
HIROSHIMA MATH. J.
10 (1980), 635-657

Z-transforms and overrings of a noetherian ring

Shiroh ITOH

Received April 19, 1980)

Introduction

Since Nagata had pointed out the importance of the notion of ideal trans-
forms in relation to the 14-th problem of Hubert, ideal transforms have been
studied by many authors. The notion of Z-transforms of a ring A, Z being a
subset of Spec (4) which is stable under specialization, is a generalized one of
ideal transforms. We can use ideal or Z-transforms as a powerful tool to study
overrings B of a noetherian ring A. This is done as follows. Take a suitable chain
ZπcZ r t_1c...cZ0 = Spec(y4) of subsets of Spec (A) and consider the overrings
T(Zi9 A) Π B where T(Zh A) is the Zrtransform of A. Then by examining
properties of T(Zi9 A) Π B inductively, we get the knowledge of properties of B.
K. Yoshida, in [22], used this technic and showed some properties of overrings
B are determined by local properties at prime ideals in ΔssA(B/A). But the es-
sential point of this technic is that we can reduce a problem on B to a problem on
(A^)β ΠBp, pe Ass^JB/A), where (A^)9 is the global transform of Ar This
motivation follows from two facts: The first one is a characterization of
Ass^B/A), i.e. ΔssA(B/A) = {p e Spec(^) | A^ c(Ap)' n B^} (Theorem (2.5)). On
the other hand, roughly speaking, the difference between T(Zh A ) Π B and T(Zt^l9

A) n B appears in prime ideals belonging to Z f _ ί — Zf, and if Z f _ l — Zf is discrete,
then (T(Zf, A)Γ(B\=A^ and (T(Z^l9 A) n B\ = (AJ' Γi £p for every peZ,_!
— Zf. This is the second fact which we wish to point out. In this paper we shall
study overrings of a noetherian ring from the above point of view.

Section 1 consists of preliminary results on Z-transforms and global trans-
forms almost all of which are already known (cf. [1], [6], [9], [12], [13], [14]
and [15]). We shall frequently use these results in this paper. In section 2, we
shall give basic relations between Assκ(J3/y4) and Z-transforms. We remark
here that we shall obtain whole results in this section, especially Corollary (2.12),
without using completions and the theorem of Mori-Nagata. Corollary (2.12)
is a modified form of Theorem (1.6) in [14], and using this corollary we shall give
an alternative proof of the theorem of Mori-Nagata in appendix (see [17] for
another proof of this theorem by means of global transforms).

In some cases we can prove some known facts in a unified way by means of
Z-transforms. In fact, in section 3, we shall generalize J. Nishimura's results

[15, (2.6), (3.1) and (3.2)] (see Theorem (3.1)), and in the last part of section 5
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we shall give a unified proof of two basic facts concerning seminormal rings.

In section 4, we shall treat finite (S2)-overrings of a noetherian ring. In Theorem
(4.7) we shall give a necessary and sufficient condition for a noetherian ring to have

a finite (S2)-overring. We shall also study how M. Brodmann's result in [2],
which gives a sufficient condition for existence of finite (S2)-overrings, can be

deduced from our theorem. As we have already known, for a finite overring B

of a noetherian ring A, A is seminormal in B if and only if A^ is seminormal in
B^ for every p e AssA(B/A). In section 5, we shall sharpen this result in terms

of global transforms of A^9 p e AssA(B/A).

Notation and terminology

In this paper, we mean by a ring a commutative ring with identity. Let A

be a ring. We denote by Q(A) the total quotient ring of A9 and denote by A the
integral closure of A in Q(A). Max (4) (resp. Min (A)) will denote the set of all

maximal ideals (resp. minimal prime ideals) of A. Let / be an ideal of A. Then

V(Γ) is the set of all prime ideals p of A with I^p. For a prime ideal p of A,

Let M be an y4-module. We say that an ideal / of A is M-regular (resp.
regular) if I contains M-regular elements (resp. regular elements) of A. QA(M)
(or simply β(M)) will denote the ΛL-module S-1M, where S is the set of all M-
regular elements of A. By definition Q(A) = QA(A). AssA(M) will denote the set
{p e Spec (̂ 4) | p is a minimal prime ideal of Q:Ax for some x e M}. Therefore if
A is noetherian, then Ass^(M) = {pe Spec (̂ 4) | p = 0 :Ax for some x e M} as usual.

We say that R is an overring of a ring A if R is an y4-subalgebra of Q(A)
(i.e., A^R^Q(A)). If a noetherian overring R of A satisfies Serre's property

(S2), then we say that R is an (S2)-overring of A.

For a finitely generated regular ideal / of A, we frequently identify

Let B be an ^4-algebra, /: A-+B the corresponding homomorphism. For

an ideal / of B, we write An I instead of /~1(/).

§ 1. Definitions and preliminaries

Let A be a ring. A topology on A is a family F of ideals of A with the fol-
lowing properties: (a) if lεF, then JeF for every ideal J of A with I^J, and

(b) if I, JeF, then /JeF. Let F be a topology on A. For an ^4-module M,

^reg(M) will denote the set of all M-regular ideals / of A with / e F.
We shall first summarize some elementary results on F-transform which are

mostly well known.
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DEFINITION (1.1) Let A be a ring, and let F be a topology on A. The
F -transform of an A-module M is defined to be the set

T(F,M) = {zeQA(M)\M:AzeF}.

T(F, M) is also an 4-module such that M^T(F, M)^QA(M). If B is an
^-algebra, then T(F, B) is a B-subalgebra of QA(B). Let / be an ideal of A.
If F is the set of all ideals of A which contain /" for some n^O, then T(F, A) is
the usual /-transform of A (cf. [13]).

Since M:Az contains M-regular elements for every zeQA(M)9 we have
T(F9 M) = Γ(Freg(M), M). Moreover if F' is another topology on A such that
FcF, then clearly T(F, M)cΓ(F, M).

(1.2) Let F be a topology on a ring A, and let M be an A-module. Then
we have

(1) T(F9 M)jj = Mp/or every prime ideal p of A such that p^Freg(M).
Assume further that Freg(M) has a cofinal subfamily consisting of finitely

generated ideals. Then we have
(2) T(F, N) = T(F, M) for every A-module N such that M^N^T(F, M).

In particular T(F, T(F, M)) = T(F, M).

Let B be an ^4-algebra, and let F be a topology on A. We denote by FB
the set of all ideals J of B such that J^IB for some IeF. Note that FB is a
topology on B. If F = Freg(β), then T(FB, B)^QA(B). Therefore we have the
following assertion :

(1.3) Let B be an A-algebra, and let F be a topology on A. Assume that
F = Freg(β). Then T(F, B) = T(FB, B).

The following assertion is an easy generalization of [13, Lemma 2.6].

(1.4) Let F be a topology on a ring A9 and let M be an A-module. Assume
that F = Freg(M) and F has a cofinal subfamily consisting of finitely generated
ideals. Then for every flat A-algebra B, T(F, M)®AB = T(FB,

As an immediate corollary to (1.4), β^M)̂  £ QA^(M^) for every ^-module
M and p 6 Spec (̂ 4).

Let A be a ring, and let / be an ideal of A. Let M be an ^-module. We de-
note by Gr^(7, M) the polynomial grade of I on M (as for the polynomial grade,
we refer to [16]). If A is noetherian and M is finitely generated, then GτA(I9 M)
is equal to the usual depth of / on M. Let p be a prime ideal of A. Note that
GτA (/, M) = 0 (resp. Gr^ (pA^9 Mp) = 0) if and only if, for each finitely generated
ideal J with J^I (resp. J^p), there exists an element x(/0) of M such that
Jx=0 (resp. JcAnnA(x)cp) (cf. [16, Chap. 5, Lemma 8]).
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(1.5) Let F be a topology on A, and let M be an A-module. Consider the
following conditions on M and F:

(1) T(F, M) = M.
(2) GrA(I,M^2forallIeFτeg(M).
(3) GτAp (pAf, M^2for all prime ideals p of A with p eFreg(M).

Then we have (2)=>(3)=>(1). // Freg(M) has a cofinal subfamily consisting of

finitely generated ideals, then (1)=>(2).

PROOF. (2)=>(3) is clear (cf. [16, Chap. 5, Exercise 10]). (3)=>(1): Suppose
contrarily that Γ(F, M)^M, and let z be an element of T(F, M)-M. We
then put z = x/s where x e M and s is an M-regular element of A. Let p be a
minimal prime ideal of M :Az = sM :Ax. Then p e Freg(M), Gr^ίp^, (M/sM)^) = 0;
and hence GτA^(pA^ Mί)) = l. This is a contradiction. We now assume that
Freg(M ) has a cofinal subfamily consisting of finitely generated ideals, and we shall
prove (1)=>(2). Suppose contrarily that there exists an M-regular ideal / of A
such that IGF and Gr^(/, M) = l. Let 5 be an M-regular element in /, and
let J be a finitely generated ideal of A such that J^I and J eFreg(M). Since
Gr^(7, M/sM) = 0, Jx^sM for some xeM-sM. Then x/seT(F, M) = M be-
cause ,/ e F; hence jc e sM. This is a contradication. This completes the proof.

Let A be a ring, and let Z be a subset of Spec (A) which is stable under spe-
cialization. We denote by F(Z) the set of all ideals / of A such that F(/)^Z.
Then F(Z) is a topology on A. For an ^4-module M, Zreg(M) will denote the set
of all M-regular prime ideals p of A with p e Z.

DEFINITION (1.6) The Z-transform of an A-module M is the F(Z)-transform
of M, and we denote it by Γ(Z, M).

(1.7) (cf. (1.2)) Let A, Z be the same as above, and let M be an A-module.
Then we have the following assertions.

(1) Γ(Z, M) = T(Zreg(M), M) = T(F(Z)reg(M), M).

(2) For an element z ofQA(M), z e T(Z, M) if and only ifz/1 e Mp for every
peSpec(A) — Z. In particular T(Z, M)p=Λίt, for every pe Spec 04) — Zreg(M).

(3) T(Z, N) = T(Z9 M) for every A-module N such that M^N<=T(Z, M).
In particular Γ(Z, Γ(Z, M))=Γ(Z, M).

PROOF. The assertions (1) and (2) are obvious. (3): By (1) above, Np = M^
for every p e Spec(y4) — Z. Therefore the assertion follows from (2).

(1.8) Let B be an A-algebra, and let Z be a subset of Spec (̂ 4) which is
stable under specialization. We put Z' = {Qe Spec (B) \ Q n A e Z}. Then F(Z)B

PROOF. Let J be an ideal of B such that J^B and V(J)^Z', and let p be a



Z-transforms and overlings of a noetherian ring 639

minimal prime ideal of J f t A . Since J n (A — p) = φ, J^^B^. Therefore there
exists a prime ideal P of B such that Jp^PpaBp. Then Pe Z' and P Π 4 = p;
hence p e Z. This shows that F(Z') s F(Z)B. The assertion now follows because
the opposite inclusion clearly holds.

By virtue of (1.3), (1.7) and (1.8), we have the following assertion:

(1.9) Let A, B, Z and Z' be the same as in (1.8). Assume further that
F(Z')reg(β)=F(Z)reg(β)5 (e.g., B is an averring of A). Then Γ(Z, B)=Γ(Z', B).

Let A be a ring, and let Z be a subset of Spec (A) which is stable under spe-
cialization. For a prime ideal p of A, Zp will denote the set {q^lqeZ and q^p}.
We say that an element p of Z is a generic point of Z if q^Z for any prime ideal
q of A such that q<=ρ. Zgen will denote the set of all generic points of Z. For

an ideal / of A, T(F(/), *) is denoted simply by T(J, *). If / is finitely generated,
then T(I9 A) is the /-transform of A in the sense of Nagata (cf. [13]).

(1.10) Let M be an A-module9 and let Z be a subset of Spec (.4) which is
stable under specialization. Assume that F(Zreg(M)) has a cofinal subfamily
consisting of finitely generated, M-regular ideals. Then we have the following
assertions.

(1) //Z = Zreg(M), then T(Z, M)> = T(Z>, M^for every peZ.
(2) // p E Zreg(M), then T(pA,, M,) c T(Z, M\.

(3) // p e (Zreg(M))gen, then T(Z, M), = T(pAp, M,).

PROOF. Since T(Z, M) = T(Zreg(M), M), the assertions (2) and (3) follow
from (1). And (1) follows from (1.4) and (1.8).

Let A be a ring. The global transform of A is the Max (yl)-transform of

A, and we denote it by A9. The following results, due to Matijevic, are essential
in the study of global transforms of noetherian rings.

(1.11) ([9, Theorem and Corollary]) Let A be a noetherian ring, and let

B be an A-algebra contained in A9. Then we have the following assertions.
(1) B/xB is a finite A-module for each regular element x of A. In par-

ticular every regular ideal of B is finitely generated.
(2) If A is reduced, then B is noetherian.

(1.12) Let A and B be the same as in (1.11). Then B9 = A9.

PROOF. By (1.11), a regular prime ideal P of B lies over a maximal ideal of
A if and only if P is maximal. Therefore by (1.7) (1) and (1.9), B9 = T(Max (A),
B). Then it follows from (1.7) (3) that T(Max(^), B) = A9. This completes the

proof.



640 Shiroh Iron

REMARK (1.13) Let t be a regular element of a ring A. Then t is inver-

tible in Aβ if and only if every prime ideal of A which contains t is a maximal

ideal (of height one if A is noetherian). In particular A9 = Q(A) whenever

dim A = l.

As an immediate consequence of (11.1) (2), B9 is finite over Aβ whenever B

is a finite overring of a noetherian domain A ([14, Lemma (1.4)]). More generally

we have the following assertion.

(1.14) Let B be a finite overring of a noetherian ring A. Then for every

overring R of B9 B9 ΠR is finite over A9 Π R.

PROOF. Let t be a regular element of A such that tB^A. Then it is easy to

see that tB9^A9', hence I = t(B9nR) is an ideal of both A'ΠR and B9 Π R.
Therefore it is sufficient to show that B9 Π R/I is a finite ^4-module. Since /

contains the B-regular element f, it follows from (1.11) that B9 Π R/I is a finite

B-module; hence it is a finite >4-module. This completes the proof.

Let A be a noetherian ring, and let M be an ^4-module. We put X = Spec (A),

and we denote by M a quasi-coherent 0x-module associated to M. Then for a

subset Z of Spec (A) which is stable under specialization with Z = Zreg(M), T(Z,

M) is canonically isomorphic to Γ(X, «^£/z(M)) (cf. [6, (5.9)]). In particular

if A is local and depth A = l, then A9^Γ(X — {m}, @x) where m is the maximal

ideal of A. Therefore we have the following assertion.

(1.15) ([6, (5.11.1)]) Let A be a noetherian local ring with depth A = l.

Consider the following conditions on A:

(1) A9 is a finite A-module.

(2) (Ajp)9 is a finite A/p-module for every p e Assx (^4).

(3) dim A/p ̂  2 for every p e AssA(A).

Then we have (1)<?>(2)=>(3).

(1.16) (cf. [6, (5.11.1) and (7.2.2)] and [4, Proposition 1.11]) Let A be a

residue ring of a Cohen-Macaulay local ring such that depth A — I . Then A9

is a finite A-module if and only if dim A/p^.2for every p e Ass^ (A).

PROOF. Assume that A is a domain such that dim A^2. Choose a Cohen-

Macaulay local ring .R and a prime ideal P of R so that A = R/P. Since R is

Cohen-Macaulay, there exists a regular sequence *15..., xr in P where r = ht(P).

We put B = R/(xl9...,xr)R. Then depth B = dimR-r^2 and PeAss^β).

Since B9=B9 A9 is a finite ^-module by (1.15). Therefore again by (1.15), we
have the desired conclusion.

(1.17) Let A be a noetherian local ring with the maximal ideal m. Assume
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that άimA^2 and depth^4 = l. Let (0) = q1 Π q2 Π ••• Π qπ be an irredundant
primary decomposition of(Q) in A. Let pί = >/q ί(i = l,..., n). Ifipi is a minimal
prime ideal of A such that dimA/pΐ = l, then Ag^Apί x(A/q2 n ••• n qj*.

PROOF. Note that {pj is an open and closed subset of 17= Spec (^4) — {m},
and that U- {pj =Spec(^/q2 n ••• !Ί qπ)-{m/q2 n ••• n qj. Since depth ^4/q2 n

{p1}f 0^^ x(,4/q2 n ••• Π qn)'.

§ 2. AssA(B/A) and Z-transforms

We shall first make some general remarks on Ass.

LEMMA (2.1) Let A be a noetherian ring, and let M be an A-module.
Let N be an A-submodule of QA(M) containing M. Then we have the following
assertions.

(1) Assκ(N/M)c:AssA(βΛM)/M).
(2) For every peAssA(QA(M)/M)9 p contains M-regular elements.
(3) AssA(QA(M)/M) n F(s^4) = Ass^(M/sM) whenever s is an M-regular

element.

PROOF. The assertion (1) is clear. The assertion (2) is also clear because
M:Az contains M-regular elements for every zeQA(M). (3): Let s be an M-
regular element, and let p be an element of V(sA). Then p = sM:Ax for some
xeM if an only if p = M:Az for some zeQ^(M); hence p e Ass^(M/sM ) if and
onlyifpeAssκ(ρA(M)/M).

COROLLARY (2.2) Let A, M and N be the same as in (2.1). Assume
further that M is finitely generated. Then we have the following assertions.

(1) For every p e Assx(JV/M), p contains an M-regular element and

(2) AssA(N/M) Π V(sA) is a finite set for every M-regular element s of A.
(3) AssA(N/M) is a finite set if an only if MS = NS for some M-regular

element s of A. In particular, if B is an A-algebra of finite type contained in
Q(A\ then ΔssA(B/A) is a finite set.

PROOF. The assertions (1) and (2) follow from (2.1). (3): Suppose first
that AssA(N/M) is a finite set, and choose an M-regular element s so that s e p
for all p e Ass^(JV/M). Then AssAs(NJMs) = φ hence Ms = Ns (cf. [10, Lemma,
p. 50]). Conversely suppose that MS=NS for some M-regular element s. Then
every peAssκ(ΛΓ/M) contains 5. Therefore by (2.1) (3), we have ΔssA(N/M)^
Ass^(M/sM); hence Assκ(N/M) is a finite set.

PROPOSITION (2.3) Let A, M and N be the same as in (2.1). Let Z be a
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subset of Spec (X) which is stable under specialization. Then Ass^(T(Z, M) n

PROOF. Since Supp(T(Z, M) n N/M)^Z (cf. (1.7)), we have Assκ(T(Z,
M)nW/M)cAss^(N/M)nZ. Let p be an element of AssA(N/M)ΓιZ. Then
p=M:^z for some zεN. Since peZ, we have zeNnT(Z, M). Therefore

p e Ass^(T(Z, M) n JV/Aί). This completes the proof.

PROPOSITION (2.4) Let R be an overring of a noetherian ring A, and let
Z and Z' be subsets o/Spec(X) which are stable under specialization. Assume
that Z^Z'. We put B=T(Z,A)Γ\R and B' = T(Z'9 A){}R. Then there is a
bijection AssB(B'/B)?ϊAssA(Br/A) fl (Z'-Z).

PROOF, (i) Let P be an element of AssB(B'/£), and put p = P f ] A . We
shall show that p e Z' -Z. Suppose that p<£Z'. Then by (1.7) (2), Bp=B'^=A^
hence B'P = BP. This contradicts the fact P e Assβ(5'/£). Therefore peZ'.
Suppose next that p e Z. We can choose an element x of B' — B so that P is a min-
imal prime ideal of B :Bx. Since p is finitely generated, this implies that ^/B :Bsx
3p for some seB — P. Since peZ, sxe T(Z, A) n R = B; hence x/leBP.
This is a contradiction. Therefore p^Z.

(ii) Let p be an element of Z'-Z. Since Bp=A^ (cf. (1.2)(1)), there exists
a unique prime ideal P of B which lies over p. Since A^ = BP, it follows from [10,
Lemma, p. 50] that p e AssA(B'/A) if and only if P e AssB(β'/β). This completes
the proof.

We shall now give a characterization of AssA(N/M) which is a key point in
our study of overrings of a noetherian ring.

THEOREM (2.5) Suppose that A is a noetherian ring. Let M be an A-
module, and let N be an A-submodule of β (̂M) containing M. Then we have

λssA(N/M) = {p e Spec (A) \ Mp c Γ(p^, M>) n

PROOF. Let p be a prime ideal of A such that M^
Then we can choose an element x of N so that x/le T(pA^, Mj,) — Mr Since
MpUpX/l contains (pA^)n for some π, p is a minimal prime ideal of M:Ax\ hence
p e Ass^(/V/M). Conversely let p be an element of AssA(N/M). Then p = M :Ax
for some xe N. It is easy to see that x/1 e T(pA^, M^) n N^ — M^. This com-
pletes the proof.

As an example we show the following proposition due to K. Yoshida [22].

PROPOSITION (2.6) Let A be a noetherian ring. Then

AssA(Ά/A) = {p 6 Spec (4) | ht (p) = 1, Ap c A^ and p is regular}
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U {p e Spec (A) I ht (p) ^ 2, depth A9 = 1 and p is regular}.

(2.6) follows from (2.5) and the following two lemmas.

LEMMA (2.7) Let p be a regular prime ideal of a noetherian ring A.
Then T Π (A =

PROOF. By [3, Chap. 5, Proposition 16], Q(A\nA^ = A^ Since
(cf. (1.10) (2)), A,n(A^ = (T,

LEMMA (2.8) Let A be a noetherian local ring with depth A = i and dim A
. Then depth>4^2 if and only ifA = A*{]A.

PROOF. Note that a noetherian local ring (R, m) with depth # = 1 is a
DVR if and only if the canonical map^R-^Hom^m, m) is an isomorphism.
Suppose first that depth A = l. Since A is not a DVR, AcHomA(p, p) where
p is the maximal ideal of A. Therefore A<=:HomA(p, p)^Ag ft A. Suppose
next that depth A^2. Then A=Aβ; hence A=A9Γ\Ά. This completes the
proof.

The following lemma is already known (cf. [11, (33.11)]), but we can prove
it without using completions and the theorem of Mori-Nagata.

LEMMA (2.9) Let C be an integral overring of a noetherian ring A, and
let P be a regular prime ideal of C such that ht (P) = 1 and AP(]A^Cpr]A. Then

PROOF. By Lemma (2.10) below, there exists a finite 4-subalgebra B of C
such that ht (P n B) = 1 and Apr]A Φ Bpr]A. We shall show that P n A e AssA(B/A).
We put β=P n B and p=P Π A. Since Q(A\ ^Q(A^)9 B^ is a finite overring of
A^i therefore we may assume that A is a local ring with the maximal ideal p.
Let a be a regular element of A such that aB^A. Since a e p and ht (β) = 1, we
have sQn^aB(^A) for some positive integer n and seB — Q. If s&A, then
A:As^pn; hence p e \ssA(B/A). If se A, then s is invertible in A; hence A:AB
2 pn therefore p e Ass^(β/^4). This completes the proof.

LEMMA (2.10) Let C be an integral overring of a noetherian ring A, and
let P be a minimal prime ideal of aC where a is a regular element of A. Then
there exists a finite overring B of A such that A^B^C and ht (P n J5) = l.

PROOF. Let {bl9...,bn} be a set of generators of P n A Since P is a
minimal prime ideal of αC, N/αCP=PCP. Therefore s&f = αxί(i = l,..., n) for
some positive integer e, seC — P and xl5..., xneC. We put B=A\_s, xlv.., xj
and Q=PftB. Since (P nA)BQ^*JaBQ, there exists a height one prime ideal
Q' of £ such that (P fM)JB£Q'cQ. Since β' Π4 = β n 4 = P f l A, we have
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<2 = <2'. This completes the proof.

THEOREM (2.11) Assume that A is a noetherian ring. Let C be an
integral overring of A, and let Z be a subset of Spec (A) which is stable under

specialization. We put B=Γ(Z, A) fl C and Z' = {β e Spec (£) | Q Π AeZ}. Let

Vbe the set of all regular prime ideals N of C such thatht(N) = l and N Π AeZ.

Then we have the following assertions.

(1) B = T(Z', 5)nC.
(2) {N Π B I N e V] coincides with the set of all regular prime ideals M of

B such that ht (M) = 1 and M n A e Z.
(3)

PROOF. (1) : Since B <Ξ T(Z, B) n C <Ξ Γ(Z, T(Z, ,4)) n C = T(Z, A) n C = B,
we have B=T(Z, B) n C. Then by (1.9), B=T(Z', B) n C. (2) follows from (3).
To prove (3), by virtue of (2.10), we may assume that C is finite over A. Then it
follows from the assertion (1) and (2.3) that AssB(C/£) Π Z' = φ. Let now N e V.
Then NnBeZ'i hence N n B(£AssB(C/B). Therefore by (2.9), BNί]B = CNf]B =

CN. This completes the proof.

The following corollary can be considered as another form of [14, Theorem

(1.6)]. But our proof of it does not depend on the theorem of Mori-Nagata.

COROLLARY (2.12) Let A be a noetherian local ring with the maximal

ideal m. We put B = Aβ ft A. Then we have the following assertions.
(1) B has only a finite number of maximal ideals, and k(M) is finite over

k(rn)for every maximal ideal M of B.
(2) If M is a regular maximal ideal of B such that ht(M)^2, then Mφ.

AssB(B/sB) for any regular element s of A.
(3) If M is a regular maximal ideal of B such that ht(M) = l, then MBM

is generated by a single element and (BM)red is a DVR, i.e., BM is a quasi-v-ring
(cf. [18]).

(4) If N is a regular maximal ideal of A such that ht (N) = 1, then ht (N n

B) = l.

PROOF. The assertion (1) follows from (1.11), and the assertion (4) follows
from (2.11). Let M be a regular maximal ideal of B. Suppose that Me

ΔssB(B/sB) for some regular element s of A. Since B/sB is noetherian (cf, (1.11)),
we can write M=sB:Bx for some xeB. Then by (1.12), w = x/seBβ=Aff. If

wM^M, then weAβnΆ = B because M is finitely generated (cf. (1.11)); hence
M=B:Bw=B; this is a contradiction. Therefore wMφM; hence wMBM=BM.
Choose an element z of MBM so that wz = l. Then MBM = wzMBM = zBM. In
particular it follows from (2.10) that ht(M) = l. Therefore by (2.11), BM =

^M=Λv where N is the maximal ideal of Ά such that N ftB=M. Since N is
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regular and ht(N)=l, Q(AN) = Q(A)N. It follows from [3, Chap. 5, Proposition
16] that AN is integrally closed in Q(ΆN). Therefore by [18, Proposition 2.7],

(^M)red is a DVR. Thus the assertions (2) and (3) are proved.

REMARK (2.13) If A is a domain, we can prove (2.12) more easily. In fact

B is noetherian (cf. (1.11)) and is integral over A\ hence by (1.9), T(Max04), B) =
T(Max(β), B)=β*. Therefore the assertions (2), (3) and (4) follow from (2.6)
and (2. 11).

Assume for a moment that A is a noetherian local ring such that
and depth A = 1 . We put B = A9 n A. By (2.12) (1), Max (B) is a finite set. On
the other hand, since Q(A) = Q(B), we have Min(^4)^Min(5); in particular
Min (B) is a finite set. Let now {MΊ,..., Mn} (resp. {MM+1,..., Mm}) be the set of
maximal ideals M of B such that ht(M)^2 (resp. ht(M) = l), and let {Plv.., PΓ}
be the set of minimal prime ideals P of B such that dim B/P=l.

COROLLARY (2.14) ([14, (1.6.5.)]) Let the situation be as described as above,

and let t be an element of Λ?=1I + ι Mi-(\J?=ι Mf) U (WJ= 1 P*) (where Γ\f=n+lMi

= B if the set {Mπ+1,..., Mm} is empty). Then t is invertible in A9 and A9 = Bt.

PROOF. Since every prime ideal of B which contains t is maximal, t is

regular and l/teB9 = A9. Therefore by (2.12) (2) and (1.5), (Bt)
9 = Bti hence

We shall conclude this section by making a remark on noetherian rings

satisfying Serre's property (S2).
Let A be a noetherian ring satisfying (S ,̂ and let Z be the set of all prime

ideals p of A such that ht (p)^2. Then it follows from (1.5) that A satisfies (S2)
if and only if T(Z, A) = A. As an application of this fact, we obtain the following

PROPOSITION (2.15) (cf. [21, Theorem 2]) Let B be a noetherian overring
of a noetherian ring A. Assume that B is integral over A and satisfies (S2).

Then A also satisfies (S2) if and only ι/ ht (p) = 1 /or every peA.ssA(B/A).

PROOF. Since depth A^ = l for all p e Ass^(J3/,4), the Only if part is trivial.

Conversely suppose that ht(p) = l for all peAssx(B/4). Since Q(A) = Q(B), A

satisfies (SJ. Let Z = {q e Spec (A) \ ht (q) ̂  2}, and let Z' = {Q e Spec (B) \ ht (β)

^2}. As we remarked above, it is sufficient to show that T(Z, A)=A. By (2.3),

AssA(T(Z, A) n B/A) = ΔssA(B/A) n Z = φ hence T(Z, Ά)ΠB= A. On the other
hand it follows from (2.9) that {QeSpecCB) | Q n^eZ}^Z'; hence by (1.9)

T(Z, B)c Γ(Zr, B). Therefore T(Z, A)^ T(Z, B)^T(Z' 9B)=B because B satis-

fies (S2). Thus we have A = T(Z, A) n £ = T(Z, A). This completes the proof.
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§ 3. Finiteness of overlings

In this section, A will always denote a noetherian ring.

THEOREM (3.1) Let M be a finite A-module, and let N be an A-submodule

°f QA(M) containing M. Then the following assertions are equivalent.
(1) N is a finite A-module.
(2) AssΛ(N/M) is a finite set, and T(pA^, Mp) n Np is a finite A-module

for every p e AssA(N/M).

PROOF. (1)=>(2) is clear. (2)=>(1): Since AssA(N/M) is a finite set, we can
choose a chain Spec(^) = Z0=3Z1z> =>ZMi3 ••• of subsets of Spec (.4) so that
each Zn is stable under specialization, Γ\nZn = φ, Zn — Zn+1^(Zπ)gen for every n,
and AssA(JV/M) n (Zπ — Zπ+1) is empty or consists of one point for every n.
Then there is an integer n0 such that AssA(N/M) (]Zno = φ because AssA(N/M)
is a finite set and Γ\n Zn = φ hence by (2.3), T(Zno, M) n N = M. Assume now that
T(Zn+1, M) n N is a finite ^-module and T(Zn+l9 M) ίl NaT(Zn, M) n N. We
shall prove that T(Zn9 M) n AT is also finite. We put L=T(Zn+1, M) n AT and
L' = T(Zn,M)nN. Note that AssA(N/M) Π (Zn-Zn+ί)ϊφ. In fact, if

AssA(N/Af)n(Z l l-Z l l+1) = Ψ, then by (1.7) (2), (1.10) (3) and (2.5), L, = M,=
Lj, for all peSρec(^l)-Zπ+1; hence by (1.7) (2), L' = L This is a contradiction.
Therefore AssA(N/M) n (Zπ — Zπ+1) consists of one point, say q. Since LJ =
Γ(q^4q, Mq) n Nq is a finite y4q-module contained in T(qAq, Mq), there exists
an M-regular element t in q such that ίL'qcMq. Then also by (1.7) (2), (1.10)
(3) and (2.5), (iZ/)p<=Lp for all peSpec(^)-ZΛ+1; hence by (1.7) (2), tL'^L.
Therefore L' is a finite ^4-module. Now, by induction on π, T(Z0, M) = N is a
finite ^4-module. This completes the proof.

COROLLARY (3.2) (cf. [15, (2.6.2)]) Let M be a finite A-module, and let Z
be a subset of Spec (A) which is stable under specialization. Then the following
assertions are equivalent.

(1) T(Z, M) is a finite A-module.
(2) A=AssA(QA(M)/M)Γ(Z is a finite set, and T(pA^, Mp) is a finite

for every p e A.

PROOF. We put N= T(Z, M). By (2.3), AssA(N/M) = AssA(QA(M)/M) n Z
= A. Therefore the assertion follows from (3.1).

COROLLARY (3.3) (cf. [15, (3.1)]) Let M and N be the same as in (3.1), and
let x(^0) be an M-regular element. Then the following assertions are
equivalent.

(1) N is a finite A-module.
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(2) (a) Nx is a finite Ax-module, and
(b) Nf is a finite A ̂ -module for every p e Assx(M/xM).

PROOF. (1)=>(2) is clear. (2)=>(1): Let peAss^W/M). If x£p, then

pAxeAssAχ(NxIMx)9 and if xep, then by (2.1) (3), p e Ass^ (M/xM). Since
ΔssAχ(NxIMx) and AssA(M/xM) are finite sets, Assx(JV/M) is also a finite
set. Moreover Np is a finite ^-module for every p e AssA(N/M). Therefore
by (3.1), N is a finite ^4-module.

COROLLARY (3.4) (cf. [8, Theoreme 2.1] and [15, (3.1)]) Assume that A is
a domain. Let x be a non-zero element of A. Then the following assertions
are equivalent.

(1) For every p e ΔssA(A/xA), the xA^-adic completion of A^ is reduced.
(2) For every p e ΔssA(A/xA)9 (A^)β n A^ is a finite A^-module.

(3) Ax n Ά is a finite A-module.

PROOF. (2)<K3): We put N = Ax n A. Since Ax = T(V(xA)9 A\ if follows
from (2.3) and (2.1) (3) that Ass^N/A) = Ass^I/A) n V(xA)^λssA(A/xA).
Therefore the assertion follows immediately from (3.1). (1)=>(2): Let pe

ΔssA(A/xA)9 and let G4p)* be the x^-adic completion of Ap. Since (A^)* is
faithfully flat over A^ it follows from (1.4) that ((A^ Π Ά^® ̂ (4P)* c((^p)*)» n

(1̂ . By (3.5) below, ((AJ*) n (3̂  is finite over (^)*; hence ((X^ n
^p)®Ai,(4p)* is also finite over (A^)*. Therefore (A^nΆ^ is finite over A^.
(3)=>(1): (cf. [8, Theoreme 2.1]) Let B = AX(]A. Then BXΠ Ά = B. Therefore
by (2.3) and (2.6), £q is a DVR for every q e Assβ(β/x£). Let now p e ΔssA(A/

xA), and let {qi,..., qπ} be the set of all associated prime ideals q of xB such that

qn,4<Ξp. Then (A^s^ cjζ x... x£J = C), where (Λ,)* (resp. (Bp)*)

is the x^^-adic completion of A^ (resp. xB^-adic completion of B^). Since C is
reduced, G4p)* is reduced. This completes the proof.

LEMMA (3.5) Assume that A is reduced, and is xA-adically complete for
some regular element x in A. Then Ag n Ά is finite over A.

PROOF. Let B=Aβ n A. Since A is a finite product of Krull domains and
x is contained in the Jacobson radical of A9 n xnB^ n xM = 0. On the other
hand A is x,4-adically complete and, by (1.11), B/xB is finite over A/xA. There-

fore B is finite over A (cf. [10, Lemma, p. 212]).

REMARK (3.6) (cf. [6, (5.10.17)]) Assume that A is a noetherian ring

satisfying Serre's property (SJ. Let Z={peSρec(,4) | ht(p)^2}, and put
A(v = T(Z, A). Corollary (3.2) gives a criterion for A^ to be finite over A.

Moreover if 4(1) is finite over A9 then 4(1) satisfies (S2). In fact, let Z' = {Pe

Spec(A(1>)|ht(P)^2.}. Since Z'^peSpecG^) 1 P n AeZ}9 we have T(Z',
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hence AM = T(Z', A^)cT(Z9 A™) = T(Z, T(Z, A))
This shows that Λ'1) = Γ(Z', A<D) and hence, by (1.5), ,4(1> satisfies (S2).

We also have a criterion for an overring of A to be integral over A, which is

a generalization of [15, (2.6.1)].

PROPOSITION (3.7) For an overring B of A, the following assertions are

equivalent.
(1) B is integral over A.
(2) (Ap)

β n B^ is integral over Ap for every p e AssA(B/A).

PROOF. The implication (1)=>(2) is obvious. (2)=>(1): (cf. the proof of
[15, (2.6.1)]) We may assume that B is generated by a single element x as an
^-algebra, i.e., B = A[x]. We shall now construct a chain A0^A1^ (^B) of
finite overrings of A as follows: We put A0 = A. Assume that An(n^0) can be
constructed already. If xεAn, then we put An+1=An. Now consider the case
that x ^ An. Let p be a minimal prime ideal of An:Ax. Then x/1 e((A n ) p ) β , and
by (1.14), ((An)^9 Π B^( = B^) is integral over (A^)* n B^. Therefore B^ is integral
(hence finite) over Ar Choose a finite ^4-algebra An+ί so that An<^An+ί^B
and (An+ί\=B({ for all minimal prime ideals q of An:Ax. Note that, by our
construction, An:AχcAn+ί:Ax if x^An. Therefore if x<£An for all n^O, then
the ascending chain A:AχczA1:Aχc^"' is not stable; this is a contradiction
because A is noetherian. Thus we conclude that xeAn for some n. This com-
pletes the proof.

§4. Finite (S2)-overrings

In this section we shall study noetherian rings with finite (S2)-overrings.
To do this, we need a characterization of a noetherian local ring over which its
global transform is essentially finite. Recall that an ^4-algebra B is essentially
finite over A if there exist a finite ^4-subalgebra C of B and a multiplicative subset
S of C such that B = S~1C.

LEMMA (4.1) Let B and R be A-algebras9 and let C be a B-algebra.
Then we have the following assertions.

(1) If B is essentially finite over A and C is essentially finite over B, then
C is essentially finite over A.

(2) If C is essentially finite over A, then C is essentially finite over B.
(3) If B is essentially finite over A, then B®AR is essentially finite over R.

PROOF. The assertions (2) and (3) are obvious. (1): We may assume that
C is finite over B. Choose an ,4-subalgebra B' of B and a multiplicative subset
S of B' so that B = S~1Bf. Let {x1?..., xj be a set of generators of C over B.
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We may assume that each xf is integral over B'. We now put C' = B'[xl9..., xj
( c C). Then it is clear that C = S'1 C".

LEMMA (4.2) Lei A be a noetherian local ring such that dim 4^2 and
depth y4 = l. Lei C be a finite A-subalgebra of A9. Then the following as-
sertions are equivalent.

(1) A9 = S~ίCfor some multiplicative subset S of C.
(2) depth CQ^I for every maximal ideal Q of C such that

PROOF. (1)=>(2): Choose a multiplicative subset S of C so that A9 =

S-*C. Let Q be a maximal ideal of C such that ht(β)^2. Then (CQ)* =
(C^)Q = (^»)Q = (S-1C)Q. If SnQϊφ, then (CQ)* has no prime ideals over
βCQ; hence, by (1.11) (1), every regular element of CQ is invertible in (CQ)9 and
therefore, by (1.13), ht(Q) = l. This is a contradication. Therefore S Π β = φ

and hence (CQ)» = CQ. This shows that depth CQ ̂  2 (cf. (1.5)).
(2)=>(1): (cf. the proof of (2.14)) Choose a regular element t of C so that

every prime ideal, containing ί, is a maximal ideal of height one and t is not
contained in any maximal ideal whose height is graeter than one. Then it follows
easily from (1.5) that Ag = Ct. This completes the proof.

LEMMA (4.3) Let A be a residue ring of a regular local domain such that

dimy4^2 and depth ^4 = 1. Then the following assertions are equivalent.
(1) A9 is essentially finite over A.
(2) aim Ajp^.2 for every embedded prime ideal p of A.

PROOF. (1)=>(2): Choose a finite ^4-subalgebra C of A9 and a multiplicative

subset S of C so that A9 = S~1C. Let p be an embedded prime ideal of A. Since
C is an overring of A, there exists a unique embedded prime ideal P of C such that

P n A = p. Let M be an arbitrary maximal ideal of C such that M =>F. Since
ht (M) ̂  2, it follows from (4.2) that depth CM ̂  2. Therefore dim 4/p =dim C/P

^2 (cf. [10, Theorem 27, p. 100]).
(2)=>(1) : Since A^ is essentially finite over A for every p e Spec (̂ 4), by virtue

of (1.17), we may assume that A has no minimal prime ideals p such that dim A/p
= 1. In this situation it follows from (1.16) that A9 is finite over A. This com-

pletes the proof.

PROPOSITION (4.4) Let (A, m) be a noetherian local ring such that dim A^.

2 and depthA = l. Let (R, n) be a faithfully flat A-algebra such that R is a
residue ring of a regular local domain and n = x/m.R. Then the following

assertions are equivalent.
(1) Ag is essentially finite over A.
(2) R9 is essentially finite over R (i.e., dim R/p^2 for every embedded

prime ideal p of R).
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PROOF. Note first that R9=A9®AR (cf. (1.4)).

(1)=>(2): The assertion follows from (4.1).
(2)=>(1): Let B=A9 n A. Then by (2.14), A'=Bt for some t e B. There-

fore R9 = (B®AR\. By our assumption, there exist a finite K-subalgebra C of

R*> and a multiplicative subset S of C such that R9 = S~1C. Since C is finite

over R and R9 = (B(g)AR\, there exists a finite ^4-subalgebra C of £ such that

C't^(C®AR)t. Therefore we may assume that C' = C®AR for some finite A-

subalgebra C of B. Since C satisfies the condition (2) in (4.2), it follows from
the faithful flatness of R over A that C also satisfies the condition (2) in (4.2);

hence A9 is essentially finite over A.

We shall now study some properties of noetherian rings with finite (S2)-

overrings.

LEMMA (4.5) Let A be a noetherian ring satisfying (S .̂ Consider the
following conditions on A:

(1) There exists a finite (S^-overring of A.
(2) 17 = {p e Spec (^4) | A^ satisfies (S2)} is a non-empty open subset of

Spec 04).

(3) A = {p G Spec (A) \ ht (p)^2 and depth A^ = 1} is a finite set.
Then (l)=K2)o(3).

PROOF. (1)=>(3): Let t be a regular element of A such that tR^A. Then

At satisfies (S2) and therefore f ep for every peA; hence zl^Ass^ (A/tA). This
shows that A is a finite set. (3)=>(2): It is easy to see that U = SpQc(A) —

\JpejV(p)', hence U is a non-empty open subset of Spec04). (2)=>(3): Since U
is open and Min (A) c U9 there exists a regular element t of A such that Spec (̂ Q
c 17. On the other hand J n 17 = 0 hence Λ s F(^4). Therefore Λ £ Ass^ (.4/^4).

This shows that A is a finite set.

LEMMA (4.6) Let A be a noetherian local ring. Assume that A has a finite
(S2)-overring R. Then A9 is essentially finite over A.

PROOF. We put B=A9 n R. We may assume that dim A ̂ 2 and depth A
= 1. Now choose a regular element t of B so that every prime ideal, containing
ί, is a maximal ideal of height one and t is not contained in any maximal ideal
whose height is greater than one. Then by (2.11) and (2.14), Bt^A9 and Rt has
no maximal ideals of height one. Therefore it follows from (1.5), (1.12) and
(1.14) that A9=(Bt)

9^(Rt)
9=Rt; hence A9 is finite over Bt. By (4.1) (1), A9

is essentially finite over A. This completes the proof.

The following therorem is our main result in this section.
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THOEREM (4.7) Let A be a noetherian ring satisfying Serre's property (St),
and let A be the set of all prime ideals p of A such that ht (p) ̂ 2 and depth Av = \.
Then the following assertions are equivalent.

(1) There exists a finite (S2)-overring of A.

(2) A is a finite set, and for every pe/d, (A^)β is essentially finite over A^.

PROOF. The implication (1)=>(2) follows from (4.5) and (4.6). (2)=>(1):
For a finite overring B of A, we put A(B) = {Q e Spec (J5) | ht (Q)^2 and depth BQ

= 1}, J*(£) = {βeΛ(£)|(£Q)* is not finite over BQ}9 n(5)=inf{ht (Q Γ(A) \ Qe
A(B)}, and n*(B) = sup {ht (Q Π A) | Q e Λ*(B)}. We shall show that there exists a
finite overring R of ^ such that A*(R) = φ. If this is done, then by (3.2) and (3.6),
R has a finite (S2)-overring; hence so does A. If A*(A)~φ, there is nothing to
prove. Therefore we may assume that A*(A)τ£φ. Since A(A) is a finite set and

(Ap)β is essentially finite over Ap for every peA(A), there exists a finite
A-subalgebra C of Q(A) such that, for every p e ^04), G4p)* Π Cp satisfies the con-
ditions in (4.2). We now put B=T(Z, A)nC where Z = WpeJF(p), and we shall
show that J5 satisfies the condition (2) above. Choose a regular element t of ,4
so that tB^A. Since Bt = At9 {Q e /d(£) | ί e Q} is a finite set. On the other hand
{Q e A(B) I ί e Q} is also a finite set because it is a subset of AssB(5/f£). Therefore
Λ(J3) is a finite set. Let Q be a regular prime ideal of B such that ht(Q)^2.
We put q = Q Π A. Since Bq is finite over A q, it follows from (1.14) that (Bq)*
is finite over (Aq)

9. Suppose that c\^A*(A). Then (Aq)
9 is finite over A^.

Therefore (B^ is finite over jBq; hence (BQ)* = ((Bq)<0Q is finite over BQ = (£q)Q.
In particular, Q ̂  A*(£) whenever q ̂  A*(^4). Suppose next that q e J*(^4). Then
(^4g)^ is essentially finite over ^4q; hence by (4.1), (B^9 is essentially finite over
βq. Therefore (BQ)9 is essentially finite over BQ. Thus B satisfies the condition

(2) above. Moreover we have Q<£A(B) whenever qe A(A) f]Zgen(=the set of

minimal elements of ^04)). In fact if q e A(A) Π Zgen, then B0(=(A^β Π Cq and
therefore, by the choice of C, depth BQ ̂  2 (cf. (4.2)) hence Q<£A(B). This shows

thatn*(B)>n(B).
Therefore, inductively, we can construct a sequence B() = A^Bί=B^" ^

Bn^~- of finite overrings of A with the following properties:

(a) Each Bn satisfies the condition (2), and
(b) n*(β0)^n*(51)^ ^n*(β|l)^n(Bll)>...>n(51)>n(B0) if A\B^φ

for ϊ = l,..., n.
We must then have that A*(Bj) = φ for some j. This completes the proof.

REMARK (4.8) Recently, in [2] M. Brodmann proved the following as-

sertion : A noetherian local domain A whose formal fibres satisfy the first Serre

property (5X) adimits a finite (S2)-overring if and only if the set {p e Spec (A) \ A^

is (S2)} is open in Spec (A).
If formal fibres of A satisfy (SJ, then by (4.4), (A^)β is essentially finite over
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Ap for every p e Spec (A). Therefore his result follows from (4.7) and (4.5).

§ 5. Seminormality and global transforms

Throughout this section, A will denote a noetherian ring. Let B be a finite

overring of A. Recall that A is seminormal in B if and only if, for an element b
of B,beA whenever fc2, b3 e A. This characterization of seminormality is
sufficient to follow what we discuss in this section. In particular if A is seminormal

in B, then A :AB is a radical ideal of B.
We shall first study a finite overring B of A such that AssA(B/A) consists of

one point p. Since ΔssA(B/A) = {p}, A:AN is a p-primary ideal of A for every
4-submodule N ofB such that N£A. Let {P!,..., Pr} be the set of all prime ideals
of B which lie over p. We define an yl-subalgebra C0 of B by the following pull
back diagram:

C0 > B

where k(p)^Y~[ik(Pi) and B-^Ylik(Pi) are the natural ring homomorphisms, and
inductively we define a chain C0 3 C{ 2 ^ Cn 2 of ./4-subalgebras of B by the
following pull back diagrams:

Cn+1 > Cn

c.) i ]

n = 0, 1,..., where /c(p)->CM®^fc(p) and Cn-+Cn®Ak(y) are the natural ring
homomorphisms. C0 is what we call the ring obtained from B by glueing over p.
By definition, pCπ(resp. P1 n ••• Π Pr) is also an ideal of CM+1(resp. C0). We put
P = PI Π ••• ΠP r. Then P is the only one prime ideal of C0 lying over p, and
/c(p) = /c(P); in particular P n Cn is the only one prime ideal of Cn lying over p.

LEMMA (5.1) With the same notation and assumptions as above, we have
the following assertions.

(1) C0 is seminormal in B.
(2) A is not seminormal in Cn if CnφA.
(3) A = CQ if and only if A is seminormal in B.
(4) A is seminormal in B if and only if so is A in EndA(p) n B.
(5) A = Cn for some n.

PROOF. The assertion (1) is clear. (2): Let n be a non-negative integer such
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that CnφA. To prove that A is not seminormal in CM, it is sufficient to show that

Af is not seminormal in (CΛ)r Note that A^^(Cn\ because AssA(Cn/A) = {p}.
Since the above pull back diagrams (*) and (**) commute with the localization

with respect to A — p, we may assume that A is local and p is the maximal ideal of
A. Let Q be the prime ideal of Cn lying over p. Suppose contrarily that A is
seminormal in Cn. Since A:ACn is a radical ideal of CM, and also is p-primary,
Q = A:ACn = p:, hence by definition Cn = A + Q = A + p = A. This is a contra-
diction. Therefore A is not seminormal in Cn. The assertion (3) is now obvious
by (1) and (2). (5): Since A:ACn is a p-primary ideal or A, to prove that A:ACn

= A for some n, we may assume that A is local and p is the maximal ideal of A.
By definition Cn + ί = A + pCπ. Therefore A :ApCn = A :ACn + x . Suppose now that
A\ACnφA for all n. Then each A:ACn is a p-primary ideal different from p;
hence A:ACn+ί=A:ApCn — (A:ACn):ApcιA:ACn. Therefore we have an as-
cending chain A :AC0 c A :ACί c c A :ACn c of p-primary ideals. This is a

contradiction; hence A:ACn = Cn for some n. (4): Suppose that A is not semi-
normal in B. Then A = Cn+ ^ c Cn for some n. Since Cn c EndA(p) n 5, it follows

from (2) that A is not seminormal in End^(p) n B. The converse is trivial. Thus

the lemma is proved.

Let R be an overring of A. We say that A is seminormal in R if A is semi-
normal in every finite ^4-subalgebra of R.

THEOREM (5.2) Let R be an overring of A. Then the following assertions
are equivalent.

(1) A is seminormal in R.
(2) Af is seminormal in (A^)9 Π R^ for every p e ΔssA(R/A).
(3) A} is seminormal in EnάA^(τpA^) n R$ for every p e ΔssA(R/A).

PROOF. We may assume that R is finite over A. The implication (1)=>(3)

is obvious, and (3)=>(2) follows from (5.1) because AssA^((A^)d n Rp/Ap) =

{pA^} (cf. (2.3)). (2)=>(1): Suppose that A is not seminormal in R. Then there
is an element b of R — B such that fe2, b3 eA. Let p be a minimal prime ideal of
A:Ab. By definition, peΔssA(R/A). Since b/1 e(A^)g n R$ and A^ is semi-
normal in (A^ftR^, we have b/ieA^. This is a contradiction. Therefore

A is seminormal in R.

REMARK (5.3) The above theorem shows that A is seminormal in R if

and only if A^ is seminormal in R^ for every p e AssA(R/A) (cf. [5] and [7]).

REMARK (5.4). Let B be a finite overring of A. Choose a chain

ID Z2 => of subsets of Spec (̂ 4), which are stable under specialization, so that
ΠZn = φ and, for each n, ΔssA(B/A) Π(Zn — Zπ+1) consists of one point or is

empty. We may assume that ΔssA(BIA) n (Zj — Zί+1) = {pί+1} for i = 0,...,m
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and AssA(B/A) ftZm+1 = φ. We now put Bt = T(Zt , ,4) n B for i = 0, . . . , m .

Since (Bι)pt = A^ι9 there exists a unique prime ideal Pf of B{ such that Pf n A = pt.
Therefore we have a chain A = Bm+ίc:Bmc:> cBίcBQ = B of finite overrings of

A such that AssB|(B,.1/J5ί) = {Pί} and fc(Pί) = fc(pί) (* = !,..., w + 1). Thus the
following lemma gives us another proof of [19, Th. 2.4].

LEMMA (5.5) (cf. (5.1) (5)) Let B be a finite overring of A. Assume that

\ssA(B/A) = {p}. Consider the following chain B = B0^Bί^ " of A-sub-

algebras of B defined by the following pull back diagrams:

B*ι - > Bn

\ \
k(p) - > Bn

« = 0, 1,2,... where k(p)-+Bn®Ak(p) and Bn-*Bn®Ak(p) are the natural ring
homomorphisms. Then Bn=Afor some n.

Proof is similar to that of (5.1) (5).

LEMMA (5.6) With the same notations and assumptions as in (2.4), if A
is seminormal in R, then B is seminoraml in B' .

PROOF. Let x be an element of R such that x2, x3 eB. We put I = (A:Ax
2)

n(A:Ax
3). Since (/x)2, (Ix)3^A, it follows from our assumption that Ix^A;

hence xe T(Z, A) n R = B because F(/)sZ. This shows that B is seminormal
in R. Therefore B is seminormal in B'.

We now consider a finite overring B of A in which A is seminormal. We

define, inductively, a chain B — BQ^B^B2^.'- of ^4-subalgebras of B as follows :
Assume that Bn is already defined. If Bn = A, then we put Bn+ί—A. Now cosider

the case that BnφA. Let pπ+1 be a minimal prime ideal of A:ABn. We then
put Bn+ i =the ring obtained from Bn by glueing over pn+1.

PROPOSITION (5.8) ([20, Theorem 2.1] and [7, Theorem 1.13]) With the
same notations and assumptions as above, we have the following assertions.

(1) Bn = A for some n.
(2)

The assertion (1) in (5.8) is the structure theorem of seminormal rings due to
C. Tra verso [20], and the assertion (2) has been shown by J. V. Leahy and M. A.

Vitulli [7]. However we give here another proofs of these results using Z-
transforms.

PROOF OF (5.8). We put Z0 = Spec(yl). Since p1 is a minimal element of
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we can choose a subset Zx of Spec (X) which is stable under special-

ization so that AssA(B/A) n (Z0-Z1) = {p1}. We put B( = T(Z, A) n B, and we

show that B[=B^ By (2.4) and (5.6),B( is seminormal in B and AssBi(B/Bi)

= {P{} where Pi is a unique prime ideal of B[ lying over P! (note that (B[)^ί

= AP1). Since fc(Pι) = K^ί)» it follows from (5.1) (3) that B^B^ By induction,
it is now easy to see that there exists a chain Z0^Zl=>Z2^ of subsets of
Spec(v4) such that each Zn is stable under specialization, AssA(Bn/A) n (Zπ —Zn+1)
= {pn+1} whenever EnΦA, and Bn — T(Znί A) n B for n = l, 2,.... In particular

P ϊέpj if /^j5 and {px, p2,...}£AssA(B/,4). Since AssA(£/,4) is a finite set, Bn

=A. Then AssΛB/Λ)= U (Assx(B/!4) Π (Z,-ZI+1)) = U (Ass^M) U (Z,-ZI+1))
= {p!,..., pj. This completes the proof.

Appendix

In this appendix, as an application of (2.12), we shall give an alternative proof

of the theorem of Mori-Nagata:

Let R be the derived normal domain of a noetherian domain A. Then we

have the following assertions.
(1) For each peSpec(v4), there are only a finite number of prime ideals

P of R such that P Π A = p9 and if P is such a prime ideal of R9 then [fc(P): k(p)]

is finite.
(2) R is a Krull domain, i.e.,

(a) Rp is a DVR/or every height one prime ideal P of R,

(b) for every x(^0) in R, there are only a finite number of height one prime

ideals of R which contain x, and

(c) R= n Rp where P runs through all height one prime ideals of R.

PROOF, (b): We may assume that xeA. Then it follows from (2.1) (3)

and (2.9) that every height one prime ideal of # containing x lies over some prime

ideal in λssΛ(A/xA). Since ΔssA(A/xA) is a finite set, the assertion is clear by

(2.12). Similarly we can prove the assertion (a).

(c): To prove the assertion, it is fufficient to show that if Q is a minimal

prime ideal of xR:Ry for some x and y in R with y£xRQ, then ht (Q) = 1. Sup-
pose contrarily that ht (Q) ̂  2. We may assume that A is a local ring with the max-

imal ideal q = βf |v4, and x, ye A. Moreover replacing A by (Ad ΓiA)Q(](Agΐ]^,

we may assume that there exist no height one maximal ideals of R (cf. (2.11)).

Since Q is a minimal prime ideal of xR:Ry, qnys^xR for some positive integer

n and seR — Q. Choose a finite overring B of A so that seB and c\nys^xB.

Note that, by virtue of (2.12), Bβ^R. Since qnB*>ys^xB9 and dim B^c\nB^ = Q,

ys e xB9 cxR hence y e xRQ. This is a contradiction. This completes the proof

of (2).
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(1): We may assume that A is a local domain with the maximal ideal p,
and it is sufficient to show that (1) is true for p. We shall use induction on n =
dim A. If H = l, then the assertion follows from the theorem of Krull-Akizuki
(or (2.12)). Now assume that n ̂  2. We shall first consider the case that depth A
^2. Let x, y be a regular sequence of length two in p, and let X be an
indeterminate. Then q = (xX — y)A(X) is a prime ideal of A(X) and A(X)q is a
DVR; hence there exists a unique prime ideal Q of Ά(X) such that Q Π A(X) = q.
By virtue of (2.1) (3) and (2.9), Q is the only one minimal prime ideal of (xX-y)
Ά(X)\ hence every maximal ideal of A(X) contains Q. Therefore the natural map
Spec (Ά(X)IQ)-+ Spec (A) induces a bijection Max(A(X)/Q)^Max(Ά). (Note
that every maximal ideal of A(X) is of the form MA(X), MeMax(J) (cf. [11,
Chap. I, p. 18]). Since dimA(X)lq<^n-l and Ά(X)IQcA(X)/(\9 the induction
hypothesis implies that Max (Ά(X)/Q) ( = Max (A)) is a finite set and, for
every Me Max (A), k(MA(X)IQ)( — k(M)(XJ) is a finite algebraic extension of
k(pA(X)/q)( = k(p)(X))'9 hence [k(M)\ fc(p)] is finite. Now consider the case
that depth A = ί. By (2.12), it is sufficient to prove that B = Ae ΓiA satisfies (1)
for its maximal ideals. Let M be a maximal ideal of B. If ht(M)^2, then by
(2.12) depthBM^2; hence this case is established already. If ht(M) = l, then
by (2.12) BM is a DVR; hence the assertion is obvious. This completes the proof.
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