On the Jacobson Radicals of Infinite Dimensional Lie Algebras

Noriaki KAMIYA (Received July 10, 1978)

1.

Recently the infinite-dimensional Lie algebras have been investigated by several mathematicians. The purpose of this paper is to study the Jacobson radicals of infinite-dimensional Lie algebras.

We employ the notation and terminology in [1].

The author would like to express his thanks to Professor S. Tôgô for his suggestions.

We denote by L a not necessarily finite-dimensional Lie algebra over a field \mathfrak{k} throughout the paper.

DEFINITION. The Jacobson radical of L is defined to be the intersection of all the maximal ideals of L, with the convention that this intersection is L if there are no maximal ideals. We denote the Jacobson radical of L by J_L .

LEMMA 1. $J_L \subseteq L^2$.

PROOF. Let $L \neq L^2$. If $x \in L^2$, take a subspace M of L which is complementary to $\langle x \rangle$ and contains L^2 . Then M is a maximal ideal of L. Hence $x \in J_L$. Therefore $J_L \subseteq L^2$.

We introduce the following class \Re : A Lie algebra L belongs to the class \Re if and only if

$$[L/N, L/N] \subsetneq L/N$$

for every proper ideal N of L.

It is clear that $\mathbb{E}\mathfrak{A} \subseteq \mathfrak{R}$.

LEMMA 2. For an arbitrary ideal K of L belonging to \Re , $J_L \supseteq L^2 \cap K$.

PROOF. We may assume that $K \neq 0$. Suppose that there is a maximal ideal I of L such that

$$I \stackrel{\text{\tiny{1}}}{=} L^2 \cap K.$$

Then $I \stackrel{\text{\tiny def}}{=} L^2$ and $I \stackrel{\text{\scriptsize def}}{=} K$. Thus L = I + K. We see that

Noriaki KAMIYA

$$L/I = (I + K)/I \cong K/K \cap I.$$

Since $K \in \Re$, we have

$$[K/K \cap I, K/K \cap I] \subseteq K/K \cap I$$

and therefore

$$[L|I, L|I] \subsetneq L|I.$$

Since I is a maximal ideal, L/I has no non-zero proper ideals. Hence [L/I, L/I] = 0. Therefore we have $I \supseteq L^2$, which is a contradiction. Therefore $J_L \supseteq L^2 \cap K$.

THEOREM 1. If $L \in \Re$ or $L^2 \in \Re$, then $J_L = L^2$.

PROOF. Suppose that $L \in \Re$ (resp. $L^2 \in \Re$). Taking K = L (resp. L^2) in LEMMA 2, we see that $J_L \supseteq L^2$. It follows from Lemma 1 that $J_L = L^2$.

2.

We now recall the definition of the class \mathfrak{H} over a field \mathfrak{t} of characteristic 0 . [1, p. 257]: A Lie algebra L belongs to \mathfrak{H} if and only if L is generated by a set of finite-dimensional local subideals.

THEOREM 2. Let L be an \mathfrak{H} -algebra and $\sigma(L)$ be the maximal locally soluble ideal of L. Then $J_L = [L, \sigma(L)]$.

PROOF. Since L is an \mathfrak{H} -algebra, L has a Levi decomposition, that is, $L = \Lambda + \sigma(L)$ where Λ is a maximal semisimple subalgebra of L. If I is a maximal ideal of L, L/I is either non-abelian simple or 1-dimensional. If L/I is nonabelian simple, I must contain $\sigma(L)$ and it is therefore of the form $M + \sigma(L)$, where M is a maximal ideal of Λ . Since L is an \mathfrak{H} -algebra, Λ is also an \mathfrak{H} -algebra. Λ can be expressed as the direct sum of finite-dimensional non-abelian simple ideals, and so the intersection of its maximal ideals is 0. Hence the intersection of those maximal ideals I of L for which L/I is non-abelian simple equals $\sigma(L)$. Alternatively, if L/I is 1-dimensional, I contains L^2 , so that the intersection of all such maximal ideals of L contains L^2 . Consequently

$$L^2 \cap \sigma(L) \subseteq J_L \subseteq \sigma(L).$$

But we know that $J_L \subseteq L^2$. Hence

$$J_L = L^2 \cap \sigma(L).$$

Therefore

On the Jacobson Radicals of Infinite Dimensional Lie Algebras

$$L^{2} = [\Lambda + \sigma(L), \Lambda + \sigma(L)]$$
$$= [\Lambda, \Lambda] + [L, \sigma(L)]$$
$$= \Lambda + [L, \sigma(L)].$$

Since $[L, \sigma(L)] \subseteq \sigma(L)$,

$$L^{2} \cap \sigma(L) = (\Lambda \cap \sigma(L)) + [L, \sigma(L)]$$
$$= [L, \sigma(L)].$$

Hence the theorem is proved.

COROLLARY 1. If L is a perfect \mathfrak{H} -algebra, then $J_L = \sigma(L)$.

COROLLARY 2. If L is a locally soluble \mathfrak{H} -algebra, then $J_L = L^2$.

3.

If L is a locally nilpotent Lie algebra over a field of characteristic 0, then L is an \mathfrak{H} -algebra. Hence by Corollary 2 in § 2, $J_L = F_L = L^2$ where F_L is the Frattini subalgebra of L. If L is soluble, J_L is not necessarily equal to F_L .

We refer to the example $L=P+\langle x, y, z\rangle$ in [2, p. 269]. It is easy to see that $J_L=P+\langle z\rangle$ and $F_L\subseteq\langle z\rangle$. Therefore $F_L\subsetneq J_L$.

THEOREM 3. $F_L = J_L = L^2$ if and only if the set of maximal subalgebras of L coincides with the set of maximal ideals of L.

PROOF. Assume that $F_L = J_L = L^2$ and $L \neq L^2$. Then there exist maximal subalgebras and maximal ideals of L. Each of them contains L^2 by assumption. If I is an maximal ideal of L, then any maximal subalgebra of L containing I is an ideal and therefore equals I. Hence I is a maximal subalgebra of L. The converse is evident.

Conversely, assume that every maximal subalgebra of L is a maximal ideal of L and conversely. Clearly, $F_L = J_L$. Now we assume that $F_L = J_L \cong L^2$. Then there is an element x of L such that $x \in L^2$ and $x \in F_L$. So there exists a maximal subalgebra M of L such that $x \in M$. Since M is a maximal ideal, $M + \langle x \rangle = L$. Therefore $L^2 \subseteq M$. This contradiction shows that $F_L = J_L$ $= L^2$.

We now consider the prime radical r_L of L in [3]. We shall here show the following relation between J_L and r_L .

THEOREM 4. $J_L \supseteq L^2 \cap r_L$.

Noriaki KAMIYA

PROOF. Let M be a maximal ideal of L. If dim L/M > 1, M is a prime ideal of L by Theorem 5 of [3]. If dim L/M = 1, then $L^2 \subseteq M$. Hence $J_L \supseteq L^2 \cap r_L$.

References

- [1] R. K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] B. Hartley, Locally nilpotent ideals of a Lie algebra, Proc. Camb. Phil. Soc., 63 (1967), 257-272.
- [3] N. Kawamoto, On prime ideals of Lie algebras, Hiroshima Math. J., 4 (1974), 679-684.

Department of Mathematics, Rikkyo University