On glueings of prime ideals

Dedicated to Professor Yoshikazu Nakai on his sixtieth birthday

Hiroshi Yanagihara

(Received December 13; 1979)

In the article [11] Traverso defined the notion of seminormal subrings of a commutative ring and developed an interesting theory on such subrings. In particular, to study the structure of seminormal subrings of a noetherian ring, he used a nice method by which a subring A^{\prime} is constructed from a ring B by glueing prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ of B lying over a prime ideal \mathfrak{p} of a subring A of B (for the precise definition see $\S 1$). Such a subring A^{\prime} is called the ring obtained from B by glueing over \mathfrak{p}, or simply a glueing of prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$. Traverso showed that any seminormal subring A in a noetherian ring B is obtained from B by a finite number of glueings, if B is a finite A-module (cf. Theorem 2.1 in [11]).

The aim of this paper is to show some results on glueings of prime ideals in the above sense. In § 1 we give a necessary and sufficient condition for a finite number of prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ of a noetherian ring B to be glued. In other words, we give a condition under which there is a subring A of B such that B is a finite A-module and that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are the prime ideals of B lying over a prime ideal \mathfrak{p} of A. Moreover we investigate when the ring A^{\prime} obtained from B by glueing over \mathfrak{p} coincides with A. Although Pedrini [8] and Tamone [10] have already attacked the same problem, the rings treated by them are very special ones. So, in § 2, we apply our results in § 1 to these special cases and show how our results work there in a unified way. Next, in §3, we show that Serre's property $\left(S_{2}\right)$ goes down from a noetherian ring B to a glueing A of prime ideals of height 1. This result also has been shown by Pedrini [8] in very special cases of integral domains, but we give a complete proof of this without any assumption. Moreover we show that if A is a glueing of prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ of a noetherian ring B one of which has height >1 and if any \mathfrak{p}_{i} contains a regular element of B, then A does not have the property $\left(S_{2}\right)$ or A coincides with B. In the last section we study local rings which are glueings of maximal ideals of semilocal rings. When A is a local subring of a semilocal ring B which is finite over A, we give several conditions for A to be a glueing of maximal ideals of B. In particular a condition for A to be such a glueing of a regular semilocal ring B will be given in terms of multiplicity of A and the conductor of A in B in the case where A is the locality of a closed point of an algebraic variety.

All the rings in this paper are commutative with unit.

§1. A condition for prime ideals to be glued

First we shall recall some basic results on glueing of a noetherian ring B over a prime ideal of a subring of B. Let A be a noetherian ring and B an overring of A such that B is a finite A-module. Let \mathfrak{p} be a prime ideal of A, and denote by $\kappa(\mathfrak{p})$ the quotient field of A / \mathfrak{p}. Then Traverso [11] proved the existence of the largest subring A^{\prime} of B containing A satisfying the following conditions:
i) There is exactly one prime ideal \mathfrak{p}^{\prime} of A^{\prime} lying over \mathfrak{p}.
ii) The quotient field $\kappa\left(\mathfrak{p}^{\prime}\right)$ of $A^{\prime} / \mathfrak{p}^{\prime}$ is isomorphic to $\kappa(\mathfrak{p})$ by the canonical homomorphism $\kappa(\mathfrak{p}) \rightarrow \kappa\left(\mathfrak{p}^{\prime}\right)$.
This largest subring A^{\prime} of B is called the ring obtained from B by glueing over \mathfrak{p}.
Lemma 1. Let A, B and \mathfrak{p} be as above, and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be the prime ideals of B lying over \mathfrak{p}. Let $\kappa\left(\mathfrak{p}_{i}\right)$ be the quotient field of B / \mathfrak{p}_{i}, and let π_{i} and w_{i} be the canonical homomorphisms $B \rightarrow B / \mathfrak{p}_{i}$ and $\kappa(\mathfrak{p}) \rightarrow \kappa\left(\mathfrak{p}_{i}\right)$, respectively, for each i. If A^{\prime} is a subring of B, then the followings are equivalent:
(i) A^{\prime} is the ring obtained from B by glueing over \mathfrak{p}.
(ii) A^{\prime} is the subring of B consisting of all $b \in B$ satisfying the followings:
a) $\pi_{i}(b)$ belongs to $w_{i}(\kappa(p))$ for each i.
b) $\quad w_{i}^{-1}\left(\pi_{i}(b)\right)=w_{j}^{-1}\left(\pi_{j}(b)\right)$ for any i and j.

The proof is easy and given in [11], p. 588.
Next we give another characterization of A^{\prime}. For this purpose put $C=$ $\kappa\left(\mathfrak{p}_{1}\right) \times \cdots \times \kappa\left(\mathfrak{p}_{n}\right)$ and let ρ_{i} be the canonical projection of C to $\kappa\left(\mathfrak{p}_{i}\right)$. Let ϕ be the homomorphism of B to C such that $\rho_{i} \phi$ is the canonical homomorphism $B \rightarrow B / \mathfrak{p}_{i} \rightarrow \kappa\left(\mathfrak{p}_{i}\right)$, and let ψ be the homomorphism of $\kappa(\mathfrak{p})$ to C such that $\rho_{i} \psi$ is w_{i}. Let the following diagram be the pullback one of commutative rings with respect to ϕ and ψ :

Then we have the following
Lemma 2. The homomorphism i is injective, and the image $i(D)$ is the ring A^{\prime} obtained from B by glueing over \mathfrak{p}.

Proof. Since ψ is injective, so is i clearly. Now, by definition, D consists of the elements (b, α) of $B \times \kappa(\mathfrak{p})$ such that $\phi(b)=\psi(\alpha)$. If b is an element of A^{\prime}, then $\pi_{i}(b)$ is an element of $w_{i}(\kappa(\mathfrak{p}))$ and $\alpha=w_{i}^{-1}\left(\pi_{i}(b)\right)$ is independent of i by

Lemma 1. Then it is easy to see that $\phi(b)=\psi(\alpha)$, and hence A^{\prime} is contained in $i(D)$. Conversely let b be an element of $i(D)$. If $i((b, \alpha))=b$, then we have $\phi(b)=\psi(\alpha)$. This means that $w_{i}(\alpha)=\pi_{i}(b)$ for each i, and hence b belongs to A^{\prime} by Lemma 1.
q.e.d.

In the following we may identify A^{\prime} with D by the injection i.
Now let B be a noetherian ring and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be prime ideals of B. Then we say that ($B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$) can be glued over a subring A of B, if B is a finite A-module and if there is a prime ideal \mathfrak{p} of A such that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are the prime ideals of B lying over \mathfrak{p}. By Nagata-Eakin's Theorem (cf. [3]) A is necessarily noetherian. The following proposition gives a condition for ($B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{\boldsymbol{n}}$) to be glued.

Proposition 1. Let B be a noetherian ring of finite dimension and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be prime ideals of B. Then $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$ can be glued over a subring of B if and only if the followings are satisfied:
(i) $\operatorname{dim} B / \mathfrak{p}_{i}=\operatorname{dim} B / \mathfrak{p}_{j}$ for any i and j.
(ii) There is an injective homomorphism w from an integral domain R to the residue ring $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ such that $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ is a finite R-module.

Proof. First assume that $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$ can be glued over a subring A of B. If $\mathfrak{p}=A \cap \mathfrak{p}_{i}$, then we see $\mathfrak{p}=\left(\cap_{i=1}^{n} \mathfrak{p}_{i}\right) \cap A$. Put $R=A / \mathfrak{p}$ and let w be the canonical homomorphism $R=A / \mathfrak{p} \rightarrow B / \cap{ }_{i=1}^{n} \mathfrak{p}_{i}$. Then it is clear that R and w satisfy the assertion (ii) of Proposition 1. On the other hand, we see $\operatorname{dim} B / \mathfrak{p}_{i}$ $=\operatorname{dim} R$, because we have $\mathfrak{p}_{i} \cap A=\mathfrak{p}$ and B is a finite A-module. This means that the assertion (i) of Proposition 1 is satisfied. Conversely assume that the assertions (i) and (ii) are satisfied. Let π be the canonical homomorphism $B \rightarrow B / \cap_{i=1}^{n} \mathfrak{p}_{i}$. Denote by A the inverse image $\pi^{-1}(w(R))$ of $w(R)$. Then it is easy to see that A is a subring of B with a prime ideal $\cap_{i=1}^{n} \mathfrak{p}_{i}$, and that $A / \cap_{i=1}^{n} \mathfrak{p}_{i}$ is isomorphic to R. Since $B / \cap \cap_{i=1}^{n} \mathfrak{p}_{i}$ is a finite $A / \cap_{i=1}^{n} \mathfrak{p}_{i}$-module, B is a finite A-module. If \mathfrak{q} is a prime ideal of B such that $\mathfrak{q} \cap A=\cap_{i=1}^{n} \mathfrak{p}_{i}$, we have $\mathfrak{q} \supset \mathfrak{p}_{j}$ for some j. Since $\cap_{i=1}^{n} \mathfrak{p}_{i}=\mathfrak{q} \cap A \supset \mathfrak{p}_{j} \cap A \supset \cap_{i=1}^{n} \mathfrak{p}_{i}$, we see $\mathfrak{q} \supset A=\mathfrak{p}_{j} \cap A$. This means $\mathfrak{q}=\mathfrak{p}_{j}$, because B is integral over A. Since $B / \cap \cap_{i=1}^{n} \mathfrak{p}_{i}$ is integral over $A / \cap i=1, \mathfrak{p}_{i}$, we have $\operatorname{dim} A / \cap_{i=1}^{n} \mathfrak{p}_{i}=\operatorname{dim} B / \mathfrak{p}_{j}$ for some j, and hence $\operatorname{dim} A / \cap \cap_{i=1}^{n} \mathfrak{p}_{i}=\operatorname{dim} B / \mathfrak{p}_{h}$ for any h by our assumption (i). Therefore we see $\operatorname{dim} A / A \cap \mathfrak{p}_{h}=\operatorname{dim} B / \mathfrak{p}_{h}=\operatorname{dim} A / \cap_{i=1}^{n} \mathfrak{p}_{i}$ and hence we have $\mathfrak{p}_{h} \cap A=\cap_{i=1}^{n} \mathfrak{p}_{i}$ for any h. This means that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ are the prime ideals of B lying over the prime ideal $\cap_{i=1}^{n} \mathfrak{p}_{i}$ of A. q.e.d.

Remark 1. Let $B, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}, R, w$ and π be as above and consider the pullback diagram of commutative rings with respect to π and w :

Then we see easily that $A=\pi^{-1}(w(R))$ is isomorphic to S by the homomorphism f.
Remark 2. If there is a subring C of B such that $\pi(C)=w(R)$, then $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$ can be glued over $C+\cap_{i=1}^{n} \mathfrak{p}_{i}$ of B. In fact it is clear that $A=$ $\pi^{-1}(w(R))$ is equal to $C+\cap_{i=1}^{n} \mathfrak{p}_{i}$. In particular if ($B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$) can be glued over a subring C of B, then it can be also glued over $C+\bigcap_{i=1}^{n} \mathfrak{p}_{i}$.

In the proof of Proposition 1 we have obtained a subring $A=\pi^{-1}(w(R))$ of B from given R and w, which we shall denote by A_{R} in the following. Moreover let A_{R}^{\prime} be the ring obtained from B by glueing over $\mathfrak{p}_{i} \cap A_{R}$. We call A_{R}^{\prime} a glueing of ($B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$). Assuming that the assertions (i) and (ii) of Proposition 1 are satisfied, we denote by σ the composition of canonical homomorphisms

$$
B \xrightarrow{\pi} B / \cap \cap_{i=1}^{n} \mathfrak{p}_{i} \longrightarrow \prod_{i=1}^{n} B / \mathfrak{p}_{i} \hookrightarrow \longrightarrow \prod_{i=1}^{n} \kappa\left(\mathfrak{p}_{i}\right) .
$$

On the other hand we may identify the quotient field $Q(R)$ of R with a subfield of the total quotient ring $Q\left(B / \cap_{i=1}^{n} \mathfrak{p}_{i}\right)=\prod_{i=1}^{n} \kappa\left(\mathfrak{p}_{i}\right)$ by a canonical homomorphism w_{1} obtained from w, because the image of a non-zero element of R by w is not a zero-divisor of $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$.

Proposition 2. Assume that the assertions (i) and (ii) of Proposition 1 are satisfied and let the following diagram

be the pullback one with respect to σ and w_{1}. Then A_{R}^{\prime} is isomorphic to S_{1} by the homomorphism f_{1}.

Proof. Since R is isomorphic to $\pi\left(A_{R}\right)=A_{\boldsymbol{R}} / \cap_{i=1}^{n} \mathfrak{p}_{i}$ as seen in the proof of Proposition 1, this is a direct consequence of Lemma 2.
q.e.d.

Theorem 1. Let the notations be as above and assume that the assertions (i) and (ii) of Proposition 1 are satisfied. Then A_{R} coincides with A_{R}^{\prime} if and only if we have $w_{1}(R)=\sigma(B) \cap w_{1}(Q(R))$. In particular if R is a normal domain, A_{R} is a glueing of $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$.

Proof. First assume that $A_{R}=A_{R}^{\prime}$. Then it is sufficient to show that $w_{1}(R)$
$\supset \sigma(B) \cap w_{1}(Q(R))$. Let x be an element of $\sigma(B) \cap w_{1}(Q(R))$. Since S_{1} is isomorphic to the subring of $B \times Q(R)$ consisting of the elements (b, r) satisfying $\sigma(b)=w_{1}(r)$, there exists an element y in S_{1} such that $x=\sigma f_{1}(y)=w_{1} g_{1}(y)$. By our assumption, $f_{1}(y)$ is an element of $A_{R}=A_{R}^{\prime}=f_{1}\left(S_{1}\right)$ and hence we see easily by Remark 1 that $g_{1}(y)=g(y)$ is in R. This means that $x=w_{1} g_{1}(y)$ is contained in $w_{1}(R)$.

Conversely assume that $w_{1}(R)=\sigma(B) \cap w_{1}(Q(R))$. If y is an element of S_{1}, $x=\sigma f_{1}(y)=w_{1} g_{1}(y)$ is in $\sigma(B) \cap w_{1}(Q(R))$ and hence in $w_{1}(R)$. Therefore from definition of π, σ, w and w_{1} it is easy to see that there is an element z in $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ whose image in $\prod_{i=1}^{n} \kappa\left(\mathfrak{p}_{i}\right)$ by the canonical injection $B / \cap_{i=1}^{n} \mathfrak{p}_{i} \rightarrow \prod_{i=1}^{n} \kappa\left(\mathfrak{p}_{i}\right)$ is x, and that z is in $\pi(B) \cap w(R)$. This means that there is an element s in S such that $w g(s)=\pi f(s)=z$ in the diagram of Remark 1. Since $\pi f(s)=\pi f_{1}(y)=z$, $f(s)-f_{1}(y)$ is in $\cap_{i=1}^{n} \mathfrak{p}_{i}$. Since A_{R} contains $\cap_{i=1}^{n} \mathfrak{p}_{i}$, this means, from Lemma 2 and Proposition 2, that A_{R} coincides with A_{R}^{\prime}. Lastly assume that R is an integral domain. Since $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ is integral over $w(R), \sigma(B)$ is integral over $w_{1}(R)$. Therefore $\sigma(B) \cap w_{1}(Q(R))$ must be $w_{1}(R)$ and hence we have $A_{R}=A_{R}^{\prime}$. q.e.d.

§2. Examples

(1) Let k be a field and let B be a finitely generated k-algebra. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be prime ideals of B. Then ($B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$) can be glued over a subring of B if and only if we have $\operatorname{dim} B / \mathfrak{p}_{i}=\operatorname{dim} B / \mathfrak{p}_{j}$ for any i and j. In fact $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ is also a finitely generated k-algebra, and hence, from Noether's normalization lemma (cf. [1], Chap. 5, §3, Th. 1), there is a subring R of $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ isomorphic to a polynomial ring over k such that $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ is a finite R-module. Therefore ($B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$) can be glued over a subring A_{R} of B by Proposition 1, and moreover we have $A_{R}=A_{R}^{\prime}$ by Theorem 1. In particular if we choose algebraically independent elements z_{1}, \ldots, z_{d} of B over k such that B is integral over $k\left[z_{1}, \ldots, z_{d}\right]$ and that we have $\left(\cap_{i=1}^{n} \mathfrak{p}_{i}\right) \cap k\left[z_{1}, \ldots, z_{d}\right]=\left(z_{1}, \ldots, z_{s}\right)$, then $A=k^{\prime}\left[z_{1}, \ldots, z_{s}\right]+\cap_{i=1}^{n} \mathfrak{p}_{i}$ for any subfield k^{\prime} of k such that $\left[k: k^{\prime}\right]<\infty$ is a glueing of $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$. This is the main result of Tamone [10] and follows easily from Proposition 1, Remark 2 and Theorem 1 by using the fact that $B / \cap_{i=1}^{n} \mathfrak{p}_{i}$ is integral over a subring isomorphic to $k^{\prime}\left[z_{1}, \ldots, z_{d}\right] /\left(z_{1}, \ldots, z_{s}\right) \cong k^{\prime}\left[z_{s+1}, \ldots, z_{d}\right]$. Moreover A is a finitely generated k^{\prime}-algebra by Lemma 9, in [1], Chap. 5, §1, no. 9.
(2) Let k be a valued field and let B be an analytic k-algebra. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be prime ideals of B. Then $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$ can be glued over a subring of B if and only if we have $\operatorname{dim} B / \mathfrak{p}_{i}=\operatorname{dim} B / \mathfrak{p}_{j}$ for any i and j. This follows also from an analogous result for analytic k-algebras to Noether's normalization lemma for finitely generated algebras over a field. Precisely, $B / \cap \cap_{i=1}^{n} \mathfrak{p}_{i}$ contains a regular local ring over which it is a finite module (cf. Sätze 3, 4 in Kap. II, § 5
of [5]).
(3) Let B be a noetherian ring, and let \mathfrak{p}_{1} and \mathfrak{p}_{2} be prime ideals of B which may be equal to each other. Let π_{i} be the canonical homomorphism $B \rightarrow B / \mathfrak{p}_{i}$ for $i=1,2$. Let ϕ be an isomorphism of B / \mathfrak{p}_{1} onto B / \mathfrak{p}_{2} and let A be the subring of B consisting of the elements b in B such that $\phi \pi_{1}(b)=\pi_{2}(b)$. Assume that B / \mathfrak{p}_{1} is a finite A-module by the canonical homomorphism $A \hookrightarrow B$ $\rightarrow B / \mathfrak{p}_{1}$. Then A is a glueing of $\left(B ; \mathfrak{p}_{1}, \mathfrak{p}_{2}\right)$.

Proof. It is easy to see $A \cap \mathfrak{p}_{1}=A \cap \mathfrak{p}_{2}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$, which we denote by \mathfrak{p}. Since B / \mathfrak{p}_{1} is a finite A-module, so is B / \mathfrak{p}_{2}. Therefore we have

$$
B=A b_{1}+\cdots+A b_{s}+\mathfrak{p}_{1}=A b_{1}^{\prime}+\cdots+A b_{s}^{\prime}+\mathfrak{p}_{2}
$$

for some elements b_{i} and b_{j}^{\prime} in B. Now let \mathfrak{p}_{1} be generated by x_{1}, \ldots, x_{i}. If b is an element of B, we see

$$
b=a_{1} b_{1}+\cdots+a_{s} b_{s}+c_{1} x_{1}+\cdots+c_{t} x_{t}
$$

for some elements a_{i} in A and c_{j} in B. Moreover there are elements $a_{i j}$ in A and y_{i} in \mathfrak{p}_{2} for $1 \leqq i \leqq t$ and $1 \leqq j \leqq s$ such that

$$
c_{i}=a_{i 1} b_{1}^{\prime}+\cdots+a_{i s} b_{s}^{\prime}+y_{i} .
$$

This means that we have

$$
b=a_{1} b_{1}+\cdots+a_{s} b_{s}+\sum_{i, j} a_{i j} b_{j}^{\prime} x_{i}+\sum_{i} y_{i} x_{i}
$$

and hence

$$
B=A+A b_{1}+\cdots+A b_{s}+\sum_{i, j} A b_{j}^{\prime} x_{i}
$$

because $\sum_{i} y_{i} x_{i}$ is an element of $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ which is contained in A. In particular if we put $R=A / \mathfrak{p}$, then $B / \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ contains a subring isomorphic to R over which it is a finite module. Therefore ($B ; \mathfrak{p}_{1}, \mathfrak{p}_{2}$) can be glued over A by Proposition 1 and Remark 2. Next let ϕ^{*} be the isomorphism of $\kappa\left(\mathfrak{p}_{1}\right)$ onto $\kappa\left(\mathfrak{p}_{2}\right)$ obtained from ϕ naturally and h_{i} the canonical injection of $\kappa(\mathfrak{p})=Q(A / \mathfrak{p})=Q(R)$ into $\kappa\left(\mathfrak{p}_{i}\right)$ for $i=1,2$. Let σ and w_{1} be as in Proposition 2 and Theorem 1, and let ρ_{i} be the canonical projection of $\kappa\left(\mathfrak{p}_{1}\right) \times \kappa\left(\mathfrak{p}_{2}\right)$ for $i=1,2$. Then if we have $\sigma(b)=w_{1}(x)$ for $b \in B$ and $x \in Q(R)$, we see, from $h_{2}=\phi^{*} h_{1}, \pi_{i}=\rho_{i} \sigma$ and $h_{i}=\rho_{i} w_{1}$,

$$
\begin{aligned}
\phi \pi_{1}(b) & =\phi^{*} \pi_{1}(b)=\phi^{*} \pi_{1} \sigma(b)=\phi^{*} \rho_{1} w_{1}(x) \\
& =\phi^{*} h_{1}(x)=h_{2}(x)=\rho_{2} w_{1}(x)=\rho_{2} \sigma(b)=\pi_{2}(b)
\end{aligned}
$$

and hence b is an element of A. This means that $\sigma(b)=w_{1}(x)$ belongs to $\sigma(A)$ $=w_{1}(R)$ and hence that we have $w_{1}(R)=\sigma(B) \cap w_{1}(Q(R))$. By Theorem 1 and

Remark 2 our assertion follows from this and the fact that A contains $\mathfrak{p}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$.
q.e.d.

Remark 3. Pedrini treated some special cases of the above example (3) in Theorems 1 and 3 of his paper [8].

§3. Property $\left(S_{2}\right)$ and glueings

Let A be a noetherian ring. Then we recall that A has Serre's property $\left(\mathrm{S}_{2}\right)$ if and only if $\operatorname{Ass}(A)$ and $\operatorname{Ass}(A / f A)$ for any regular element f of A have no embedded prime ideals. First we show a lemma giving a condition for a noetherian ring with $\left(S_{1}\right)$ to have $\left(S_{2}\right)$, which is due to S. Itoh and essential in later discussion.

Lemma 3. Let A be a noetherian ring whose prime ideals of height ≥ 1 contain regular elements. Let $A^{(1)}$ be the set of elements z in the total quotient ring $Q(A)$ of A such that any prime ideal of A containing the ideal $A:_{A} z$ is of height ≥ 2. Then A has $\left(S_{2}\right)$ if any only if $A=A^{(1)}$.

Proof. First assume that A has $\left(S_{2}\right)$. By definition A is contained in $A^{(1)}$. If $A^{(1)}$ contains an element $z=a / b$ not belonging to A where a and b are in A and b is regular, then any minimal prime divisor \mathfrak{p} of $A:_{A} z=b A:_{A} a$ is of height ≥ 2. Moreover we see depth $A_{\mathfrak{p}}=1$, because $\mathfrak{p} A_{\mathfrak{p}}$ is the radical ideal of $\left(b A:_{A} a\right) A_{\mathfrak{p}}$. On the other hand we have depth $A_{\mathfrak{p}} \geq \inf \left(2\right.$, ht $\left.A_{\mathfrak{p}}\right) \geq 2$ from $\left(S_{2}\right)$. This is a contradiction. Therefore we see that $A=A^{(1)}$. Conversely assume that A does not have $\left(S_{2}\right)$. Then there exists a prime ideal \mathfrak{p} of A such that depth $A_{\mathfrak{p}} \leq 1$ and ht $A_{\mathfrak{p}} \geq 2$, because A has (S_{1}). If b is a regular element in \mathfrak{p}, the image \bar{b} of b in $A_{\mathfrak{p}}$ is also regular in $A_{\mathfrak{p}}$. Therefore we see depth $A_{\mathfrak{p}}=1$. This means easily that $\mathfrak{p} A_{\mathfrak{p}}$ is an element of $\operatorname{Ass}_{A \mathfrak{p}}\left(A_{\mathfrak{p}} / \bar{b} A_{\mathfrak{p}}\right)$ and hence that \mathfrak{p} is an element of $\mathrm{Ass}_{A}(A / b A)$ by Lemma (7.C) in [6]. Therefore there exists an element a in A such that $b A:_{A} a=\mathrm{A}:_{A} a / b=\mathfrak{p}$. Then a / b belongs to $A^{(1)}$ from the fact that $\mathrm{ht}(\mathfrak{p}) \geq 2$. Moreover a / b is not an element of A by $\mathfrak{p}=A:_{A} a / b$. So A does not coincides with $A^{(1)}$.
q.e.d.

Now we give the following theorem which includes Theorems 2 and 4 of Pedrini [8] as special cases.

Theorem 2. Let B be a noetherian ring and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be prime ideals of B. Let A be a glueing of $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$ and put $\mathfrak{p}=A \cap \mathfrak{p}_{i}$. Then we have the followings:
(i) If any \mathfrak{p}_{i} is of height 1 for $i=1, \ldots, n$ and if B has $\left(S_{2}\right)$, then A has also $\left(S_{2}\right)$.
(ii) Assume that A is not equal to B. If any \mathfrak{p}_{i} contains a regular element of B for $i=1, \ldots, n$, then $A_{\mathfrak{p}}$ is of depth 1. Furthermore if some \mathfrak{p}_{i} is of height >1,
then A does not have $\left(S_{2}\right)$.
Proof. (i) First we show that $\operatorname{ht}(\mathfrak{p})=1$. It is clear that $\operatorname{ht}(\mathfrak{p}) \geq 1$, because ht $\left(\mathfrak{p}_{i}\right)=1$. If ht $(\mathfrak{p}) \geq 2$, there are prime ideals \mathfrak{q}_{1} and \mathfrak{q}_{2} of A such that $\mathfrak{p} \supsetneqq \mathfrak{q}_{1}$ $\supsetneqq \mathfrak{q}_{2}$. Then, by Going-up theorem, there are three prime ideals $\mathfrak{P}, \mathfrak{Q}_{1}$ and \mathfrak{Q}_{2} of B such that $\mathfrak{P} \supsetneq \mathfrak{Q}_{1} \subsetneq \mathfrak{Q}_{2}, \mathfrak{P} \cap A=\mathfrak{p}, \mathfrak{Q}_{1} \cap A=\mathfrak{q}_{1}$ and $\mathfrak{Q}_{2} \cap A=\mathfrak{q}_{2}$. Since \mathfrak{P} is one of $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}, \mathfrak{P}$ is of height 1 . This is a contradiction. Now let \mathfrak{Q} be a prime ideal of B and put $\mathfrak{q}=\mathfrak{Q} \cap A$. Then we see that ht $(\mathfrak{Q}) \geq 2$ if any only if ht $(\mathfrak{q}) \geq 2$. In fact if \mathfrak{Q} contains $\mathfrak{p}=\cap_{i=1}^{n} \mathfrak{p}_{i}$, so does \mathfrak{q}. Then we see that $\mathrm{ht}(\mathfrak{Q}) \geq 2 \Leftrightarrow Q \supsetneqq \mathfrak{p}_{i}$ for some $i \Leftrightarrow \mathfrak{q} \supsetneqq \mathfrak{p} \Leftrightarrow \mathrm{ht}(\mathfrak{q}) \geq 2$. If \mathfrak{Q} does not contains \mathfrak{p}, we have $\mathfrak{q} \supsetneq \mathfrak{p}$. Then we see $B_{\mathfrak{Q}}=A_{\mathfrak{q}}$ by Lemma 1.6 of [11] and hence ht $(\mathfrak{Q})=h t(\mathfrak{q})$. Since we have ht $(\mathfrak{p})=h t\left(\mathfrak{p}_{i}\right)=1$ for $i=1, \ldots, n$, and $\mathfrak{p}=\cap_{i=1}^{n} \mathfrak{p}_{i}$ contains a regular element of B, we see easily that the total quotient ring of A may be considered to coincides with that of B. Let z be an element of $A^{(1)}$ and let \mathfrak{a} be the ideal $A:_{A} z$. Then $\mathfrak{a} B$ is contained in $B:_{B} z$. Therefore if \mathfrak{P} is any prime ideal of B containing $B:_{B} z, \mathfrak{P} \cap A$ is a prime ideal of A containing \mathfrak{a} and hence is of height ≥ 2. This means from the above that \mathfrak{P} is of height ≥ 2, and so z is an element of $B^{(1)}$. Therefore we see that $A^{(1)} \subset B^{(1)}=B$ by Lemma 3, because B has $\left(S_{2}\right)$ and hence $\left(S_{1}\right)$. Let x be an element of $A^{(1)}$. Then x belongs to B, but \mathfrak{p} does not contains $A:{ }_{A} x$, because ht $(\mathfrak{p})=1$. If s is an element of $\left(A:_{A} x\right) \backslash \mathfrak{p}, a=s x$ is an element of A. Let w_{i} be the canonical homomorphism $\kappa(\mathfrak{p}) \rightarrow \kappa\left(\mathfrak{p}_{i}\right)$, and π_{i} the composition of the canonical homomorphisms $B \rightarrow B / \mathfrak{p}_{i} \rightarrow \kappa\left(\mathfrak{p}_{i}\right)$ for $i=1, \ldots, n$. Then we see easily that $\pi_{i}(x) \in w_{i}(\kappa(\mathfrak{p}))$ and $w_{i}^{-1}\left(\pi_{i}(x)\right)=w_{j}^{-1}\left(\pi_{j}(x)\right)=\bar{a} / \bar{s}$ for $i, j=1, \ldots, n$, where \bar{a} and \bar{s} are the classes of a and s in $A / \mathfrak{p} \subset \kappa(\mathfrak{p})$. This means by Lemma 1 that x belongs to A, since A is a glueing of $\left(B ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right)$. Therefore we see $A=A^{(1)}$. Since B has $\left(S_{2}\right)$ and we see easily $\operatorname{ht}(\mathbb{Q} \cap A)=0$ for any prime ideal \mathfrak{Q} of B of height $0, A$ has also $\left(S_{1}\right)$. Therefore A has $\left(S_{2}\right)$ by Lemma 3.
(ii) Let S be the multiplicatively closed subset $A \backslash \mathfrak{p}$ of B. Then $A_{\mathfrak{p}}=A_{S}$ is seminormal in B_{S} by Corollary 2.2 in [11] and the conductor $A_{S}:_{B_{S}} B_{S}$ is $\mathfrak{p} A_{\mathfrak{p}}=$ $\cap_{i=1}^{n} \mathfrak{p}_{i} B_{S}$, because the conductor $A:_{B} B$ is equal to $\mathfrak{p}=\cap_{i=1}^{n} \mathfrak{p}_{i}$ by Proposition 1.2 in [10]. Then we see easily from the proof of Theorem 2.1 in [11] that $A_{\mathfrak{p}}$ is a glueing of $\left(B_{S} ; \mathfrak{p}_{1} B_{S}, \ldots, \mathfrak{p}_{n} B_{S}\right)$. Moreover if an element a in \mathfrak{p}_{i} is regular in B, the image of a in B_{S} is regular in B_{S}. Therefore we may assume that B is a semilocal ring with the maximal ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ and that A is a local ring with the maximal ideal \mathfrak{p}. Since \mathfrak{p} and \mathfrak{p}_{i} contain regular elements of B and we see easily from Lemma 1.6 in [11] that any regular element of A is also regular in B, we may consider that the total quotient ring $Q(A)$ of A is a subring of the total quotient ring $Q(B)$ of B. Then we see that $Q(A)=Q(B)$, because $\mathfrak{p}=A:_{B} B$ contains a regular element of B. Therefore if z is an element of B which does not belongs to A, there are a regular element b of A and an element a of A such that $z=a / b$
in $Q(A)=Q(B)$. Then we see that $z \mathfrak{p} \subset B\left(A:_{B} B\right) \subset A$ and hence that $\mathfrak{p}=A:_{A} z$, since $z A \not \subset A$. This means that $b A:_{A} a=\mathfrak{p}$, and so \mathfrak{p} is contained in $\mathrm{Ass}_{A}(A / b A)$. In other words we have depth $A=1$. In particular if some \mathfrak{p}_{i} is of height >1, so is \mathfrak{p}. Therefore A does not have $\left(S_{2}\right)$.
q.e.d.

Corollary. Let B be a noetherian ring, and let A be a subring of B which is seminormal in B. Assume that B is a finite A-module. If a prime divisor in A of the conductor \mathfrak{c} of A in B is of height >1 and if \mathfrak{c} contains a regular element of B, then A does not have $\left(S_{2}\right)$.

Proof. If \mathfrak{p} is a prime divisor in A of \mathfrak{c} of height >1, let S be the multiplicatively closed subset $A>p$ of A. Then A_{S} is seminormal in B_{S} and \mathfrak{c}_{S} is the conductor of A_{S} in B_{S} as seen in the proof of Theorem 2, (ii). Since c is a radical ideal by Lemma 1.3 in [11], \mathfrak{c}_{s} is the maximal ideal of $A_{S}=A_{\mathfrak{p}}$. Therefore we see, from the proof of Theorem 2.1 in [11], that A_{S} is obtained from B_{S} by glueing over the prime ideal $\mathfrak{p} A_{S}$ of A_{S} of height >1. This means by Theorem 2, (ii) that A_{S} does not have $\left(S_{2}\right)$. Therefore, from the definition of $\left(S_{2}\right)$, it is easy to see that A does not have (S_{2}).
q.e.d.

Remark 4. Let B and A be as in Corollary to Theorem 2. Assume that B has property $\left(S_{2}\right)$. Then even if any prime divisor in B of the conductor of A in B is of height $1, A$ does not necessarily have property $\left(S_{2}\right)$. In fact let B be a finitely generated algebra over an algebraically closed field k. Assume that B is a normal domain and the dimension of B is larger than 1 , and let \mathfrak{p}_{1} and \mathfrak{p}_{2} be two prime ideals of B such that $h t\left(\mathfrak{p}_{1}\right)=\mathrm{ht}\left(\mathfrak{p}_{2}\right)=1$. Then we see $\operatorname{dim} B / \mathfrak{p}_{1}=$ $\operatorname{dim} B / \mathfrak{p}_{2}=\operatorname{dim} B-1 \geq 1$ and hence there is a glueing A_{1} of $\left(B ; \mathfrak{p}_{1}, \mathfrak{p}_{2}\right)$ as seen in $\S 2$, (1). If \mathfrak{p} is the prime ideal $A_{1} \cap \mathfrak{p}_{1}=A_{1} \cap \mathfrak{p}_{2}$ of A_{1}, we have $\operatorname{dim} A_{1} / \mathfrak{p}=$ $\operatorname{dim} B / \mathfrak{p}_{i} \geq 1$ and hence \mathfrak{p} is not a maximal ideal of A_{1}. Since A_{1} is also a finitely generated k-algebra as seen in $\S 2$, (1), there are infinitely many maximal ideals of A_{1} containing \mathfrak{p}. Let \mathfrak{m}_{1} and \mathfrak{m}_{2} be such two different maximal ideals of A_{1} and let A be a glueing of $\left(A_{1} ; \mathfrak{m}_{1}, \mathfrak{m}_{2}\right)$. Then we see easily that A is seminormal in B and that the conductor of A in B is the ideal $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$. Then A does not have property (S_{2}), although B does.

Remark 5. The author proved originally Theorem 2 and its Corollary for noetherian domains using a well known criterion for a noetherian domain A to have $\left(S_{2}\right): A$ has $\left(S_{2}\right)$ if and only if $A=\cap_{p} A_{p}$ where \mathfrak{p} runs over all prime ideals of A of height 1 . However S. Itoh pointed that if we use Lemma 3 instead of this criterion, the same proof can work in the more general cases stated in the above results. On the other hand S . Goto obtained in [4] the following result holding a close similarity to ours: Let B be a semilocal Cohen-Macaulay ring with maximal ideals $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}$. Assume that we have $\operatorname{dim} B=\operatorname{dim} B_{\mathfrak{n}_{i}}$ for any i,
and let A be a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$ different from B. Then A is a CohenMacaulay ring if and only if $\operatorname{dim} B=1$.

§4. Glueings of semilocal rings

Let A be a noetherian local ring with maximal ideal \mathfrak{m} and residue field k. Denote the multiplicity $e_{A}(\mathfrak{m})$ of \mathfrak{m}, the embedded dimension $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$ and the graded ring $\sum_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$ associated to A by $e(A)$, embdim (A) and $G(A)$, respectively. Furthermore let $G(A)^{+}$be the ideal $\sum_{i=1}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$ of $G(A)$. Then we have the following

Lemma 4. Let B be a noetherian semilocal local ring, and let $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}$ be the maximal ideals of B. If A is a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$, then A is a local ring and $G(A)$ is isomorphic to a graded subring G of $G\left(B_{n_{1}}\right)+\cdots+G\left(B_{n_{n}}\right)$ such that $G^{+}=G\left(B_{n_{1}}\right)^{+}+\cdots+G\left(B_{n_{n}}\right)^{+}$. In particular we have

$$
\operatorname{embdim}(A)=\sum_{i=1}^{n}\left[\kappa\left(n_{i}\right): \kappa(\mathfrak{m})\right] \operatorname{embdim}\left(B_{n_{i}}\right),
$$

where \mathfrak{m} is the maximal ideal $\mathfrak{n}_{i} \cap \cdots \cap \mathfrak{n}_{n}$ of A. Moreover suppose that ht $\left(\mathfrak{n}_{i}\right)$ $=h t(\mathfrak{m})$ for $1 \leqq i \leqq s$ and $\mathrm{ht}\left(\mathfrak{n}_{j}\right)<\mathrm{ht}(\mathfrak{m})$ for $s+1 \leqq j \leqq n$. Then we have

$$
e(A)=\sum_{i=1}^{s}\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa(\mathfrak{m})\right] e\left(B_{n_{i}}\right) .
$$

Proof. It is easy to see that A is a local ring and that \mathfrak{m} coincides with the Jacobson radical $\mathfrak{n}_{1} \cap \cdots \cap n_{n}=\mathfrak{n}_{1} \cdots n_{n}$ of B, because A is a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$. Hence \mathfrak{m}^{s} is equal to $\mathfrak{n}_{1}^{s} \cap \cdots \cap \mathfrak{n}_{n}^{s}$ for $s=1,2, \ldots$. Let f_{s} be the canonical homomorphism $B / \mathfrak{n}_{1}^{s} \cap \cdots \cap \mathfrak{n}_{n}^{s} \rightarrow B / \mathfrak{n}_{1}^{s} \oplus \cdots \oplus B / \mathfrak{n}_{n}^{s}$ for each $s>1$. Since \mathfrak{n}_{i}^{s} and \mathfrak{n}_{j}^{s} are coprime for any $i \neq j, f_{s}$ is an isomorphism by Chinese remainder theorem. Therefore we see easily that f_{s} induces an isomorphism between $\mathfrak{m}^{s} / \mathfrak{m}^{s+1}=\mathfrak{n}_{1}^{s} \cap \cdots \cap \mathfrak{n}_{n}^{s} / \mathfrak{n}_{1}^{s+1} \cap \cdots \cap \mathfrak{n}_{n}^{s+1}$ and $\mathfrak{n}_{1}^{s} / \mathfrak{n}_{1}^{s+1} \oplus \cdots \oplus \mathfrak{n}_{n}^{s} / \mathfrak{n}_{n}^{s+1}$ for each $s \geqq 1$, and hence that $G(A) \simeq A / \mathfrak{m} \oplus G\left(B_{n_{1}}\right)^{+} \oplus \cdots \oplus G\left(B_{n_{n}}\right)^{+}$as graded rings. Since A / \mathfrak{m} is isomorphic to a subring of $B / \mathfrak{n}_{1} \cap \cdots \cap \mathfrak{n}_{n}=B / \mathfrak{n}_{1} \oplus \cdots \oplus B / \mathfrak{n}_{n}$, the first assertion is proved. The second one is a direct consequence of the above isomorphism. Lastly we see also from the above that

$$
\operatorname{length}_{A}\left(B / \mathfrak{m}^{s}\right)=\sum_{i=1}^{n} \operatorname{length}_{A}\left(B / \mathfrak{n}_{i}^{s}\right)=\sum_{i=1}^{n} \operatorname{length}_{B}\left(B / \mathfrak{n}_{i}^{s}\right)\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa(\mathfrak{m})\right] .
$$

Since we have length $A_{A}\left(A / \mathfrak{m}^{s}\right)=$ length $_{A}\left(B / \mathfrak{m}^{s}\right)-$ length $_{A}(B / A)$ and length $A_{A}(B / A)$ $=$ length $_{A}\left(\left(B / \cap_{i=1}^{n} \mathfrak{n}_{i}\right) /(A / m)\right)<\infty$, we see, from the definition of multiplicity and our assumption on heights of maximal ideals $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}$,

$$
e(A)=\sum_{i=1}^{s}\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa(\mathfrak{m})\right] e\left(B_{n_{i}}\right) .
$$

Proposition 3. Let B be a noetherian semilocal ring with maximal
ideals $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}$, and let A be a local subring of B with maximal ideal \mathfrak{m} such that B is a finite A-module. Then the followings are equivalent if B is not equal to A :
(i) A is seminormal in B and the conductor of A in B is m-primary.
(ii) A is a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$.
(iii) m is equal to the Jacobson radical $n=n_{1} \cap \cdots \cap n_{n}$ of B.
(iv) The canonical homomorphism $f: \mathfrak{m} / \mathfrak{m}^{2} \rightarrow \mathfrak{n} / \mathfrak{n}^{2}$ induced by the injection $A \hookrightarrow B$ is surjective.
(v) The homomorphism f is bijective.
(vi) We have $\mathfrak{n}^{2} \cap \mathfrak{m}=\mathfrak{m}^{2}$ and embdim $(A)=\sum_{i=1}^{n}\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa(\mathfrak{m})\right] \operatorname{embdim}\left(B_{n_{i}}\right)$.
(vii) The homomorphism f induces a bijection between the ideals $G(A)^{+}$and $G\left(B_{n_{1}}\right)^{+} \oplus \cdots \oplus G\left(B_{n_{n}}\right)^{+}$.

Proof. (i) \Rightarrow (ii). Assume that A is seminormal in B. Then the conductor \mathfrak{c} of A in B must be a radical ideal by Lemma 1.3 of [11]. Therefore if c is \mathfrak{m} primary, we see $c=\mathfrak{m}$. Then we see from the proof of Theorem 2.1 of [11] that A is the ring obtained from B by glueing over m . In other words A is a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$.
(ii) \Rightarrow (vii). This is a direct consequence of Lemma 4.
(vii) $\Rightarrow(\mathrm{v}) \Rightarrow$ (iv). Trivial.
(iv) \Rightarrow (iii). Let A^{\prime} be the ring obtained from B by glueing over \mathfrak{m}. Then A^{\prime} is a local ring with maximal ideal $\mathfrak{n}=\mathfrak{n}_{1} \cap \cdots \cap \mathfrak{n}_{n}$. If f is surjective, we have $\mathfrak{n}=\mathfrak{m}+\mathfrak{n}^{2}$ and hence $\mathfrak{n}=\mathfrak{m} A^{\prime}+\mathfrak{n n}$. Therefore we have $\mathfrak{n}=\mathfrak{m} A^{\prime}$ by Nakayama's lemma. This means that we have $\mathfrak{m} A^{\prime}=\mathfrak{m}+\left(\mathfrak{m} A^{\prime}\right)^{2}=\mathfrak{m}+\mathfrak{m}\left(\mathfrak{m} A^{\prime}\right)$. Since B is noetherian and a finite A-module, A is also noetherian by Nagata-Eakin's theorem (cf. [3]). Therefore A^{\prime} and m^{\prime} are both finite A-modules and so we see $\mathfrak{m}=\mathfrak{m} A^{\prime}$ again by Nakayama's lemma. This means that $\mathfrak{m}=\mathfrak{n}$.
(iii) \Rightarrow (ii). Let A^{\prime} be as above. Then we see $A^{\prime} / \mathfrak{n}$ is isomorphic to A / m by the induced homomorphism of the injection $A \hookrightarrow A^{\prime}$. Therefore we have $A^{\prime}=A+n$ $=A+\mathfrak{m}=A$ from the assumption that $\mathfrak{m}=\mathfrak{n}$.
(ii) \Rightarrow (i). This is well known. (Cf. § 1 in [11].)
(v) $\Leftrightarrow\left(\right.$ vi). Since the kernel of f is $\mathfrak{n}^{2} \cap \mathfrak{m} / \mathfrak{m}^{2}, f$ is injective if and only if $\mathfrak{n}^{2} \cap \mathfrak{m}$ $=\mathfrak{m}^{2}$. Moreover the right hand side of the second equality in (vi) is equal to the dimension of the vector space $\mathfrak{n} / \mathfrak{n}^{2}$ over $k=A / \mathfrak{m}$ as seen in the proof of Lemma 4. From these facts our assertion follows easily.
q.e.d.

Proposition 4. Let k be an algebraically closed field, and let A be a local ring of a closed point of an algebraic variety defined over k. Let B be the integral closure of A in the quotient field of A, and let $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}$ be the maximal ideals of B. Then the followings are equivalent:
(i) B is regular and A is a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$.
(ii) The multiplicity $e(A)$ of A coincides with the number n of the maximal ideals of B and the conductor of A in B is the maximal ideal \mathfrak{m} if $e(A)>1$.

Proof. First notice that we have ht $\left(\mathfrak{n}_{i}\right)=\operatorname{dim} B=\operatorname{dim} A$ for any i and that $B_{n_{i}}$ is unmixed in the sense of $\S 25$ in [7] as seen easily from analytically unramifiedness of $B_{\mathrm{n}_{i}}$ (cf. (36.4) in [7] or Theorem 31 of Chap. VIII in [12]). Now assume that the assertion (i) is true. Then $B_{n_{i}}$ is a regular local ring and hence we see $e\left(B_{n_{i}}\right)=1$. If \mathfrak{m} is the maximal ideal of A, then B / \mathfrak{n}_{j} is isomorphic to A / \mathfrak{m} for each i by the assumption that k is algebraically closed. Therefore we have $e(A)=\sum_{j=1}^{n} e\left(B_{n_{j}}\right)=n$ by Lemma 4. On the other hand we see $\mathfrak{m}=\mathfrak{n}_{1} \cap \cdots \cap \mathfrak{n}_{n}$ by Proposition 3. This means that the conductor of A in B is equal to m if $e(A)=n>1$. Conversely assume that $e(A)$ is equal to n and that $B \supsetneqq A$. Then, since $\mathrm{ht}\left(\mathfrak{n}_{i}\right)=\operatorname{dim} A$ for each i, we see $n=\sum_{i=1}^{n} e\left(m B_{n_{i}}\right)$ by a similar argument in the proof of Lemma 4 or by Corollary 1 to Theorem 24 of Chap. VIII in [12], where we denote by $e\left(\mathfrak{m} B_{n_{i}}\right)$ the multiplicity of an $\mathfrak{n}_{i} B_{n_{i}}$-primary ideal $\mathfrak{m} B_{n_{i}}$. This means that $e\left(\mathfrak{m} B_{n_{i}}\right)=1$ for any i. Since $\mathfrak{m} B_{n_{i}}$ is $n_{i} B_{n_{i}}$-primary, we see easily $1 \leqq e\left(n_{i} B_{n_{i}}\right) \leqq e\left(m B_{n_{i}}\right)=1$ by the definition of multiplicities of $n_{i} B_{n_{i}}$-primary ideals. Then we have $e\left(B_{n_{i}}\right)=e\left(n_{i} B_{n_{i}}\right)=1$ and hence $B_{n_{i}}$ is a regular local ring by Theorem (40.6) in [7], because $B_{n_{i}}$ is unmixed as noticed in the above. Therefore B is regular. Moreover there is a system of parameters x_{1}, \ldots, x_{d} of $\mathfrak{m} B_{n_{i}}$ such that $e\left(\mathfrak{m} B_{n_{i}}\right)=e\left(\left(x_{1}, \ldots, x_{d}\right) B_{n_{i}}\right)$ by Theorem (24.1) in [7], because $B_{n_{i}} / \mathfrak{r}_{i} B_{n_{i}} \cong B / \mathfrak{n}_{i}$ is an algebraically closed field. Since $B_{\mathrm{n}_{i}}$ is regular, any system of parameters of $B_{n_{i}}$ is distinct by Theorem (25.7) in [7] and hence we see length $B_{n_{i}} /\left(x_{1}, \ldots, x_{d}\right) B_{n_{i}}$ $=e\left(\left(x_{1}, \ldots, x_{d}\right) B_{n_{i}}\right)=e\left(m B_{n_{i}}\right)=1$. This means that $\left(x_{1}, \ldots, x_{d}\right) B_{n_{i}}$ coincides with the maximal ideal $\mathfrak{n}_{i} B_{n_{i}}$ and hence we have $\mathfrak{m} B_{n_{i}}=n_{i} B_{n_{i}}$. Since n_{1}, \ldots, n_{n} are the prime divisors of $\mathfrak{m} B$, we see $\mathfrak{m} B=\mathfrak{n}_{1} \cap \cdots \cap \mathfrak{n}_{n}$. On the other hand if \mathfrak{m} is the conductor of A in B, then $\mathfrak{m} B$ is an ideal of A containing m and so coincides with \mathfrak{m}. Therefore A is a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$ by the equivalence (ii) \Leftrightarrow (iii) in Proposition 3.
q.e.d.

Remark 6. Let A and B be as in Proposition 4. From the proof of Proposition 4 we see that if $e(A)$ coincides with the number of the maximal ideals of B, then B is regular. However A is not necessarily a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$. For example let A be a local ring of an ordinary triple point of a plane curve. Then we have $e(A)=3$ and the derived normal ring B of A in the quotient field of A has exactly three maximal ideals $\mathfrak{n}_{1}, \mathfrak{n}_{2}, \mathfrak{n}_{3}$. But A is not seminormal and hence not a glueing of ($B ; \mathfrak{n}_{1}, \mathfrak{n}_{2}, \mathfrak{n}_{3}$), because singular seminormal points on a plane curve are only ordinary double points (cf. [9]). Therefore the condition that the conductor of A in B is the maximal ideal of A is indispensable in the assertion (ii) of Proposition 4.

Remark 7. Let A and B be as above, and assume that they satisfy the
conditions (i) and (ii) of Proposition 4. Then we see embdim $(A)=e(A) \times \operatorname{dim} A$ by Lemma 4. On the other hand $G\left(B_{n_{i}}\right)$ is isomorphic to a polynomial ring over k for each i and hence $G(A)$ is reduced, because it is isomorphic to a subring of a reduced ring $G\left(B_{u_{1}}\right)+\cdots+G\left(B_{n_{n}}\right)$ again by Lemma 4. If $\operatorname{dim} A=1$, these two properties means, conversely, that A is seminormal (cf. Theorem 1 in [2]). However the author does not know whether a similar result holds for higher dimensional cases.

Remark 8. Let A be a reduced noetherian local ring with maximal ideal \mathfrak{m} and infinite residue field A / \mathfrak{m}, and let B be the integral closure of A in its total quotient ring. Assume that B is a Cohen-Macaulay ring and a finite A-module, and that we have $\mathrm{ht}\left(\mathfrak{n}_{i}\right)=\operatorname{dim} B$ for each maximal ideal \mathfrak{n}_{i} of $B(i=1, \ldots, n)$. Then if we have $e(A)=\sum_{i=1}^{n}\left[B / \mathfrak{n}_{i}: A / \mathfrak{m}\right]$ and \mathfrak{m} is the conductor of A in B, B is regular and A is a glueing of $\left(B ; \mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right)$. In fact this can be shown in a similar way to the proof of Proposition 4. But we omit the proof.

References

[1] N. Bourbaki, "Algèbre Commutative, Chap. 5, 6", Hermann, Paris, 1964.
[2] E. D. Davis, "On the geometric interpretation of seminormality", Proc. Amer. Math. Soc., 68 (1978), 1-5.
[3] P. M. Eakin, "The converse to a well known theorem on noetherian rings", Math. Ann., 177 (1968), 278-282.
[4] S. Goto, "On Buchsbaum rings obtained by glueing", Preprint.
[5] H. Grauert and R. Remmert, "Analytische Stellenalgebren", Grund. der Math. 176, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
[6] H. Matsumura, "Commutative algebra", Benjamin, New York, 1970.
[7] M. Nagata, "Local Rings", Interscience, New York, 1962.
[8] C. Pedrini, "Incollamenti di ideali primi e gruppi di Picard", Rend. Sem. Math. Univ. Padova, 48 (1973), 39-66.
[9] P. Salmon, "Singolarità e gruppo di Picard", Symp. Math. II (1968), 341-345.
[10] G. Tamone, "Sugli incollamenti di ideali primi", Bollettino U.M.I., 14 (1977), 810-825.
[11] C. Traverso, "Seminormality and Picard group", Ann. Sc. Norm. Sup. Pisa, 24 (1970) 585-595.
[12] O. Zariski and P. Samuel, "Commutative Algebra, Vol. II", Van Nostrand, Princeton, 1960.

Department of Mathematics,
Faculty of Science, Hiroshima University

