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1. Introduction

In this paper we shall be concerned with the behavior at infinity of the Riesz
potential U% which is defined by

Uk = (I = sirduty), xR,

where O<a<n and p is a non-negative measure on R*. The potential U4 may
take the value co on a countable dense subset of R*, but it may occur that
|x}8U%(x) tends to zero as |x|— oo except for x in a set which is thin at infinity in
a certain sense, =0 being a number determined by pu.

We shall work on the case of potentials of functions which belong to the
Lebesgue class LP(R"), l<p<oo. In order to define the thinness at infinity of
a set in this case, we shall use the following capacity: The (a, p)-capacity of a
set E relative to an open set G is defined by

Cq,p(E; G) = inf |glI5,

where the infimum is taken over all non-negative functions g € LP(R") such that

g vanishes outside G and U¥(x)2>1 for all xe E. We say that E is («, p)-thin at
infinity if

3 2-kmanC, (E®; G,) < oo,
k=1

where E®) ={xeE; 2*¥<|x|<2**1} and G,={xeR"; 2¥1<|x| <22}, Tt will
be proved in §4 that if ap<n and f is a non-negative function in LP(R") with
U’ # oo, then |x|("~2P)/PUL(x) tends to zero as |x|— oo except for x in a set which
is (o, p)-thin at infinity. Further it will be proved that if ap<n and E is (a, p)-

thin at infinity, then there exists a non-negative function fe LP(R") such that
U’ # o0 and

lim |x|®2»/PUS(x) = o0.

|x|—,xeE
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2. Preliminaries

Let R* be the n-dimensional Euclidean space. Throughout this paper, let
O<a<n and 1<p<oo. The Riesz potential U% will be decomposed as V4+
W%, where

Vi) = Ix = yl=rducy),

Ix=yl<|x|/2
Wi = | b = yIE=rdu(y)

|x=ylz|x]/2

If 1 has a density f, then we shall write UZ, VI, W{ for U“, V*, W* respectively.
The Riesz capacity of order a of a set E is defined by

C,(E) = sup u(R"),

where the supremum is taken over all non-negative measures p such that S, (the
support of y)cE and U4(x)<1 for all xe§,.

LEMMA 2.1 ([1; p. 61]). Let p be a non-negative measure on R". In
order that Uy # oo, it is necessary and sufficient that

@.1) fd + 13perduey) < o0,
or equivalently,
(= ylrdut) < o0
R"=By,»
for some, and hence for any, open ball B, , with center at x and radius r.

COROLLARY 2.2. If u satisfies (2.1), then Wi(x) is finite for x+#O.

LemMA 2.3 ([2; Lemma 1]). Let u be a non-negative measure on R". If
we set E={xeR"; Uk(x)=1}, then C(E)<2" *u(R").

CoOROLLARY 2.4. For any non-negative measure u, we have
C,({xeR"; V&x) = o}) =0.
For this it suffices to note that if x € By, then

[, b= yleduy) 2 Vi)

By Corollaries 2.2 and 2.4, the following is easily established.
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COROLLARY 2.5. If u satisfies (2.1), then
C{xeR"; Ug(x) = o0}) = 0.

Denoting by S the boundary of B, ;, we define for a set E and a number
r>0,

rE = {rx; xeE}, E= J(E) n S, E® =E N Boy+i ~ Bosr
r>

LEMMA 2.6. i) CJrE) = rr*C E).
ii) C(E)SCJ(E) for E <Bgy,—By,;.

This follows readily from [1; Theorem 2.9].
As to the capacity C, ,, we derive the following result.

LemmA 2.7. i) C,,(rE; rG)=r""**C, (E; G).
ii) There is a constant M >0 such that

Ca,p(E ;Bo3) =M Ca,p(E§ Bo,3)
whenever E<Bg ,— By ;.
The assertion i) can be proved in a way similar to [3; Lemma 4]. The

assertion ii) is nothing but [3; Lemma 5].

3. Potentials of measures

Let us begin with the definition of thinness.

DErFINITION 3.1. A set E will be called a-thin at infinity if
2 k=) C (E®) < co.
k=1

We remark here that for every subsequence {k;} of the sequence of natural
numbers, E=\U%.,{x € R"; 2* <|x| <2%+*1} is not a-thin at infinity.

LemMMA 3.2. Let u be a non-negative measure such that

(3.0 fa + iyrduty) < oo

for some B with a < B<n.
i) There is a Borel set E which is a-thin at infinity and satisfies

lim |x|#~*V%(x) = 0.

|x|~o,x¢E
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i) We have
0 incase a X f<n,
lim |x|f~*W4(x) =
x[=e u(R") in case B = n.

Proor. i) Set

a, = b-nq,
x Szk_lélmmlyl u(y)

for each positive integer k. Then > & ,a,<oco by our assumption (3.1). Hence
there is a sequence {b,} of positive numbers such that lim,., b,=oco0 but
> 2 ,a.b,<oo0. Consider the set

A, = {xeR"; 2k < |x] < 2¥*!, VA(x) = by127k#-2)}
for each k. If x € A,, then
Ubx(x) 2 b2k~ aV4(x) = 1,
where y, is a non-negative measure defined by
wl(A) = b2*E=2 (A n By yx+2 — Bg px-1) for a Borel set A.

Therefore it follows from Lemma 2.3 that

C (4 < 2”““2"““‘)ka du(y)

2k-ig]y|<2k+2
é 2n—a+2(n—ﬂ)2k(n—a)akbk_

We set E=\U,A4,. Obviously E(¥)= A4, and hence
3 27K, (BW) £ 220D $ 4y, < oo,
k=1 k=1

which implies that E is a-thin at infinity. Moreover we see that

lim sup |x|f~*V*(x) < lim sup 24-*b;! = 0.
k=0

|x|=o,x¢E

ii) For each fixed y, [x[f~%|x—y|* -0 (resp. 1) as |x|>o00 if aSf<n
(resp. f=n). Further, there is a constant M >0 such that

[x[P=%|x — yl*=" < M(1 + |y~

whenever |x—y|=|x|/2=1. Hence we can apply Lebesgue’s dominated con-
vergence theorem to obtain
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lim |x|f~*Wi(x) =

le-»m

[ 0 if a<p<n,
u(R"™) if B=n.
From this lemma we can derive the following theorem:

THEOREM 3.3. Let u be a non-negative measure satisfying (3.1) for some
B with a<B<n. Then there is a Borel set E which is a-thin at infinity and for
which

0 incase a < fB<n,

|x|->00,x¢E

lim |x|f~2Uk(x) = [
w(R™) in case B = n.

We state here the existence of limits of potentials along rays issuing from the
origin. Our result below is a generalization of [2; Theorem 1].

COROLLARY 3.4, Let u be as in Theorem 3.3. Then there is a Borel set
EcS such that C{(E)=0 and

lim r-eU(ré) =

r—+o

[ 0 incase a<f<n
u(R"™) incase B=n
for every Ee S—E.

This follows readily from Theorem 3.3 and the next lemma.
~
LeMMA 3.5. If E is a-thin at infinity, then C,(N\j=,E—Bp,)=0.
~~ N
PROOF. Since E— By 5;=\Uj-;E®), we have by Lemma 2.6
TN 0 N 00
CiE — Bpy)) £ 3 CEW) £ 3 27K OC(EW) — 0
k=j k=j

as j— o0, which yields the required equality in our lemma.

The rest of this section will be devoted to investigating the best possibility of
Theorem 3.3 as to the size of the exceptional set and the order at infinity.

PROPOSITION 3.6. Let a<B<n and let E be a Borel set a-thin at infinity.
Then there is a non-negative measure u satisfying (3.1) and

lim |x|#~*U%x) = oo.
E

|x|—+o,xe

ProoFr. Since E is a-thin at infinity, we can find a sequence {a,} of positive
numbers such that lim, , , a,=co and
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a0
> 27 k=) C (E®) < o0,
k=1
For each positive integer k, there is a non-negative measure y, such that Uk*(x)>

a) for x€ E®, S, cBg x+2—Bg jx-1 and (R™) = ayC(E®)+27k,  Setting u=
Zie127K= )y, we have

flyte=rduiy) = £ (Iyp-r2-ro-odu )

8

< 3 2782 k-0 g, C(E®) + 27} < oo,
k=1

which implies (3.1). For x € E®), we have
[x|#~=Ug(x) 2 Ug«(x) 2 ay,
or limlxl“'w.er lxlf"“’Uf,‘(x) = 0.

PROPOSITION 3.7. Let a<p<n and let a(r) be a non-decreasing positive
function of r>0 such that lim,,,a(r)=0c0. Then there are a non-negative
measure yu and a Borel set A with the following properties:

i) A is not a-thin at infinity,
.. ~

ii) A—By,=S for r>0;

iii) u satisfies (3.1);

V) limyy . o xea @(Ix])]x|#~*Vo(x) = c0.

Proor. Set a,=a(2%) for each positive integer k and choose a sequence
{k;} of positive integers such that k;>4, 2k;<k;,,; and 3. a5}/2<c0. Define

fO») =

2""‘!a;;}/2 if 2071 < |y| <2042 j=1,2,...,
otherwise

and consider the measure du= fdy. Then it is easy to prove that u satisfies iii).
For x such that 2 <|x| <2k/*1, we have by setting E;={y € R"; |[x—y| <2k}

a(jx)|x|P~=V%(x) = a,‘JZ*J"")SEIIX = yl="f(y)dy

= ql/2

k¥ |z|*~"dz — © as j— o0.

S|z|<1/2

Let A=UP {xeR"; 2% <|x|<2k*1}, Then A is not a-thin at infinity and
satisfies ii).

REMARK 3.8. Proposition 3.7 shows that Corollary 3.4 is the best possible



On the Order at Infinity of Riesz Potentials 539

as to the order of zero at infinity. Corollary 3.4 is also the best possible as to
the size of the exceptional set (cf. [2; Remark 2]).

4. Potentials of functions

We recall the definition of («, p)-thinness at infinity.

DEFINITION 4.1. A set E is called («, p)-thin at infinity if
$ 2-k0-aC, (E®); G,) < oo,
k=1
where G, ={x € R"; 2"l <|x| <2k+2},

REMARK 4.2. i) Let {k;} be a subsequence of the sequence of natural
numbers. Then \UF.,{xeR"; 2% <|x|<2®*1} is not («, p)-thin at infinity on
account of Lemma 2.7.

ii) If ap>n and E is (o, p)-thin at infinity, then E is a bounded set on ac-
count of Lemma 2.7 and [3; Remark 1, ii)].

LeMMA 4.3. Let £+ m+n<0. Then there is a constant M >0 such that

|x|2+m+n l:f m + n> 0
(=M rdy S M { Ialtlogll i m o n=0
|x[* if m+n<0

for any x with |x|>2.
Proor. We divide the domain of integration into two parts, that is,
Dy:lx =yl 2 IxI/2, Iyl < IxI/2;
Dy:|x =yl 2 IxI/2, |yl > |x|/2.

Since |x|/2=|x~y|=3|x|/2 in D,, we have

S Ix — YL + [yD)mdy < 2'“|x|‘§ (1 + lylydy
D Iylsix|/2

|x|mtn if m+n>0
=< K{|x|*t x ¢ log|x| if m+n=0
1 if m+n<0

with some constant K; >0 independent of x with |[x|>2. On the other hand, if
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yeD, and |x|>2, then |[x—y|/4<1+|y|<4|x—y|, so that

{, 1x = yixt + yDray < 4 Ix = ylendy
2

Ix=ylz|*1/2

< 4Iml|x|n+m+n$ |2|t+mdz.
- lziz1/2

Thus we obtain the desired conclusion.

LeMMA 4.4. Let f be a non-negative function such that

@.1) [+ prrsr)ay < o, a<plpzn.
Then the following assertions hold:
i) There exists a Borel set E such that E is («, p)-thin at infinity and

lim  |x|6~ep)ey{(x) = 0.

|x|—>©,x¢ E
ii) If, in addition, UL % oo, then we have

4.2) Illim |x|B=2p)IPWI(x) = 0 in case « < B/p <n,

4.3 Ih;m |x|"~*(log |x|)~1/»'WL(x) = 0 in case Plp=n,

where 1/p+1/p'=1.

Proor. i) Set

= B—n fp,
0= { e P FPONY

for each positive integer k, and note Y j-,a,<oco by assumption (4.1). Hence
we can find a sequence {b,} of positive numbers such that lim,_,, b,=00 but

Y ab<oo. We set
A, = {xeR"; 2k < |x| < 2k*+1, V{(x) = byl/p2-k(B-ap)/p}
for each k, and define

fx) if x€G,
o=

0 otherwise.
Then we have for x € 4;,

glx — Y fy)dy = Vix) 2 bylir2-k-enp,
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so that
Cuslds G) S b2~ fE(y)dy < air-si2k0~ D,
Consider the set E=\Uj,4;. Since E®=4,,
ki:;lz—kw—mc,,,(E(k); Gy < 4in=#1 éla,‘bk < o,
which implies that E is («, p)-thin at infinity. Moreover,

Ililm sup |x|-=P)/PVI(x) ]ir{l sup 2(8-=p)/pp 1l =
x|—~o,x¢E -

ii) If a=p/p, then (4.2) follows from Lemma 3.2, ii), since we assumed
Ul# 00 (cf. Lemma 2.1). Let a<f/p<n. Then we can find y>0 such that
B—pn+n<y<n. By Holder’s inequality,

Wix) = {S lx — y]r"(1 + I}’Dﬂ—yf”(y)dy}”p

Ix=ylzlxl/2

% {g |x — y|p'@e=rip=n(] + |y|)p’(1-ﬂ)lpdy}l/p’_
Ix=yl2ix|/2

In view of Lemma 4.3, there exists M >0 such that if |x| =2, then

(1+lyl =
lx=yI21xl/2\ | X — Y|

|x|B-eP)PW{(x) < M{S 7(l+|y|)ﬂ—nfv(.v)dy}llp.

From Lebesgue’s dominated convergence theorem it follows that the right-hand
side tends to zero as |x|»>oc0. Thus (4.2) holds.
To prove (4.3), given ¢>0, find N >0 such that

_ 1/p
{§ @+ o) <e.
IyI>N
We define
fx) if x| SN,
fnx) = _
0 otherwise,
and gy=f—fy. Then Lemma 3.2 implies that
lxlli?mlxl"‘“W{”(X) = | fallss

which gives

4.4 }im |x|"==(log |x[)~1/*' Wi¥(x) = 0.
x| =00
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On the other hand we have by Holder’s inequality

war(x) = {S 1+ yl)np—nggl(y)dy}”p

Ix=ylz[x]/2
s . 1/p".
<{{ b = et + [yhay}
Ix=ylZ|x]/2 )
By Lemma 4.3 there is a constant M >0 independent of x and ¢ such that for x
with [x|=2,

[x|"=*(log |x[)~1/7' Wir(x) < Me.
This together with (4.4) establishes (4.3).
Lemma 4.4 yields the following main theorem:

THEOREM 4.5. Let a<fB/p=<n. If f is a non-negative function satisfying
(4.1) and UL % oo, then there is a Borel set E such that E is (a, p)-thin at infinity

and

lim - |x|¥-=p)/PUL(x) = 0 in case o < Blp<n,
|x|=0,x¢E :

lim wlxl"‘“(log |x)"1PUL(x) =0  incase B/p=n.

|x|=,x

If, in addition, ap>n, then we can take E=@ (the empty set) in the above
equalities.

The last statement follows from Remark 4.2, ii).

REMARK 4.6. If a<f/p, then (4.1) gives
4.5) fa + sy < o,

which is equivalent to UL # co by Lemma 2.1.

From Lemma 2.7 and Theorem 4.5, we obtain the following corollary, which
gives an improvement of [2; Theorem 2].

COROLLARY 4.7. Let a<p/p<n and let f be given as in Theorem 4.5.
Then there exists a Borel set ECS such that C, (E; By 3)=0 and

lim rB=ep)IPUL(r€) = 0 in case o < B/p <n,

r—+o

lim r»=2(log r)~"1/P" UL(ré) = 0 incase Plp=n
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for every Ee S—E.

From now on we shall deal with the best possibility of Theorem 4.5 as to
the size of the exceptional set and the order of zero at infinity.

ProPoSITION 4.8. Let ap<n and let E be a set (a, p)-thin at infinity.
Then there exists a non-negative function f satisfying (4.1) and
lim |x|¢-=p)/PVi(x) = oo.
|x}-+0,xeE

Proor. Since E is (o, p)-thin at infinity, there is a sequence {a,} of positive
numbers such that lim,_, ., a,= o0 and

Ela£2“‘("‘“P)C,,p(E("); G,) < .

For each k we can find a non-negative function f; € LP(R") such that f,=0 on
R*—G,, Ul(x)2a, for xeE® and |fllZ<afC, (E®; G)+27%. Setting
f=2F 27kb-ep)ir f, we have

(Ite=npopdy < 3918 (1yip-mz-so-em gpiy)dy

< 3-14in01 3 2 ke (gpC, (E®) G,) + 274 < oo,
k=1
For x € E®®), we obtain

wik(x) £ {S |x— ylv'“'"’dy}”p' I fell »

2k-1<|x~y| <62k

, ON\1/P
é(z—k(”'lp)"fk”:)llp(g 2P (“"')dz> )

2-1<|z|<6
which tends to zero as k—oo because of 3. ,27k("~*P)|| fi|F<oo. Thus there
is a positive integer k, such that if k>k, and xe€E®), then Wf(x)<a,/2 and
hence V/<>a,/2 on E®), which implies that

|x|B=ep)pp S (x) = 2kB=ep)/p2-k(B=ap)IPYSk(x) = q, /2
for any x € E®). Therefore Hm . o xe [X|¥~2P)/PV{(x)= c0.

REMARK 4.9 Proposition 4.8 shows that Lemma 4.4, i) is the best possible
as to the size of the exceptional set. In case a<f/p<n and ap<n, the function
f obtained above satisfies (4.5)- on account of Remark 4.6, and hence Theorem
4.5 is also the best possible as to the size of the exceptional set. In case ap=4p,

we do not know whether the function f satisfies (4.5) or not. However, if E
satisfies
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3 2407 eIC, (E®; GJe < oo,

then we can find a non-negative function f which satisfies (4.1), (4.5) and

lim Ui(x) = .

|x|—=+0,xeE

Since the proof is similar to that of Proposition 4.8, we omit it.

PrROPOSITION 4.10. Let a<f/p=<n and let a(r) be a non-decreasing positive
Junction of r>0 such that lim,_, , a(r)=00. Then there are a non-negative func-
tion f and a set A with the following properties:

i) A is not (a, p)-thin at infinity;
~~

ii) A—By,=S for r>0;

iii) (4.1) and (4.5) are satisfied;

iv) we have
(4.6) lim Aa(|x|)|xl“’”")/PV£(x) =0 in case a < B/p<n,

|x|—=00,xe
4.7 | |lim Aa(lxl)lxl""(log |x)-t/P Wi(x) = in case PB/p = n.
x|—0,xe

ProoF. First we consider the case a<f/p<n. Let {k;} be a sequence of
positive integers such that k; >4, 2k;<k;,, and 3 7. a(2%)1/P < o0, and define
2-Bkilpg(2ki)~tip  if 2871 < |yl < 202 j=1,2,..,
fO) = { :
otherwise.

Then it is easy to see that f satisfies (4.1) and (4.5). As in the proof of Proposi-
tion 3.7, we obtain (4.6) with A=\UJ-;{xeR"; 2k <|x|<2%*!}. This 4 is not
(o, p)-thin at infinity on account of Remark 4.2, i).

Next let B/p=n. Choose a subsequence {k;} of the sequence of natural
numbers such that 2k;<k;,; and ¥ 7-,a(22%))"! <00, and define

a2ty tely|~m(log [y)~P i y € E; j=1,2,..,
f) = .
otherwise,
where E;={y € R"; 2t/ <|y|<2?%}. Then (4.1) and (4.5) hold. If 22 <
|x] <22ks*+1) then

Wi 2 I = y1=nf () dy

{Ix=y|>|x|/2}NEy

g (3.22k1)¢-na(22k1)—1/p2—1SE IYI"'(IOegI)‘“de
J
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= const. 22ks(a=mq(22ks)~1/pf1/P’,
so that
a(|x))|x|"-*(log |x])~*/* W{(x) = const. a(22k)1/7".

Thus (4.7) is fulfilled with A=\U$,{xeR"; 220 <|x|<22ks*1}, The proof is
now complete.

REMARK 4.11. Proposition 4.10 shows that Theorem 4.5 and Corollary
4.7 are the best possible as to the order of zero at infinity. Corollary 4.7 is also
the best possible as to the size of the exceptional set.

To prove the second assertion, let EcS satisfy C,,(E; Byp,)=0. Then
C, ,(2¥E; G,)=0 for each positive integer k. Hence we can find a non-negative
function f, € LP(R") such that f, vanishes outside G,, U/«(x)=co for x €2*E and
I fill, is so small that UJ(0)< oo and f satisfies (4.1) with f=pn, where f=
2iz1hi Clearly,

lim sup r*(log )*UL(ré) = o
for any numbers y, 6 and any £ e E.

REMARK 4.12. We shall end by remarking the following two facts.

i) A set E is a-thin at infinity if and only if there is a non-negative measure
u such that Uz # o and lim inf,_, o cg Us(x)>0.

ii) In case ap<n, E is (a, p)-thin at infinity if and only if there is a non-nega-
tive function fe LP(R") such that U7 % oo and lim inf|, |, o veg [X|"~2P/PUf(x) > 0.
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