Z-transforms and overrings of a noetherian ring

Shiroh Itoh

Received April 19, 1980)

Introduction

Since Nagata had pointed out the importance of the notion of ideal transforms in relation to the 14-th problem of Hilbert, ideal transforms have been studied by many authors. The notion of Z-transforms of a ring A, Z being a subset of Spec(A) which is stable under specialization, is a generalized one of ideal transforms. We can use ideal or Z-transforms as a powerful tool to study overrings B of a noetherian ring A. This is done as follows. Take a suitable chain $Z_n \subseteq Z_{n-1} \subseteq \cdots \subseteq Z_0 = \text{Spec}(A)$ of subsets of Spec(A) and consider the overrings $T(Z_i, A) \cap B$ where $T(Z_i, A)$ is the Z_i-transform of A. Then by examining properties of $T(Z_i, A) \cap B$ inductively, we get the knowledge of properties of B. K. Yoshida, in [22], used this technic and showed some properties of overrings B are determined by local properties at prime ideals in Ass₄(B/A). But the essential point of this technic is that we can reduce a problem on B to a problem on $(A_p)^g \cap B_p$, $p \in Ass_A(B/A)$, where $(A_p)^g$ is the global transform of A_p . This motivation follows from two facts: The first one is a characterization of Ass_A(B/A), i.e. Ass_A(B/A) = { $\mathfrak{p} \in \operatorname{Spec}(A) \mid A_{\mathfrak{p}} \subset (A_{\mathfrak{p}})^{g} \cap B_{\mathfrak{p}}$ } (Theorem (2.5)). On the other hand, roughly speaking, the difference between $T(Z_i, A) \cap B$ and $T(Z_{i-1}, A)$ A) $\cap B$ appears in prime ideals belonging to $Z_{i-1} - Z_i$, and if $Z_{i-1} - Z_i$ is discrete, then $(T(Z_i, A) \cap B)_{\mathfrak{p}} = A_{\mathfrak{p}}$ and $(T(Z_{i-1}, A) \cap B)_{\mathfrak{p}} = (A_{\mathfrak{p}})^g \cap B_{\mathfrak{p}}$ for every $\mathfrak{p} \in Z_{i-1}$ $-Z_i$. This is the second fact which we wish to point out. In this paper we shall study overrings of a noetherian ring from the above point of view.

Section 1 consists of preliminary results on Z-transforms and global transforms almost all of which are already known (cf. [1], [6], [9], [12], [13], [14] and [15]). We shall frequently use these results in this paper. In section 2, we shall give basic relations between $Ass_A(B/A)$ and Z-transforms. We remark here that we shall obtain whole results in this section, especially Corollary (2.12), without using completions and the theorem of Mori-Nagata. Corollary (2.12) is a modified form of Theorem (1.6) in [14], and using this corollary we shall give an alternative proof of the theorem of Mori-Nagata in appendix (see [17] for another proof of this theorem by means of global transforms).

In some cases we can prove some known facts in a unified way by means of Z-transforms. In fact, in section 3, we shall generalize J. Nishimura's results [15, (2.6), (3.1) and (3.2)] (see Theorem (3.1)), and in the last part of section 5

Shiroh Ітон

we shall give a unified proof of two basic facts concerning seminormal rings. In section 4, we shall treat finite (S_2) -overrings of a noetherian ring. In Theorem (4.7) we shall give a necessary and sufficient condition for a noetherian ring to have a finite (S_2) -overring. We shall also study how M. Brodmann's result in [2], which gives a sufficient condition for existence of finite (S_2) -overrings, can be deduced from our theorem. As we have already known, for a finite overring B of a noetherian ring A, A is seminormal in B if and only if A_p is seminormal in B_p for every $p \in Ass_A(B/A)$. In section 5, we shall sharpen this result in terms of global transforms of A_p , $p \in Ass_A(B/A)$.

Notation and terminology

In this paper, we mean by a ring a commutative ring with identity. Let A be a ring. We denote by Q(A) the total quotient ring of A, and denote by \overline{A} the integral closure of A in Q(A). Max (A) (resp. Min (A)) will denote the set of all maximal ideals (resp. minimal prime ideals) of A. Let I be an ideal of A. Then V(I) is the set of all prime ideals \mathfrak{p} of A with $I \subseteq \mathfrak{p}$. For a prime ideal \mathfrak{p} of A, $k(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$.

Let *M* be an *A*-module. We say that an ideal *I* of *A* is *M*-regular (resp. regular) if *I* contains *M*-regular elements (resp. regular elements) of *A*. $Q_A(M)$ (or simply Q(M)) will denote the *A*-module $S^{-1}M$, where *S* is the set of all *M*-regular elements of *A*. By definition $Q(A) = Q_A(A)$. Ass_A(*M*) will denote the set $\{p \in \text{Spec}(A) \mid p \text{ is a minimal prime ideal of } 0:_A x \text{ for some } x \in M\}$. Therefore if *A* is noetherian, then $\text{Ass}_A(M) = \{p \in \text{Spec}(A) \mid p = 0:_A x \text{ for some } x \in M\}$ as usual.

We say that R is an overring of a ring A if R is an A-subalgebra of Q(A)(i.e., $A \subseteq R \subseteq Q(A)$). If a noetherian overring R of A satisfies Serre's property (S₂), then we say that R is an (S₂)-overring of A.

For a finitely generated regular ideal I of A, we frequently identify $\operatorname{End}_{A}(I)$ $(=\operatorname{Hom}_{A}(I, I))$ with $I:_{O(A)}I$.

Let B be an A-algebra, $f: A \rightarrow B$ the corresponding homomorphism. For an ideal I of B, we write $A \cap I$ instead of $f^{-1}(I)$.

§1. Definitions and preliminaries

Let A be a ring. A topology on A is a family F of ideals of A with the following properties: (a) if $I \in F$, then $J \in F$ for every ideal J of A with $I \subseteq J$, and (b) if $I, J \in F$, then $IJ \in F$. Let F be a topology on A. For an A-module M, $F_{reg(M)}$ will denote the set of all M-regular ideals I of A with $I \in F$.

We shall first summarize some elementary results on F-transform which are mostly well known.

DEFINITION (1.1) Let A be a ring, and let F be a topology on A. The F-transform of an A-module M is defined to be the set

$$T(F, M) = \{ z \in Q_A(M) \mid M : z \in F \}.$$

T(F, M) is also an A-module such that $M \subseteq T(F, M) \subseteq Q_A(M)$. If B is an A-algebra, then T(F, B) is a B-subalgebra of $Q_A(B)$. Let I be an ideal of A. If F is the set of all ideals of A which contain I^n for some $n \ge 0$, then T(F, A) is the usual I-transform of A (cf. [13]).

Since $M:_A z$ contains *M*-regular elements for every $z \in Q_A(M)$, we have $T(F, M) = T(F_{\text{reg}(M)}, M)$. Moreover if *F'* is another topology on *A* such that $F \subseteq F'$, then clearly $T(F, M) \subseteq T(F', M)$.

(1.2) Let F be a topology on a ring A, and let M be an A-module. Then we have

(1) $T(F, M)_{\mathfrak{p}} = M_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} of A such that $\mathfrak{p} \notin F_{\operatorname{reg}(M)}$.

Assume further that $F_{reg(M)}$ has a cofinal subfamily consisting of finitely generated ideals. Then we have

(2) T(F, N) = T(F, M) for every A-module N such that $M \subseteq N \subseteq T(F, M)$. In particular T(F, T(F, M)) = T(F, M).

Let B be an A-algebra, and let F be a topology on A. We denote by FB the set of all ideals J of B such that $J \supseteq IB$ for some $I \in F$. Note that FB is a topology on B. If $F = F_{reg(B)}$, then $T(FB, B) \subseteq Q_A(B)$. Therefore we have the following assertion:

(1.3) Let B be an A-algebra, and let F be a topology on A. Assume that $F = F_{reg(B)}$. Then T(F, B) = T(FB, B).

The following assertion is an easy generalization of [13, Lemma 2.6].

(1.4) Let F be a topology on a ring A, and let M be an A-module. Assume that $F = F_{reg(M)}$ and F has a cofinal subfamily consisting of finitely generated ideals. Then for every flat A-algebra B, $T(F, M) \otimes_A B = T(FB, M \otimes_A B)$.

As an immediate corollary to (1.4), $Q_A(M)_{\mathfrak{p}} \subseteq Q_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$ for every A-module M and $\mathfrak{p} \in \text{Spec}(A)$.

Let A be a ring, and let I be an ideal of A. Let M be an A-module. We denote by $\operatorname{Gr}_A(I, M)$ the polynomial grade of I on M (as for the polynomial grade, we refer to [16]). If A is noetherian and M is finitely generated, then $\operatorname{Gr}_A(I, M)$ is equal to the usual depth of I on M. Let p be a prime ideal of A. Note that $\operatorname{Gr}_A(I, M) = 0$ (resp. $\operatorname{Gr}_{A_p}(pA_p, M_p) = 0$) if and only if, for each finitely generated ideal J with $J \subseteq I$ (resp. $J \subseteq p$), there exists an element $x(\neq 0)$ of M such that Jx=0 (resp. $J \subseteq \operatorname{Ann}_A(x) \subseteq p$) (cf. [16, Chap. 5, Lemma 8]).

Shiroh Iтон

(1.5) Let F be a topology on A, and let M be an A-module. Consider the following conditions on M and F:

- (1) T(F, M) = M.
- (2) $\operatorname{Gr}_{A}(I, M) \geq 2$ for all $I \in F_{\operatorname{reg}(M)}$.

(3) $\operatorname{Gr}_{A_{\mathfrak{p}}}(\mathfrak{p}_{A_{\mathfrak{p}}}, M_{\mathfrak{p}}) \geq 2$ for all prime ideals \mathfrak{p} of A with $\mathfrak{p} \in F_{\operatorname{reg}(M)}$.

Then we have $(2) \Rightarrow (3) \Rightarrow (1)$. If $F_{reg(M)}$ has a cofinal subfamily consisting of finitely generated ideals, then $(1) \Rightarrow (2)$.

PROOF. (2)=>(3) is clear (cf. [16, Chap. 5, Exercise 10]). (3)=>(1): Suppose contrarily that $T(F, M) \neq M$, and let z be an element of T(F, M) - M. We then put z = x/s where $x \in M$ and s is an M-regular element of A. Let p be a minimal prime ideal of $M:_A z = sM:_A x$. Then $p \in F_{reg(M)}$, $Gr_{Ap}(pA_p, (M/sM)_p)=0$; and hence $Gr_{Ap}(pA_p, M_p)=1$. This is a contradiction. We now assume that $F_{reg(M)}$ has a cofinal subfamily consisting of finitely generated ideals, and we shall prove (1)=>(2). Suppose contrarily that there exists an M-regular ideal I of A such that $I \in F$ and $Gr_A(I, M)=1$. Let s be an M-regular element in I, and let J be a finitely generated ideal of A such that $J \subseteq I$ and $J \in F_{reg(M)}$. Since $Gr_A(I, M/sM)=0$, $Jx \subseteq sM$ for some $x \in M-sM$. Then $x/s \in T(F, M)=M$ because $J \in F$; hence $x \in sM$. This is a contradication. This completes the proof.

Let A be a ring, and let Z be a subset of Spec (A) which is stable under specialization. We denote by F(Z) the set of all ideals I of A such that $V(I) \subseteq Z$. Then F(Z) is a topology on A. For an A-module M, $Z_{reg(M)}$ will denote the set of all M-regular prime ideals p of A with $p \in Z$.

DEFINITION (1.6) The Z-transform of an A-module M is the F(Z)-transform of M, and we denote it by T(Z, M).

(1.7) (cf. (1.2)) Let A, Z be the same as above, and let M be an A-module. Then we have the following assertions.

(1) $T(Z, M) = T(Z_{reg(M)}, M) = T(F(Z)_{reg(M)}, M).$

(2) For an element z of $Q_A(M)$, $z \in T(Z, M)$ if and only if $z/1 \in M_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec}(A) - Z$. In particular $T(Z, M)_{\mathfrak{p}} = M_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec}(A) - Z_{\operatorname{reg}(M)}$.

(3) T(Z, N) = T(Z, M) for every A-module N such that $M \subseteq N \subseteq T(Z, M)$. In particular T(Z, T(Z, M)) = T(Z, M).

PROOF. The assertions (1) and (2) are obvious. (3): By (1) above, $N_{\mathfrak{p}} = M_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec}(A) - Z$. Therefore the assertion follows from (2).

(1.8) Let B be an A-algebra, and let Z be a subset of Spec(A) which is stable under specialization. We put $Z' = \{Q \in \text{Spec}(B) \mid Q \cap A \in Z\}$. Then F(Z)B = F(Z').

PROOF. Let J be an ideal of B such that $J \neq B$ and $V(J) \subseteq Z'$, and let p be a

638

minimal prime ideal of $J \cap A$. Since $J \cap (A-\mathfrak{p}) = \phi$, $J_{\mathfrak{p}} \neq B_{\mathfrak{p}}$. Therefore there exists a prime ideal P of B such that $J_{\mathfrak{p}} \subseteq P_{\mathfrak{p}} \subset B_{\mathfrak{p}}$. Then $P \in Z'$ and $P \cap A = \mathfrak{p}$; hence $\mathfrak{p} \in Z$. This shows that $F(Z') \subseteq F(Z)B$. The assertion now follows because the opposite inclusion clearly holds.

By virtue of (1.3), (1.7) and (1.8), we have the following assertion:

(1.9) Let A, B, Z and Z' be the same as in (1.8). Assume further that $F(Z')_{reg(B)} = F(Z)_{reg(B)}B$ (e.g., B is an overring of A). Then T(Z, B) = T(Z', B).

Let A be a ring, and let Z be a subset of Spec (A) which is stable under specialization. For a prime ideal \mathfrak{p} of A, $Z_{\mathfrak{p}}$ will denote the set $\{\mathfrak{q}A_{\mathfrak{p}}|\mathfrak{q}\in Z \text{ and }\mathfrak{q}\subseteq \mathfrak{p}\}$. We say that an element \mathfrak{p} of Z is a generic point of Z if $\mathfrak{q}\notin Z$ for any prime ideal \mathfrak{q} of A such that $\mathfrak{q}\subset\mathfrak{p}$. Z_{gen} will denote the set of all generic points of Z. For an ideal I of A, T(V(I), *) is denoted simply by T(I, *). If I is finitely generated, then T(I, A) is the I-transform of A in the sense of Nagata (cf. [13]).

(1.10) Let M be an A-module, and let Z be a subset of Spec (A) which is stable under specialization. Assume that $F(Z_{reg(M)})$ has a cofinal subfamily consisting of finitely generated, M-regular ideals. Then we have the following assertions.

- (1) If $Z = Z_{reg(M)}$, then $T(Z, M)_{\mathfrak{p}} = T(Z_{\mathfrak{p}}, M_{\mathfrak{p}})$ for every $\mathfrak{p} \in Z$.
- (2) If $\mathfrak{p} \in Z_{\operatorname{reg}(M)}$, then $T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}}) \subseteq T(Z, M)_{\mathfrak{p}}$.
- (3) If $\mathfrak{p} \in (Z_{\operatorname{reg}(M)})_{\operatorname{gen}}$, then $T(Z, M)_{\mathfrak{p}} = T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}})$.

PROOF. Since $T(Z, M) = T(Z_{reg(M)}, M)$, the assertions (2) and (3) follow from (1). And (1) follows from (1.4) and (1.8).

Let A be a ring. The global transform of A is the Max (A)-transform of A, and we denote it by A^{g} . The following results, due to Matijevic, are essential in the study of global transforms of noetherian rings.

(1.11) ([9, Theorem and Corollary]) Let A be a noetherian ring, and let B be an A-algebra contained in A^{g} . Then we have the following assertions.

(1) B/xB is a finite A-module for each regular element x of A. In particular every regular ideal of B is finitely generated.

(2) If A is reduced, then B is noetherian.

(1.12) Let A and B be the same as in (1.11). Then $B^g = A^g$.

PROOF. By (1.11), a regular prime ideal P of B lies over a maximal ideal of A if and only if P is maximal. Therefore by (1.7) (1) and (1.9), $B^g = T(Max(A), B)$. Then it follows from (1.7)(3) that $T(Max(A), B) = A^g$. This completes the proof.

REMARK (1.13) Let t be a regular element of a ring A. Then t is invertible in A^g if and only if every prime ideal of A which contains t is a maximal ideal (of height one if A is noetherian). In particular $A^g = Q(A)$ whenever dim A = 1.

As an immediate consequence of (11.1)(2), B^g is finite over A^g whenever B is a finite overring of a noetherian domain A([14, Lemma (1.4)]). More generally we have the following assertion.

(1.14) Let B be a finite overring of a noetherian ring A. Then for every overring R of B, $B^g \cap R$ is finite over $A^g \cap R$.

PROOF. Let t be a regular element of A such that $tB \subseteq A$. Then it is easy to see that $tB^g \subseteq A^g$; hence $I = t(B^g \cap R)$ is an ideal of both $A^g \cap R$ and $B^g \cap R$. Therefore it is sufficient to show that $B^g \cap R/I$ is a finite A-module. Since I contains the B-regular element t, it follows from (1.11) that $B^g \cap R/I$ is a finite B-module; hence it is a finite A-module. This completes the proof.

Let A be a noetherian ring, and let M be an A-module. We put X = Spec(A), and we denote by \tilde{M} a quasi-coherent \mathcal{O}_X -module associated to M. Then for a subset Z of Spec (A) which is stable under specialization with $Z = Z_{\text{reg}(M)}$, T(Z, M) is canonically isomorphic to $\Gamma(X, \mathcal{H}_{X/Z}^0(\tilde{M}))$ (cf. [6, (5.9)]). In particular if A is local and depth A = 1, then $A^g \cong \Gamma(X - \{m\}, \mathcal{O}_X)$ where m is the maximal ideal of A. Therefore we have the following assertion.

(1.15) ([6, (5.11.1)]) Let A be a noetherian local ring with depth A=1. Consider the following conditions on A:

- (1) A^{g} is a finite A-module.
- (2) $(A/\mathfrak{p})^g$ is a finite A/\mathfrak{p} -module for every $\mathfrak{p} \in Ass_A(A)$.
- (3) dim $A/\mathfrak{p} \ge 2$ for every $\mathfrak{p} \in Ass_A(A)$.

Then we have $(1) \Leftrightarrow (2) \Rightarrow (3)$.

(1.16) (cf. [6, (5.11.1) and (7.2.2)] and [4, Proposition 1.11]) Let A be a residue ring of a Cohen-Macaulay local ring such that depth A=1. Then A^{g} is a finite A-module if and only if dim $A/p \ge 2$ for every $p \in Ass_{A}(A)$.

PROOF. Assume that A is a domain such that dim $A \ge 2$. Choose a Cohen-Macaulay local ring R and a prime ideal P of R so that A = R/P. Since R is Cohen-Macaulay, there exists a regular sequence x_1, \ldots, x_r in P where r = ht(P). We put $B = R/(x_1, \ldots, x_r)R$. Then depth $B = \dim R - r \ge 2$ and $P \in \text{Ass}_R(B)$. Since $B^g = B$, A^g is a finite A-module by (1.15). Therefore again by (1.15), we have the desired conclusion.

(1.17) Let A be a noetherian local ring with the maximal ideal m. Assume

that dim $A \ge 2$ and depth A = 1. Let $(0) = \mathfrak{q}_1 \cap \mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n$ be an irredundant primary decomposition of (0) in A. Let $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$ (i = 1, ..., n). If \mathfrak{p}_1 is a minimal prime ideal of A such that dim $A/\mathfrak{p}_1 = 1$, then $A^g \cong A_{\mathfrak{p}_1} \times (A/\mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n)^g$.

PROOF. Note that $\{\mathfrak{p}_1\}$ is an open and closed subset of $U = \operatorname{Spec} (A) - \{\mathfrak{m}\}$, and that $U - \{\mathfrak{p}_1\} = \operatorname{Spec} (A/\mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n) - \{\mathfrak{m}/\mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n\}$. Since depth $A/\mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n \ge 1$, $A^g \cong \Gamma(U, \mathcal{O}_U) = \Gamma(\{\mathfrak{p}_1\}, \mathcal{O}_U) \times \Gamma(U - \{\mathfrak{p}_1\}, \mathcal{O}_U) \cong A_{\mathfrak{p}_1} \times (A/\mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n)^g$.

§2. Ass_A(B/A) and Z-transforms

We shall first make some general remarks on Ass.

LEMMA (2.1) Let A be a noetherian ring, and let M be an A-module. Let N be an A-submodule of $Q_A(M)$ containing M. Then we have the following assertions.

(1) $\operatorname{Ass}_A(N/M) \subseteq \operatorname{Ass}_A(Q_A(M)/M)$.

(2) For every $\mathfrak{p} \in \operatorname{Ass}_A(Q_A(M)/M)$, \mathfrak{p} contains M-regular elements.

(3) $\operatorname{Ass}_A(Q_A(M)/M) \cap V(sA) = \operatorname{Ass}_A(M/sM)$ whenever s is an M-regular element.

PROOF. The assertion (1) is clear. The assertion (2) is also clear because M_{AZ} contains *M*-regular elements for every $z \in Q_A(M)$. (3): Let *s* be an *M*-regular element, and let p be an element of V(sA). Then $p = sM_{AX}$ for some $x \in M$ if an only if $p = M_{AZ}$ for some $z \in Q_A(M)$; hence $p \in Ass_A(M/sM)$ if and only if $p \in Ass_A(Q_A(M)/M)$.

COROLLARY (2.2) Let A, M and N be the same as in (2.1). Assume further that M is finitely generated. Then we have the following assertions.

(1) For every $\mathfrak{p} \in \operatorname{Ass}_A(N/M)$, \mathfrak{p} contains an M-regular element and $\operatorname{depth}_{A_\mathfrak{p}}(M_\mathfrak{p}) = 1$.

(2) $\operatorname{Ass}_A(N/M) \cap V(sA)$ is a finite set for every M-regular element s of A.

(3) $\operatorname{Ass}_A(N/M)$ is a finite set if an only if $M_s = N_s$ for some M-regular elements of A. In particular, if B is an A-algebra of finite type contained in Q(A), then $\operatorname{Ass}_A(B/A)$ is a finite set.

PROOF. The assertions (1) and (2) follow from (2.1). (3): Suppose first that $\operatorname{Ass}_A(N/M)$ is a finite set, and choose an *M*-regular element *s* so that $s \in p$ for all $p \in \operatorname{Ass}_A(N/M)$. Then $\operatorname{Ass}_{A_s}(N_s/M_s) = \phi$; hence $M_s = N_s$ (cf. [10, Lemma, p. 50]). Conversely suppose that $M_s = N_s$ for some *M*-regular element *s*. Then every $p \in \operatorname{Ass}_A(N/M)$ contains *s*. Therefore by (2.1) (3), we have $\operatorname{Ass}_A(N/M) \subseteq \operatorname{Ass}_A(M/sM)$; hence $\operatorname{Ass}_A(N/M)$ is a finite set.

PROPOSITION (2.3) Let A, M and N be the same as in (2.1). Let Z be a

subset of Spec (A) which is stable under specialization. Then $Ass_A(T(Z, M) \cap N/M) = Ass_A(N/M) \cap Z$.

PROOF. Since $\text{Supp}(T(Z, M) \cap N/M) \subseteq Z$ (cf. (1.7)), we have $\text{Ass}_A(T(Z, M) \cap N/M) \subseteq \text{Ass}_A(N/M) \cap Z$. Let \mathfrak{p} be an element of $\text{Ass}_A(N/M) \cap Z$. Then $\mathfrak{p}=M:_A z$ for some $z \in N$. Since $\mathfrak{p} \in Z$, we have $z \in N \cap T(Z, M)$. Therefore $\mathfrak{p} \in \text{Ass}_A(T(Z, M) \cap N/M)$. This completes the proof.

PROPOSITION (2.4) Let R be an overring of a noetherian ring A, and let Z and Z' be subsets of Spec (A) which are stable under specialization. Assume that $Z \subseteq Z'$. We put $B = T(Z, A) \cap R$ and $B' = T(Z', A) \cap R$. Then there is a bijection $Ass_{B}(B'|B) \cong Ass_{A}(B'|A) \cap (Z'-Z)$.

PROOF. (i) Let P be an element of $\operatorname{Ass}_{B}(B'|B)$, and put $\mathfrak{p} = P \cap A$. We shall show that $\mathfrak{p} \in Z' - Z$. Suppose that $\mathfrak{p} \notin Z'$. Then by (1.7) (2), $B_{\mathfrak{p}} = B'_{\mathfrak{p}} = A_{\mathfrak{p}}$; hence $B'_{P} = B_{P}$. This contradicts the fact $P \in \operatorname{Ass}_{B}(B'|B)$. Therefore $\mathfrak{p} \in Z'$. Suppose next that $\mathfrak{p} \in Z$. We can choose an element x of B' - B so that P is a minimal prime ideal of $B:_{B}x$. Since \mathfrak{p} is finitely generated, this implies that $\sqrt{B:_{B}sx} \supseteq \mathfrak{p}$ for some $s \in B - P$. Since $\mathfrak{p} \in Z$, $sx \in T(Z, A) \cap R = B$; hence $x/1 \in B_{P}$. This is a contradiction. Therefore $\mathfrak{p} \notin Z$.

(ii) Let p be an element of Z' - Z. Since $B_p = A_p$ (cf. (1.2)(1)), there exists a unique prime ideal P of B which lies over p. Since $A_p = B_P$, it follows from [10, Lemma, p. 50] that $p \in Ass_A(B'|A)$ if and only if $P \in Ass_B(B'|B)$. This completes the proof.

We shall now give a characterization of $Ass_A(N/M)$ which is a key point in our study of overrings of a noetherian ring.

THEOREM (2.5) Suppose that A is a noetherian ring. Let M be an A-module, and let N be an A-submodule of $Q_A(M)$ containing M. Then we have

$$\operatorname{Ass}_{A}(N/M) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \subset T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}}) \cap N_{\mathfrak{p}} \}.$$

PROOF. Let \mathfrak{p} be a prime ideal of A such that $M_{\mathfrak{p}} \subset T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}}) \cap N_{\mathfrak{p}}$. Then we can choose an element x of N so that $x/1 \in T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}}) - M_{\mathfrak{p}}$. Since $M_{\mathfrak{p}:A_{\mathfrak{p}}}x/1$ contains $(\mathfrak{p}A_{\mathfrak{p}})^n$ for some n, \mathfrak{p} is a minimal prime ideal of $M:_A x$; hence $\mathfrak{p} \in \operatorname{Ass}_A(N/M)$. Conversely let \mathfrak{p} be an element of $\operatorname{Ass}_A(N/M)$. Then $\mathfrak{p} = M:_A x$ for some $x \in N$. It is easy to see that $x/1 \in T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}}) \cap N_{\mathfrak{p}} - M_{\mathfrak{p}}$. This completes the proof.

As an example we show the following proposition due to K. Yoshida [22].

PROPOSITION (2.6) Let A be a noetherian ring. Then

Ass_A(\overline{A}/A) = { $\mathfrak{p} \in \text{Spec}(A)$ | ht (\mathfrak{p}) = 1, $A_{\mathfrak{p}} \subset \overline{A_{\mathfrak{p}}}$ and \mathfrak{p} is regular}

Z-transforms and overrings of a noetherian ring

 $\cup \{\mathfrak{p} \in \operatorname{Spec} (A) | \operatorname{ht} (\mathfrak{p}) \geq 2, \operatorname{depth} A_{\mathfrak{p}} = 1 \text{ and } \mathfrak{p} \text{ is regular} \}.$

(2.6) follows from (2.5) and the following two lemmas.

LEMMA (2.7) Let \mathfrak{p} be a regular prime ideal of a noetherian ring A. Then $\overline{A}_{\mathfrak{p}} \cap (A_{\mathfrak{p}})^g = \overline{A}_{\mathfrak{p}} \cap (A_{\mathfrak{p}})^g$.

PROOF. By [3, Chap. 5, Proposition 16], $Q(A)_{\mathfrak{p}} \cap \overline{A}_{\mathfrak{p}} = \overline{A}_{\mathfrak{p}}$. Since $(A_{\mathfrak{p}})^{g} \subseteq Q(A)_{\mathfrak{p}}$ (cf. (1.10) (2)), $\overline{A}_{\mathfrak{p}} \cap (A_{\mathfrak{p}})^{g} = (\overline{A}_{\mathfrak{p}} \cap Q(A)_{\mathfrak{p}}) \cap (A_{\mathfrak{p}})^{g} = \overline{A}_{\mathfrak{p}} \cap (A_{\mathfrak{p}})^{g}$.

LEMMA (2.8) Let A be a noetherian local ring with depth A=1 and dim A ≥ 2 . Then depth $A \geq 2$ if and only if $A = A^{g} \cap \overline{A}$.

PROOF. Note that a noetherian local ring (R, m) with depth R=1 is a DVR if and only if the canonical map $R \rightarrow \operatorname{Hom}_R(m, m)$ is an isomorphism. Suppose first that depth A=1. Since A is not a DVR, $A \subset \operatorname{Hom}_A(\mathfrak{p}, \mathfrak{p})$ where \mathfrak{p} is the maximal ideal of A. Therefore $A \subset \operatorname{Hom}_A(\mathfrak{p}, \mathfrak{p}) \subseteq A^{\mathfrak{g}} \cap \overline{A}$. Suppose next that depth $A \ge 2$. Then $A = A^{\mathfrak{g}}$; hence $A = A^{\mathfrak{g}} \cap \overline{A}$. This completes the proof.

The following lemma is already known (cf. [11, (33.11)]), but we can prove it without using completions and the theorem of Mori-Nagata.

LEMMA (2.9) Let C be an integral overring of a noetherian ring A, and let P be a regular prime ideal of C such that $\operatorname{ht}(P)=1$ and $A_{P\cap A}\neq C_{P\cap A}$. Then $P\cap A\in \operatorname{Ass}_A(C/A)$.

PROOF. By Lemma (2.10) below, there exists a finite A-subalgebra B of C such that ht $(P \cap B) = 1$ and $A_{P \cap A} \neq B_{P \cap A}$. We shall show that $P \cap A \in \operatorname{Ass}_A(B/A)$. We put $Q = P \cap B$ and $\mathfrak{p} = P \cap A$. Since $Q(A)_{\mathfrak{p}} \subseteq Q(A_{\mathfrak{p}})$, $B_{\mathfrak{p}}$ is a finite overring of $A_{\mathfrak{p}}$; therefore we may assume that A is a local ring with the maximal ideal \mathfrak{p} . Let a be a regular element of A such that $aB \subseteq A$. Since $a \in \mathfrak{p}$ and ht (Q) = 1, we have $sQ^n \subseteq aB(\subseteq A)$ for some positive integer n and $s \in B - Q$. If $s \notin A$, then $A:_A s \supseteq \mathfrak{p}^n$; hence $\mathfrak{p} \in \operatorname{Ass}_A(B/A)$. If $s \in A$, then s is invertible in A; hence $A:_A B$ $\supseteq \mathfrak{p}^n$; therefore $\mathfrak{p} \in \operatorname{Ass}_A(B/A)$. This completes the proof.

LEMMA (2.10) Let C be an integral overring of a noetherian ring A, and let P be a minimal prime ideal of aC where a is a regular element of A. Then there exists a finite overring B of A such that $A \subseteq B \subseteq C$ and ht $(P \cap B) = 1$.

PROOF. Let $\{b_1,..., b_n\}$ be a set of generators of $P \cap A$. Since P is a minimal prime ideal of aC, $\sqrt{aC_P} = PC_P$. Therefore $sb_i^e = ax_i(i=1,...,n)$ for some positive integer $e, s \in C-P$ and $x_1,..., x_n \in C$. We put $B = A[s, x_1,..., x_n]$ and $Q = P \cap B$. Since $(P \cap A)B_Q \subseteq \sqrt{aB_Q}$, there exists a height one prime ideal Q' of B such that $(P \cap A)B \subseteq Q' \subseteq Q$. Since $Q' \cap A = Q \cap A = P \cap A$, we have

Q = Q'. This completes the proof.

THEOREM (2.11) Assume that A is a noetherian ring. Let C be an integral overring of A, and let Z be a subset of Spec (A) which is stable under specialization. We put $B = T(Z, A) \cap C$ and $Z' = \{Q \in \text{Spec}(B) | Q \cap A \in Z\}$. Let V be the set of all regular prime ideals N of C such that $\operatorname{ht}(N) = 1$ and $N \cap A \in Z$. Then we have the following assertions.

(1) $B = T(Z', B) \cap C$.

(2) $\{N \cap B \mid N \in V\}$ coincides with the set of all regular prime ideals M of B such that ht(M)=1 and $M \cap A \in Z$.

(3) If $N \in V$, then $B_{N \cap B} = C_{N \cap B} = C_N$.

PROOF. (1): Since $B \subseteq T(Z, B) \cap C \subseteq T(Z, T(Z, A)) \cap C = T(Z, A) \cap C = B$, we have $B = T(Z, B) \cap C$. Then by (1.9), $B = T(Z', B) \cap C$. (2) follows from (3). To prove (3), by virtue of (2.10), we may assume that C is finite over A. Then it follows from the assertion (1) and (2.3) that $Ass_B(C/B) \cap Z' = \phi$. Let now $N \in V$. Then $N \cap B \in Z'$; hence $N \cap B \notin Ass_B(C/B)$. Therefore by (2.9), $B_{N \cap B} = C_{N \cap B} = C_N$. This completes the proof.

The following corollary can be considered as another form of [14, Theorem (1.6)]. But our proof of it does not depend on the theorem of Mori-Nagata.

COROLLARY (2.12) Let A be a noetherian local ring with the maximal ideal m. We put $B = A^g \cap \overline{A}$. Then we have the following assertions.

(1) B has only a finite number of maximal ideals, and k(M) is finite over k(m) for every maximal ideal M of B.

(2) If M is a regular maximal ideal of B such that $ht(M) \ge 2$, then $M \notin Ass_B(B/sB)$ for any regular element s of A.

(3) If M is a regular maximal ideal of B such that ht(M)=1, then MB_M is generated by a single element and $(B_M)_{red}$ is a DVR, i.e., B_M is a quasi-v-ring (cf. [18]).

(4) If N is a regular maximal ideal of \overline{A} such that $\operatorname{ht}(N) = 1$, then $\operatorname{ht}(N \cap B) = 1$.

PROOF. The assertion (1) follows from (1.11), and the assertion (4) follows from (2.11). Let M be a regular maximal ideal of B. Suppose that $M \in$ $Ass_B(B/sB)$ for some regular element s of A. Since B/sB is noetherian (cf, (1.11)), we can write $M = sB:_Bx$ for some $x \in B$. Then by (1.12), $w = x/s \in B^g = A^g$. If $wM \subseteq M$, then $w \in A^g \cap \overline{A} = B$ because M is finitely generated (cf. (1.11)); hence $M = B:_Bw = B$; this is a contradiction. Therefore $wM \notin M$; hence $wMB_M = B_M$. Choose an element z of MB_M so that wz = 1. Then $MB_M = wzMB_M = zB_M$. In particular it follows from (2.10) that ht (M)=1. Therefore by (2.11), $B_M =$ $\overline{A}_M = \overline{A}_N$ where N is the maximal ideal of \overline{A} such that $N \cap B = M$. Since N is

644

regular and ht (N) = 1, $Q(\overline{A}_N) = Q(\overline{A})_N$. It follows from [3, Chap. 5, Proposition 16] that \overline{A}_N is integrally closed in $Q(\overline{A}_N)$. Therefore by [18, Proposition 2.7], $(B_M)_{red}$ is a DVR. Thus the assertions (2) and (3) are proved.

REMARK (2.13) If A is a domain, we can prove (2.12) more easily. In fact B is noetherian (cf. (1.11)) and is integral over A; hence by (1.9), $T(Max(A), B) = T(Max(B), B) = B^g$. Therefore the assertions (2), (3) and (4) follow from (2.6) and (2.11).

Assume for a moment that A is a noetherian local ring such that dim $A \ge 2$ and depth A=1. We put $B=A^{g} \cap \overline{A}$. By (2.12) (1), Max (B) is a finite set. On the other hand, since Q(A)=Q(B), we have Min $(A)\cong Min(B)$; in particular Min (B) is a finite set. Let now $\{M_1, \ldots, M_n\}$ (resp. $\{M_{n+1}, \ldots, M_m\}$) be the set of maximal ideals M of B such that ht $(M)\ge 2$ (resp. ht (M)=1), and let $\{P_1, \ldots, P_r\}$ be the set of minimal prime ideals P of B such that dim B/P=1.

COROLLARY (2.14) ([14, (1.6.5.)]) Let the situation be as described as above, and let t be an element of $\bigcap_{i=n+1}^{m} M_i - (\bigcup_{i=1}^{n} M_i) \cup (\bigcup_{i=1}^{r} P_i)$ (where $\bigcap_{i=n+1}^{m} M_i$ = B if the set $\{M_{n+1}, \dots, M_m\}$ is empty). Then t is invertible in A^g and $A^g = B_i$.

PROOF. Since every prime ideal of B which contains t is maximal, t is regular and $1/t \in B^g = A^g$. Therefore by (2.12) (2) and (1.5), $(B_t)^g = B_t$; hence $A^g = (B_t)^g = B_t$.

We shall conclude this section by making a remark on noetherian rings satisfying Serre's property (S_2) .

Let A be a noetherian ring satisfying (S_1) , and let Z be the set of all prime ideals p of A such that $ht(p) \ge 2$. Then it follows from (1.5) that A satisfies (S_2) if and only if T(Z, A) = A. As an application of this fact, we obtain the following

PROPOSITION (2.15) (cf. [21, Theorem 2]) Let B be a noetherian overring of a noetherian ring A. Assume that B is integral over A and satisfies (S_2) . Then A also satisfies (S_2) if and only if ht (p)=1 for every $p \in Ass_A(B|A)$.

PROOF. Since depth $A_p = 1$ for all $p \in \operatorname{Ass}_A(B|A)$, the 'only if' part is trivial. Conversely suppose that ht (p) = 1 for all $p \in \operatorname{Ass}_A(B|A)$. Since Q(A) = Q(B), A satisfies (S_1) . Let $Z = \{q \in \operatorname{Spec}(A) \mid ht(q) \ge 2\}$, and let $Z' = \{Q \in \operatorname{Spec}(B) \mid ht(Q) \ge 2\}$. As we remarked above, it is sufficient to show that T(Z, A) = A. By (2.3), $\operatorname{Ass}_A(T(Z, A) \cap B|A) = \operatorname{Ass}_A(B|A) \cap Z = \phi$; hence $T(Z, A) \cap B = A$. On the other hand it follows from (2.9) that $\{Q \in \operatorname{Spec}(B) \mid Q \cap A \in Z\} \subseteq Z'$; hence by (1.9) $T(Z, B) \subseteq T(Z', B)$. Therefore $T(Z, A) \cap B = T(Z, A)$. This completes the proof.

Shiroh Iton

§3. Finiteness of overrings

In this section, A will always denote a noetherian ring.

THEOREM (3.1) Let M be a finite A-module, and let N be an A-submodule of $Q_A(M)$ containing M. Then the following assertions are equivalent.

(1) N is a finite A-module.

(2) Ass_A(N/M) is a finite set, and $T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}}) \cap N_{\mathfrak{p}}$ is a finite $A_{\mathfrak{p}}$ -module for every $\mathfrak{p} \in Ass_A(N/M)$.

PROOF. (1) \Rightarrow (2) is clear. (2) \Rightarrow (1): Since Ass_A(N/M) is a finite set, we can choose a chain $\operatorname{Spec}(A) = Z_0 \supset Z_1 \supset \cdots \supset Z_n \supset \cdots$ of subsets of $\operatorname{Spec}(A)$ so that each Z_n is stable under specialization, $\bigcap_n Z_n = \phi$, $Z_n - Z_{n+1} \subseteq (Z_n)_{gen}$ for every n, and $Ass_A(N/M) \cap (Z_n - Z_{n+1})$ is empty or consists of one point for every n. Then there is an integer n_0 such that $\operatorname{Ass}_A(N/M) \cap Z_{n_0} = \phi$ because $\operatorname{Ass}_A(N/M)$ is a finite set and $\bigcap_n Z_n = \phi$; hence by (2.3), $T(Z_{n_0}, M) \cap N = M$. Assume now that $T(Z_{n+1}, M) \cap N$ is a finite A-module and $T(Z_{n+1}, M) \cap N \subset T(Z_n, M) \cap N$. We shall prove that $T(Z_n, M) \cap N$ is also finite. We put $L = T(Z_{n+1}, M) \cap N$ and $L' = T(Z_n, M) \cap N$. Note that $\operatorname{Ass}_A(N/M) \cap (Z_n - Z_{n+1}) \neq \phi$. In fact, if $\operatorname{Ass}_{A}(N/M) \cap (Z_{n} - Z_{n+1}) = \phi$, then by (1.7) (2), (1.10) (3) and (2.5), $L_{\mathfrak{p}} = M_{\mathfrak{p}} =$ $L_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(A) - Z_{n+1}$; hence by (1.7) (2), L' = L This is a contradiction. Therefore $\operatorname{Ass}_A(N/M) \cap (Z_n - Z_{n+1})$ consists of one point, say q. Since $L'_q =$ $T(qA_q, M_q) \cap N_q$ is a finite A_q -module contained in $T(qA_q, M_q)$, there exists an M-regular element t in q such that $tL'_{q} \subseteq M_{q}$. Then also by (1.7) (2), (1.10) (3) and (2.5), $(tL')_{\mathfrak{p}} \subseteq L_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(A) - Z_{n+1}$; hence by (1.7) (2), $tL' \subseteq L$. Therefore L' is a finite A-module. Now, by induction on n, $T(Z_0, M) = N$ is a finite A-module. This completes the proof.

COROLLARY (3.2) (cf. [15, (2.6.2)]) Let M be a finite A-module, and let Z be a subset of Spec (A) which is stable under specialization. Then the following assertions are equivalent.

(1) T(Z, M) is a finite A-module.

(2) $\Delta = \operatorname{Ass}_{A}(Q_{A}(M)/M) \cap Z$ is a finite set, and $T(\mathfrak{p}A_{\mathfrak{p}}, M_{\mathfrak{p}})$ is a finite $A_{\mathfrak{p}}$ -module for every $\mathfrak{p} \in \Delta$.

PROOF. We put N = T(Z, M). By (2.3), $Ass_A(N/M) = Ass_A(Q_A(M)/M) \cap Z = \Delta$. Therefore the assertion follows from (3.1).

COROLLARY (3.3) (cf. [15, (3.1)]) Let M and N be the same as in (3.1), and let $x(\neq 0)$ be an M-regular element. Then the following assertions are equivalent.

(1) N is a finite A-module.

- (2) (a) N_x is a finite A_x -module, and
- (b) $N_{\mathfrak{p}}$ is a finite $A_{\mathfrak{p}}$ -module for every $\mathfrak{p} \in \operatorname{Ass}_{A}(M/xM)$.

PROOF. (1)=(2) is clear. (2)=(1): Let $\mathfrak{p} \in \operatorname{Ass}_A(N/M)$. If $x \notin \mathfrak{p}$, then $\mathfrak{p}A_x \in \operatorname{Ass}_{A_x}(N_x/M_x)$, and if $x \in \mathfrak{p}$, then by (2.1) (3), $\mathfrak{p} \in \operatorname{Ass}_A(M/xM)$. Since $\operatorname{Ass}_{A_x}(N_x/M_x)$ and $\operatorname{Ass}_A(M/xM)$ are finite sets, $\operatorname{Ass}_A(N/M)$ is also a finite set. Moreover $N_{\mathfrak{p}}$ is a finite $A_{\mathfrak{p}}$ -module for every $\mathfrak{p} \in \operatorname{Ass}_A(N/M)$. Therefore by (3.1), N is a finite A-module.

COROLLARY (3.4) (cf. [8, Theoreme 2.1] and [15, (3.1)]) Assume that A is a domain. Let x be a non-zero element of A. Then the following assertions are equivalent.

- (1) For every $\mathfrak{p} \in \operatorname{Ass}_A(A/xA)$, the $xA_{\mathfrak{p}}$ -adic completion of $A_{\mathfrak{p}}$ is reduced.
- (2) For every $\mathfrak{p} \in \operatorname{Ass}_A(A/xA)$, $(A_{\mathfrak{p}})^g \cap \overline{A}_{\mathfrak{p}}$ is a finite $A_{\mathfrak{p}}$ -module.
- (3) $A_x \cap \overline{A}$ is a finite A-module.

PROOF. (2) \Leftrightarrow (3): We put $N = A_x \cap \overline{A}$. Since $A_x = T(V(xA), A)$, if follows from (2.3) and (2.1) (3) that $\operatorname{Ass}_A(N/A) = \operatorname{Ass}_A(\overline{A}/A) \cap V(xA) \subseteq \operatorname{Ass}_A(A/xA)$. Therefore the assertion follows immediately from (3.1). (1) \Rightarrow (2): Let $p \in \operatorname{Ass}_A(A/xA)$, and let $(A_p)^*$ be the xA_p -adic completion of A_p . Since $(A_p)^*$ is faithfully flat over A_p , it follows from (1.4) that $((A_p)^g \cap \overline{A}_p) \otimes_{A_p}(A_p)^* \subseteq ((A_p)^*)^g \cap (\overline{A_p})^*$. By (3.5) below, $((A_p)^*)^g \cap (\overline{A_p})^*$ is finite over $(A_p)^g \cap \overline{A_p}$ is finite over $(A_p)^g \cap \overline{A_p} \otimes_{A_p}(A_p)^*$; hence $((A_p)^g \cap \overline{A_p}) \otimes_{A_p}(A_p)^*$ is also finite over $(A_p)^*$. Therefore $(A_p)^g \cap \overline{A_p}$ is finite over A_p . (3) \Rightarrow (1): (cf. [8, Theoreme 2.1]) Let $B = A_x \cap \overline{A}$. Then $B_x \cap \overline{A} = B$. Therefore by (2.3) and (2.6), B_q is a DVR for every $q \in \operatorname{Ass}_B(B/xB)$. Let now $p \in \operatorname{Ass}_A(A/xA)$, and let $\{q_1, \ldots, q_n\}$ be the set of all associated prime ideals q of xB such that $q \cap A \subseteq p$. Then $(A_p)^* \subseteq (B_p)^* \subseteq \widehat{B_{q_1}} \times \cdots \times \widehat{B_{q_n}} (=C)$, where $(A_p)^*$ (resp. $(B_p)^*$) is the xA_p -adic completion of A_p (resp. xB_p -adic completion of B_p). Since C is reduced, $(A_p)^*$ is reduced. This completes the proof.

LEMMA (3.5) Assume that A is reduced, and is xA-adically complete for some regular element x in A. Then $A^{g} \cap \overline{A}$ is finite over A.

PROOF. Let $B = A^{\mathfrak{g}} \cap \overline{A}$. Since \overline{A} is a finite product of Krull domains and x is contained in the Jacobson radical of A, $\cap x^n B \subseteq \cap x^n \overline{A} = 0$. On the other hand A is xA-adically complete and, by (1.11), B/xB is finite over A/xA. Therefore B is finite over A (cf. [10, Lemma, p. 212]).

REMARK (3.6) (cf. [6, (5.10.17)]) Assume that A is a noetherian ring satisfying Serre's property (S₁). Let $Z = \{p \in \text{Spec}(A) \mid ht(p) \ge 2\}$, and put $A^{(1)} = T(Z, A)$. Corollary (3.2) gives a criterion for $A^{(1)}$ to be finite over A. Moreover if $A^{(1)}$ is finite over A, then $A^{(1)}$ satisfies (S₂). In fact, let $Z' = \{P \in \text{Spec}(A^{(1)}) \mid ht(P) \ge 2\}$. Since $Z' \subseteq \{P \in \text{Spec}(A^{(1)}) \mid P \cap A \in Z\}$, we have T(Z', Z').

Shiroh Iтон

 $A^{(1)} \subseteq T(Z, A^{(1)})$; hence $A^{(1)} \subseteq T(Z', A^{(1)}) \subseteq T(Z, A^{(1)}) = T(Z, T(Z, A)) = T(Z, A)$ = $A^{(1)}$. This shows that $A^{(1)} = T(Z', A^{(1)})$ and hence, by (1.5), $A^{(1)}$ satisfies (S₂).

We also have a criterion for an overring of A to be integral over A, which is a generalization of [15, (2.6.1)].

PROPOSITION (3.7) For an overring B of A, the following assertions are equivalent.

- (1) **B** is integral over A.
- (2) $(A_{\mathfrak{p}})^{\mathfrak{g}} \cap B_{\mathfrak{p}}$ is integral over $A_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Ass}_{A}(B/A)$.

PROOF. The implication $(1)\Rightarrow(2)$ is obvious. $(2)\Rightarrow(1)$: (cf. the proof of [15, (2.6.1)]) We may assume that B is generated by a single element x as an A-algebra, i.e., B=A[x]. We shall now construct a chain $A_0 \subseteq A_1 \subseteq \cdots (\subseteq B)$ of finite overrings of A as follows: We put $A_0 = A$. Assume that $A_n(n \ge 0)$ can be constructed already. If $x \in A_n$, then we put $A_{n+1} = A_n$. Now consider the case that $x \notin A_n$. Let p be a minimal prime ideal of $A_n:_A x$. Then $x/1 \in ((A_n)_p)^g$, and by (1.14), $((A_n)_p)^g \cap B_p(=B_p)$ is integral over $(A_p)^g \cap B_p$. Therefore B_p is integral (hence finite) over A_p . Choose a finite A-algebra A_{n+1} so that $A_n \subset A_{n+1} \subseteq B$ and $(A_{n+1})_q = B_q$ for all minimal prime ideals q of $A_n:_A x$. Note that, by our construction, $A_n:_A x \subset A_{n+1}:_A x$ if $x \notin A_n$. Therefore if $x \notin A_n$ for all $n \ge 0$, then the ascending chain $A:_A x \subset A_1:_A x \subset \cdots$ is not stable; this is a contradiction because A is noetherian. Thus we conclude that $x \in A_n$ for some n. This completes the proof.

§4. Finite (S_2) -overrings

In this section we shall study noetherian rings with finite (S_2) -overrings. To do this, we need a characterization of a noetherian local ring over which its global transform is essentially finite. Recall that an A-algebra B is essentially finite over A if there exist a finite A-subalgebra C of B and a multiplicative subset S of C such that $B = S^{-1}C$.

LEMMA (4.1) Let B and R be A-algebras, and let C be a B-algebra. Then we have the following assertions.

(1) If B is essentially finite over A and C is essentially finite over B, then C is essentially finite over A.

- (2) If C is essentially finite over A, then C is essentially finite over B.
- (3) If B is essentially finite over A, then $B \otimes_A R$ is essentially finite over R.

PROOF. The assertions (2) and (3) are obvious. (1): We may assume that C is finite over B. Choose an A-subalgebra B' of B and a multiplicative subset S of B' so that $B = S^{-1}B'$. Let $\{x_1, ..., x_n\}$ be a set of generators of C over B.

648

We may assume that each x_i is integral over B'. We now put $C' = B'[x_1, ..., x_n]$ ($\subseteq C$). Then it is clear that $C = S^{-1}C'$.

LEMMA (4.2) Let A be a noetherian local ring such that dim $A \ge 2$ and depth A=1. Let C be a finite A-subalgebra of A^{g} . Then the following assertions are equivalent.

- (1) $A^{g} = S^{-1}C$ for some multiplicative subset S of C.
- (2) depth $C_0 \ge 2$ for every maximal ideal Q of C such that $ht(Q) \ge 2$.

PROOF. (1)=>(2): Choose a multiplicative subset S of C so that $A^g = S^{-1}C$. Let Q be a maximal ideal of C such that $\operatorname{ht}(Q) \ge 2$. Then $(C_Q)^g = (C^g)_Q = (A^g)_Q = (S^{-1}C)_Q$. If $S \cap Q \neq \phi$, then $(C_Q)^g$ has no prime ideals over QC_Q ; hence, by (1.11) (1), every regular element of C_Q is invertible in $(C_Q)^g$ and therefore, by (1.13), $\operatorname{ht}(Q) = 1$. This is a contradication. Therefore $S \cap Q = \phi$ and hence $(C_Q)^g = C_Q$. This shows that depth $C_Q \ge 2$ (cf. (1.5)).

 $(2)\Rightarrow(1)$: (cf. the proof of (2.14)) Choose a regular element t of C so that every prime ideal, containing t, is a maximal ideal of height one and t is not contained in any maximal ideal whose height is gratter than one. Then it follows easily from (1.5) that $A^{g} = C_{t}$. This completes the proof.

LEMMA (4.3) Let A be a residue ring of a regular local domain such that dim $A \ge 2$ and depth A=1. Then the following assertions are equivalent.

- (1) A^{g} is essentially finite over A.
- (2) dim $A/p \ge 2$ for every embedded prime ideal p of A.

PROOF. (1) \Rightarrow (2): Choose a finite A-subalgebra C of A^g and a multiplicative subset S of C so that $A^g = S^{-1}C$. Let p be an embedded prime ideal of A. Since C is an overring of A, there exists a unique embedded prime ideal P of C such that $P \cap A = \mathfrak{p}$. Let M be an arbitrary maximal ideal of C such that $M \supset P$. Since ht $(M) \ge 2$, it follows from (4.2) that depth $C_M \ge 2$. Therefore dim $A/\mathfrak{p} = \dim C/P$ ≥ 2 (cf. [10, Theorem 27, p. 100]).

 $(2) \Rightarrow (1)$: Since $A_{\mathfrak{p}}$ is essentially finite over A for every $\mathfrak{p} \in \text{Spec}(A)$, by virtue of (1.17), we may assume that A has no minimal prime ideals \mathfrak{p} such that dim $A/\mathfrak{p} = 1$. In this situation it follows from (1.16) that $A^{\mathfrak{g}}$ is finite over A. This completes the proof.

PROPOSITION (4.4) Let (A, m) be a noetherian local ring such that dim $A \ge 2$ and depth A = 1. Let (R, n) be a faithfully flat A-algebra such that R is a residue ring of a regular local domain and $n = \sqrt{mR}$. Then the following assertions are equivalent.

(1) A^{g} is essentially finite over A.

(2) R^g is essentially finite over R (i.e., dim $R/p \ge 2$ for every embedded prime ideal p of R).

PROOF. Note first that $R^g = A^g \otimes_A R$ (cf. (1.4)).

(1) \Rightarrow (2): The assertion follows from (4.1).

 $(2)\Rightarrow(1)$: Let $B=A^{g}\cap \overline{A}$. Then by (2.14), $A^{g}=B_{t}$ for some $t\in B$. Therefore $R^{g}=(B\otimes_{A}R)_{t}$. By our assumption, there exist a finite *R*-subalgebra *C'* of R^{g} and a multiplicative subset *S* of *C'* such that $R^{g}=S^{-1}C'$. Since *C'* is finite over *R* and $R^{g}=(B\otimes_{A}R)_{t}$, there exists a finite *A*-subalgebra *C* of *B* such that $C'_{t} \subseteq (C\otimes_{A}R)_{t}$. Therefore we may assume that $C'=C\otimes_{A}R$ for some finite *A*subalgebra *C* of *B*. Since *C'* satisfies the condition (2) in (4.2), it follows from the faithful flatness of *R* over *A* that *C* also satisfies the condition (2) in (4.2); hence A^{g} is essentially finite over *A*.

We shall now study some properties of noetherian rings with finite (S_2) -overrings.

LEMMA (4.5) Let A be a noetherian ring satisfying (S_1) . Consider the following conditions on A:

(1) There exists a finite (S_2) -overring of A.

(2) $U = \{ \mathfrak{p} \in \text{Spec}(A) | A_{\mathfrak{p}} \text{ satisfies } (S_2) \}$ is a non-empty open subset of Spec (A).

(3) $\Delta = \{ \mathfrak{p} \in \text{Spec}(A) \mid \text{ht}(\mathfrak{p}) \ge 2 \text{ and } \text{depth } A_{\mathfrak{p}} = 1 \}$ is a finite set. Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

PROOF. (1) \Rightarrow (3): Let t be a regular element of A such that $tR \subseteq A$. Then A_t satisfies (S_2) and therefore $t \in p$ for every $p \in \Delta$; hence $\Delta \subseteq Ass_A(A/tA)$. This shows that Δ is a finite set. (3) \Rightarrow (2): It is easy to see that $U = \text{Spec}(A) - \bigcup_{p \in \Delta} V(p)$; hence U is a non-empty open subset of Spec (A). (2) \Rightarrow (3): Since U is open and Min $(A) \subseteq U$, there exists a regular element t of A such that Spec (A_t) $\subseteq U$. On the other hand $\Delta \cap U = \phi$; hence $\Delta \subseteq V(tA)$. Therefore $\Delta \subseteq Ass_A(A/tA)$. This shows that Δ is a finite set.

LEMMA (4.6) Let A be a noetherian local ring. Assume that A has a finite (S_2) -overring R. Then A^g is essentially finite over A.

PROOF. We put $B = A^g \cap R$. We may assume that dim $A \ge 2$ and depth A = 1. Now choose a regular element t of B so that every prime ideal, containing t, is a maximal ideal of height one and t is not contained in any maximal ideal whose height is greater than one. Then by (2.11) and (2.14), $B_t \subseteq A^g$ and R_t has no maximal ideals of height one. Therefore it follows from (1.5), (1.12) and (1.14) that $A^g = (B_t)^g \subseteq (R_t)^g = R_t$; hence A^g is finite over B_t . By (4.1) (1), A^g is essentially finite over A. This completes the proof.

The following therorem is our main result in this section.

THOEREM (4.7) Let A be a noetherian ring satisfying Serre's property (S_1) , and let Δ be the set of all prime ideals \mathfrak{p} of A such that $\operatorname{ht}(\mathfrak{p}) \geq 2$ and depth $A_{\mathfrak{p}} = 1$. Then the following assertions are equivalent.

- (1) There exists a finite (S_2) -overring of A.
- (2) Δ is a finite set, and for every $\mathfrak{p} \in \Delta$, $(A_{\mathfrak{p}})^{\mathfrak{g}}$ is essentially finite over $A_{\mathfrak{p}}$.

PROOF. The implication $(1)\Rightarrow(2)$ follows from (4.5) and (4.6). $(2)\Rightarrow(1)$: For a finite overring B of A, we put $\Delta(B) = \{Q \in \text{Spec}(B) \mid \text{ht}(Q) \ge 2 \text{ and depth } B_Q\}$ =1}, $\Delta^*(B) = \{Q \in \Delta(B) \mid (B_Q)^g \text{ is not finite over } B_Q\}, n(B) = \inf\{\operatorname{ht}(Q \cap A) \mid Q \in A\}$ $\Delta(B)$, and $n^*(B) = \sup \{ \operatorname{ht} (Q \cap A) \mid Q \in \Delta^*(B) \}$. We shall show that there exists a finite overring R of A such that $\Delta^*(R) = \phi$. If this is done, then by (3.2) and (3.6), R has a finite (S₂)-overring; hence so does A. If $\Delta^*(A) = \phi$, there is nothing to prove. Therefore we may assume that $\Delta^*(A) \neq \phi$. Since $\Delta(A)$ is a finite set and $(A_{\mathfrak{p}})^{\mathfrak{g}}$ is essentially finite over $A_{\mathfrak{p}}$ for every $\mathfrak{p} \in \Delta(A)$, there exists a finite A-subalgebra C of Q(A) such that, for every $\mathfrak{p} \in \Delta(A)$, $(A_{\mathfrak{p}})^g \cap C_{\mathfrak{p}}$ satisfies the conditions in (4.2). We now put $B = T(Z, A) \cap C$ where $Z = \bigcup_{p \in \Delta} V(p)$, and we shall show that B satisfies the condition (2) above. Choose a regular element t of A so that $tB \subseteq A$. Since $B_t = A_t$, $\{Q \in \Delta(B) | t \in Q\}$ is a finite set. On the other hand $\{Q \in \Delta(B) \mid t \in Q\}$ is also a finite set because it is a subset of Ass_B(B/tB). Therefore $\Delta(B)$ is a finite set. Let Q be a regular prime ideal of B such that $ht(Q) \ge 2$. We put $q = Q \cap A$. Since B_q is finite over A_q , it follows from (1.14) that $(B_q)^g$ is finite over $(A_q)^g$. Suppose that $q \notin \Delta^*(A)$. Then $(A_q)^g$ is finite over A_q . Therefore $(B_q)^g$ is finite over B_q ; hence $(B_Q)^g = ((B_q)^g)_Q$ is finite over $B_Q = (B_q)_Q$. In particular, $Q \notin \Delta^*(B)$ whenever $q \notin \Delta^*(A)$. Suppose next that $q \in \Delta^*(A)$. Then $(A_{a})^{g}$ is essentially finite over A_{a} ; hence by (4.1), $(B_{a})^{g}$ is essentially finite over B_{a} . Therefore $(B_{Q})^{g}$ is essentially finite over B_{Q} . Thus B satisfies the condition (2) above. Moreover we have $Q \notin \Delta(B)$ whenever $q \in \Delta(A) \cap Z_{gen}(=$ the set of minimal elements of $\Delta(A)$). In fact if $q \in \Delta(A) \cap Z_{gen}$, then $B_q = (A_q)^g \cap C_q$ and therefore, by the choice of C, depth $B_Q \ge 2$ (cf. (4.2)); hence $Q \notin \Delta(B)$. This shows that $n^*(B) > n(B)$.

Therefore, inductively, we can construct a sequence $B_0 = A \subseteq B_1 = B \subseteq \cdots \subseteq B_n \subseteq \cdots$ of finite overrings of A with the following properties:

(a) Each B_n satisfies the condition (2), and

(b) $n^*(B_0) \ge n^*(B_1) \ge \dots \ge n^*(B_n) \ge n(B_n) > \dots > n(B_1) > n(B_0)$ if $\Delta^*(B_i) \ne \phi$ for $i = 1, \dots, n$.

We must then have that $\Delta^*(B_j) = \phi$ for some j. This completes the proof.

REMARK (4.8) Recently, in [2] M. Brodmann proved the following assertion: A noetherian local domain A whose formal fibres satisfy the first Serre property (S_1) adimits a finite (S_2) -overring if and only if the set $\{p \in \text{Spec } (A) \mid A_p \text{ is } (S_2)\}$ is open in Spec (A).

If formal fibres of A satisfy (S_1) , then by (4.4), $(A_p)^g$ is essentially finite over

Shiroh Itoh

 $A_{\rm p}$ for every $p \in \operatorname{Spec}(A)$. Therefore his result follows from (4.7) and (4.5).

§5. Seminormality and global transforms

Throughout this section, A will denote a noetherian ring. Let B be a finite overring of A. Recall that A is seminormal in B if and only if, for an element b of B, $b \in A$ whenever b^2 , $b^3 \in A$. This characterization of seminormality is sufficient to follow what we discuss in this section. In particular if A is seminormal in B, then $A_{A}^{*}B$ is a radical ideal of B.

We shall first study a finite overring B of A such that $Ass_A(B|A)$ consists of one point p. Since $Ass_A(B|A) = \{p\}$, $A:_A N$ is a p-primary ideal of A for every A-submodule N of B such that $N \notin A$. Let $\{P_1, ..., P_r\}$ be the set of all prime ideals of B which lie over p. We define an A-subalgebra C_0 of B by the following pull back diagram:

$$(*) \qquad \begin{array}{c} C_0 \longrightarrow B \\ \downarrow \qquad \qquad \downarrow \\ k(\mathfrak{p}) \longrightarrow \prod_i k(P_i) \end{array}$$

where $k(\mathfrak{p}) \to \prod_i k(P_i)$ and $B \to \prod_i k(P_i)$ are the natural ring homomorphisms, and inductively we define a chain $C_0 \supseteq C_1 \supseteq \cdots \supseteq C_n \supseteq \cdots$ of A-subalgebras of B by the following pull back diagrams:

$$(**) \qquad \begin{array}{c} C_{n+1} & \longrightarrow & C_n \\ \downarrow & & \downarrow \\ k(\mathfrak{p}) & \longrightarrow & C_n \otimes_A k(\mathfrak{p}) \end{array}$$

n=0, 1,..., where $k(\mathfrak{p}) \to C_n \otimes_A k(\mathfrak{p})$ and $C_n \to C_n \otimes_A k(\mathfrak{p})$ are the natural ring homomorphisms. C_0 is what we call the ring obtained from B by glueing over \mathfrak{p} . By definition, $\mathfrak{p}C_n(\text{resp. } P_1 \cap \cdots \cap P_r)$ is also an ideal of $C_{n+1}(\text{resp. } C_0)$. We put $P=P_1 \cap \cdots \cap P_r$. Then P is the only one prime ideal of C_0 lying over \mathfrak{p} , and $k(\mathfrak{p})=k(P)$; in particular $P \cap C_n$ is the only one prime ideal of C_n lying over \mathfrak{p} .

LEMMA (5.1) With the same notation and assumptions as above, we have the following assertions.

- (1) C_0 is seminormal in B.
- (2) A is not seminormal in C_n if $C_n \neq A$.
- (3) $A = C_0$ if and only if A is seminormal in B.
- (4) A is seminormal in B if and only if so is A in $\operatorname{End}_{A}(\mathfrak{p}) \cap B$.
- (5) $A = C_n$ for some n.

PROOF. The assertion (1) is clear. (2): Let n be a non-negative integer such

that $C_n \neq A$. To prove that A is not seminormal in C_n , it is sufficient to show that $A_{\mathfrak{p}}$ is not seminormal in $(C_n)_{\mathfrak{p}}$. Note that $A_{\mathfrak{p}} \neq (C_n)_{\mathfrak{p}}$ because $\operatorname{Ass}_A(C_n/A) = \{\mathfrak{p}\}$. Since the above pull back diagrams (*) and (**) commute with the localization with respect to A - p, we may assume that A is local and p is the maximal ideal of A. Let Q be the prime ideal of C_n lying over p. Suppose contrarily that A is seminormal in C_n . Since $A: {}_{A}C_n$ is a radical ideal of C_n , and also is p-primary, $Q=A:_{A}C_{n}=\mathfrak{p}$; hence by definition $C_{n}=A+Q=A+\mathfrak{p}=A$. This is a contradiction. Therefore A is not seminormal in C_n . The assertion (3) is now obvious by (1) and (2). (5): Since $A:_A C_n$ is a p-primary ideal or A, to prove that $A:_A C_n$ =A for some n, we may assume that A is local and p is the maximal ideal of A. By definition $C_{n+1} = A + pC_n$. Therefore $A_{A} = A = A = A = A = A$. Suppose now that $A: {}_{A}C_{n} \neq A$ for all n. Then each $A: {}_{A}C_{n}$ is a p-primary ideal different from p; hence $A:_A C_{n+1} = A:_A \mathfrak{p} C_n = (A:_A C_n):_A \mathfrak{p} \subset A:_A C_n$. Therefore we have an ascending chain $A:_{A}C_{0} \subset A:_{A}C_{1} \subset \cdots \subset A:_{A}C_{p} \subset \cdots$ of p-primary ideals. This is a contradiction; hence $A_{A}C_{n}=C_{n}$ for some n. (4): Suppose that A is not seminormal in B. Then $A = C_{n+1} \subset C_n$ for some n. Since $C_n \subseteq \text{End}_A(\mathfrak{p}) \cap B$, it follows from (2) that A is not seminormal in $\operatorname{End}_{A}(\mathfrak{p}) \cap B$. The converse is trivial. Thus the lemma is proved.

Let R be an overring of A. We say that A is seminormal in R if A is seminormal in every finite A-subalgebra of R.

THEOREM (5.2) Let R be an overring of A. Then the following assertions are equivalent.

- (1) A is seminormal in R.
- (2) $A_{\mathfrak{p}}$ is seminormal in $(A_{\mathfrak{p}})^{g} \cap R_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Ass}_{A}(R/A)$.
- (3) $A_{\mathfrak{p}}$ is seminormal in $\operatorname{End}_{A\mathfrak{p}}(\mathfrak{p}A_{\mathfrak{p}}) \cap R_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Ass}_{A}(R/A)$.

PROOF. We may assume that R is finite over A. The implication $(1)\Rightarrow(3)$ is obvious, and $(3)\Rightarrow(2)$ follows from (5.1) because $\operatorname{Ass}_{A_{\mathfrak{p}}}((A_{\mathfrak{p}})^{g} \cap R_{\mathfrak{p}}/A_{\mathfrak{p}}) = \{\mathfrak{p}A_{\mathfrak{p}}\}$ (cf. (2.3)). (2) \Rightarrow (1): Suppose that A is not seminormal in R. Then there is an element b of R-B such that b^{2} , $b^{3} \in A$. Let p be a minimal prime ideal of $A:_{A}b$. By definition, $\mathfrak{p} \in \operatorname{Ass}_{A}(R/A)$. Since $b/1 \in (A_{\mathfrak{p}})^{g} \cap R_{\mathfrak{p}}$ and $A_{\mathfrak{p}}$ is seminormal in $(A_{\mathfrak{p}})^{g} \cap R_{\mathfrak{p}}$, we have $b/1 \in A_{\mathfrak{p}}$. This is a contradiction. Therefore A is seminormal in R.

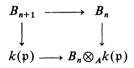
REMARK (5.3) The above theorem shows that A is seminormal in R if and only if A_p is seminormal in R_p for every $p \in Ass_A(R/A)$ (cf. [5] and [7]).

REMARK (5.4). Let B be a finite overring of A. Choose a chain $Z_0 \supset Z_1$ $\supset Z_2 \supset \cdots$ of subsets of Spec (A), which are stable under specialization, so that $\cap Z_n = \phi$ and, for each n, Ass_A(B/A) $\cap (Z_n - Z_{n+1})$ consists of one point or is empty. We may assume that Ass_A(B/A) $\cap (Z_i - Z_{i+1}) = \{p_{i+1}\}$ for i=0,...,m

Shiroh Iтон

and $\operatorname{Ass}_A(B/A) \cap Z_{m+1} = \phi$. We now put $B_i = T(Z_i, A) \cap B$ for i = 0, ..., m. Since $(B_i)_{\mathfrak{p}_i} = A_{\mathfrak{p}_i}$, there exists a unique prime ideal P_i of B_i such that $P_i \cap A = \mathfrak{p}_i$. Therefore we have a chain $A = B_{m+1} \subset B_m \subset \cdots \subset B_1 \subset B_0 = B$ of finite overrings of A such that $\operatorname{Ass}_{B_i}(B_{i-1}/B_i) = \{P_i\}$ and $k(P_i) = k(\mathfrak{p}_i)$ (i = 1, ..., m+1). Thus the following lemma gives us another proof of [19, Th. 2.4].

LEMMA (5.5) (cf. (5.1) (5)) Let B be a finite overring of A. Assume that $Ass_A(B|A) = \{p\}$. Consider the following chain $B = B_0 \supseteq B_1 \supseteq \cdots$ of A-subalgebras of B defined by the following pull back diagrams:



n=0, 1, 2,... where $k(\mathfrak{p}) \rightarrow B_n \otimes_A k(\mathfrak{p})$ and $B_n \rightarrow B_n \otimes_A k(\mathfrak{p})$ are the natural ring homomorphisms. Then $B_n = A$ for some n.

Proof is similar to that of (5.1) (5).

LEMMA (5.6) With the same notations and assumptions as in (2.4), if A is seminormal in R, then B is seminoraml in B'.

PROOF. Let x be an element of R such that x^2 , $x^3 \in B$. We put $I = (A_{:A}x^2) \cap (A_{:A}x^3)$. Since $(Ix)^2$, $(Ix)^3 \subseteq A$, it follows from our assumption that $Ix \subseteq A$; hence $x \in T(Z, A) \cap R = B$ because $V(I) \subseteq Z$. This shows that B is seminormal in R. Therefore B is seminormal in B'.

We now consider a finite overring B of A in which A is seminormal. We define, inductively, a chain $B = B_0 \supseteq B_1 \supseteq B_2 \supseteq \cdots$ of A-subalgebras of B as follows: Assume that B_n is already defined. If $B_n = A$, then we put $B_{n+1} = A$. Now cosider the case that $B_n \neq A$. Let \mathfrak{p}_{n+1} be a minimal prime ideal of $A:_A B_n$. We then put B_{n+1} = the ring obtained from B_n by glueing over \mathfrak{p}_{n+1} .

PROPOSITION (5.8) ([20, Theorem 2.1] and [7, Theorem 1.13]) With the same notations and assumptions as above, we have the following assertions.

- (1) $B_n = A$ for some n.
- (2) $\operatorname{Ass}_{A}(B|A) = \{\mathfrak{p}_{1}, \dots, \mathfrak{p}_{n}\}$ if $B_{n-1} \supset B_{n} = A$.

The assertion (1) in (5.8) is the structure theorem of seminormal rings due to C. Traverso [20], and the assertion (2) has been shown by J. V. Leahy and M. A. Vitulli [7]. However we give here another proofs of these results using Z-transforms.

PROOF OF (5.8). We put $Z_0 = \text{Spec}(A)$. Since p_1 is a minimal element of

654

Ass_A(B/A), we can choose a subset Z_1 of Spec (A) which is stable under specialization so that Ass_A(B/A) \cap ($Z_0 - Z_1$) = { \mathfrak{p}_1 }. We put $B'_1 = T(Z, A) \cap B$, and we show that $B'_1 = B_1$. By (2.4) and (5.6), B'_1 is seminormal in B and Ass_{B'_1}(B/B'_1) = { P'_1 } where P'_1 is a unique prime ideal of B'_1 lying over \mathfrak{p}_1 (note that $(B'_1)_{\mathfrak{p}_1}$ = $A_{\mathfrak{p}_1}$). Since $k(\mathfrak{p}_1) = k(P'_1)$, it follows from (5.1) (3) that $B'_1 = B_1$. By induction, it is now easy to see that there exists a chain $Z_0 \supset Z_1 \supset Z_2 \supset \cdots$ of subsets of Spec (A) such that each Z_n is stable under specialization, Ass_A(B_n/A) \cap ($Z_n - Z_{n+1}$) = { \mathfrak{p}_{n+1} } whenever $B_n \neq A$, and $B_n = T(Z_n, A) \cap B$ for $n = 1, 2, \ldots$. In particular $\mathfrak{p}_i \neq \mathfrak{p}_j$ if $i \neq j$, and { $\mathfrak{p}_1, \mathfrak{p}_2, \ldots$ } $\subseteq \operatorname{Ass}_A(B/A)$. Since Ass_A(B/A) is a finite set, B_n = A. Then Ass_A(B/A) = \cup (Ass_A(B/A) \cap ($Z_i - Z_{i+1}$)) = \cup (Ass_A($B_i/A) \cup$ ($Z_i - Z_{i+1}$)) = { $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ }. This completes the proof.

Appendix

In this appendix, as an application of (2.12), we shall give an alternative proof of the theorem of Mori-Nagata:

Let R be the derived normal domain of a noetherian domain A. Then we have the following assertions.

(1) For each $p \in \text{Spec}(A)$, there are only a finite number of prime ideals P of R such that $P \cap A = p$, and if P is such a prime ideal of R, then [k(P): k(p)] is finite.

- (2) R is a Krull domain, i.e.,
- (a) R_P is a DVR for every height one prime ideal P of R,

(b) for every $x(\neq 0)$ in R, there are only a finite number of height one prime ideals of R which contain x, and

(c) $R = \cap R_P$ where P runs through all height one prime ideals of R.

PROOF. (b): We may assume that $x \in A$. Then it follows from (2.1) (3) and (2.9) that every height one prime ideal of R containing x lies over some prime ideal in $Ass_A(A/xA)$. Since $Ass_A(A/xA)$ is a finite set, the assertion is clear by (2.12). Similarly we can prove the assertion (a).

(c): To prove the assertion, it is fufficient to show that if Q is a minimal prime ideal of $xR_{R}y$ for some x and y in R with $y \notin xR_Q$, then ht (Q)=1. Suppose contrarily that ht $(Q) \ge 2$. We may assume that A is a local ring with the maximal ideal $q = Q \cap A$, and $x, y \in A$. Moreover replacing A by $(A^g \cap \overline{A})_{Q \cap (A^g \cap \overline{A})}$, we may assume that there exist no height one maximal ideals of R (cf. (2.11)). Since Q is a minimal prime ideal of $xR_{R}y$, $q^n ys \subseteq xR$ for some positive integer n and $s \in R - Q$. Choose a finite overring B of A so that $s \in B$ and $q^n ys \subseteq xB$. Note that, by virtue of (2.12), $B^g \subseteq R$. Since $q^n B^g ys \subseteq xB^g$ and dim $B^g/q^n B^g = 0$, $ys \in xB^g \subseteq xR$; hence $y \in xR_Q$. This is a contradiction. This completes the proof of (2).

Shiroh ITOH

(1): We may assume that A is a local domain with the maximal ideal p, and it is sufficient to show that (1) is true for p. We shall use induction on n =dim A. If n=1, then the assertion follows from the theorem of Krull-Akizuki (or (2.12)). Now assume that $n \ge 2$. We shall first consider the case that depth A ≥2. Let x, y be a regular sequence of length two in p, and let X be an indeterminate. Then q = (xX - y)A(X) is a prime ideal of A(X) and $A(X)_q$ is a DVR; hence there exists a unique prime ideal Q of $\overline{A}(X)$ such that $Q \cap A(X) = q$. By virtue of (2.1) (3) and (2.9), Q is the only one minimal prime ideal of (xX - y). $\overline{A}(X)$; hence every maximal ideal of $\overline{A}(X)$ contains Q. Therefore the natural map Spec $(\overline{A}(X)/Q) \rightarrow$ Spec (\overline{A}) induces a bijection Max $(\overline{A}(X)/Q) \cong$ Max (\overline{A}) . (Note that every maximal ideal of $\overline{A}(X)$ is of the form $M\overline{A}(X)$, $M \in Max(\overline{A})$ (cf. [11, Chap. I, p. 18]). Since dim $A(X)/q \le n-1$ and $\overline{A}(X)/Q \le A(\overline{X})/q$, the induction hypothesis implies that Max $(\bar{A}(X)/Q)$ (=Max (\bar{A})) is a finite set and, for every $M \in Max(\overline{A}), k(M\overline{A}(X)/Q)(=k(M)(X))$ is a finite algebraic extension of $k(\mathfrak{p}A(X)/\mathfrak{q})(=k(\mathfrak{p})(X));$ hence $[k(M):k(\mathfrak{p})]$ is finite. Now consider the case that depth A=1. By (2.12), it is sufficient to prove that $B=A^{g} \cap \overline{A}$ satisfies (1) for its maximal ideals. Let M be a maximal ideal of B. If ht $(M) \ge 2$, then by (2.12) depth $B_M \ge 2$; hence this case is established already. If ht (M) = 1, then by (2.12) B_M is a DVR; hence the assertion is obvious. This completes the proof.

References

- M. Brodmann, Ueber die minimale Dimension der assoziierten Primideale der Komplettion eines lokalen Integritätsbereiches, Comment. Math. Helv. 50 (1975), 219–232.
- [2] —, Finiteness of ideal transforms, J. Algebra (to appear).
- [3] N. Bourbaki, Algèbre Commutative, Chap. 5, 6, Hermann, Paris, 1964.
- [4] D. Ferrand-M. Raynaud, Fibres formelles d'un anneaux local noethérien, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 295–311.
- [5] S. Greco-C. Traverso, On seminormal schemes, Serie di Pubbl. Ist. Mat. Pol. Torino, Serie I, Preprint N. 10, 1978.
- [6] A. Grothendieck, Eléments de géométrie algébrique IV (Second partie), Publ. Math. IHES. 24, Paris, 1965.
- [7] J. V. Leahy-M. A. Vitulli, Seminormal rings and weakly normal varieties, (preprint).
- [8] J. Marot, Topologies d'anneau principal, C. R. Acad. Sci. Paris Sér. A 288 (1979), 713-715.
- [9] J. Matijevic, Maximal ideal transforms of noetherian rings, Proc. Amer. Math. Soc. 54 (1976), 49-52.
- [10] H. Matsumura, Commutative Algebra, Benjamin, 1970.
- [11] M. Nagata, Local Rings, Interscience, 1962.
- [12] —, A treatise on the 14-th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 30 (1956-57), 57-70.
- [13] -----, A theorem of finite generation of a ring, Nagoya Math. J. 27 (1966), 193-205.

- [14] J. Nishimura, On ideal transforms of noetherian rings, I, J. Math. Kyoto Univ. 19 (1979), 41-46.
- [15] ———, On ideal transforms of noetherian rings, II, J. Math. Kyoto Univ. 20 (1980), 149–154.
- [16] D. G. Northcott, Finite Free Resolutions, Cambridge tracts in mathematics; no. 71, 1976.
- [17] J. Querré, Sur un théorème de Mori-Nagata, C. R. Acad. Sci. Sér. A Paris 285 (1977), 323–324.
- [18] L. J. Ratliff, On prime divisors of the integral closure of a principal ideal, J. reine Angew. Math. 255 (1972), 210-220.
- [19] G. Tamone, Su una generalizzazione della nozione di incollamento, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 65 (1978), 107–112.
- [20] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 585-595.
- [21] H. Yanagihara, On glueing of prime ideals, Hiroshima Math. J. (to appear).
- [22] K. Yoshida, On the birational integral extensions and the prime ideals of depth one, (in preparation).

Department of Mathematics, Faculty of Science, Hiroshima University