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1. Introduction

In this paper we consider the differential equations

(1) Lnx + q(t)x = 09

(2) Lnx + q(t)f(t, x) = 0,

where n > 3 is an odd number and Ln is the differential operator of the form

(Vί τ 1 d 1 d d \_ d -__
Λ ^ " " Pn(O dt Pn.γ{t) dt dt Pl(t) dt po(t) '

The following conditions are always assumed to hold:

(i) Pi(t) (0<i<n) and q(t) are continuous and positive on the interval

la, oo), and

S OO

Pi(t)dt =
a

oo for l < ΐ < n - l .

(ii) f(t, x) is continuous on [α, oo) x R9 f(t, x) is nondecreasing in x and

xf(t, x)>0for x^O.

We introduce the notation:

" Po(t) '
(4)

Dj(xiPo,~ ,Pj)(t) = φ ~c[fDi~1(x\Poi~>iPj-\)(t)9 1 < j < n.

Then the differential operator Ln can be rewritten as

Ln = D»( ;p0,...,pn).

The domain @(Ln) of Ln is defined to be the set of all functions x: [Tx, oo)->R

such that Dj(x; pθ9..., Pj)(t) (0<j<n) exist and are continuous on [Tx, oo).

A nontrivial solution of (1) (or (2)) is called oscillatory if the set of its zeros

is infinite. Otherwise, it is called nonoscillatory. A nontrivial solution x(t) of

(1) (or (2)) is said to be strongly decreasing if it satisfies
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(5) (-iyx(t)D'(x; po,...9 Pj)(t) > 0 for 0 < j < n-1

for all sufficiently large ί. Condition (5) implies that \DJ\x; p0,..., Pj)(t)\ (0<

j<n-l) are decreasing and \DJ(x; p0,..., Pj)(t)\ I 0 as t ΐ oo for l < ; < n - l .

One should remark that equation (1) always has strongly decreasing solutions;

see Hartman and Wintner [3].

The oscillatory behavior of even order equations of the form (1) and (2) has

recently been studied by Kusano and Naito [6] and Kreith, Kusano and Naito

[5]. The main purpose of this paper is to adapt their methods and techniques

to establish criteria for all solutions of equations (1) and (2) with n odd to be either

oscillatory or strongly decreasing. Our results generalize those of Lovelady [7]

for odd order equations of the form x(w) + g(ί)x = 0.

The desired criteria for equations (1) and (2) are obtained in Sections 3 and

5, respectively. Section 4 is devoted to the study of the structure of the solution

space of equation (1). Several preparatory results which are basic in these sec-

tions are summarized in Section 2.

2. Preliminaries

Let ike{1,..., n — 1}, \<k<n — 1, and t, se[a, oo). We define

( 6 )

hiU s; pίk,...5 ph) = \ Pijiuy^^u, s; JV l5..., ph)du.
Js

It is easily verified that for 1 < k < n — 1

(7) Ik{t, s; pik,..., Pil) = (-l)%(s, t Ph,..., pik),

(8) Ik(t,s;pik,...,pil)

For simplicity we put

Λ0> s) = Po(.t)Ik(t, s; pu..., A ) , Λ(ί) = Jt(t, a).
(9)

Kk(t, s) = pn(t)Ik(t, s; ft.,,..., Pn-k), Kk(t) = Kk(t, a).

LEMMA 1. If xe@(Ln), then the following formula holds for 0<i<,k<,
n-ί andt,selTx, oo):

(10) = ΣJ=i (-ly- '^Xx; Po,-, PjKs)Ij-fa t; Pj,...,

k_.(u, t; pk,..., pi+1)Pk+i(.u)Dk+1(.x; Po,-, pk+1)(.u)du.
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This lemma is a generalization of Taylor's formula with remainder en-
countered in calculus. The proof is immediate.

LEMMA 2. // xe@(Ln) satisfies x(t)Lnx(t)<0 on [ί0, oo), then there exist
an even number I (O^Z<n-l) and t1 (t^to) such that for t>tu

(11) x(t)D'(x; pO9...9 pj)(t)>09

(12) (-ly-'xCODΌc; J>o>-> 2>;)(0 > 0,

This lemma generalizes a well-known lemma of Kiguradze and can be proved
similarly.

Consider the n-th order differential equation

(13) Lnx + F(t, x) = 0,

where n is either odd or even, and F(t, x) is a continuous function on [α, oo) x JR
such that F(ί, x) is nondecreasing in x and xF(t, x)>0 for x#0.

LEMMA 3. Let k, 0<fc<n — 1, be fixed. Equation (13) has a nonoscil-
latory solution x(t) satisfying

x(t)
7-^y = ^ejR - {0}

if and only if

(14) Γ° £»-*-1(0 |F(ί, cJt(ί))|Λ < oo /or some c e R - {0}.

The proof is found in Kitamura and Kusano [4].

LEMMA 4. // the differential inequality

F(t, x)}sgnx<ςθ

has a nonoscillatory solution which is not strongly decreasing, then so does the
differential equation (13).

For the proof see Canturija [1].

3. Oscillation theorems for equation (1)

As we remarked in Section 1, equation (1) always has nonoscillatory solutions
which are strongly decreasing. So the strongest conclusion we can expect for
oscillation of equation (1) is that all of its nonoscillatory solutions are strongly
decreasing.
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THEOREM 1. Suppose that

(15) J00 Jt-MK^Mqφdt = oo for i = 2, 4,..., n-1.

77ιen ei ery nonoscillatory solution of equation (1) is strongly decreasing.

PROOF. Let x(t) be a nonoscillatory solution of equation (1) which is not

strongly decreasing. We may suppose that x(t) is eventually positive. From

Lemma 2, there exist an even number / (2<l<n — 1) and tγ e[α, oo) such that

inequalities (11) and (12) hold for t>t1.

Suppose l<n — 1. From formula (10) with i = l, k = n — l, t = tu and s>tί

it follows that

(16) = Σ?=ί ( - l y - ' D ' f o P o — Pj)(s)Ij-fa tx; Pp..., pι+ί)

+ ( - 1 ) " " 1 Γ /»-,-!(«, ίi5 A - i , . . . , Pi+i)pJMDn(x; pθ9..., pn){u)du.

Using DM(x; po,...9 pn)(u)= -q(u)x(u) and (12), we have

\ Pn(u)In-ι-i(u9 tx; Pn-i,.~9 pι+ί)q(u)x(u)du < Dι(x; p0,..

which gives in the limit as s-»oo

(17) Γ x , , - , . ^ h)q(ί)x{i)dt< co.

On the other hand, by integrating Dι(x; pθ9...9 Pι)(t)>0 ( ί>ίχ) / times, we

obtain

(18) x(t)>cJι.1(t,t1) for t>t29

where c is a positive constant and t2>tx is a suitable constant. Combining (17)

with (18), we get

(19) Γ / ^ ( ί , ί O X . - ! - ^ , ί!)ί(ί)Λ < ex),

which contradicts (15).

Next, suppose l = n — 1. Multiplying both sides of equation (1) by pn(i) and

integrating from tx to oo, we see that

(20)
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From (20) and (18) with l = n-1, we have

Γ
Jt2

^ _ _ : oo
Jt2 *

or

(21) Γ Jn-2(t, tJKoit, tx)q(i)dt < oo,
Jt2

which again contradicts (15). Therefore, every nonoscillatory solution of (1)

must be strongly decreasing, and the proof is complete.

Next, we consider the case where the integrals

are convergent for i = 2, 4,..., n — 3 and n —2. For simplicity we put

(22) qtf) = Pi+1(t)Γ J^^u, t)Kn-i_2(u, t)q(u)du9 i = 2, 4,..., n - 3 ,

(23) 4«-i(0 = P»-2(0 5J Λ-3(w, t)K0(u, t)q(u)du.

THEOREM 2. //α// of the second order differential equations

(24)

are oscillatory, then every nonoscillatory solution of equation (1) is strongly

decreasing.

PROOF. We assume that x(t) is a positive solution of equation (1) which is

not strongly decreasing. By Lemma 2 there exist an even integer / ( 2 < / < n — 1)

and t1 ( ί x > α ) such that (11) and (12) hold for t>tx.

Let l<n-\. Putting i = / + l, fc = n - l , s>t>t1 in (10), we have

= Σj-ί+i ( - iy~ι-ιDJ(x\ pO9...9 PjKsyj+άs, t; pj9..., pι+2)

M _ Z _ 2 (M, ί; ft-!,..., Pι+2)pJμ)D«(x\ p0,..., pn)(u)du.

Letting s^oo in the above, we obtain

(25) -Dι+\x; pO9...9 pι+1)(t) > ^ pn(u)In.ι.2(u9 t; pn-u...9 pι+2)q(u)x(u)du
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f o r ί ^ ί i . Now putting ί = 0 , k=l-2, t>s=t1 in (10), we have

D°(x;po)(t)

= ΣψM-WDKx; Po,- ,pjKhVfa, v, Pj,..., Pl)

+ ( - I ) ' " 1 ^Iι-2(u, f, p,-2,.~, pJPi-iOOD'-Kxi Po.» . Pι-i)(«)*«

= Σ i = 2

0 o y (χ; j>o, .PjXti)ij(t> h Pi,...,Pj)

+ \ h-iit, u; pu..., p,_2)p,_1(M)D'-1(x; iΌ. . Λ-i)(«)^w,

which, in view of (11), yields

(26) D°(x; po)(ί) > (' /,_2(ί, ιι P l , . . . , Λ- jΛ- i ί i i^ '-Hx Po.-. Pt-i)(«)du

for ί > tt. Combining (25) with (26), we have

-Dι+1(x;p0,...,pι+1)(t)

^ pn(u)In-ι_2(u, t; pH-l9...9Pι+2)'

Iι-2(u, Ό; pl9...9 Pι-2)Pι-ι(v)I>ι~\x\ Po Pi-^

tι

S oo

^ p n ( u ) I n - ι - 2 ( u > t;pH-l9...,pι+2)'

for t>tv Since D I - 1 (x; po» » Pz-i) is increasing, it follows from the above that

-Dι+1(x;p09...iPι+ί)(t)

(«Ki-i(w5 ί; Piv , Pι-i)du.
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Let y(t) be given by

Then y(t)>0 on [tl9 oo) and y(t) satisfies

(27) -Dι+\x; pθ9...9 pι+ί)(t) > y(t)^ J ^ I I , t)Kn^2(μ9 t)q(μ)du

for t>tv Noting that

we see from (27) that

/ " ί Λ " + qtf)y(t) <; 0, t>tv

Lemma 4 now implies that the equation

has an eventually positive solution. But this contradicts our assumption.

Let I=n— 1. An integration of (1) yields

(28) D"-1^; pΌ9...9 pn.t)(t) > J pn(u)q(u)x(u)du for t > t v

Setting i = 0 , /c = n - 3 , ί > s = ίi in (10), we have

... Pi)P»~2(w)ί>rt~2(x; Pov , pn-2)(u)du

t9 tt; pl9...9 pj)

+ \ / π - 3 ( ί , M; pl9...9 pn-3)pn-2(u)Dn-2(x; pθ9...9 pn_2)(u)du.

From this we easily see that

(29) D°(x] po)(t) > Γ In^(U u; pl9...9 pn^)Pn-iiμ)^n'\^ Po>-> Pn-2)(μ)
Jti

for ί>tv From (28) and (29) it follows that for t>ti
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f °° Γ"
\ Pn(u)q(u)po(u) \ In-3(u,v\ pu...,pn-3)pn-2(v)Dn-2(x; po,...,pn_2)(v)dvdu
Jt Jίi

\ In-3(u,v; pί,...,pn-3)pn-2(v)Dn-2(x; po,...,pn_2)(v)dvdu
Jt

_ 2 ^

Therefore

> ^(^Jn-3(u, v)K0(u, v)q(u)du)pn-.2(v)Dn~2(x; p 0,..., pn_2)(v)dυ

for ί > ί l β Integrating this inequality from tγ to ί, we see that w(t) = Dn~2(x;

Po> »> Pn-2)(0>0 satisfies

(30) w(ί) > wίίO + Γ pn-i(u) Γ ί , . 1 ( # > ί w ί i ι for ί > tt.
Jti Ju

Denoting the right side of (30) by y(t)9 it is easy to see that

Again by Lemma 4 the equation

has an eventually positive solution, contradicting the hypothesis of the theorem.

We show that the conclusion of Theorems 1 and 2 can be strengthened if an

additional condition is placed on q{t).

THEOREM 3. Suppose that all nonoscillatory solutions of equation (1) are

strongly decreasing. Then every nonoscillatory solution x(t) of (I) satisfies

(31) g l

if and only if

(32)
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PROOF. If (32) does not hold, then by Lemma 3 with k = 0 equation (1) has

a nonoscillatory solution x(i) such that lim,.^ x(t)lpo(f) = const Φ 0. This proves

the "only if" part of the theorem.

Let x(t) be a nonoscillatory solution of (1) which does not enjoy property

(31). Then, there exists the limit l im^^ x(t)lpo(t) = a e R — {0}, and from Lemma

3 with fc = 0we have

This contradiction proves the "if" part of the theorem.

COROLLARY 1. Consider the third order equation

( 3 3 >

where Pi(t)9 /^(O and #(0 a r e positive continuous functions on [α, oo), and

° Pi(t)dt = ^° P2(t)dt= oo.

Suppose that either (i)

(34)

or (ii) \ q(t)dt< oo and the equation

05)

is oscillatory. Then all nonoscillatory solutions of equation (33) are strongly

decreasing. If in addition

5°° ( £ P2(«) £ Pi(σ)dσds^q(t)dt = oo,

ί/ieπ α// nonoscillatory solutions of (33) tend to zero as ί->oo.

COROLLARY 2. Consider the equations

( 1 \(2m)

- ^ - x ' j + g(t)x = 0,

(37)

where m>\, p(f) and q{i) are positive and continuous on [a, oo), and
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p(f)dt= co.

(I) All nonoscillatory solutions of equation (36) are strongly decreasing if
either (i)

(38)

or (ii)

(39) ( ( ( ' ( s - α)2m-3p(s)d5^(ί)ίίί < oo

and the equation

( 4 0 ) z " +
z + (2ιιι-3)l |Γ(Ji( '-0

is oscillatory.
If in addition

(41) J00 ( ^ ( ί - s ^ ^ s ^ ί C O Λ = oo,

then all nonoscillatory solutions tend to zero as t-*co.
(II) All nonoscillatory solutions of equation (37) are strongly decreasing

if either (i) (38) holds and

(42) ί* tlm-χq(t)dt = oo,

or (ii) (39)

(43) Γ t2m~2q(t)dt < oo

ί/ze equations (40) and

are oscillatory.
If in addition

(45) ^ (^\s^a)2m^p(s)ds^q(t)dt = oo,

then all nonoscillatory solutions of (37) tend to zero as ί->oo.
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EXAMPLE 1. Consider the equation

(46) (tλx<2m^)f + cVx = 0, ί > 1,

where |A| < 1, μ and c > 0 are constants. From Corollary 2 (II) (i) it follows that

all nonoscillatory solutions of (46) tend to zero as ί->oo if μ>max{A, 0} —2m.

In case μ<max{Λ,, 0}—2m, (39) and (43) are satisfied and equations (40) and

(44) become

Cf-λ+μ+2m-l

( 4 7 ) " +

and

rfμ+2m— 1

(W +

respectively. By Corollary 2 (II) (ii) all nonoscillatory solutions of (46) tend to

zero as t-*oo if either λ — 2m — l < μ < m a x {λ, 0} —2m or μ = A —2m — 1 and

Consequently if either μ>λ—2m — l or μ=λ—2m — 1 and (49) is satisfied, then

every nonoscillatory solution of (46) tends to zero as ί-»oo.

We conclude this section with a theorem which gives a sufficient condition for

equation (1) to have a nonoscillatory solution which is not strongly decreasing.

THEOREM 4. Suppose there exists an odd integer l(l<l<ή) such that

the I'th order equation

(50) D\z; p09 pu...9 Pι_l9 l ) (0 + Kn^{t)q{t)z{t) = 0

has a nonoscillatory solution z(t) satisfying

(51) z(t)DJ(z; p09 Pl9...9 Pj)(t) > 0, 0 < j < / - I ,

for all sufficiently large t. Then equation (1) has a nonoscillatory solution

which is not strongly decreasing.

PROOF. We may suppose that z(t)>0 on [tθ9 oo). Applying formula (10)

to z(0 with i = 0 , fc = / - 2 , ί > s = / 0 , we obtain by use of (7) that

- D°(z; po)(to)
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= Σj~=\ Dj(z; pθ9...9 Pj)(to)Ij(t, to\pl9...9pj)

/ / _ 2 ( ί , u ; pί9...9 P i - 2 ) P i - i ( " ) ^ l " 1 ( ^ ; Po> -> Pι-i)(u)du.

In view of (51), it follows that

(52) D°(z;po)(t)>D°(z;po)(to)

Γt
+ \ /,_2(ί, u;pu...,pι..2)pι-ί(u)Dι-1(z;p0,...9pι_ί)(u)du.

Jto

Integrating (50) from t to s (s>t>t0) and letting s->oo, we obtain

(53) D'-*(z; pO9...9 Pt-Jit) > J " XM_,(w, t)q(u)z(u)du, t > t0.

Substituting (53) in (52), we obtain

(54) z(ί) > D°(z; Po)(to)po(t) + [ Jι.2(t9 u)Pι-i(ύ) Γ X π _ ^ , u)q(υ)z{υ)dυdu
Jto J u

for ί > t0.

Now we define a sequence of functions {xOT}^=0 by

xo(t) = D°(z;po)(to)po(t)

xm+ί(t) = D°(z; Po)(to)Po(t) + Γ Λ- 2 (^ w)Pί-i(w) \ ^»-/(^ u)q(v)xm(v)dvdu,
Jto Ju

m.= 0, 1,2,....

It is easy to check that {xm}£=0 is well-defined as an increasing sequence and

satisfies

D°(z; po)(to)po(t) < xm(t) < z(t) for t > tθ9 m = 0, 1, 2,... .

Hence there exists a function x(ί) on [ί0, oo) such that

limm_o oxm(ί) = x(0 for t> to

and

ί>°(^ Po) (to)Po(t) < x(t) ^ z(t) for t > t0.

From the Lebesgue convergence theorem it follows that

x(t) = D°(z; po)(to)Po(t) + Γ Jι-2(t, u^-άu)^ Kn-iυ, u)q(v)x(v)dvdu
Jto Ju
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for t>t0. Differentiating the above equation, we conclude that x(t) is a non-

oscillatory solution with the desired property. This completes the proof.

EXAMPLE 2. Let us consider equation (46). For this equation, (50)

becomes

(55) z«> + J2^^[γr(\[ (u- l)2m-ιu-"du)z = 0.

According to Foster and Grimmer [2, Theorem 1], it is seen that equation (55)

has a solution satisfying (51) if and only if the second order equation

= o

is nonoscillatory. It is easily verified that equation (56) is nonoscillatory if either

μ<λ — 2m — 1 or μ = λ — 2m — l and

(57) c<imax{2(2m-3)!(2m-A-2), (2m-2)!(-λ + 2)}.

Hence if μ<λ-2m-l or μ = λ-2m-l and (57) is satisfied, then equation (46)

has a nonoscillatory solution which is not strongly decreasing.

4. Solution space of equation (1)

Let y denote the set of all solutions of equation (1). It is clear that S? is

an n-dimensional linear space over the reals. We are interested in the structure

of this solution space Sf in case every nonoscillatory solution of equation (1) is

strongly decreasing.

THEOREM 5. Suppose all nonoscillatory solutions of equation (1) are

strongly decreasing. Then Sf has a basis which consists of oscillatory solutions,

and y has an (n —1)-dimensional subspace whose elements are all oscillatory

solutions.

In order to prove this theorem, we need the following two lemmas.

LEMMA 5. Let x(t) be a solution of equation (1). //

(- iyD'( jc; "po,...9 Pj)(c) > 0, 0 <j < n - 1 ,

for some c>a, then

(-i)JD*(x'9po,...,Pj)(t)>0 for a<t<c, 0<j<n-l.

PROOF. Put υ(t) = x(a-t) for a-c<t<0. Define pj{t) = pj{a-i) for
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α-c<ί<0, 0<j<n. Then,

p0,..., pj)(a-t)9

so t?(ί) satisfies

D*(υ;pθ9...9pJ(t)-q(a-t)υ(t) = 0 for α - c < * < 0

a n d

D*(Ό; pθ9...9 Pj)(a-c) > 0, 0 < j < n - 1 .

Hence it follows that

D*(Ό; p O 9 . . . 9 pj)(t) > 0 f o r α - c < ί < 0 , 0 < 7 < n - l ,

which implies

(-iy'DJ(x; pO9...9 Pj)(t) > 0 for a < t < c, 0 < j < n-1.

LEMMA 6. Suppose that all nonoscillatory solutions of equation (1) are

strongly decreasing. If there exists a solution x(t) of equation (1) such that

DJ(x; Po> > Pj){t) has at least one zero for some je{09 1,..., n-1} , then x(t) is

oscillatory.

PROOF. Let x(i) be a positive solution of equation (1) such that (5) holds

on [c, oo) for some o α . Lemma 5 implies that DJ(x; pOi..., pj)(t) never vanish

on [α, c] for 0 ^ 7 < n ~ l . This shows our assertion.

PROOF OF THEOREM 5. For je {1,..., n} let z/t) be a solution of equation

(1) satisfying the initial conditions

D^Kzji p O 9 . . . 9 p k - ι ) ( ά ) = δjk, \ < k < n .

Clearly, z l 5..., zn form a basis for Sf and by Lemma 6 they are all oscillatory.

On the other hand, if xe span {z2,..., zπ}, then x(a) = 0, so that x(t) is oscillatory.

This implies that sρan{z2,..., zn} is an (n — l)-dimensional subspace of ^ , all

elements of which are oscillatory.

5. Nonlinear equations

In this section we study nonlinear equations of the form (2) which are either

weakly superlinear or weakly sublinear in the sense defined below.

DEFINITION. Equation (2) is called weakly superlinear if

l im,^.^ ill = oo uniformly for te[α, oo).
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Equation (2) is called weakly sublinear if

lim.^i^^ .'• = 0 uniformly for te[α, oo).
\x\

THEOREM 6. Suppose that equation (2) is weakly superlinear and

liminf ί_> o opo(ί)>0.

If, for some M>0, every nonoscillatory solution of the equation

(58) Lnx + Mq(t)x = 0

is strongly decreasing, then every nonoscillatory solution of equation (2) is

strongly decreasing.

If in addition

(59) J°° K^ήqit) \f(t, cpo(f))\dt = oo for every c e R - {0},

then every nonoscillatory solution x(f) of equation (2) satisfies l im,^ x{t)jpo{t)

= 0.

PROOF. Let x{t) be a nonoscillatory solution of equation (2) which is not

strongly decreasing. We may suppose x(t) is eventually positive. Then we have

(60) l i π w D%x; po)(0 = l i m ^ j^y = oo.

In fact, the integer I associated with x(t) by Lemma 2 is not less than 2, and so

there are a positive number N and t0 > a such that

iV for ί > ί o

Integrating the above inequality, we find

DΌ(x; po)(t) > N [ Pί(s)ds for t > t09

Jto

from which (60) readily follows. Now since liminf^^ po(t)>09 (60) implies that

lim^oo x(ί) = oo. By the weak superlinearity of equation (2),

uniformly with respect to f e [α, oo), so that there exists T>t0 such that/(ί, x(t))

^ Mx(t) for t > T. From this and (2) we have

Lnx{t) + Mq{i)x{t) <: 0, t>T.

We apply Lemma 4 to conclude that equation (58) has a positive solution which
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is not strongly decreasing. But this is a contradiction. This completes the proof

of the first part of the theorem.

Suppose that (59) holds for every ceR — {0}. If x(t) is a strongly decreasing

solution of equation (2), then \D°(x; po)(ή\ is decreasing. Hence the limit α =

lim^oo D°(x; po)(t) exists as a finite value. Lemma 3 with fc = 0 implies that

α = 0. This proves the second part of the theorem.

COROLLARY 3. Suppose that l iminf,^ po(t)>0 and f(x) is a continuous

and nondecreasing function on R which satisfies xf(x)>0 for xΦO and

(61) lim|x|_-^L=α,.

//, for some M > 0 , every nonoscillatory solution x(t) of equation (58) satisfies

lim^oo x(t)IPo(t) = O, then the same is true of every nonoscillatory solution of the

equation

(62) Lnx + q(t)f(x) = 0.

PROOF. It suffices to show that (59) holds for every ceR — {0}. Let c be

any nonzero constant. Since l iminf,^ po(t)>0, there are tt>a and δ>0 such

that \cpo(t)\>δ for t>tί. Defining <y = inf| J C |^(|/(x)|/|x|), we have γ>0 from

(61). Hence

(63) \f(cpo(t))\>y\cpo(t)\ for t > tx.

Now, from our hypothesis for equation (58) and Lemma 3 with /c = 0, it follows

(64)

(63) and (64) imply that (59) holds for any ceΛ-{0}.

The following example shows that Theorem 6 becomes false if the divergence

in the definition of weak superlinearity is not uniform with respect to t.

EXAMPLE 3. Consider the equation

(65) (txγ + - i - r ^ l o g ^ + r ^ ^ r ^ l o g ^ + r M x l ) = 0, t > l.

Here n = 3, Po(t) = p2(t) = p3(t)=l, p1(t) = r1

9 q{ί) = \r\\og{e + t-"2))^ and

f{t, x) = xlog(e + Γ1 |x|). It is easy to see that

= oo,



Asymptotic analysis of odd order ordinary differential equations 407

but that the divergence is not uniform in t> 1. The associated linear equation is

(66) (tx'Y + ^ r ^ l o g C e + r 1 / 2 ))" 1 * = 0.
o

By Corollary 1 (ii) all nonoscillatory solutions of equation (66) are strongly

decreasing for sufficiently large M. However equation (65) has a nonoscillatory

solution x(ί) = ί1/2, which is not strongly decreasing.

Our last theorem contains the result in the case that equation (2) is weakly

sublinear.

THEOREM 7. Suppose that equation (2) is weakly sublinear, and

l iminf ί ^ o o p 0 (0>0. If, for some m>0, the equation

(67) Lnx + mq(t)x = 0

has a nonoscillatory solution x(t) which does not satisfy limt^o:)x(t)lp0(<t) = 0,

then so does equation (2).

If in addition (59) holds for every ceR — {0}, then equation (2) has a non-

oscillatory solution which is not strongly decreasing.

PROOF. First, suppose (59) does not hold for some c e R — {0}. By Lemma

3, equation (2) has a nonoscillatory solution x(t) such that l im^^ x(t)jpo(t)

Next, assume that (59) is satisfied for every ceR — {0}. By the weak sub-

linearity of equation (2) there is α > 0 such that |/(ί, x) |<m|x | for | x |>α, t>a.

Taking cφO such that \cpo(t)\>(x for sufficiently large ί, we obtain

\f(t, cpo(t))\ < m\cpo(t)\ for sufficiently large t.

Hence from (59) we see that

(68)

Let x(ί) be a nonoscillatory solution of equation (67) which does not satisfy

\imn^aDx(t)/p0(t) = 0. Clearly x(ί)/Po(0 i s monotone, so that l im^^ x(t)/po(t)

exists in the extended real line. By (68) Lemma 3 implies that l im^^ |x(ί)/Po(0l

= oo, therefore x(t) is not strongly decreasing. From our assumption lim,^ Jx( ί ) |

= oo, so that |/(ί, x(ί))|<m|x(OI for sufficiently large t. Thus, for sufficiently

large ί,

{Lnx(t) + q(t)f(U x(t))} sgnx(ί) < 0.

It follows from Lemma 4 that equation (2) has a nonoscillatory solution which

is not strongly decreasing. The proof is complete.
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