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The oscillation of even order differential equations, both forced and unforced,

has been an area of a large amount of interest. For example, see [4] and its

bibliography.

In this paper we will give some results concerning the oscillation of solutions

to equations of the form

(1) χ(2π> + /(ί, x, x',..., x*2"-1)) = R(2n\i)

where the functions / and R satisfy appropriate conditions. Our conditions on

R generalize those found in [2] and [3].

A solution to (1) on an interval [α, oo) is said to be oscillatory if it has an

unbounded set of zeros. A real valued function R is called strongly bounded if

it assumes its maximum and minimum on every interval of the form [a, oo), 0 < α .

Throughout the remainder of this paper R and R+ will denote the reals and

nonnegative reals respectively.

LEMMA 1. Let ReC2n[_R+, R] be strongly bounded and / e C ° [ R + x R 2 π ,

R] be such that Xχ/(ί, Xi,. > X 2 M ) > 0 for every t>0 and (x l 5..., x 2 w)eR 2 f I . //

x is a bounded solution of x ( 2 n ) + / ( ί , x, x',..., x ( 2 l l" 1 )) = ̂ ( 2 n ) ( 0 o n aγι interval

[a, oo), then exactly one of the following holds:

( i ) x is oscillatory,

(ii) there is a b>0 such that 0<x(ί) and

(-l)*[x<fc>(0 - Λ<*>(ί)] < 0 for k = 1, 2,..., In on \b, oo),

(iii) there is a b>0 such that x(t)<0 and

(-l)*[x<fc>(0 - £(*>(0] > 0 for k = 1, 2,..., In on [&, oo).

If x is any nonoscillatory solution on an interval [α, oo), then

(iv) there are c, C > 0 such that C<|x(ί) | whenever c<t.

Moreover, if x is an unbounded nonoscillatory solution, then |x(ί)|->oo as

ί->oo.
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PROOF. Let x denote a bounded nonoscillatory solution of x ( 2 n ) + /
= R(2n). We will do the proof for the case x(t)>0 on [α, oo). The proof is
similar if x(0<0 on [α, oo). Since x(t)>0 on [0, oo), we have x<2π>(ί)--R(2B)(0
= — / < 0 on [α, oo). By standard arguments, we also have ( — l)k(xw(t)
— R(k\t))<0 on some interval [ft, oo), e.g., see the proof of Theorem 1 in [1].
In particular, x'(t)-R'(t)>0 on [ft, oo). We will now show that x'(i)-R'(t)>0
on an interval of the form [ft, oo) even if x is an unbounded nonoscillatory solu-
tion. Suppose that x is a positive unbounded nonoscillatory solution such that
x'(t)-R'(t) assumes nonpositive values on every interval of the form [ft, oo).
We can not have xf(t) — R'(t)<0 on an interval [ft, oo) because if we did then
x(t) — R(t)<x(b) — R(b) for t>b which is impossible since x is unbounded.
Hence, x'(t) — R'(t) assumes both positive and negative values on every interval
[ft, oo). It follows easily that x"(t) — R"{i) and each of its derivatives also assume
both positive and negative values on every interval [ft, oo). In particular x(2n)(ί)
— R(2n\t) assumes positive and negative values on every interval [ft, oo). This
is impossible because xi2n\t) — R(2n)(t)= — / < 0 . Hence, we must have x'(t)
— R'(t)>0. Thus for any nonoscillatory solution x(f) we have that x(f) — R(t)
is a nondecreasing function. If x(t) — R(t)->ao as ί-»oo, then (iv) occurs since
R is bounded. If x(t) — R(t)-τ^oo as ί-»oo, then there is an A such that x(t)—R(t)
-+A as ί-»oo. Let c>b be such that R(c)<R(t) for c<t. Since x(c)-R(c)<A

we have 0<x(c)<A + R(c). Set C = ~(A + R(c)). Then for t sufficiently large

we have x(t)>A + R(t)-C>A + R(c)-C = 2C-C = C. Hence, there is a c>0
such that x(t)>C whenever t>c. Finally suppose that x is a positive unbounded
nonoscillatory solution. If x(t)-^co as ί-*oo then there are a number £ > 0 and
a sequence {ίj such that ίf-^oo and x(ί f)<£. Since x'(t) — R'(t)>Q on an interval
[ft, oo) and x(t) is unbounded we may assume that ft was chosen so that x(ft)-
jR(ft) > E - min {R(ή: 0 < t). From x'(t) - R'(i) > 0 we obtain

x(ft) - R(b) < x(tύ - R(td

< E - min {£(*): 0 < t}

for every ίf>ft. This contradicts our choice of ft. Hence x(t)-+ao whenever
ί-»oo. This completes the proof.

THEOREM 2. Let peC°[R+, R+], ^eC°[R2 n, R+], /eC 0 [R + xR 2 »,R],
and R e C2/I[R+, R] be such that

( i ) R is strongly bounded,
(ii) for every c>0 there is a C>0 such that g(xί9 x2, ~, *2n)^C whenever

\xΛ>c,
(iii) x^fit, xl9 x2,..., x 2 n )>.P(0^i ? x2>—> X2n) for every t>0 and (xl9 x2,
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(iv) ί ° t2n~2p(t)dt=+oo.
Jo

Then every solution of

x(2n) + f(t, x, x',..., x*2"-1)) = £<2w>(ί)

on an interval of the form (a, oo) is oscillatory.

PROOF. Suppose that x is a nonoscillatory solution on [α, oo). It suffices
to consider the case that x(t)>0 on [α, oo). Set W(t) = x(t)-R(t). We begin
by proving that there is a C>0 such that

on some interval of the form [b, oo) for fc=l, 2,..., 2n — 1. From Lemma 1
(iv) and hypotheses (ii), (iii) we have

(3) W(2»)(ί) < - Q>(0*(0 < 0

for some C>0 and α<ί. Thus p^ί2"-1) is a decreasing function. In particular,
there is an ax>a such that either W^-^ή^O or W(2n~ι\i)<Q on [α^ oo).
Suppose W(2n~V(t)<0 on [«!, oo). Then

(4) W^-^it) < WV-^iaJ

since FF(2π)(ί)^0 on [al9 oo). Repeated integrations of each side of (4) shows
that

Since ίf ( 2 n~1 )(α1)<0, we have limt^o0(x(t)-R(t))= — co which is impossible
because x(t)>0 and R(t) is bounded. Therefore we must have
on [α, oo). From (3) we obtain

p(u)x(u)du

for a i ^ ί < s. Since PF<2f|-x >(s) ̂  0 for all s > a x we have

(5) c Γ p(u)x(u)du ζ W<2*-lKt)

on [α l 5 oo) which is (2) in the special case fc = l. Notice that aί may be chosen
so that Pf ( 2 n"1 )(0>0 on [au oo). Hence, W(2n~2) is strictly increasing on
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[au oo) and there is an a2>a1 such that either ^ 2 n ~ 2 > ( ί ) > 0 or W<2n~2\t)<0

on [α 2, oo). Suppose that W^2n-2\t)>0 on [α 2, oo). Then

(6) W^2n-2\a2) < W(2n~2\t)

since W(^2n~1\t)>0 on [α 2, oo). Repeated integrations of each side of (6) show

that

< w{t) = *(ί)

Since R(t) is bounded there is a c>0 such that

2(2*-2) ! ^ ( 2 n" 2 )fe)/ 2"- 2 <

on [c, oo). By (5) we now have

2(2n - 2) ! w(2n~2)(a2)C ^ u2n~2p(u)du

which is impossible by hypothesis (iv). Thus, we must have W^2n"2\t)<0 on

[α 2, oo). Integrating each side of (5), using integration by parts on the left hand

side, yields

C(s - ί ) Γ p(u)x(u)du + c{\u - t)p(u)x(u)du

for a < t < s. Since W^2n-2)(s) < 0 for all s > a2, we have

( u - t)p(u)x(u)du < -

on [α 2, oo), which is (2) in the special case fc = 2. Proceeding as in the cases fc= 1

and /c = 2, it can be shown that if

on [α7 , oo), then there is an aj+ι such that

J - Jt

on [ a y + 1 , oo) for j = 2, 3,..., 2n —2. In particular

(2/2-2)! Γ
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on some interval [fc, oo). Using Lemma 1 (iv) there is a D > 0 such that

( « - t)2n'2p{ύ)du < W\f).

This contradicts hypothesis (iv). Thus there is no nonoscillatory solution on an

interval of the form [α, oo).

LEMMA 3. Let p, g, /, and R be as in Theorem 2. If equation (1) has a

bounded nonoscillatory solution x on an interval [0, oo), then there are numbers

c, C>0 such that

(j-l)l

for c<t andj = l9 2,..., 2 n - l .

PROOF. We will indicate how to do the proof by induction. Suppose that

x(2n)_j_y_=#(2π) h a s a bounded nonoscillatory solution x on [α, oo). Without

loss of generality we may assume that x(t)>0 on [a, oo). By Lemma 1 (iv), and

hypotheses (ϋ), and (iii) of Theorem 2 there are c, C>0 such that /(*, x(ί), x'(t),

..., x{2n~ι\t))>Cp(t) on [c, oo). By Lemma 1 (ii) we may also assume that

(~l) f c [χ( f c )(0-Λ ( f c ) (0]<0 for fe = l, 2,...,2n on [c, oo). Set W(t)=x(t)-R{t).

Then (-l)kJF<*>t0<O for k = l , 2,..., 2n. From the differential equation we

obtain W^ln\t)= -f<-Cp(t) on [c, oo). Hence,

0 < W^-^is) < Wi2*~x\i) - C (S p(u)du

for c<t<s so that C \* p{u)du^W^2n'1\t) for c<t<s. If we now let

we obtain

cΓ p(u)du< W^^Kt)

which is the desired result when j = l. If we now integrate each side of this
inequality using integration by parts on the left hand side, we obtain

C(s - 0 Γ P(M)du + C {\u - t)p(u)du ^ W(2n~2\s) - W(2n~2Kή.

Since the function Pf (2/ l~2)(s) is nonpositive on [c, oo) we have

iμ- t)p(u)du < W^2n'2\f)

which is the desired result when j = 2 . Proceeding as in the cases j = ί and j=2
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the desired result can be established by induction.

C°°
THEOREM 4. Let p9 g9f, and R be as in Theorem 2. // \ t2n~ιp(i)dt = <X)9

Jo
then any solution x o / x ( 2 w ) + / ( ί , x, x;,..., x ( 2 w" 1>)=Λ ( 2 / l )(0 on an interval of
the form [#, oo) is either oscillatory or |x(ί)|-»oo as t-+oo.

PROOF. Suppose that x is bounded nonoscillatory and x(t)>0 on [α, oo).

From Lemma 3 we have ^ ^ 2 ) f f°° (u - t)2n~2p(u)du < x'(t) - R \ i ) . If we

integrate each side of this inequality, using integration by parts on the left hand

side, we obtain

+ ( 2 y | f

x(s) - Λ(J) - x(/) + R(t).

Since \ u2n~ιp(u)du-+ao as s-+oo and Λ is bounded, we must have x(s)-^oo as

s-*oo. This contradicts our assumption that x is bounded. Therefore x must

be unbounded and by Lemma 1 we have |x(ί)|->oo as f->oo. •

The results in [2] and [3], which are related to those given above, require

that R satisfy one of the following conditions:

( I ) R(t) is oscillatory and jR<*>(r)->0 as ί-»oo for fc=0, 1, 2,..., 2 n - l .

(II) There exist numbers λl9 λ2>0 and sequences {tn}, {sn} such that ίΛ-^oo as

n->oo, sn->oo as n-*oo, R(tn)=λί9 R(sn)= —λ2, and — λ2<R(t)<λ1 for all t

sufficiently large.

In [2] and [3] it is shown that with (I) or (II) and assumptions of / equivalent
/•oo

to those assumed here, the condition \ tln"1v(t)dt=co is sufficient for any
Jo

bounded solution of x ( 2 π ) -f/= J R ( 2 n ) on an interval [f>, oo) to oscillate.
Clearly any function which satisfies (I) or (II) is strongly bounded. Hence,

Theorem 4 generalizes the corresponding results in [2] and [3]. Moreover, a

strongly bounded function need not satisfy (I) or (II). For example, in the case

n = l the function i?(ί) = (l + r 1 ) s inί is strongly bounded, but satisfies neither

(I) or (II). None of the theorems presented here are true if R is merely assumed

to be bounded. For example, x(ί) = Γ 3 is a nonoscillatory solution of x"+2x

= 2 r 3 + 12r 5. Here /(ί, x, x')=2x satisfies the hypotheses of the theorems and

is bounded on any interval [α, oo), 0 < α .

References

[ 1 ] A. G. Kartsatos, On oscillation of solutions of even order nonlinear differential equations,



On the oscillation of solutions of forced even order nonlinear differential equations 269

J. Differential Equations 6 (1969), 232-237, MR 39J5877.
[ 2 ] A. G. Kartsatos, On the maintenance of oscillations of nth order equations under the

effect of a small forcing term, J. Differential Equations 10 (1971), 355-363, MR 44J5556.
[ 3 ] A. G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing

term, Proc. Amer. Math. Soc. 33 (1972), 377-383, MR 48#8959.
[ 4 ] A. G. Kartsatos, Recent results on oscillation of solutions of forced and perturbed*

nonlinear differential equations of even order, in Stability of Dynamical Systems, edited
by J. R. Graef, Marcel Dekker, New York, 1977, 17-72, MR 55#2453.

Department of Mathematics,
Mississippi State University,

Mississippi State, Mississippi 39762,
U.S. A,






