Normal Functions Bounded on Arcs and a Proof of the Gross Cluster-Value Theorem

Stephen Dragosh and Donald C. Rung ${ }^{1)}$
(Received March 20, 1978)

Abstract

A differential form of the two-constants theorem that is valid for meromorphic functions is given. Treated as a (differential) maximum principle, this two-constants estimate is used to give a simple proof of the Gross cluster-value theorem.

Introduction

In their 1957 paper on normal functions, O. Lehto and K. I. Virtanen [4, Theorem 6] gave an improved (differential) form for normal meromorphic functions of the classical two-constants theorem. In this paper we show that a more general form of this result is true for arbitrary meromorphic functions f, although in most applications the most useful estimates on f^{\prime} in the hypothesis will imply f is a normal function. We recast the two-constants estimate as a (differential) maximum principle.

We conclude with a reasonably short proof of the Gross cluster-value theorem [3] which has not had an easily digested proof, although J. L. Doob [2] gave an accessible proof.

§1. The differential two-constants theorem

A domain G in the finite plane W bounded by a finite number of disjoint Jordan curves is called a Jordan domain. A nonempty subset γ of ∂G (the boundary of G) is an admissible set if it is the union of a finite number of open arcs in ∂G and boundary curves of ∂G. The harmonic measure at $z \in G$ of γ relative to G is denoted by $\omega(z)=\omega(z, \gamma, G)$. For $z \in G$, let $f_{\omega}(z)=\omega(z)+i \omega^{*}(z)$, where

[^0]$\omega^{*}(z)$ is a conjugate to $\omega(z)$ defined in some neighborhood of z. (In the following analysis we use the quantity $\left|f_{\omega}^{\prime}(z)\right|$ so neither the constant nor the neighborhood chosen matters.)

If $A \subseteq W, \bar{A}$ denotes the closure of A in W.
Theorem 1. Let f be meromorphic in a domain $G^{*} \subseteq W$. Let G be a Jordan subdomain of G^{*} in which f is holomorphic and bounded by K. Suppose there is an admissible subset γ_{1} of ∂G for which

$$
\limsup _{z \rightarrow \tau \in \gamma_{1}}|f(z)| \leq k<K \quad(z \in G)
$$

and an open analytic arc $\gamma_{2} \subseteq G^{*} \cap \partial G$ such that at some point $q \in \gamma_{2},|f(q)|=K$. Then, with $\omega\left(z, \gamma_{1}, G\right)=\omega(z)$,

$$
\begin{equation*}
\left|f^{\prime}(q)\right| \geq\left|f_{\omega}^{\prime}(q)\right| K \log \frac{K}{k} \tag{1.1}
\end{equation*}
$$

Proof. According to the two-constants theorem, for $z \in G$,

$$
|f(z)| \leq K\left(\frac{k}{K}\right)^{\omega(z)}
$$

with equality occurring at $z=q$. The level line $|f(z)|=K$ is tangent to γ_{2} at $z=q$, and $f^{\prime}(q) \neq 0$. If n is the inner normal to γ_{2} at q, then

$$
\begin{equation*}
\left.\frac{\partial|f(z)|}{\partial n}\right|_{z=q} \leqq\left.\frac{\partial \omega(z)}{\partial n}\right|_{z=q} K \log \frac{k}{K} . \tag{1.2}
\end{equation*}
$$

With f_{ω} defined in a neighborhood of q, it is simple to calculate that $\partial|f(z)| / \partial n$ $=-\left|f^{\prime}(q)\right|$ and $\partial \omega(z) / \partial n=\left|f_{\omega}^{\prime}(q)\right|$ at $z=q$. If these are substituted in (1.2), the theorem is proved.

By dividing both sides of (1.1) by $\left(1+|f(q)|^{2}\right)$ we obtain the Lehto-Virtanen result [4, Theorem 6]. We have been unable to obtain Theorem 1 from the Lehto-Virtanen result.

As Lehto and Virtanen noted [4, Theorem 7], $\left|f_{\omega}^{\prime}(q)\right|$ assumes a simple form if G^{*} is the unit disk $D:|z|<1$, and G is defined as follows. Let l be an open subarc of the unit circle $C:|z|=1$, and, for $0<\alpha<\pi$, let

$$
\begin{aligned}
& L_{\alpha}(l)=\left\{z \in D: \omega(z, l, D)=\frac{\pi-\alpha}{\pi}\right\} \\
& T_{\alpha}(l)=\left\{z \in D: \omega(z, l, D)>\frac{\pi-\alpha}{\pi}\right\}
\end{aligned}
$$

Note that the lens $T_{\alpha}(l)$ has interior angle α at each cusp. If we let $G=T_{\alpha}(l), \gamma_{1}=l$ and $\gamma_{2}=L_{\alpha}(l)$, then, for $z \in L_{\alpha}(l)$,

$$
\begin{equation*}
\left|f_{\omega}^{\prime}(z)\right|=\frac{2 \sin \alpha}{\alpha} \frac{1}{1-|z|^{2}} . \tag{1.3}
\end{equation*}
$$

The important feature of (1.3), aside from its simple form, is its independence from l. In this situation, under the assumptions of Theorem 1,(1.1) becomes

$$
\begin{equation*}
\left(1-|q|^{2}\right)\left|f^{\prime}(q)\right| \geq \frac{2 \sin \alpha}{\alpha}\left|f_{\omega}^{\prime}(q)\right| \log \frac{|f(q)|}{k} \tag{1.4}
\end{equation*}
$$

This suggests seeking upper estimates for $\left(1-|q|^{2}\right)\left|f^{\prime}(q)\right|$ in the form displayed by the right-hand side of (1.4). We begin by letting

$$
\begin{equation*}
\left(1-|z|^{2}\right) \frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}=N(z ; f) \tag{1.5}
\end{equation*}
$$

If we define

$$
I(x, s)=x e^{-\frac{s}{2}\left(x+\frac{1}{x}\right)}, \quad 0 \leq x<\infty, \quad 0 \leq s<\infty,
$$

then (1.5) can be written as

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=2|f(z)| \log \frac{|f(z)|}{I(|f(z)|, N(z ; f))} \tag{1.6}
\end{equation*}
$$

Note the convenient identity, valid for $0<t<\infty$,

$$
\begin{equation*}
t \log \frac{|f(z)|}{I(|f(z)|, N(z ; f))}=\log \frac{|f(z)|}{I(|f(z)|, t N(z ; f))} \tag{1.7}
\end{equation*}
$$

A few other properties of $I(x, s)$ will be needed. First, observe that for any $s, 0<s<\infty, I(\cdot, s)$ has a single maximum value

$$
B^{*}(s)=\frac{1+\sqrt{1+s^{2}}}{s} e^{-\left(1+s^{2}\right)}
$$

which occurs at

$$
B(s)=\frac{1+\sqrt{1+s^{2}}}{s}
$$

Thus $I(\cdot, s)$ is increasing in the interval $[0, B(s)]$ and we let $I^{-1}(\cdot, s)$ denote the inverse function relative to this interval. As either variable tends to ∞ - the other fixed and finite $-I$ tends to zero and so we define $I(\infty, s)=I(x, \infty)=$ $I(\infty, \infty)=0$. For any $x, 0<x<\infty, I(x, \cdot)$ is a decreasing function on $[0, \infty]$. From this and an investigation of the graph of $I(\cdot, s)$, one can easily see the following. If $m<B^{*}\left(s_{0}\right)$ and

$$
I\left(K, s_{0}\right) \leq m, \quad m<K<M
$$

then, for each $s \geq s_{0}$,

$$
\begin{equation*}
M \leq I^{-1}(m, s) \tag{1.8}
\end{equation*}
$$

§ 2. The maximum principle

We give now the Lehto-Virtanen maximum principle formulated for meromorphic functions via Theorem 1 (see also [1], p. 30). For $\tau \in C$, let

$$
N(\tau ; f)=\lim _{z \rightarrow \tau} N(z ; f), \quad z \in D ;
$$

and for $A \subseteq D$ set

$$
M(A ; f)=\sup _{z \in A}|f(z)|,
$$

and

$$
N(A ; f)=\sup _{z \in A} N(z ; f) .
$$

All of the above quantities are allowed to be infinite. We suppress f if no confusion results.

Theorem 2. Let f be meromorphic in D, and let G be a Jordan domain in D contained in some $T_{\alpha}(l), 0<\alpha<\pi$. Suppose for $\tau \in \partial G-\bar{L}_{\alpha}(l)$ and $z \in G$,

$$
\limsup _{z \rightarrow \tau}|f(z)| \leq m<\infty,
$$

and set $M=M(G ; f)$. Then

$$
\begin{equation*}
I\left(K, \frac{\alpha}{\sin \alpha} N(G ; f)\right) \leq m \quad(m \leq K \leq M) \tag{2.1}
\end{equation*}
$$

If $N(G ; f)<\infty$ and $m<B^{*}\left(\frac{\alpha}{\sin \alpha} N(G ; f)\right)$, then

$$
\begin{equation*}
M \leq I^{-1}\left(m, \frac{\alpha}{\sin \alpha} N(G ; f)\right) \tag{2.2}
\end{equation*}
$$

Proof. We first prove the following: for each $K, m<K<M$, there is a point $q=q(K) \in \bar{G} \cap D$ such that

$$
\begin{equation*}
I\left(K, \frac{\alpha}{\sin \alpha} N(q ; f)\right) \leq m ; \tag{2.3}
\end{equation*}
$$

then, (2.1) holds for each (fixed) K with $m<K<M$ because $I(K, \cdot)$ is decreasing. Finally (2.1) holds for $m \leq K \leq M$ because $I(\cdot, s)$ is continuous. Also, (2.2)
follows from (2.1) and (1.8).
Since $K<M$, there exists an arc $l(K) \subset l$ such that $|f(z)|<K$ in $T_{\alpha}(l(K)) \cap G$ $\equiv G^{*}(K)$ while $|f(q)|=K$ for some point $q \in L_{\alpha}(l(K)) \cap \partial G^{*}(K)$. Let $G(K)$ be the component of $G^{*}(K)$ containing q on its boundary, and set $\gamma(K)=\partial G(K)-$ $L_{\alpha}(l(K))$.

We now apply Theorem 1 with $\omega(z)=\omega(z, \gamma(K), G(K))$ to obtain

$$
\begin{equation*}
\left|f^{\prime}(q)\right| \geq\left|f_{\omega}^{\prime}(q)\right| K \log \frac{K}{m} \tag{2.4}
\end{equation*}
$$

(If there are "holes" of G in $G(K)$ that intersect $L_{\alpha}(l(K))$ at a point so as to prevent $G(K)$ from being a Jordan domain, we shrink them slightly to produce a Jordan domain and use $m+\varepsilon<K$ instead of m in (2.4); we then let $\varepsilon \rightarrow 0$.) Because

$$
\omega(z, \gamma(K), G(K)) \geq \omega\left(z, l(K), T_{a}(l(K)), \quad z \in G(K)\right.
$$

with equality at $z=q$, the same inequality applies to the normal derivatives at q; thus from (1.3) and (2.4) it follows that

$$
\begin{equation*}
\left(1-|q|^{2}\right)\left|f^{\prime}(q)\right| \geq \frac{2 \sin \alpha}{\alpha} K \log \frac{K}{m} \tag{2.5}
\end{equation*}
$$

This inequality, together with (1.6) and (1.7), leads to

$$
2 K \log \frac{K}{I\left(K, \frac{\alpha}{\sin \alpha} N(q ; f)\right)} \geq 2 K \log \frac{K}{m}
$$

and so (2.3) is verified.
In the sequel we will be concerned with domains G of a fairly simple type, namely those cut from a lens $T_{a}(l)$ by a Jordan arc γ on which f is bounded. We say that a Jordan arc γ properly intersects $T_{a}(l)$ if there is a subarc $\gamma^{*} \subseteq \gamma$ such that $\gamma^{*} \subset T_{a}(l)$ except for its endpoints which lie on $L_{\alpha}(l)$. The (simply connected) domain in $T_{\alpha}(l)$ bounded by γ^{*} and an arc of $L_{\alpha}(l)$ we denote generically by $H_{\alpha}(\gamma, l)$ even though there may be more than one possible subarc γ^{*}. If $|f(z)| \leq m$ on γ, Theorem 2 is applicable to any $H_{a}(\gamma, l)$.

§3. Functions bounded on arcs ending at points

To prepare for the proof of the Gross theorem, we investigate the local behavior of functions bounded on an arc ending at a point on C.

For $\tau \in C$ and $0<\beta<\pi$, we define a β-angle at $\tau, S(\beta, \tau)$, in the usual fashion; that is, if l_{τ} is the arc on C from τ to $-\tau$ in the clockwise sense, then

$$
S(\beta)=S(\beta, \tau)=\left\{z \in \mathrm{D}: \frac{\pi-\beta}{2 \pi}<\omega\left(z, l_{\tau}, D\right)<\frac{\pi+\beta}{2 \pi}\right\} .
$$

We set

$$
|f(\tau)|_{S(\beta)}=\limsup _{z \rightarrow \tau}|f(z)|, \quad z \in S(\beta, \tau),
$$

and say that f is bounded in angles at τ if $|f(\tau)|_{S(\beta)}$ is finite for each $\beta, 0<\beta<\pi$.
If γ is a Jordan arc in D except for one endpoint at $\tau \in C$, let

$$
|f(\tau)|_{\gamma}=\lim _{z \rightarrow \tau}|f(z)|, \quad z \in \gamma, \quad z \neq \tau .
$$

Theorem 3. Let f be meromorphic in D, and suppose for some $\tau \in C$, $N(\tau ; f)<\infty$, and there is an arc γ ending at τ for which $|f(\tau)|_{\gamma}$ is finite.

If for some $\beta, 0<\beta<\pi$,

$$
\begin{equation*}
|f(\tau)|_{\gamma}<\min \left\{|f(\tau)|_{S(\beta)}, \quad B^{*}\left(\frac{\pi+\beta}{2 \cos \beta / 2} N(\tau ; f)\right)\right\} \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
I\left(K, \frac{\pi+\beta}{2 \cos \beta / 2} N(\tau ; f)\right) \leq|f(\tau)|_{\gamma}, \quad|f(\tau)|_{\gamma} \leq K \leq|f(\tau)|_{s(\beta)} \tag{3.2}
\end{equation*}
$$

and so

$$
\begin{equation*}
|f(\tau)|_{S(\beta)} \leq I^{-1}\left(|f(\tau)|_{\gamma}, \frac{\pi+\beta}{2 \cos \beta / 2} N(\tau ; f)\right) . \tag{3.3}
\end{equation*}
$$

Proof. First choose a sequence of arcs $\left\{l_{n}\right\}, l_{1}=l_{\tau}, l_{n+1} \subset l_{n}$, with one endpoint at τ and the other endpoint approaching τ as $n \rightarrow \infty$; let $\left\{l_{n}^{*}\right\}$ denote the sequence obtained from $\left\{l_{n}\right\}$ by reflection in the diameter from τ to $-\tau$. Let $\alpha=(\pi+\beta) / 2$.

We assume that γ has its initial point at $-\tau$. Then γ properly intersects either $T_{a}\left(l_{n}\right)$ or $T_{\alpha}\left(l_{n}^{*}\right)$, or both, for each $n \geq 1$. If we set

$$
T_{n}=T_{\alpha}\left(l_{n}\right) \cap T_{\alpha}\left(l_{n}^{*}\right),
$$

then the union of all the closed domains $\bar{H}_{a}\left(\gamma, l_{n}\right)$ and $\bar{H}_{a}\left(\gamma, l_{n}^{*}\right)$ covers T_{n}. Because f is normal in a neighborhood of τ and thus is uniformly continuous with respect to the non-Euclidean metric close to τ, we infer that

$$
\limsup _{z \rightarrow \tau}|f(z)|=|f(\tau)|_{s(\beta)}, \quad z \in T_{n}, \quad n=1,2, \ldots
$$

Select a sequence z_{k} in T_{n} (n fixed) tending to τ for which

$$
\lim _{k \rightarrow \infty}\left|f\left(z_{k}\right)\right|=|f(\tau)|_{s(\beta)} .
$$

For each $k=1,2, \ldots$, there is a domain H_{k} with either $H_{k}=H_{\alpha}\left(\gamma, l_{n}\right)$ or $H_{k}=$ $H_{a}\left(\gamma, l_{n}^{*}\right)$ such that $z_{k} \in \bar{H}_{k}$. For the moment, we suppose

$$
H_{k}=H_{a}\left(\gamma, l_{n}\right)
$$

for all values of k; the analysis is similar if the other case holds for all values of k. From (2.1) of Theorem 2, we have, after suppressing f from the notation,

$$
\begin{equation*}
I\left(M\left(H_{k}\right), \frac{\alpha}{\sin \alpha} N\left(H_{k}\right)\right) \leq M\left(\gamma \cap H_{k}\right) . \tag{3.4}
\end{equation*}
$$

Since $I(x, \cdot)$ is decreasing and $H_{k} \subset T_{\alpha}\left(l_{n}\right)$,

$$
I\left(M\left(H_{k}\right), \frac{\alpha}{\sin \alpha} N\left(T_{\alpha}\left(l_{n}\right)\right)\right) \leq M\left(\gamma \cap T_{\alpha}\left(l_{n}\right)\right)
$$

and if we let $A_{n}=\lim \inf M\left(H_{k}\right)$, then

$$
I\left(A_{n}, \frac{\alpha}{\sin \alpha} N\left(T_{\alpha}\left(l_{n}\right)\right)\right) \leq M\left(\gamma \cap T_{\alpha}\left(l_{n}\right)\right)
$$

Finally, using

$$
\lim \sup N\left(T_{a}\left(l_{n}\right)\right) \leq N(\tau)
$$

and

$$
\lim \sup M\left(\gamma \cap T_{\alpha}\left(l_{n}\right)\right) \leq|f(\tau)|_{\gamma},
$$

we obtain

$$
\begin{equation*}
I\left(\lim \sup A_{n}, \frac{\alpha}{\sin \alpha} N(\tau)\right) \leq|f(\tau)|_{\gamma} . \tag{3.5}
\end{equation*}
$$

Since (3.4) holds for each K with $M\left(\gamma \cap H_{k}\right) \leq K \leq M\left(H_{k}\right)$, (3.5) holds for each K with $\lim \sup M\left(\gamma \cap H_{k}\right)<K<\lim \inf M\left(H_{k}\right)=A_{n}$.

Since $\left|f\left(z_{k}\right)\right| \rightarrow|f(\tau)|_{s(\beta)}$,

$$
\begin{equation*}
|f(\tau)|_{S(\beta)} \leq A_{n} \tag{3.6}
\end{equation*}
$$

If $|f(\tau)|_{\gamma}$ satisfies (3.1), then from (3.6) we see that (3.5) holds for each K with $|f(\tau)|_{\gamma} \leq K \leq|f(\tau)|_{s(\beta)}$ which gives (3.2). Then (3.2) and (1.8) give (3.3). This completes the proof.

Remark. If $|f(\tau)|_{\gamma}=0$, then Theorem 3 shows that f has angular limit 0 at τ which is the Lehto-Virtanen result [4] on asymptotic values for normal functions.

§4. The Gross cluster-value theorem

A value w in the extended plane Ω is said to be a principal value of f at τ if w is in the cluster set of f on every arc γ ending at $\tau ; w$ is said to be an angular value of f at τ if w is in the cluster set of f in some angle $S(\beta, \tau), 0<\beta<\pi$. The range of f at τ is the set

$$
R(f, \tau)=\left\{w \in \Omega: f\left(z_{n}\right)=w \quad \text { for some sequence } \quad z_{n} \longrightarrow \tau, z_{n} \in D\right\} .
$$

Gross Cluster-value Theorem. Let f be meromorphic in D and suppose w_{0} is an angular value of f at τ and also w_{0} is an accumulation point of $\Omega-R(f, \tau)$. Then w_{0} is a principal value of f at τ.

Remark. The original proof of Gross is involved and Doob [2] gave a more direct proof using one-sided cluster values and the non-Euclidean-based properties of normal functions. Difficulties arise in using the non-Euclidean geometry with normal functions; curves must lie in D and sometimes estimates on $|f|$ are needed in terms of the boundary cluster sets, and the journey between angular and tangential approach via non-Euclidean geometry requires skillful navigation. The differential two-constants theorem in the form of Theorem 3 allows an integrated approach by avoiding much of the non-Euclidean geometry.

Proof of the Gross Thborem. We can assume that $w_{0}=\infty$. Take any arc γ ending at τ and suppose $|f(\tau)|_{\gamma}$ is finite; we assume that for $z \in \gamma$,

$$
|f(z)| \leq k
$$

We will show that f is bounded in each angle $S(\beta, \tau)$ for z sufficiently close to τ; then ∞ is not an angular value of f at τ and the proof of the theorem will be complete.

Fix $\beta, 0<\beta<\pi$, and set $\alpha=(\pi+\beta) / 2$. Let $\mu(z)$ denote the classical elliptic modular function in D. Choose any finite point w_{1} in $\Omega-R(f, \tau)$ and then select w_{2} in $\Omega-R(f, \tau)$ with $\left|w_{2}\right|>k$ so that first

$$
2 \frac{\left|w_{1}\right|+k}{\left|w_{2}\right|-k}<B^{*}\left(\frac{\pi+\beta}{2 \cos \beta / 2} N(D ; \mu)\right)
$$

and then also

$$
I^{-1}\left(2 \frac{\left|w_{1}\right|+k}{\left|w_{2}\right|-k}, \frac{\pi+\beta}{2 \cos \beta / 2} N(D ; \mu)\right)<\frac{1}{3} .
$$

Now choose w_{3} in $\Omega-R(f, \tau)$ so that

$$
\begin{equation*}
\frac{1}{2}<\left|\frac{w_{3}-w_{2}}{w_{3}-w_{1}}\right|<2 \tag{4.1}
\end{equation*}
$$

By using a conformal mapping if necessary, we can assume that f omits w_{1}, w_{2}, w_{3} in D. Then the function

$$
g(z)=\frac{w_{3}-w_{2}}{w_{3}-w_{1}} \frac{f(z)-w_{1}}{f(z)-w_{2}}
$$

omits $0,1, \infty$ and is therefore subordinate to μ; hence for $z \in D$,

$$
N(z ; g) \leq N(D ; \mu) .
$$

Also, for $z \in \gamma$,

$$
|g(z)| \leq 2 \frac{\left|w_{1}\right|+k}{\left|w_{2}\right|-k}
$$

so that

$$
|g(\tau)|_{\nu} \leq 2 \frac{\left|w_{1}\right|+k}{\left|w_{2}\right|-k}<B^{*}\left(\frac{\pi+\beta}{2 \cos \beta / 2} N(D ; \mu)\right) \leq B^{*}\left(\frac{\pi+\beta}{2 \cos \beta / 2} N(\tau ; g)\right) .
$$

Now either

$$
|g(\tau)|_{S(\beta)} \leq|g(\tau)|_{\gamma} \leq 2 \frac{\left|w_{1}\right|+k}{\left|w_{2}\right|-k}<\frac{1}{3}
$$

or $|g(\tau)|_{y}$ satisfies (3.1) and hence (3.2); in the latter case we use (1.8) - or we could use (3.3) and the fact that $I^{-1}\left(|g(\tau)|_{\gamma}, \cdot\right)$ is increasing - to deduce that

$$
|g(\tau)|_{S(\beta)} \leq I^{-1}\left(|g(\tau)|_{\gamma}, \frac{\pi+\beta}{2 \cos \beta / 2} N(D ; \mu)\right)
$$

and thus

$$
|g(\tau)|_{S(\beta)} \leq I^{-1}\left(2 \frac{\left|w_{1}\right|+k}{\left|w_{2}\right|-k}, \frac{\pi+\beta}{2 \cos \beta / 2} N(D ; \mu)\right)<\frac{1}{3} .
$$

In either case we have

$$
\begin{equation*}
|g(\tau)|_{S(\beta)}<\frac{1}{3} \tag{4.2}
\end{equation*}
$$

If f were not bounded in $S(\beta, \tau)$, then from (4.1) we see that

$$
|g(\tau)|_{S(\beta)} \geq \frac{1}{2}
$$

which contradicts (4.2). This completes the proof of the theorem.

References

[1] J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37, MR 50, 13536.
[2] J. L. Doob, One-sided cluster value theorems, J. London Math. Soc. (3) 13 (1963), 461-70, MR 29, 3642.
[3] W. Gross, Zum Verhalten der konformen Abbildung am Rande, Math. Zeit. 3 (1919), 46-64.
[4] O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 46-65, MR 19, 403.

> Department of Mathematics, Michigan State University, East Lansing, Michigan 48823
> and
> Department of Mathematics, Pennsylvania State University, University Park,
> Pennsylvania 16802

[^0]: AMS (MOS) subject classification (1970).
 Key words and phrases. Two-constants theorem, normal meromorphic functions, principal value.

 1) The second author's research was conducted while on sabbatical leave from The Pennsylvania State University and was supported in part by a Canadian Research Council grant administered by Carleton University, Ottawa.
