}(a)=I \in L(E, E) . \quad g$ is obviously injective and $g(D)=f^{\prime}(a)^{-1}(f(D))$ is R -open since $f^{\prime}(a)$ is an R -isomorphism. We shall show that g^{-1} is R -q.b. preserving at $b=g(a)$. Then, by the above theorem, we conclude that g^{-1} is R-differentiable at b, and again by Lemma 2.3 and Theorem 2.2, $f^{-1}=g^{-1}$ 。 $f^{\prime}(a)^{-1}$ is R-differentiable at $f^{\prime}(a)(b)=f(a)$.

Let $\left\{V_{k}\right\}$ be any f.s. in E. Since f^{-1} is R-continuous at $f(a)$ and $f^{\prime}(a)$ is an R-isomorphism, $g^{-1}=f^{-1} \circ f^{\prime}(a)$ is R -continuous at b. Hence there is a f.s. $\left\{V_{k}^{\prime}\right\}$ in E such that

$$
\begin{equation*}
g^{-1}\left(\left(b+V_{k}\right) \cap g(D)\right) \subset a+V_{k}^{\prime} \quad \text { for each } \quad k \tag{5.4}
\end{equation*}
$$

Also, since f, and hence g, is R-continuous at a, there is another f.s. $\left\{V_{k}^{\prime \prime}\right\}$ in E such that

$$
\begin{equation*}
g\left(\left(a+V_{k}^{\prime}\right) \cap D\right) \subset g(a)+V_{k}^{\prime \prime} \quad \text { for each } \quad k \tag{5.5}
\end{equation*}
$$

By condition (5.3) and (E.2), there exist k_{0}, a f.s. $\left\{W_{k}\right\}$ in E and a sequence $\left\{L_{n}\right\}$ such that $a+V_{k_{0}}^{\prime} \subset D, V_{k}+V_{k}^{\prime}+V_{k}^{\prime \prime} \subset W_{k}$ for each $k, 0<L_{n}<1$ and

$$
\begin{equation*}
\left[g^{\prime}(a+x)-g^{\prime}(a)\right]\left(W_{n}\right) \subset L_{n} W_{n} \quad \text { for all } \quad x \in V_{k 0}^{\prime}, n=1,2, \ldots \tag{5.6}
\end{equation*}
$$

Let $\left\{h_{n}\right\}$ be a $\left\{V_{k}\right\}$-q.b.s. and $\left\{\lambda_{n}\right\}$ be a sequence such that $\lambda_{n}>0, \lambda_{n} \rightarrow 0$ and $\lambda_{n} h_{n}$ $\in g(D)-b$, and put

$$
y_{n}=\lambda_{n}^{-1}\left\{g^{-1}\left(b+\lambda_{n} h_{n}\right)-g^{-1}(b)\right\}, \quad n=1,2, \ldots
$$

If we show that $\left\{y_{n}\right\}$ is a $\left\{W_{k}\right\}$-q.b.s., then we can conclude that g^{-1} is R-q.b. preserving at b.

The above equality implies

$$
\begin{equation*}
\lambda_{n} h_{n}=g\left(a+\lambda_{n} y_{n}\right)-g(a), \quad n=1,2, \ldots \tag{5.7}
\end{equation*}
$$

Since $\lambda_{n} h_{n} \rightarrow 0\left(\left\{V_{k}\right\}\right)$, for each k there is $n(k)$ such that $n \geqq n(k)$ implies $\lambda_{n} h_{n} \in V_{k}$. Thus, by (5.4), if $n \geqq n(k)$, then $g^{-1}\left(b+\lambda_{n} h_{n}\right) \in a+V_{k}^{\prime}$, i.e., $\lambda_{n} y_{n} \in V_{k}^{\prime}$. Therefore, if $n \geqq n\left(k_{0}\right)$ and $t \in\left[0, \lambda_{n}\right]$, then $a+t y_{n} \in a+V_{k_{0}}^{\prime} \subset D$. Put

$$
F_{n}(t)=t y_{n}-g\left(a+t y_{n}\right)+g(a), \quad t \in\left[0, \lambda_{n}\right], \quad n \geqq n\left(k_{0}\right) .
$$

Each F_{n} is R-continuous on $\left[0, \lambda_{n}\right]$, R-differentiable at each $t \in\left(0, \lambda_{n}\right)$ and

$$
\begin{equation*}
F_{n}^{*}(t)=y_{n}-g^{\prime}\left(a+t y_{n}\right)\left(y_{n}\right)=\left[g^{\prime}(a)-g^{\prime}\left(a+t y_{n}\right)\right]\left(y_{n}\right) . \tag{5.8}
\end{equation*}
$$

By (A. 1), there is $k_{1} \geqq k_{0}$ such that $W_{k_{1}} \subset \mathrm{E}\left(\left\{W_{k}\right\}\right)$. If $n \geqq n\left(k_{1}\right)$, then $a+t y_{n} \in$ $\left(a+V_{k_{1}}^{\prime}\right) \cap D$, so that $g\left(a+t y_{n}\right)-g(a) \in V_{k_{1}}^{\prime \prime}$ by (5.5). Hence $F_{n}(t) \in V_{k_{1}}^{\prime}+V_{k_{1}}^{\prime \prime}$ $\subset W_{k_{1}} \subset \mathrm{E}\left(\left\{W_{k}\right\}\right)$ for $t \in\left[0, \lambda_{n}\right], n \geqq n\left(k_{1}\right)$.

Next, let $\varphi_{k}(y)=\inf \left\{\lambda>0 \mid \lambda^{-1} y \in W_{k}\right\}$ be the Minkowski functional for W_{k}. Since $y_{n} \in \mathrm{E}\left(\left\{W_{k}\right\}\right)$ for $n \geqq n\left(k_{1}\right), \varphi_{k}\left(y_{n}\right)$ is finite for each k and $n \geqq n\left(k_{1}\right)$. Thus $y_{n} \in\left(\varphi_{k}\left(y_{n}\right)+\varepsilon\right) W_{k}$ for any $\varepsilon>0, n \geqq n\left(k_{1}\right)$. Hence, by (5.6) and (5.8), we see that

$$
F_{n}^{*}(t) \in L_{k}\left(\varphi_{k}\left(y_{n}\right)+\varepsilon\right) W_{k}, \quad 0<t<\lambda_{n}, \quad n \geqq n\left(k_{1}\right), \quad k=1,2, \ldots
$$

for any $\varepsilon>0$. In particular, $F_{n}^{*}(t) \in \mathrm{E}\left(\left\{W_{k}\right\}\right)$ for $0<t<\lambda_{n}, n \geqq n\left(k_{1}\right)$. Hence we can apply Theorem 3.1 and obtain

$$
F_{n}\left(\lambda_{n}\right)-F_{n}(0) \in \lambda_{n} L_{k}\left(\varphi_{k}\left(y_{n}\right)+\varepsilon\right) \bar{W}_{k}\left(\left\{W_{k}\right\}\right), \quad n \geqq n\left(k_{1}\right), \quad k=1,2, \ldots,
$$

for any $\varepsilon>0$. Since $F_{n}\left(\lambda_{n}\right)-F_{n}(0)=\lambda_{n} y_{n}-g\left(a+\lambda_{n} y_{n}\right)+g(a)=\lambda_{n}\left(y_{n}-h_{n}\right)$ by (5.7), this shows

$$
\begin{equation*}
y_{n}-h_{n} \in\left(L_{k} \varphi_{k}\left(y_{n}\right)+\varepsilon\right) W_{k}, \quad n \geqq n\left(k_{1}\right), \quad k=1,2, \ldots, \tag{5.9}
\end{equation*}
$$

for any $\varepsilon>0$, by Lemma 1.7.
If $\mu_{n}>0$ and $\mu_{n} \rightarrow 0$, then $\mu_{n} h_{n} \rightarrow 0\left(\left\{W_{k}\right\}\right)$ since $\left\{h_{n}\right\}$ is a $\left\{V_{k}\right\}$-q.b.s. and $V_{k} \subset W_{k}$ $(k=1,2, \ldots)$. Hence for each k there is $m(k)$ such that $n \geqq m(k)$ implies $\mu_{n} h_{n}$ $\in 2^{-1}\left(1-L_{k}\right) W_{k}$ by Lemma 1.1 (a). Thus if $n \geqq \max \left(m(k), n\left(k_{1}\right)\right)$, then by (5.9)

$$
\begin{aligned}
\mu_{n} y_{n} & \in \mu_{n} h_{n}+\left(\mu_{n} L_{k} \varphi_{k}\left(y_{n}\right)+\mu_{n} \varepsilon\right) W_{k} \\
& \subset\left[2^{-1}\left(1-L_{k}\right)+L_{k} \varphi_{k}\left(\mu_{n} y_{n}\right)+\mu_{n} \varepsilon\right] W_{k}
\end{aligned}
$$

which implies

$$
\varphi_{k}\left(\mu_{n} y_{n}\right) \leqq 2^{-1}+\varepsilon \mu_{n}\left(1-L_{k}\right)^{-1}
$$

for any $\varepsilon>0$. Hence it follows that

$$
\mu_{n} y_{n} \in W_{k} \quad \text { for } \quad n \geqq \max \left(m(k), n\left(k_{1}\right)\right),
$$

which means that $\left\{y_{n}\right\}$ is a $\left\{W_{k}\right\}$-q.b.s. .
Definition 5.4. Let E and F be linear ranked spaces, F be T_{1}^{*} and D be an R-open subset of $E . \quad f: D \rightarrow F$ is called a C^{1}-mapping at $a \in D$, if f is R-differentiable at every point of D and further $f^{\prime}: D \rightarrow L(E, F)$ is R-hypo-continuous at a.

Theorem 5.4 (cf. [7, (3.4.4)]). Let E and F be convex, R-complete and satisfy (A.1-2). Suppose $f: D \rightarrow F$ of (5.2) is a C^{1}-mapping at every point of D,
f is injective, f^{-1} is R -continuous on $f(D), f^{\prime}(a)$ is an R -isomorphism of E onto F for every $a \in D$ and $g=f^{\prime}(a)^{-1} \circ f: D \rightarrow E$ satisfies condition (5.3) for each $a \in D$. Then $f^{-1}: f(D) \rightarrow E$ is a C^{1}-mapping at every $b \in f(D)$.

Proof. By the above theorem we have to prove that

$$
\left(f^{-1}\right)^{\prime}: f(D) \longrightarrow L(F, E)
$$

is R-hypo-continuous at every $b \in f(D)$. Fix $a \in D$ and let $b=f(a)$. Since $g^{\prime}(z)$ $=f^{\prime}(a)^{-1} \circ f^{\prime}(z)$ for $z \in D$, Theorem 5.2 implies

$$
\left(f^{-1}\right)^{\prime}(f(z))=g^{\prime}(z)^{-1} \circ f^{\prime}(a)^{-1}, \quad z \in D
$$

Since $f^{\prime}(a)$ is an R -isomorphism, in order to prove that $\left(f^{-1}\right)^{\prime}$ is R -hypo-continuous at b, it is enough to show the following: Given a f.s. $\left\{V_{k}\right\}$ in E and a f.s. $\left\{U_{k}\right\}$ in F, there is a f.s. $\left\{W_{k}\right\}$ in E satisfying
(5.10) for any $\left\{V_{k}\right\}$-q.b.s. $\left\{h_{n}\right\}$ and for each l, there is $k(l)$ such that $a+x \in D$ and $f(a+x)-f(a) \in U_{k(l)}$ imply

$$
\left[g^{\prime}(a+x)^{-1}-g^{\prime}(a)^{-1}\right]\left(h_{n}\right) \in W_{l} \quad \text { for all } n
$$

Thus, let a f.s. $\left\{V_{k}\right\}$ in E and a f.s. $\left\{U_{k}\right\}$ in F be given. Since f^{-1} is Rcontinuous at $f(a)$, there is a f.s. $\left\{V_{k}^{\prime}\right\}$ in E such that

$$
\begin{equation*}
f^{-1}\left(\left(f(a)+U_{k}\right) \cap f(D)\right) \subset a+V_{k}^{\prime} \quad \text { for each } \quad k \tag{5.11}
\end{equation*}
$$

Since f is a C^{1}-mapping at $a, g^{\prime}: D \rightarrow L(E, E)$ is R-hypo-continuous at a. Hence there is a f.s. $\left\{V_{k}^{\prime \prime}\right\}$ in E such that for any $\left\{V_{k}\right\}$-q.b.s. $\left\{h_{n}\right\}$ and for each l, there is $k^{\prime}(l)$ such that
(5.12) $x \in(D-a) \cap V_{k^{\prime}(l)}^{\prime}$ implies $\left[g^{\prime}(a+x)-g^{\prime}(a)\right]\left(h_{n}\right) \in V_{l}^{\prime \prime} \quad$ for all n.

By (5.3), there exist k_{0}, a f.s. $\left\{W_{k}\right\}$ in E and a sequence $\left\{L_{n}\right\}$ such that $a+V_{k_{0}}^{\prime} \subset D$, $V_{k}^{\prime \prime} \subset W_{k}, 0<L_{k}<1$ for each k and

$$
\begin{equation*}
\left[g^{\prime}(a+x)-I\right]\left(W_{k}\right) \subset L_{k} W_{k} \quad \text { for all } \quad x \in V_{k 0}^{\prime}, \quad k=1,2, \ldots \tag{5.13}
\end{equation*}
$$

By (A.1), we may assume that $W_{1} \subset \mathrm{E}\left(\left\{W_{k}\right\}\right)$. We shall show that with this $\left\{W_{k}\right\}$, (5.10) is satisfied.

Let $\left\{h_{n}\right\}$ be a $\left\{V_{k}\right\}$-q.b.s. . By (5.12), for each l there is $k^{\prime \prime}(l) \geqq k^{\prime}(l)$ such that (5.14) $x \in(D-a) \cap V_{k^{\prime \prime}(l)}^{\prime}$ implies $\quad\left[g^{\prime}(a+x)-I\right]\left(h_{n}\right) \subset 2^{-1}\left(1-L_{l}\right) V_{l}^{\prime \prime}$
for all n. We may assume that $k^{\prime \prime}(1) \leqq k^{\prime \prime}(2) \leqq \cdots$. Let $k(l)=\max \left(k_{0}, k^{\prime \prime}(l)\right)$. If $x \in V_{k(1)}^{\prime}$, then

$$
\left[g^{\prime}(a+x)-I\right]\left(h_{n}\right) \in V_{1}^{\prime \prime} \subset W_{1} \subset \mathrm{E}\left(\left\{W_{k}\right\}\right)
$$

by (5.12). Hence, in view of (5.13), as in the proof of Theorem 5.1, we see that

$$
\begin{aligned}
& \sum_{v=1}^{m}(-1)^{v}\left[g^{\prime}(a+x)-I\right]^{v}\left(h_{n}\right) \\
& \longrightarrow-g^{\prime}(a+x)^{-1}\left[g^{\prime}(a+x)-I\right]\left(h_{n}\right)=\left[g^{\prime}(a+x)^{-1}-I\right]\left(h_{n}\right)\left(\left\{W_{k}\right\}\right)
\end{aligned}
$$

as $m \rightarrow \infty$, for each $x \in V_{k(1)}^{\prime}$ and n. Furthermore, by (5.14) and (5.13), if $x \in$ $V_{k(l)}^{\prime}$, then

$$
\sum_{v=1}^{m}(-1)^{v}\left[g^{\prime}(a+x)-I\right]^{v}\left(h_{n}\right) \in 2^{-1}\left(1-L_{l}\right)\left(1-L_{l}\right)^{-1} W_{l}=2^{-1} W_{l}
$$

for all m and n, so that

$$
\left[g^{\prime}(a+x)^{-1}-I\right]\left(h_{n}\right) \in 2^{-1} \bar{W}_{l}\left(\left\{W_{k}\right\}\right) \subset W_{l} \quad \text { for all } n,
$$

by Lemma 1.7. Since $a+x \in D$ and $f(a+x)-f(a) \in U_{k(l)}$ imply $x \in V_{k(l)}^{\prime}$ by (5.11), we have shown that (5.10) is satisfied.

Lemma 5.1. Let E and F be linear ranked spaces and suppose F is convex and satisfies (A.2). Let D be an R-open subset of E and $f: D \rightarrow F$ be R-continuous at $a \in D$. If $\left\{U_{k}\right\}$ is a f.s. in E and $\left\{V_{k}\right\}$ is a f.s. in F, then for each k there is $m(k)$ such that

$$
f\left(a+U_{m(k)}\right) \cap\left[f(a)+\mathrm{E}\left(\left\{V_{k}\right\}\right)\right] \subset f(a)+V_{k} .
$$

Proof. Suppose the contrary. Then there are k_{0} and a sequence $\left\{x_{m}\right\}$ in E such that

$$
x_{m} \in U_{m}, a+x_{m} \in D, f\left(a+x_{m}\right)-f(a) \in \mathrm{E}\left(\left\{V_{k}\right\}\right) \backslash V_{k_{0}} \text { for all } m .
$$

Since f is R-continuous, $f\left(a+x_{m}\right) \rightarrow f(a)(\mathrm{R})$. Since $f\left(a+x_{m}\right)-f(a) \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$, $f\left(a+x_{m}\right) \rightarrow f(a)\left(\left\{V_{k}\right\}\right)$ by (A.2), which contradicts $f\left(a+x_{m}\right)-f(a) \notin V_{k_{0}}$.

Theorem 5.5 (cf. [7, (3.4.5)]). Let E and F be convex, R-complete and satisfy (A.1-2). Suppose that $f: D \rightarrow F$ of (5.2) is R-differentiable at every point of D and $f^{\prime}(a): E \rightarrow F$ is an R-isomorphism at a given $a \in D$. Suppose furthermore that $g=f^{\prime}(a)^{-1}$ of and a f.s. $\left\{W_{k}\right\}$ in E satisfy the following conditions (5.15-16) for some k_{0} :

$$
\begin{equation*}
a+W_{k_{0}} \subset D \quad \text { and } \quad g\left(a+W_{k_{0}}\right) \subset g(a)+\mathrm{E}\left(\left\{W_{k}\right\}\right) . \tag{5.15}
\end{equation*}
$$

(5.16) For each l, there is $L_{l}: 0<L_{l}<1$ such that

$$
\left[g^{\prime}(a+x)-I\right]\left(W_{l}\right) \subset L_{l} W_{l} \quad \text { for all } \quad x \in W_{k_{0}} .
$$

Then, there are a set U with $W_{k^{\prime}} \subset U \subset W_{k_{0}}$ for some $k^{\prime} \geqq k_{0}$ and a preneighborhood V of 0 in F such that the restriction

$$
f_{1}=f \mid(a+U): a+U \longrightarrow F
$$

is an injection of $a+U$ onto $f(a)+V$ and $f_{1}^{-1}: f(a)+V \rightarrow E$ is R -continuous at $f(a)$. If, in addition, E and F satisfy (A. 3), then f_{1}^{-1} is R-continuous on $f(a)+V$.

Proof. By (A. 1), we may assume that $W_{k_{0}} \subset \mathrm{E}\left(\left\{W_{k}\right\}\right)$. We divide the proof into several steps.
(a) If $v+t u \in W_{k_{0}}$ for $0 \leqq t \leqq 1$ and $u \in \mu_{l} W_{l}, \mu_{l}>0$, then

$$
u-g(a+v+u)+g(a+v) \in L_{l}^{\prime} \mu_{l} W_{l},
$$

where $L_{l}<L_{l}^{\prime}<1$.
Proof of (a): By (5.15), we see that

$$
F(t) \equiv v+t u-g(a+v+t u)+g(a) \in \mathrm{E}\left(\left\{W_{k}\right\}\right), \quad 0 \leqq t \leqq 1 .
$$

By (5.16), we have

$$
F^{\cdot}(t)=u-g^{\prime}(a+v+t u)(u) \in L_{l} \mu_{l} W_{l} \quad \text { for } \quad 0 \leqq t \leqq 1, \quad l=1,2, \ldots
$$

so that $F^{*}(t) \in \mathrm{E}\left(\left\{W_{k}\right\}\right)$ for $0 \leqq t \leqq 1$. Hence we can apply Theorem 3.1 and obtain

$$
u-g(a+v+u)+g(a+v)=F(1)-F(0) \in L_{l} u_{l} \bar{W}_{l}\left(\left\{W_{k}\right\}\right) .
$$

Thus, in view of Lemma 1.7, we have (a).
(b) Put $L=L_{k_{0}}^{\prime}$ and choose $W \in\left\{W_{k}\right\}$ such that $W \subset 2^{-1}(1-L) W_{k_{0}}$. Then, for any $y_{0} \in b+W(b=g(a))$, there is $x_{0} \in W_{k_{0}}$ such that $y_{0}=g\left(a+x_{0}\right)$.

Proof of (b): Given $y_{0} \in b+W$, put

$$
T(x)=y_{0}+x-g(a+x), \quad x \in W_{k_{0}}
$$

Define $\left\{u_{m}\right\}$ by $u_{0}=y_{0}-b$ and $u_{m}=T\left(u_{m-1}\right), m=1,2, \ldots$. Since $u_{0} \in W \subset$ $2^{-1}(1-L) W_{k_{0}} \subset \mathrm{E}\left(\left\{W_{k}\right\}\right)$, there is a sequence $\left\{\alpha_{l}\right\}$ of positive numbers such that $u_{0} \in \alpha_{l} W_{l}$ for all l. By induction we shall prove

$$
\begin{align*}
& u_{m}-u_{m-1} \in\left(L_{l}^{\prime}\right)^{m} \alpha_{l} W_{l}, \quad m=1,2, \ldots ; l=1,2, \ldots \\
& u_{m}-u_{m-1} \in 2^{-1}(1-L) L^{m} W_{k_{0}}, \quad m=1,2, \ldots, \tag{5.17}\\
& u_{m-1}+t\left(u_{m}-u_{m-1}\right) \in W_{k_{0}}, \quad 0 \leqq t \leqq 1, m=1,2, \ldots
\end{align*}
$$

Since $u_{0} \in \alpha_{l} W_{l}, u_{0} \in 2^{-1}(1-L) W_{k_{0}} \subset W_{k_{0}}$ and

$$
u_{1}-u_{0}=u_{0}-g\left(a+u_{0}\right)+g(a)
$$

(a) implies that $u_{1}-u_{0} \in L_{l}^{\prime} \alpha_{l} W_{l}$ and $u_{1}-u_{0} \in 2^{-1}(1-L) L W_{k_{0}}$. Then, $u_{0}+$ $t\left(u_{1}-u_{0}\right) \in 2^{-1}(1-L)(1+L) W_{k_{0}}$. Thus (5.17) holds with $m=1$. Suppose (5.17) holds for $m=1,2, \ldots, n$. Since

$$
u_{n+1}-u_{n}=u_{n}-u_{n-1}-g\left(a+u_{n}\right)+g\left(a+u_{n-1}\right),
$$

(5.17) for $m \leqq n$ and (a) imply the first two relations in (5.17) with $m=n+1$ and

$$
\begin{aligned}
u_{n}+t\left(u_{n+1}-u_{n}\right) & =u_{0}+\sum_{m=1}^{n}\left(u_{m}-u_{m-1}\right)+t\left(u_{n+1}-u_{n}\right) \\
& \in 2^{-1}(1-L)\left(1+\sum_{m=1}^{n+1} L^{m}\right) W_{k_{0}} \subset W_{k_{0}}
\end{aligned}
$$

for $0 \leqq t \leqq 1$. Thus we obtain (5.17).
From the first relation in (5.17), it follows that $\left\{u_{m}\right\}$ is a Cauchy sequence by $\left\{W_{k}\right\}$. Since E is assumed to be R-complete, there is $x_{0} \in E$ such that $u_{m} \rightarrow x_{0}\left(\left\{W_{k}\right\}\right)$. By the second relation in (5.17), we see that $u_{m} \in 2^{-1} W_{k_{0}}$ and hence $x_{0} \in W_{k_{0}}$. Since g, and hence T, is R-continuous, from the definition of T and $\left\{u_{m}\right\}$, we derive that

$$
x_{0}=T\left(x_{0}\right)=y_{0}+x_{0}-g\left(a+x_{0}\right)
$$

i.e., $y_{0}=g\left(a+x_{0}\right)$.
(c) For each l, let $\varphi_{l}(y)=\inf \left\{\lambda>0 \mid \lambda^{-1} y \in W_{l}\right\}$ be the Minkowski functional for W_{l}. Then for any $z_{1}, z_{2} \in W_{k_{0}}$,

$$
\varphi_{l}\left(z_{1}-z_{2}-g\left(a+z_{1}\right)+g\left(a+z_{2}\right)\right) \leqq L_{l}^{\prime} \varphi_{l}\left(z_{1}-z_{2}\right) .
$$

Proof of (c): For any $\varepsilon>0$, since $z_{1}-z_{2} \in\left(\varphi_{l}\left(z_{1}-z_{2}\right)+\varepsilon\right) W_{l}$,

$$
z_{1}-z_{2}-g\left(a+z_{1}\right)+g\left(a+z_{2}\right) \in L_{l}^{\prime}\left(\varphi_{l}\left(z_{1}-z_{2}\right)+\varepsilon\right) W_{l}
$$

by (a). Thus $\varphi_{l}\left(z_{1}-z_{2}-g\left(a+z_{1}\right)+g\left(a+z_{2}\right)\right) \leqq L_{l}^{\prime}\left(\varphi_{l}\left(z_{1}-z_{2}\right)+\varepsilon\right.$) for any $\varepsilon>0$, and we obtain (c).
(d) Put $U=W_{k_{0}} \cap\left\{g^{-1}(b+W)-a\right\}$. Then $g_{1}=g \mid(a+U): a+U \rightarrow E$ is injective, $g_{1}(a+U)=b+W$ and there is $k^{\prime} \geqq k_{0}$ such that $W_{k^{\prime}} \subset U$.

Proof of (d): If $x_{0}, x_{1} \in W_{k_{0}}$ and $g\left(a+x_{0}\right)=g\left(a+x_{1}\right)$, then by (c)

$$
\varphi_{l}\left(x_{0}-x_{1}\right) \leqq L_{l}^{\prime} \varphi_{l}\left(x_{0}-x_{1}\right), \quad l=1,2, \ldots
$$

Since $L_{l}^{\prime}<1$, this means that $\varphi_{l}\left(x_{0}-x_{1}\right)=0$ for all l, i.e., $x_{0}-x_{1} \in W_{l}$ for all l. Hence $x_{0}=x_{1}$. Thus g_{1} is injective. By (b), $g_{1}(a+U)=b+W$. Applying Lemma 5.1, we find $k^{\prime} \geqq k_{0}$ such that

$$
g\left(a+W_{k^{\prime}}\right) \cap\left[b+\mathrm{E}\left(\left\{W_{k}\right\}\right)\right] \subset b+W
$$

By (5.15), $g\left(a+W_{k^{\prime}}\right) \subset b+W$, which implies $W_{k^{\prime}} \subset U$.
(e) $g_{1}^{-1}: b+W \rightarrow a+U$ is R-continuous at b; if we assume (A. 3) for E and F, then g_{1}^{-1} is R-continuous on $b+W$.

Proof of (e): Let $y_{0} \in b+W$ and $y_{0}=g\left(a+x_{0}\right)$ with $x_{0} \in U$. If $y_{0} \neq b$, choose $k^{*} \geqq k_{0}$ such that $y_{0}+W_{k^{*}} \subset b+W$ by (A.3). If $y_{0}=b$, then let $W_{k^{*}}=W$. First we show that
(5.18) for each l, there is $k(l) \geqq k^{*}$ satisfying $g_{1}^{-1}\left(y_{0}+W_{k(l)}\right) \subset x_{0}+a+W_{l}$.

Let $u \in b+W$ and $u=g_{1}(a+z)$ with $z \in U . \quad$ By (c)

$$
\varphi_{l}\left(\left(z-x_{0}\right)-\left(u-y_{0}\right)\right) \leqq L_{l}^{\prime} \varphi_{l}\left(z-x_{0}\right) .
$$

Since φ_{l} is subadditive, it follows that

$$
\left(1-L_{l}^{\prime}\right) \varphi_{l}\left(z-x_{0}\right) \leqq \varphi_{l}\left(u-y_{0}\right),
$$

so that $u \in y_{0}+2^{-1}\left(1-L_{l}^{\prime}\right) W_{l}$ implies $z \in x_{0}+W_{l}$. Hence (5.18) is valid with $k(l)$ $\geqq k^{*}$ such that $W_{k(l)} \subset 2^{-1}\left(1-L_{l}^{\prime}\right) W_{l}$.

Now, given a f.s. $\left\{U_{k}\right\}$ in E, applying Lemma 5.1 with $f=I$, we find $m(l)$ such that

$$
U_{m(l)} \cap \mathrm{E}\left(\left\{W_{k}\right\}\right) \subset W_{k(l)}
$$

for each l. Since $b-y_{0}+W \subset W+W \subset \mathrm{E}\left(\left\{W_{k}\right\}\right)$, (5.18) shows that

$$
g_{1}^{-1}\left[\left(y_{0}+U_{m(l)}\right) \cap(b+W)\right] \subset x_{0}+a+W_{l}
$$

which shows that g_{1}^{-1} is R-continuous at y_{0}.
(f) Since $f^{\prime}(a)$ is an R-isomorphism, $V=f^{\prime}(a)(W)$ is a preneighborhood of 0 in F. Thus we have the theorem by (d) and (e).

§6. Higher derivatives

Let E and F be T_{1}^{*} linear ranked spaces and D be an R-open subset of E. Let $E^{2}=E \times E$ be the product linear ranked space of 2-copies of E.

Definition 6.1. A mapping $f: D \rightarrow F$ is said to be twice R-differentiable at $a \in D$, if f is R-differentiable at every point of D and if there is an R-continuous bilinear mapping $f^{\prime \prime}(a)$ of E^{2} into F such that $r^{1}: D-a \rightarrow L(E, F)$, given by

$$
r^{1}(h)(x)=\left(f^{\prime}(a+h)-f^{\prime}(a)\right)(x)-f^{\prime \prime}(a)(h, x) \quad(h \in D-a, x \in E),
$$

satisfies the following condition:
(6.1) For any f.s.'s $\left\{V_{k}\right\}$ and $\left\{V_{k}^{\prime}\right\}$ in E, there is a f.s. $\left\{W_{k}\right\}$ in F such that

$$
\lambda_{n}^{-1} r^{1}\left(\lambda_{n} h_{n}\right)\left(h_{n}^{\prime}\right) \longrightarrow 0\left(\left\{W_{k}\right\}\right)
$$

for every $\left\{V_{k}\right\}$-q.b.s. $\left\{h_{n}\right\}$, every $\left\{V_{k}^{\prime}\right\}$-q.b.s. $\left\{h_{n}^{\prime}\right\}$ and every sequence $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>0, \lambda_{n} \rightarrow 0$.

We can prove the following as in the proof of Lemma 2.3.
Lemma 6.1. $f^{\prime \prime}(a)$ in the above definition is uniquely determined.

Theorem 6.1 (cf. [2, §9.1], [7, (1.8.2)]). Let F be a convex T_{1}^{*} linear ranked space satisfying (A.1-2) and D be an R-open subset of E. If $f: D \rightarrow F$ is twice R -differentiable at $a \in D$, then

$$
f^{\prime \prime}(a)(x, y)=f^{\prime \prime}(a)(y, x) \quad \text { for all } \quad x, y \in E
$$

Proof. By (E.5) and (E.2) for E, there is a f.s. $\left\{V_{k}\right\}$ in E such that x, y $\in \mathrm{E}\left(\left\{V_{k}\right\}\right)$. Since f is R -differentiable at $a \in D, f$ is R -continuous at $a \in D$ by Theorem 2.1. Thus there is a f.s. $\left\{U_{k}\right\}$ in F such that

$$
f\left(\left(a+V_{k}\right) \cap D\right) \subset f(a)+U_{k} \quad \text { for all } k
$$

Choose k_{0} such that $U_{k_{0}} \subset \mathrm{E}\left(\left\{U_{k}\right\}\right)$ by (A.1). Then

$$
\begin{equation*}
f\left(\left(a+V_{n}\right) \cap D\right) \subset f(a)+\mathrm{E}\left(\left\{U_{k}\right\}\right) \quad \text { if } \quad n \geqq k_{0} \tag{6.2}
\end{equation*}
$$

Let $\left\{V_{k}^{*}\right\}$ be a f.s. in E such that $V_{k}+V_{k} \subset V_{k}^{*}$ for all k. Since D is R-open, there is $k_{1} \geqq k_{0}$ such that $a+V_{k_{1}}^{*} \subset D$. Choose $\lambda_{0}>0$ such that $\lambda_{0} x \in V_{k_{1}}$ and $\lambda_{0} y \in V_{k_{1}}$. Then

$$
\lambda \xi x+\lambda \xi^{\prime} y \in \lambda \lambda_{0}^{-1} V_{k_{1}}^{*} \subset D-a \quad \text { if } \quad \xi, \xi^{\prime} \in[0,1] \quad \text { and } \quad \lambda \in\left[0, \lambda_{0}\right]
$$

For any $\xi \in[0,1]$ and $\lambda \in\left[0, \lambda_{0}\right]$, put

$$
\begin{equation*}
g(\xi ; \lambda)=f(a+\lambda \xi x+\lambda y)-f(a+\lambda \xi x) . \tag{6.3}
\end{equation*}
$$

Then, by Theorem 2.2 and Corollary 2.4, the R-derivative $g^{\cdot}(\xi ; \lambda)$ of $g(\xi ; \lambda)$ with respect to ξ is given by

$$
\begin{array}{r}
g^{\cdot}(\xi ; \lambda)=\left(f^{\prime}(a+\lambda \xi x+\lambda y)-f^{\prime}(a+\lambda \xi x)\right)(\lambda x)(0<\xi<1, \tag{6.4}\\
\left.0 \leqq \lambda \leqq \lambda_{0}\right) .
\end{array}
$$

By the definition of the remainder r^{1} in Definition 6.1, we see easily that

$$
\begin{align*}
& \left(f^{\prime}(a+\lambda \xi x+\lambda y)-f^{\prime}(a+\lambda \xi x)\right)(x) \tag{6.5}\\
& =f^{\prime \prime}(a)(\lambda y, x)+r^{1}(\lambda \xi x+\lambda y)(x)-r^{1}(\lambda \xi x)(x)
\end{align*}
$$

Now, by (6.1) choose a f.s. $\left\{W_{k}\right\}$ in F such that

$$
\lambda_{n}^{-1} r^{1}\left(\lambda_{n} h_{n}\right)\left(h_{n}^{\prime}\right) \longrightarrow 0\left(\left\{W_{k}\right\}\right)
$$

for every $\left\{V_{k}^{*}\right\}$-q.b.s. $\left\{h_{n}\right\}$, every $\left\{V_{k}\right\}$-q.b.s. $\left\{h_{n}^{\prime}\right\}$ and every $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>0, \lambda_{n} \rightarrow 0$. Then, for any $\left\{\lambda_{n}\right\}$ with $\lambda_{0}>\lambda_{n}>0, \lambda_{n} \rightarrow 0$ and for any k, there is $N(k)$ such that

$$
\begin{equation*}
\lambda_{m}^{-1} r^{1}\left(\lambda_{m} \xi x+\lambda_{m} y\right)(x) \in W_{k} \quad \text { if } \quad m \geqq N(k) \quad \text { and } \quad \xi \in[0,1] . \tag{6.6}
\end{equation*}
$$

In fact, suppose the contrary. Then there are $k_{1}, m(1) \leqq m(2) \leqq \cdots \rightarrow \infty$ and $\left\{\xi_{n}\right\}$ such that $\lambda_{m(n)}^{-1} r^{1}\left(\lambda_{m(n)} \xi_{n} x+\lambda_{m(n)} y\right)(x) \notin W_{k_{1}}$ and $\xi_{n} \in[0,1]$ for all n. Since
$x, y \in \mathrm{E}\left(\left\{V_{k}\right\}\right)$ and $\xi_{n} \in[0,1]$, we see that $\left\{\xi_{n} x+y\right\}$ is $\left\{V_{k}^{*}\right\}$-bounded and hence $\left\{V_{k}^{*}\right\}$-q.b. by Lemma 1.10 (a). Thus the above definition of $\left\{W_{k}\right\}$ implies that $\lambda_{m(n)}^{-1} r^{1}\left(\lambda_{m(n)} \xi_{n} x+\lambda_{m(n)} y\right)(x) \rightarrow 0\left(\left\{W_{k}\right\}\right)$, which is a contradiction. Hence we see (6.6).

By (6.6) and (A. 1) for F, there is an integer N_{1} such that

$$
\begin{equation*}
\lambda_{n}^{-1} r^{1}\left(\lambda_{n} \xi x+\lambda_{n} y\right)(x) \in \mathrm{E}\left(\left\{W_{k}\right\}\right) \quad \text { if } \quad n \geqq N_{1} \quad \text { and } \quad \xi \in[0,1] . \tag{6.7}
\end{equation*}
$$

Similarly, there are $\left\{N^{\prime}(k)\right\}$ and N_{2} such that

$$
\begin{array}{lll}
\lambda_{m}^{-1} r^{1}\left(\lambda_{m} \xi x\right)(x) \in W_{k} & \text { if } m \geqq N^{\prime}(k) \text { and } \xi \in[0,1] ; \\
\lambda_{n}^{-1} r^{1}\left(\lambda_{n} \xi x\right)(x) \in \mathrm{E}\left(\left\{W_{k}\right\}\right) & \text { if } n \geqq N_{2} \text { and } \xi \in[0,1] . \tag{6.9}
\end{array}
$$

Let $\left\{W_{k}^{\prime}\right\}$ be a f.s. in F such that $f^{\prime \prime}(a)(x, y), f^{\prime \prime}(a)(y, x) \in \mathrm{E}\left(\left\{W_{k}^{\prime}\right\}\right)$ and $\left\{W_{k}^{*}\right\}$ be a f.s. in F such that $U_{k}+2 W_{k}+W_{k}^{\prime} \subset W_{k}^{*}$ for each k. Then, by (6.2-5, 7,9) there is an integer N_{0} such that $n \geqq N_{0}$ implies

$$
\begin{array}{r}
g\left(\xi ; \lambda_{n}\right) \in \mathrm{E}\left(\left\{W_{k}^{*}\right\}\right) \quad \text { for all } \quad \xi \in[0,1] ; g^{\cdot}\left(\xi ; \lambda_{n}\right) \in \mathrm{E}\left(\left\{W_{k}^{*}\right\}\right) \\
\text { for all } \xi \in(0,1) .
\end{array}
$$

Also by (6.4-6) and (6.8), there is $\left\{n^{\prime}(k)\right\}$ such that $n \geqq n^{\prime}(k)$ and $\xi \in(0,1)$ imply

$$
g^{\bullet}\left(\xi ; \lambda_{n}\right) \in \lambda_{n}^{2}\left(f^{\prime \prime}(a)(y, x)+2 W_{k}\right) \subset \lambda_{n}^{2}\left(f^{\prime \prime}(a)(y, x)+W_{k}^{*}\right) .
$$

Thus Theorem 3.1 and Lemma 1.7 show that

$$
\begin{align*}
g\left(1 ; \lambda_{n}\right)-g\left(0 ; \lambda_{n}\right) & \in \lambda_{n}^{2}\left(f^{\prime \prime}(a)(y, x)+\bar{W}_{k}^{*}\left(\left\{W_{k}^{*}\right\}\right)\right) \tag{6.10}\\
& \subset \lambda_{n}^{2}\left(f^{\prime \prime}(a)(y, x)+2 W_{k}^{*}\right) \quad \text { for large } n
\end{align*}
$$

On the other hand, (6.3) shows that $g\left(1 ; \lambda_{n}\right)-g\left(0 ; \lambda_{n}\right)$ is symmetric with respect to x and y. Thus by repeating the above discussion, we see that

$$
\begin{equation*}
g\left(1 ; \lambda_{n}\right)-g\left(0 ; \lambda_{n}\right) \in \lambda_{n}^{2}\left(f^{\prime \prime}(a)(x, y)+2 W_{k}^{*}\right) \quad \text { for large } n \tag{6.11}
\end{equation*}
$$

(6.10-11) show that $f^{\prime \prime}(a)(y, x)-f^{\prime \prime}(a)(x, y) \in 4 W_{k}^{*}$ for all k, and hence

$$
f^{\prime \prime}(a)(y, x)=f^{\prime \prime}(a)(x, y)
$$

by (T_{1}^{*}) as desired.
Theorem 6.2 (cf. [7, (1.8.3)]). Let E, F and G be T_{1}^{*} linear ranked spaces and D, D_{1} be R-open subsets of E, F, respectively. If $f: D \rightarrow F$ and $g: D_{1} \rightarrow G$ with $f(D) \subset D_{1}$ are twice R -differentiable at $a \in D$ and at $b=f(a) \in D_{1}$, respectively, then the composed mapping $g \circ f: D \rightarrow G$ is twice R-differentiable at $a \in D$ and

$$
(g \circ f)^{\prime \prime}(a)(x, y)=g^{\prime \prime}(b)\left(f^{\prime}(a)(x), f^{\prime}(a)(y)\right)+g^{\prime}(b)\left(f^{\prime \prime}(a)(x, y)\right)
$$

Proof. By Theorem 2.2, $g \circ f$ is R-differentiable and $(g \circ f)^{\prime}(a+x)=g^{\prime}(f(a$ $+x)) \circ f^{\prime}(a+x)$ for $x \in D-a$. Put $l=f^{\prime}(a), L=f^{\prime \prime}(a), l_{1}=g^{\prime}(b), L_{1}=g^{\prime \prime}(b)$ and

$$
\begin{aligned}
& r(x)=f(a+x)-b-l(x), \quad r^{1}(x)(y)=\left(f^{\prime}(a+x)-l\right)(y)-L(x, y), \\
& s(z)=g(b+z)-g(b)-l_{1}(z), \\
& s^{1}(z)(w)=\left(g^{\prime}(b+z)-l_{1}\right)(w)-L_{1}(z, w), \\
& R(x)(y)=\left((g \circ f)^{\prime}(a+x)-l_{1} \circ l\right)(y)-\left\{L_{1}(l(x), l(y))+l_{1}(L(x, y))\right\}
\end{aligned}
$$

for $x \in D-a, y \in E, z \in D_{1}-b$ and $w \in F$. Then for $\varepsilon>0$ with $\varepsilon x \in D-a$, we see easily that

$$
\begin{equation*}
\varepsilon^{-1} R(\varepsilon x)(y)=\sum_{i=1}^{8} S_{i}, \quad S_{i}=S_{i}(x, y, \varepsilon), \tag{6.12}
\end{equation*}
$$

where

\[

\]

Now, let $\left\{V_{k}\right\}$ and $\left\{V_{k}^{\prime}\right\}$ be given f.s.'s in E. Then by using Lemma 1.15, we can show easily the following:
(6.13) For any $1 \leqq i \leqq 8$, there is a f.s. $\left\{W_{k}^{(i)}\right\}$ in G such that

$$
S_{i}\left(x_{n}, y_{n}, \varepsilon_{n}\right) \longrightarrow 0\left(\left\{W_{k}^{(i)}\right\}\right)
$$

for any $\left\{V_{k}\right\}$-q.b.s. $\left\{x_{n}\right\}$, any $\left\{V_{k}^{\prime}\right\}$-q.b.s. $\left\{y_{n}\right\}$ and any $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n}>0, \varepsilon_{n} \rightarrow 0$.
Thus if we choose a f.s. $\left\{W_{k}\right\}$ with $\sum_{i=1}^{8} W_{k}^{(i)} \subset W_{k}$ for all k, then we see by (6.12-13) that $\varepsilon_{n}^{-1} R\left(\varepsilon_{n} x_{n}\right)\left(y_{n}\right) \rightarrow 0\left(\left\{W_{k}\right\}\right)$, which shows the theorem.

References

[1] J. Dieudonné: Foundations of Modern Analysis, Academic Press, 1960.
[2] A. Fröhlicher and W. Bucher: Calculus in vector spaces without norms, Lecture Notes in Math. 30, Springer, 1966.
[3] H. H. Keller: Differential calculus in locally convex spaces, Lecture Notes in Math. 417, Springer, 1974.
[4] K. Kunugi: Sur la méthode des espaces ranges I-II, Proc. Japan Acad. 42 (1966), 318-322, 549-554.
[5] W. Washihara: On ranked spaces and linearity I-II, Proc. Japan Acad. 43 (1967), 584-589, 45 (1969), 238-242.
[6] M. Yamaguchi: Calculus in ranked vector spaces I-VI, Proc. Japan Acad. 44 (1968), 207-218, 307-317, 424-433.
[7] S. Yamamuro: Differential calculus in topological linear spaces, Lecture Notes in Math. 374, Springer, 1974.

Department of Mathematics, Faculty of Science and Technology,

Science University of Tokyo

