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Introduction

The main purpose of this paper is to establish a notion of Cohen-Macaulay
modules over an arbitrary commutative ring which generalizes that of Cohen-
Macaulay modules over a noetherian, commutative ring. A finite module over
a noetherian ring is said to be a Cohen-Macaulay module if its depth is equal to
its Krull dimension (cf. [6]). Adapting M. Hochster's approach to a theory of
grade, D. G. Northcott set up the concept of polynomial grade of modules over a
commutative ring in [7] which is a generalization of the notion of depth. The
author showed in [8] a relation between the polynomial grade of a module and the
valuative dimension of it which was defined by P. Jaffard in [5]. Namely, let A
be a quasi-local ring and M a non-zero, finite ^-module. Then the polynomial
grade Gr (M) of M is equal to or less than the valuative dimension Dim M of M.
This fact suggests to us giving a definition of a Cohen-Macaulay module over an
arbitrary ring in terms of polynomial grade and valuative dimension.

However it seems that many nice properties of Cohen-Macaulay modules over
a noetherian ring come from the following inequality: depth M^dim A/p for all
prime ideals p in Ass (M), where M is a non-zero, finite module over a noetherian
local ring A. In particular it follows from this fact that a noetherian, Cohen-
Macaulay ring is universally catenarian. First the author has guessed that a
generalization of this inequality could be obtained. However S. Itoh has recently
pointed out to the author that it does not hold in general, i.e., we can find a non-
zero, finite module M over a quasi-local ring A and an attached prime ideal p of
M such that Gr (M) > Dim (A/p) (see Appendix). Therefore if we would define
a Cohen-Macaulay module M over an arbitrary ring A by Gr (M) = Dim M, many
nice properties of the Cohen-Macaulay modules over a noetherian ring may not be
accomplished. For this reason, adding the condition that the ring A/Ann (M)
is catenarian to the above one, we may introduce the following definition: A
non-zero, finite module M over a ring A is said to be a Cohen-Macaulay module
if Dim(M,,) is finite for all peSuρp(M) and Gr(M,) +Dim 04^4,,) =
DimMj, for all pairs of prime ideals p, q in Suρp(M) such that qcp (see (4.4)).
This would be a natural generalization of the notion of Cohen-Macaulay modules
over a noetherian ring.

In section 1 we give the terminology and the notations which we will use in
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this article. Section 2 deals with the polynomial heights and includes a gener-
alization of Theorem 2 in [8]. In section 3 we study the polynomial grade and the
valuative dimension of the module M[X~\. In section 4 we introduce the motion
of Cohen-Macaulay modules over an arbitrary ring and basic facts about these

modules are established. Some examples of Cohen-Macaulay rings in our wider

sense are presented in section 5.

1. Terminology

Throughout this paper, all rings are assumed to be commutative with identity,
and all modules are assumed to be unitary. If A is a ring and p is a prime ideal
of A, then ht (p) stands for the height of p and dim A for the Krull dimension of
A. If X!,..., Xn are indeterminates over A, then p[Zl5..., XJ is a prime ideal
of the polynomial ring A[Xl9...9 Xn~]. The limit of the sequence {ht(ppf l5

..., Xn~])} (rc = 0, 1,...) is called the polynomial height of p and is denoted by Ht (p)
(see [8]).

If A is an integral domain, the valuative dimension of A, denoted by Dim A,
is defined to be Sup {dim V\ Fis a valuation overring of A], and more generally
the valuative dimension of a ring A is defined to be SuppeSpec(^) {Dim (A/p)}
(see [5]). If A is a ring and M is a non-zero y4-module, then Ann (M) denotes
the set of annihilators of M, and by the valuative dimension of M we understand
the valuative dimension of the ring A/Ann (M). The valuative dimension of the
module M is denoted by Dim M or Dim (M).

Let α be an ideal of a ring A and M an 4-module. Then we denote by
M[AΊ,...,XB] the X[X1,...,XJ-module M®AA\_Xl9...9X^. A sequence
{aί9 a2,..., am} of m elements of α is called an ^4-sequence on M composed of
elements of α if the sequence

0

is exact for each i, l^z^m. The upper bound of the lengths of all such A-
sequences on M is called the classical grade of α on M and it is denoted by
gτA {α; M}. Furthermore the limit of the sequence {giU[jrlf...,*„] {a[Xί9...9 Xn]
M[fXl9...9XJ}} (fl = 0, 1,...) is called the polynomial grade of o on M and is
denoted by GτA {α; M}. A prime ideal p of A is said to be attached to the zero
submodule of M if Gr^ {p^ M} =0 and the set of prime ideals attached to the
zero submodule of M is denoted by Att (M) (see [7]).

If M is an ^[-module, we denote by Supp (M) the support of M, which is the
set of prime ideals p of A such that Mp ̂  0. Min (M) means the set of prime ideals
which are minimal prime ideals of the ideal Ann (M). To simplify the notation,
we write Gr(M^) in place of Gr^ {pA^i Mp} and Dim(Mj,) stands for the
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valuative dimension of A^ -module M p, where p is a prime ideal in Supp (M ).

2. Polynomial heights

The following theorem plays an important role in our theory.
(2.1) (J. Brewer, P. Montgomery, E. Rutter and W. Heinzer [2], Theorem 1)

Let Abe a ring and ty a prime ideal of A[Xί9...9 Xn~] with φ Π A — p. Then we
have ht(^) = ht(p[X1,..., XJHhttti/pCX!,..., XJ).

We have a similar equality for polynomial heights.

(2.2) THEOREM. Let A be a ring and 3̂ a prime ideal of A[Xi9...9 XJ

with φ n 4 = p. Then Ht(φ) = Ht(p) + Ht(Wp[*ι, . , *J)

PROOF. Let 715..., Ym be indeterminates over A{Xl9...9 Xn~]. Then
..., YJ is a prime ideal of A\Xl9...9 Xn9 Yl9...9 YJ and we see ^[yl5..., yj n
AIY19...9 ym] = p[yl?..., yj. Hence, by (2.1) and the fact that the ring A[Xl9

...9Xn9 YH..., ym]/p[Xl5...,Xπ, 715..., yj is isomorphicto(X[X1,...,
[Γ15..., yj, we obtain

ht(φ[Yl5..., yj) = ht(p[yl5..., yw, xl9...9 xj) +

,..., ym, Xi,..., xj)

Therefore letting m tend to infinity, it follows from the definition of poly-
nomial height that

Ht(p[Xlv.., XJ) + Ήi(WplXl9...9 XJ)

= Ht(p) + Ht(^/p[Xlf...,XJ). β.β.d.

(2.3) COROLLARY. Lei ί/ιe assumptions be as in (2.2). Then Ht(φ) =

PROOF. By (2.2), it is sufficient to show that ht^/pCXi,..., XJ) =

Ht(φ/ρ[Xl5...,XJ). Put S=A-p. Then 4[Xlv..,XJs is isomorphic to
^[Xi,..., XJ. Since the height and the polynomial height are not changed by

any localization, we have ht0P/P[*ι, . , XJ) = ht(φs/p[Xlf..., XJS) and
HtCP/P[*k,..., XJ) = Ht(φs/p[JΓlf..., XJS). It isclearthat φs/p[^l5..., XJS

is a prime ideal of a noetherian ring (^p/p^p)^,..., XJ. Accordingly it
follows from Prop. 1, (7) of [8] that ht (φs/p[^l5..., ΓJs)=
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*»]«)• We may therefore conclude that ht OP/pEA^,..., A;])=Ht
AΓJ). ?.*.</.

(2.4) REMARK. We see the following statements by the proof of (2.3).
Let A be a ring and ty a prime ideal of A[X^..., Xn~\. Put p = ̂ β n Λ. Then
HtOP/pK,..., JTJ)=ht(φ/p[AΓ l f..., AΓj)^/ι. In particular if n-1 and

, thenHt

(2.5) COROLLARY. Lef the situation be as in the statement of (2.2) and
suppose that ht (p) = Ht (p). Then ht (φ) = Ht (<P).

PROOF. By the definition of polynomial height, we see easily that ht (p)
^ht (φ[Xl9...9 JTJ)^Ht (p). Hence, by the assumption, ht (p^,..., A^]) =
Ht (p). It therefore follows from (2.1) and (2.3) that ht OP)=ht (pK,..., Xn~\)

.., ΛΓJ)=Ht (p)+ht OP/p[*ι,. ., *J)=Ht OP). *.*.</.

To show Theorem 2.7 which is a generalization of Theorem 1 of [8], we
need the following

(2.6) LEMMA. Let Abe a quasi-local domain and m the maximal ideal of
A. Suppose that Ht (m) is finite. Then Dim A = Ht (m).

PROOF. Assume that Ht (m) = k where & is a non-negative integer. Then,
by the fact that Dim A = k if and only if dim A{_X^..., Xk~\ = 2k ([1], Theorem
6), we have only to show that dim A \_X^ . . . , Xk~] = 2k. Put $ = (m [X^ . . . , Xk~\ ,
ΛΓj,..., Xk). Then, since ht (m^,..., Xk~\) = k by Prop. 2 of [8], it follows
from (2.1) that ht 0β) = 2Λ. Therefore dim A[Xl9...9 ΛTJ ̂

Suppose next that C is a prime ideal of A\_X^..
Thenqcm. Hence, by Prop. 1, (3) of [8],ht (qC^,..., ^fe])^Ht (q)^Ht (m).
Thisshows that ht(q[Xί9..., Xk~\)<^k. However we see ht(&/q[Xl9...9 X^^k
by (2.4). Consequently, by (2.1), we obtain that ht (£) =ht (qC^,..., Xk~\) +
ht (Q/q^,..., ^rk])^2A:. It thus follows that dim A[_X^..., Xk~\^2k. Accord-
ingly we establish the equation dim A [^Γ1? . . . , Xk~\ =2k. q.e.d.

(2.7) THEOREM. Let A be a ring. Then we have Dim ,4 = Sup (Ht(p)},
where the supremum is taken over all the prime ideals p of A.

PROOF. By virtue of Theorem 1 of [8], it is sufficient to show that if
Dim A = oo, then SuppeSpecU) {Ht (p)} = oo . For this purpose, we have to prove
that if SuppeSpec(yl){Ht(p)} ^&, then Dim A^k for each non-negative integer
k. Assume that SuppeSpecU){Ht (p)} ^fc. Suppose first that A is an integral
domain. Then Ht (p) ̂  k, where p is a prime ideal of A. Hence, by Prop. 1,
(5) of [8], Ht(p^)^fc. Thus, it follows from (2.6) that ΌimA^k.
However, by the definition of valuative dimension, we see that Dim A =
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Therefore we have Dim A ̂  k.
Next we proceed to general case. Let p and q be prime ideals of A with

q s p. Then, by Prop. 1, (4) of [8], we have Ht (p/q) ̂  Ht (p). Since Ht (p) g fe,
we can conclude Ht(p/q)g/t. Thus Sup {Ht(p/q)}^fc, where p/q runs over all
prime ideals of A/q. Accordingly Dim A = Supq6Spec(A) {Dim (A/oj)} ^k. q. e. d.

(2.8) PROPOSITION. Let A be a ring, and let p and q be prime ideals of A
with q^p. Then Dim^L/q^Dimyl/p + 1.

PROOF. Let m be a prime ideal of A such that psm. Then
^..., xj in ACXi,..., XJ. Therefore

ht((m/q)[*lf..., X J) = ht(m[Xl5..., XJ/q[Xl5..., XJ)

= ht((m/p)[X1,...,XJ) + l.

Let n tend to infinity. Then we see Ht(m/q);> Ht(m/p) + l. Denote by V(ρ)
the set of prime ideals m of A such that m^p. It follows from (2.7) that

^ Supm6V(}3) {Ht(m/q)> ^ SupmeV(|)) {Ht(m/p)} + 1 = ΌimA/p + 1.
q.e.d.

3. Polynomial grade of M [X]

The following (3.2) and (3.5) are due to S. Itoh but the proofs given here
are slightly different from his original ones.

(3.1) (D. G. Northcott [7], Lemma 8 of Chapter 5) Let A be a ring, p α
prime ideal of A and M an A-module. Then the following statements are
equivalent:

(i) p is attached to the zero submodule of M.
(ii) // α is a finitely generated ideal contained in pAp9 then there exists a

non-zero element m of M^ such that αm = 0.

(3.2) LEMMA. Let A be a quasi-local ring with the maximal ideal m
and M an A-module. Furthermore let φ be a prime ideal of A[X~\ such that

φ Π A = m and m[X] £ φ. // Gr (M)=0, then Gr (M [JSQ*) = 1.

PROOF. The assumptions concerning A and φ ensure that ^β==(τn[X],/),
where / is a monic polynomial of positive degree. Since the ideal generated by
the coefficients of /is A9 it follows from Theorem 7 of Chapter 5 in [7] that /is an
M[X]-regular element. Thus we have an exact sequence
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0 - > M[X~\ J-+ M[X~\ - > N - » 0

where jV = M[X]//M[JSQ. We shall now show φeAttAm(N). Suppose that

b is a finitely generated ideal such that b£$. Then we may write b = (a1 + bίf,

a2 + b2f,..., an + bnf), where a{em\_X~\ and bieA[X'} for l^ί^n. Let α be the
ideal of A which is generated by the coefficients of al9 a2,..., an Then o is a
finitely generated ideal contained in m. Hence, by the assumption that Gr (M)

=0 and (3.1), there exists a non-zero element m of M such that αm=0. We let
m denote the image of m under the natural mapping M-+N. Then αm = 0.
This shows bm = 0, whence we see that b4[Jf]φ(m/l) = 0 in N$. On the other
hand, since / is a monic polynomial of positive degree, m is not in fM\X~\9 and
hence m Φ 0. Next we shall show that any element of A[X] which is not contained
in 9β does not annihilate the element m. For this purpose we assume that g is

an element of A[X~] such that gm = Q. Then gm=fe, where eeM[X}. Since
/is a monic polynomial, we find an element h of A[X~\ such that e = hm. Hence

gm=fhm, and so (g— //ι)m=0. By the same theorem, g— //ιem[Jf] because
mΦθ. It thus follows that #e(m[Z],/) = φ. Therefore we see that any

element of y4[Jf]-$ does not annihilate m. Consequently m/1 Φθ in N$. We
may conclude that φ e Att^m (N) by (3.1).

Now localizing the above sequence at ^J, we obtain the exact sequence

0 - > Λf [*]* - - > M[JQ, - > JV, - > 0.

Accordingly, by Theorem 15 of Chapter 5 in [7], we establish that
l. q.e.d.

(3.3) (M. Hochster [4], Cor. 1 to Prop. 2) Let A-*B be a homomorphism
of rings, α an ideal of A and M an A-module. Suppose that B is a faithfully
flat A-module. Then GτA {α; M} = Grβ {aB; M®AB}.

(3.4) LEMMA. Let Abe a ring, p a prime ideal of A and M an A-module.
Then Gr(Mp) = Gr(Mpfl5...,

PROOF. Since A\Xl9...9X^[XittmttXn^ is a faithfully flat ^-module, our
lemma follows from (3.3). q. e. d.

(3.5) THEOREM. Let A be a ring, M an A-module and φ a prime ideal of
A[_X]. In addition, let p denote A f t t y and assume pPQ^φ. Then

PROOF. Without loss of generality we may suppose that A is a quasi-local
ring and p is the maximal ideal of A. Let S denote the complement of φ in
Then we see easily that for every non-negative integer n,
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; M\Y19...9 γn,

,,..., yj}

,..., yjs}

Let K tend to infinity. Then it follows that Gr(M)^Gr(M[X]^). We may

therefore assume that Gr (M) is finite.

Now suppose Gr (M) = k. Then, by the definition of polynomial grade, there

exists a non-negative integer m such that grAiYι,...tγmι{p[Yi9 ' 9 Ynϊ]'> M[Y19...,
yj} = k. PutA'^Cy^^yj^.....,^ and M' =
M[yl5..., ym]p[y1,...fym]. Furthermore let φ' denote ' φA'ίX]. Then we see
that φ' is a prime ideal of A'\X]9 and we can show that φ' n A1 = p' and pTΏ 5
φ;. Since '̂[JiQ,. is a faithfully flat 4pf]rmodule, it follows from (3.3) and
(3.4) that Gr(M') = Gr(M) and Gr(MTX]r) = Gr(MpQ$). Thus, by the
choice of m, fe = grx[yι,...,ym] {pC^,..., ΓJ; M[yl5..., Ym]} g gr^{p'; M'} g
Gr (M') = fc. Hence grΛ, {p7 M'} = Gr (M') Consequently we may assume that

grΛ {p; M} = Gr(M) = /c. We can therefore find a sequence (αl5 α2» » <**} which
is an ^-sequence on M composed of elements of p. Put N=M/(aί9 a2,..., ak)M.
Accordingly, by Theorem 15 of Chapter 5 in [7], Gr(N) = 0. Hence, by (3.2),

Gr(iVpΓ|φ) = l. Since {αl5 α2,.. , ak] is also an ^4[^]^-sequence on M[X~\^

composed of elements of ^L4pf]φ and we have Ar[^]^ = M[J^]^/(a1, α2,. 5 βk)'
p, we conclude Gr (M[Z]̂ ) = k + 1 by the same theorem. q.e.d.

(3.6) LEMMA. Let A be a ring and M a non-zero, finite A-module. If
p e Supp (M), then Dim (Mp) = Ht (p/Ann (M)).

PROOF. Since M is a finite ^-module, Ann(Mί))=Ann(M)ί). Thus,
by the definition of valuative dimension of M, we see that

Dim(M^) = DimOyAnnίM,,)) = Dim Gy Ann (M)p

= Dim((^/Ann(M))t)/Ann(M)).

On the other hand, by (2.7) and Prop. 1, (5) of [8],

Dim ((A/Ann (M)),/A|1II(JO = Ht ((p/Ann (M))(Λ/Ann (

= Ht (p/Ann (M)).

This yields Dim (M „) = Ht (p/Ann (M)).

(3.7) THEOREM. Let A be a ring and M a non-zero, finite A-module.
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Suppose peSupp(M) satisfing Gr(Mt,) = Dim(M)J). // φ is a prime ideal of
A[X] such that φ n ^ = p, then φ e Supp (M[*]) and Gτ(M[X']$) =

PROOF. We begin by noting that φspDX]. Put α = Ann(M). Then it
is clear that Ann(Mpf]) = α[Jf]. Since peSupp(M) if and only if p^α, we

see $2pPQ2α[jr|, and hence φ e Supp (Mpf]). First suppose φ = pPΠ.
Then it follows from (3.4) that Gr (M[Ji]̂ ) = Gr(Mp). Moreover, by (3.6), we
have Dim (M [X],) = Ht (p PQ/α [*]) = Ht ((p/α) [*]) = Ht (p/α) = Dim (M „).
Thus we conclude in this case that Gr(M[X']y) = Όim(M[X']y).

Next assume that φ?p[JΓ|. Then (3.5) shows that Gr (M[Ji]̂ ) = Gr(M)J)
+ 1 and it follows from (3.6) that Dim(M[JH*) = Ht(φ/α[X]). Let φ' be the
prime ideal of (A/ a) [X] which corresponds to ψ/α[Z] under the natural iso-
morphism: A\X]I*[X]^(AI&)[X']. Then φ'n,4/α = p/α and φ'?(p/α) [Jf].
Accordingly, by (2.3) and (2.4), we obtain Ht(^/a[JQ = Ht(^0 = Ht(p/a) +

) = Ht(p/a) + l. Therefore, from (3.6), we deduce that
= Dim(Mί,)+l. Thus these observations show that Gτ(M[X}$

q.e.'d.

(3.8) COROLLARY. Let A be a ring and M a non-zero, finite A-module
such that Gr (Mp) = Dim (Mp) for all prime ideals p in Supp(M). Then

(M[Xlf..., JSfJ,) for all prime ideals φ in

PROOF. This corollary is an immediate consequence of (3.7). q. e. d.

4. Cohen-Macaulay modules

(4.1) LEMMA. Let A be a ring, and let p and q be prime ideals of A with
q s p. Then Ht (q) + Ht (p/q) ̂  Ht (p).

PROOF. This lemma follows from the fact that, for each non-negative integer
Γ15..., XJ/qpf l5..., ZJ^htίpCXi,..., XJ). q.e.d.

(4.2) LEMMA. Let A be a ring and M a non-zero, finite A-module. As-
sume that p e Supp (M). Then p e Min (M) if and only if Dim (Mp) = 0.

PROOF. The assertion that peMin(M) means ht(p/Ann(M)) = 0. But,
by Prop. 1, (8) of [8], this statement is equivalent to Ht (p/Ann (M)) = 0. There-
fore our lemma follows from (3.6). q. e. d.

(4.3) PROPOSITION. Let A be a quasi-local ring and M a non-zero, finite
A-module such that Dim (M)< oo. Suppose that, for all p e Supp (M), Gr (Mp)
+ Dim(4/ρ) = Dim(M). Then:
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( i ) For all p e Supp (M), Gr (Mp) = Dim (M „).
(ii) p e Min (M) if and only i f p e Supp (M) and Dim (Aft) = Dim (M).
(iii) Min(M) = Att(M).

PROOF. Let m be the maximal ideal of A. Assume that peSupp(M).
Then, by Theorem 2 of [8], Gr (Mp) ̂  Dim (Mp). Thus it follows from (3.6)

and (4.1) that

Gr (M„) + Dim (Aft) ^ Dim (M „) + Dim (Aft) = Ht (p/Ann (M)) + Ht (m/p)

g Ht (m/Ann (M)) = Dim (M).

Hence we see that Gr (M^) + Dim (Aft) = Dim (Mp) + Dim (Aft) by the assum-
tion. But, since Dim (M) is finite, Dim (Aft) is also finite. This therefore shows
that Gr (Mp) = Dim (Mp) and we have proved the first assertion.

Now, by Exercise 4 of Chapter 6 in [7], it is clear that Min (M) s Att (M) s
Suρp(M). Hence it follows from (4.2) and the assertion (i) that peMin(M)

if and only if Gr(Mp) = 0, which settles the assertion (iii). The hypothesis that
Gr(Mp) + DimG4/p) = Dim(M) for all peSuρp(M) shows that Gr(Mp) = 0

if and only if p e Supp (M) and Dim (A ft) = Dim (M). Consequently these argu-
ments lead us to the assertion (ii). q. e. d.

The following definition is motivated by (4.3).

(4.4) DEFINITION. Let A be a ring. Then a non-zero, finite yl-module

M is called a Cohen-Macaulay module if it satisfies the following conditions:
(a) For each prime ideal p in Supp (M), Dim (Mp) is finite.

(b) For each pair of prime ideals p, q in Supp (M) such that q^p, Gr (Mq)
+ Dim GVq^) = Dim (Mp).

Further a ring A is called a Cohen-Macaulay ring if A is a Cohen-Macaulay

v4-module.

(4.5) LEMMA. Let A be a noetherίan local ring and M a non-zero, finite
A-module. Assume that M is a Cohen-Macaulay A-module in the classical
sense, namely depth M = dimM. Then, for each prime ideal q in Supp(M),
depth Mq 4- dim A/c\ = dim M.

PROOF. Let q be a prime ideal in Supp (M). Then q^ Ann (M). Thus we

use induction on ht (q/Ann (M)). Put n=ht(q/Ann(M)). If n = 0, then

q E Ass (M). Hence depth Mq = 0 and dim ^4/q = dim M. Accordingly, we have

the equality in this case. From now on we assume therefore that n^l and

make the obvious inductive hypothesis. Then qφ Ass (M). It follows that there
exists an element / of q such that the sequence

0 >M-L>M >M! > 0
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is exact, where M1=M/fM. However Mί is also a Cohen-Macaulay ./4-module
and ht(q/Ann(M1)) = n-l. Hence, by the inductive hypothesis, we obtain
depth (Mi)q+ dim A/q = dim Mx. Adding 1 to both sides, we have depth Mq +

dim A/q = dim M. q. e. d.

(4.6) PROPOSITION. Let A be a noetherian ring and M a non-zero, finite

A-module. Then the following conditions are equivalent:
(i) M is a Cohen-Macaulay A-module in the classical sense. That is to

say, for each maximal ideal m of A in Supp(M), depth Mm = dim Mm.
(ii) M is a Cohen-Macaulay A-module in the sense of (4.4).

PROOF. Note that if A is a noetherian ring and p is in Supp (M), then

Gr(Mp) = depth Mp and Dim(Mί)) = dimMίJ, and so Dim(Mp)<oo. Hence
this proposition follows from (4.5) and the fact that the assertion (i) implies
depth Mp = dim Mp for all p e Supp (M). q.e.d.

(4.7) PROPOSITION. Let A be a ring and M a non-zero, finite A-module.

Then:
(i) // M is a Cohen-Macaulay A-module and S is a multίplicatively

closed subset of A with MSΦO, then Ms is also a Cohen-Macaulay As-module.
(ii) M is a Cohen-Macaulay A-module if and only if Mm is a Cohen-

Macaulay Am-modufe for all maximal ideals m in Supp(M).

PROOF. This proposition is obvious by the definition. q. e. d.

(4.8) THEOREM. Let A be a ring and M a non-zero, finite A-module.
Then M is a Cohen-Macaulay A-module if and only if the following three state-

ments hold:
(i) For each prime ideal p in Supp (M), Dim (M^) is finite.
(ii) For each prime ideal p in Supp(M), Gr (M^) = Dim (M ,̂).
(iii) For each pair of prime ideals p and q in Supp(M) such that q^p,

Ht (p/Ann (M)) = Ht (q/Ann (M)) + Ht (p/q).

PROOF. Suppose that M is a Cohen-Macaulay ^4-module. Clearly we
have the first assertion by the definition. Let p be in Supp (M). Then it follows
from the definition that Gr (Mp) = Dim (Mp) becasuse Όim(A^lpA^) = 0. This
proves the second assertion. Now assume that p and q are prime ideals in
Supp(M) with q^p. Then, by the definition and the assertion (ii), we obtain
Dim(Mq) + Dim(v4p/q^) = Dim(Mp). However, by (2.7) and (3.6), we see that
Dim (Mq) = Ht (q/Ann (M)), Dim (M,) = Ht (p/Ann (M)) and Dim (AJqAJ =
Ht(p/q). Therefore Ht(q/Ann(M)) + Ht(p/q) = Ht(p/Ann(M)), which settles
the third assertion.

Conversely assume that the three conditions hold, and let p and q be prime
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ideals in Supp(M) with q^p. Then the assumptions and the above arguments
show that

Gr(Mq) + DimOyq^) = Dim(Mq) + Dim (A

= Ht (q/Ann (M)) + Ht (p/q) = Ht (p/Ann (M)) = Dim (M „) .

Consequently M is a Cohen-Macaulay ^4-module. q. e. d.

(4.9) DEFINITION. A ring A is said to be polynomially catenarian if the
following two conditions hold :

(a) For each prime ideal p of A, Ht (p) is finite.
(b) For each set of prime ideals, p, q and r of A such that rcqcp5

Ht(p/r) = Ht(q/r) + Ht(p/q).

It is clear that if A is an integral domain, the condition (b) is equivalent to the
statement that Ht(p) = Ht(q) + Ht(p/q) for each pair of prime ideals p and q of
A such that q^p. Suppose next that A is a noetherian ring. Then A is poly-
nomially catenarian if and only if A is catenarian, because we see that Ht(p) =
ht (p) for all prime ideals p of A.

(4.10) COROLLARY. Let A be a ring and M a Cohen-Macaulay A-module.
Then A/Ann(M) is polynomially catenarian.

PROOF. We can easily prove our corollary by the assertion (iii) of (4.8).
q.e.d.

(4.11) LEMMA. Let A be a quasi-local ring with the maximal ideal m
and M a non-zero, finite A-module such that Gr(M) = Dim(M). Furthermore
let f be an M-regular element o/rrt. Then Dim(M) = Dim(M//M) + l.

PROOF. Since / is an M-regular element of m, / is not contained in any
minimal prime ideal of Ann (M). Thus, by Prop. 1, (9) of [8], Ht (m/Ann (M)) ;>
Ht (m/ Ann (M), /))+!. Therefore, by Prop. 1, (4) of [8], Ht (m/Ann (M)) ̂
Ht (m/Ann (M//M)) + 1, because Ann (M//M) 2 (Ann (M), /). Hence, by (3.6),
Dim (M) ̂  Dim (M//M) + 1 . Therefore Gr (M//M) + 1 = Gr (M) = Dim (M) ̂
Dim(M//M) + l by Theorem 15 of Chapter 5 in [7]. It consequently follows
from Theorem 2 of [8] that Gr (M//M) + 1 = Gr (M) = Dim (M) = Dim (M//M)
+ 1. q.e.d.

(4.12) PROPOSITION. Let A be a ring and M a non-zero, finite A-module.
Further, let f be an element of A such that the sequence

0 - > M -A M - > M//M - > 0



626 Michinori SAKAGUCHI

is exact and M//MΦO. If M is a Cohen-Macaulay A-module, then M/fM
is also a Cohen-Macaulay A-module.

PROOF. Put M1=M/fM. Let p be a prime ideal in Supp(Mί). Then

ρeSuρρ(M) and /ep. Now localizing the exact sequence at p, we have an
exact sequence

0 - > Mp -L+ M, — » Mlt, — > 0.

However, by (4.8), Gr (M ,̂) = Dim (Mp) and Dim (M,,) < oo . It therefore follows

from (4.11) that Dim (Mlt)) is finite. Next let p and q be prime ideals in Supp (MJ
such that q^p. Then we see that

Gr(M lq) + DimCyq^) = Gr(Mq) + TXm(AJqAJ - 1 = Dim(M>) - 1,

because M is a Cohen-Macaulay A-module and Gr (Mq) = Gr (Mlq) + 1. Hence,
by (4.11), Gr(Mlq) + Dim(^p/q^ί,) = Dim(M1,)). Accordingly M^ is a Cohen-
Macaulay A-module. q. e. d.

(4.13) THEOREM. Let A be a ring and M a Cohen-Macaulay A-module.
If (A/ Ann (M)) pf] is polynomially catenarian, then M[X~\ is a Cohen-Macaulay

PROOF. Put α = Ann(M). Then it is clear that Ann(M[X])=a[JSr]. Let

φ be a prime ideal in Supp (M pQ), and put p = A n φ. Then φ 2 α[Jί] and p 6

Supp(M). Since M is a Cohen-Macaulay ΛUmodule, we see that Dim(Mj,) is
finite, and therefore, by (3.6), Ht (p/α) is finite. On the other hand, since Sβ/αpf]
ΓU/α = p/α, it follows from (2.3) and (2.4) that Ht(φ/α[X])==Ht(p/α) +

ht($/p[X])^Ht(p/α) + l<oo. Consequently we conclude that Dim(M[X]φ)

is finite because Dim(M[JQv) = Ht(φ/α[X]).
Let now φ and Q be prime ideals of A\X] in Supp (M [X]) such that Qc φ.

Put p = A n ty and c\ = A n Q. Then p and q are in Supp (M) and qcp. There-
fore, since M is a Cohen-Macaulay A-module, Gτ(Mq) + Όim(A^/qA^) =
Όim(M^). To complete the proof we shall distinguish between the following
four possibilities: (i) φ = p[Jf] and Q=q[JΓ]; (ii) φφppf] and C = q[X];

(iii) φ = p[X] and QΦq[JSΓ]; (iv) φφp[Jί] and GΦq[Z]. We can observe
that if a=q[X], then Gr(M[X]0) = Gr(Mq) by (3.4) and that if Qφq[X],
then Gr(M[*]D) = Gr(Mq) + l in view of (3.5). Furthermore we see that if

<P = p[X], then Dim (M [*]„) = Ht (φ/α[r]) = Ht ((p/α)[JG) = Ht (p/α) =
Dim (M „) by (3.6) and that if φ Φ p[*], then Dim (M [JΓ|¥) = Dim (Λf „) + 1 by the
proof of (3.7). In addition, (2.7) yields Dim(A[^]ίβ/QA[Λ:]5β) = Ht(φ/Q) and

These arguments show the following equalities. In case (i), it is clear that

= ht(p/q). Thus,
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Gr(Mpr|0) + Dim

= Gr(Mq) + Ht(p/q) = Gr(Mq) + Dim (AJqAJ

= Dim (M,,) = Dim (M[X]$).

In case (ii), by (2.3) and (2.4), Ht(WQ)=Ht(p/q)+l, whence

Gr(M[.Y]D) + DimG4[JrVtL4[X],) = Gr(Mq)

= Gr(Mq) + Ht(p/q) + 1 = Gr(Mq)

«Dim(Af,,) + l =

Since (4/Ann (M)) [X] is polynomially catenarian, Ht(<P/Q) =
Ht (Q/qpΓl). In case (iii), we see that Ht (Wq[*]) = Ht (p/q) and Ht (Q/q[Z]) =
1 by (2.4). Therefore

= Gr(Mq) + 1

= Gr(Mq) + 1 + HtOP/q[X]) - Ht(Q/q[JΪ])

- Gr(Mq) + 1 + Ht(p/q) - 1 = Gr(M,) + Dim (X^

Finally, in case (iv), by (2.3) and (2.4), Ht (WqPQ) = Ht (p/q) + 1 and
= 1. Hence it follows by a similar method that

= Gr(M,) + 1

= Gr(Mq) + 1 + Ht(φ/q[*]) - Ht(O/q[X])

= Gr(Mq) + 1 + Ht(p/q) + 1 - 1 = Gr(Mq) + Όίm(AtlqAf) + 1

Consequently M[X~] is a Cohen-Macaulay ΛpQ-module. q. e. d.

5. Examples of Cohen-Macaulay rings

(5.1) PROPOSITION. Let A be a quasi-local ring. Then we have the
following statements:

( i ) //Dimy4=0, then A is a Cohen-Macaulay ring.
(ii) Suppose Dim .4 = 1. Then A is a Cohen-Macaulay ring if and only

if Gr (.4) is positive.
(iii) Suppose Dim A =2. Then A is a Cohen-Macaulay ring if and only
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if Gr(A) = Όim(A/p) for each prime ideal p in Mt(A). In particular a quasi-
local domain A with Gr(^4) = Dim^4 = 2 is a Cohen-Macaulay ring.

PROOF. Since the assertions (i) and (ii) are obvious, we shall only show the
assertion (iii). The "only if" part of (iii) follows from (4.3). We prove the
"if" part of (iii). Suppose now that, for all peAtt(A), Gr(^4) = Dim(^/p).

Then, by the facts that Dim^4 = Supί)eMίn(A){Dim(^4/p)}, Dim A = 2 and Min (̂ 4)
we see that Dim(^/p) = 2 for all prime ideals p in Att(A) and that

) = DimG4). Hence, by (2.8), Min(A)=Att(A). Let p be a prime ideal
of A. Then we have Gτ(A^Όίm(Ap) by Theorem 2 of [8]. It therefore
follows that if Ht(p) = 0, then Gr (,4.) = Dim 04^ = 0 and that if Ht(p) = l, then

Next we assume that p and q are prime ideals of A such that q^p and we
shall show the equality Gτ(Aq) + Όim(Aplc\A^) = Όim(A^). Thus, we may also
assume that q ̂  p by the above arguments. Accordingly, since Ht (q) < Ht (p) ̂  2,
we can distinguish three cases: (a) Ht(q) = 0 and Ht(p) = l; (b) Ht(q) = l and
Ht(p) = 2; (c) Ht(q) = 0 and Ht(p) = 2. In case (a), Gτ(Aq) + Όim(A^c\A^ =
04-1 = Dim (Ap). We can easily show the equality in cases (b) and (c) by the same
method. Consequently A is a Cohen-Macaulay ring.

The second statement of (iii) follows from the fact that if A is an integral
domain, then Att (A) = {0}. q.e. d.

(5.2) EXAMPLE. Let B be a polynomial ring k[Xi9 X2,..., Xn,~ Ί over a
field fc, and let m be a positive integer. Further let α = (X'£+1, X^+2,. ) and let
p = (Xm+1, Xm+29...). Then it is clear that j) = 7"^ Put A = B/α and ̂  = p/α.
Then A is a non-noetherian ring and ^ = ̂ 0. Since the ring A/9β is isomophic
to k[Xl9 Z2,..., Zm], A/^β is a noetherian, Cohen-Macaulay ring of dimension
m and A/ty is catenarian. However, by Lemma 2 of [8] and (2.8), Ht(Q) =
Ht(Q/φ) for all prime ideals & of A, becasue .$ = ,/(Γ. Thus Dim ,4 =
Dim (4/φ) = dim (A/ty) = m since A/φ is noetherian. Furthermore A is a polynom-
ially catenarian ring, because, for any pair of prime ideals Qt and Q2 of A with

we obtain Ht(Q1) + Ht(Q2/Q1) = Ht(Q1/φ) + Ht ((Q2/W(Qι/Φ)) =
) = Ht(Q2). On the other hand A is isomorphic to C[Zlv.., XJ,

where C=fc[Xm+1, Xm+2,...]/(X£+1, Xi+2,...). Since DimC=0, C is a
Cohen-Macaulay ring. It thus follows from (3.8) that Gr (A&) = Dim (^4D) for
all prime ideals Q of A. Consequently, in view of (4.8), we can conclude that
A is a nonnoetherian, Cohen-Macaulay ring with Dim^4 = m.

(5.3) LEMMA. Let Abe α Krull domain and p a prime ideal of A. Then
ht (p) = 1 if and only if Ht (p) = 1.

PROOF. Assume that ht(p) = l. Then we see that ht(p)=ht
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= Ht (p), because A^ is a noetherian ring. Thus Ht (p) = 1. Conversely
suppose that Ht (p) = 1. Since ht (p) ̂  Ht (p), ht (p) g 1. If ht (p) = 0, then

Ht (p) = 0 by Prop. 1, (8) of [8]. Therefore we have ht (p) = 1. q. e. d.

The following theorem is a generalization of Serre's criterion of normality
and its proof is quite similar to Possum's one of Theorem 4.1 in [3].

(5.4) THEOREM. Let A be an integral domain. Then A is a Krull domain
if and only if A satisfies the following three conditions:

(FC) Given f in A, /φO, there is at most a finite number of prime ideals

p of A such thatfep and Ht(p) = l.
(RI ) If p is a prime ideal of A such that Ht(p) = l, then A^ is a discrete

valuation ring of rank one.
(S2) For each prime ideal q of A, Gr(^q)^inf {2, Ht(q)}.

PROOF. First assume that A is a Krull domain. Then the conditions (FC)

and (Rx) are well known by (5.3). Hence we shall prove the condition (S2). It
will suffice to show that if q is a prime ideal of A such that Ht(q)^2, then

Gr (A q) ̂  2. Now assume that q is a prime ideal with Ht (q) ̂  2. Then ht (q) ̂  2

by (5.3). It follows from the proof of Theorem 4.1 in [3] that grAq{q,4q; Aq}^2.
Thus Gr(,4q)^2.

Next, to prove the converse, assume that the three conditions (FC), (Rx) and
(S2) hold. We shall show that (S2) implies A = Γ\Hi(^=ίA^. Suppose that

xeΛHt(t>)=ι^ι> and xφO. Let a = A:Ax. If a = A, then xeA. Assume the
contrary, that is to say αφA Then there exists a prime ideal q of A such that q

is a minimal prime ideal of α. Since αq = A q u q x, we see Ht(q)^2. There-
fore the assumption (S2) implies Gr(^q)^2. However, since q is a minimal
prime ideal of α, we see that λ/α3^ = q^4q. This shows GrΛq{<t4q; ^4q}^2 by
Theorem 12 of Chapter 5 in [7]. Accordingly, there exists an integer n such that

we can find an Aq[Xί9..., XJ-sequence {u, v} composed of elements of aA^[Xl9

...,Xn~]. Put r = xu and s = xυ. Then r and s are in Aq[Xί9...9 Xn~\ because

aAq=Aq:Aqx. Thus us = vr and hence we can write r = uw where weAq[Xl9

...,JΓΠ], since {u9 v} is an ^4q[Xl9..., JfJ-sequence. Therefore x = weKΓ\
Aq[Xί9...9 Xn~] = Aq where K is the quotient field of A. This is a contradiction.

Consequently we have established that the condition (S2) implies ^4 = ΛHt(p)=ι^p
Now our theorem follows from (FC) and (R^. q. e. d.

(5.5) COROLLARY. If A is a Krull domain such that Dim A ^2, then A

is a Cohen-Macaulay ring.

PROOF. This follows from (5.1) and (5.4). q. e. d.

(5.6) PROPOSITION. Let V be a non-trivial valuation ring. ThenGτ(V) = l.



630 Michinori SAKAGUCHI

PROOF. Let rrt be the maximal ideal of V and let Λ; be a non-zero element

of m. Then we have an exact sequence

0 - » V-2-+ V - > V/xV - > 0.

Therefore, to prove the proposition, we have only to show Gr (V/xV) = 09 namely

m e Att (F/xF). By (3.1), it is enough to see that, for any finitely generated ideal

α contained in m, there exists a non-zero element m, of V/xV such that αm = 0.

Now assume that α is a finitely generated ideal of V contained in m. Since V
is a valuation ring, α is a principal ideal αFand hence either aV^xVor aV^xV.
We denote by z the image of z under the natural mapping F-»F/xF. If aV^xV,
then T Φ 0 and a Vΐ = 0 in V/x V. Thus we may assume that a V^ x V. Then x — ay

where yem. Note that y&xV. Hence j φO and aVy=0 in V/xV. Con-
sequently we see that m e Att (V/xV). q. e. d.

(5.7) COROLLARY. Let V be a non-trivial valuation ring. Then V is a
Cohen-Macaulay ring if and only if the rank of Vis one.

PROOF. Since Dim F=dim V, our corollary follows from (5.6). q. e. d.

(5.8) LEMMA. Let Vbe a valuation ring. Ifty is a prime ideal of V[Xί9

PROOF. Let p be a prime ideal of V. Then FJ, is a valuation ring. It thus

follows from (2.7) and the definition of valuative dimension that Ht(p) = Dim V^
= dim FJJ =ht (p). Therefore we can prove our lemma by (2.5). q. e. d.

(5.9) LEMMA. Let Vbe a valuation ring with the maximal ideal m and let
&bea prime ideal of V[_X^..., Xn~] such that ht (€0 = 1 and Q Π 7=0. Then Q
is a principal ideal generated by a polynomial which is not contained in m[Xl9

...,*„].

PROOF. Let S be the set of non-zero elements of V9 and let K be the quotient

field of V. Then &5 is a prime ideal of K[X19...9 JSfJ and the height of Qs is one.
Thus £}s is a principal ideal because K\X^9...9X^\ is a unique factorization
domain. Since Fis a valuation ring, we may assume that &$ = (/), where /is an
element of V[Xl9...9 XJ which is not contained in m[Xί9...9 Xn~]. Accordingly
(/)£&. Now let v be the valuation on K associated with Fand let v* be the

trivial extension of υ to K(Xl9...9 Xn). That is to say, v^^ai^.^X^X^-^X^)
=inf {v(ailir..it)\aiiir..in+Q}. Assume 0eQ. Then we can write g = (h/s)f

where ήe V[Xl9...9 Xn~\ and seS. Hence it follows that υ*(g) = v*(hjs) + υ*(f)
= v*(hls)9 and so ι?*(ft/s)^0. Consequently fc/se V{Xl9...9 XJ and hence
g e (/). We therefore conclude that Q = (/). q. e. d.
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(5.10) PROPOSITION. Let V be a valuation ring of rank one. Then
and V\Xl9 X2~\ are Cohen-Macaulay rings.

PROOF. First, by (2.3) and (2.7), note that Dim K[X1] = 2 and Dim V[Xl9

= 3. Since Vis a Cohen-Macaulay ring, it follows from (3.8) and (5.1) that
is a Cohen-Macaulay ring. Moreover, again by (3.8), we see that

Gτ(V[Xl9 Z2]φ) = Dim(F[X1, X2]$) for all prime ideals φ of V[X^ X2].
Thus, by (4.8), to prove that V[Xί9 X2~\ is a Cohen-Macaulay ring, it is sufficient
to show that V[X^ X2~\ is polynomially catenarian. In view of (5.8), this is
equivalent to the assertion that V\_X^ X2~] is catenarian. Therefore we have only
to prove that ht OP) = ht (Q) + ht OP/Ώ) for all pairs of prime ideals φ, Q of

*TXΊ, X21 such that Qcφ.
Now assume that φ and Q are prime ideals of V[X^ X2~\ with Q^^β and m

is the maximal ideal of V. For the remainder of our discussion we separate the
cases: Q n F=τn; φ n F=0; & n F=0 and φ n F=m.

Case (i) Q n F=m. For this situation we see that m\Xl9 XJ^G?^- It
thus follows from (2.1) that ht(φ) = ht(m[J!Γ1, X2]) + ht(φ/m[X l5 X2~\) and
ht(Q) = ht(τn[X l5 X2~\) + \A(&lm\Xl9 X2J). However the ring V[Xl9 JSΓ2]/
m\Xl9 X2~] is isomorphic to (F/m)[Xl5 X2], whence V\Xl9 X2]/m[AΊ, X2] is
catenarian. Hence ht(φ/S)=ht(φ/m[Z1? Jf^-htίO/mCΛ:!, JSΓJ). Accord-
ingly we have ht(φ) = ht(Q) + ht(φ/Q) and the desired result follows.

Case (ii) φn F=0. This time it is clear that Qn F=0. Put 5=F-{0}.
Then Q n S=φ and φ n S=φ. Therefore Qs and φs are prime ideals of K[_X^
X2~\ with Qscφs, where K is the quotient field of V. Since K[Xί9 X2~\ is cate-
narian, we obtain ht(φ) = ht(φs) = ht(Qs)-fht(φs/Qs)=ht(Q)+ht(φ/Q).

Case (iii) Q n V= 0 and 9β n V— m. In this case we assume that Q Φ 0, because
if Q = 0, then the equality holds clearly. Further it is sufficient to show that ht (9β)

ght(O) + ht0P/O). Since Dim F[Z1? Z2] = 3, ht($)^3. If ht(^)^2, then
this inequality is clear because ht(O)^l and ht(φ/Q)^l. Hence from now on
we assume ht(φ) = 3. If either ht(&);>2 or ht(φ/Q)^2, then we can see that
ht(φ)^ht(Q) + ht(φ/Q). Thus suppose that ht(Q) = l and ht(φ/Q) = l.
Then it follows from (5.9) that D is a principal ideal. Put Q=(/), where /is an
element of V\_Xί9 X2~] not contained in m[Xl9 X2~\. Considering the natural
mapping V{Xl9X2'\^V\Xl9X2'\lm\Xl9X2'\9 we put S=(G-f m[Xl9 Z2])/
m[Xl9 X2~\ and ̂  = ̂ /m[X1? X2], and let/be the image of/. Then % is a prime
ideal of V[Xl9 X2]/m[Jfl5 X2~\ and S=(/). Moreover φ is a minimal prime

ideal of S because ht (W&) = l However V[Xί9 X^/mlX^ X2"\ is a noetherian
ring by the proof of case (i). We now apply KrulΓs principal ideal theorem, which
shows us that ht ($) = !. It thus follows from (2.1) that ht (^)=ht (m[Xl5 X2])
+ ht(φ) = 2, because htOnp^, Z2]) = Ht(m) = Dim 7=1. This leads us to a
contradiction. Therefore we have proved the equality in case (iii). q. e. d.
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As we state in Introduction, it is important for a generalization of the notion
of Cohen-Macaulay modules to ask the following question: Let A be a quasi-
local ring and M a non-zero, finite ^-module. Then does the inequality Gr (M)
^Dim(^/p) hold for all peAtt(M)? Mr. S. Itoh has showed me a negative
answer. He has kindly allowed me to include his counterexample in this paper as

appendix.
The following appendix is due to Mr. S. Itoh and the author would like to

thank him for his kindness.

Appendix

Let A be a non-noetherian, quasi-local ring and m the maximal ideal of A.
Suppose that Dim^4 is finite. We fix a sequence c0, cί9...,cn,... of non-zero
elements of m such that c0^5(c0, ci)A^ ^(cQ9 cls..., cn)A^ - . Put B =
>4pΓ|(ntjX) where X is an indeterminate. Let 3 be an ideal of B generated by

LEMMA 1. Γ\n(X\ 3)*?3

PROOF. It is clear that c0e Γ\n(Xn, 3)B. We shall show that
Suppose contrarily that c0 e 3. Then

for some h,fiεA[X~] such that Λ(0) = l. Comparing the constant terms of the
equation (*), we see c0 = Σίί=ιCo/i(Ό) This shows that /;(())<£ m for some ϊ.

Put n = Min{i|/ί(0)φm}. We also put h = ΣjajXj and f^ΣjbtjX' (i = l,
..., m) where ap btjeA and α0 = l. Comparing the coefficients of X" of the

equation (*), we have c0απ = Σ?=ι (&«,»- Λ + frfa^ + ΣP^+i bίnc0. Therefore
bnocne(c<» -, cn-ι)A. Since bπ0( =/„(())) φm, cπe(c0,..., c^JA. This is a con-
tradiction. Therefore c0 Φ3 q.e.d.

Let 7, Z be indeterminates over A[X~] and put C = A[X, 7, Z](nt>X}yjZ). Note
that the ring C is naturally isomorphic to #[7, Z](π>yjZ) where n is the maximal
ideal of B. We now put B'=B/% and let nr be the maximal ideal of B'. Further
let/be a ring homomorphism B[7, Z]->β'[7, X7"1] such that/(7)= 7and/(Z) =
X7-1 where x = X mod 3. Then (nr, 7, X7-1) is a maximal ideal of £'[T, X7"1]
and /-^(n', F, x7-1))=(n, 7, Z) because /((n, 7, Z))c(n', 7, X7"1) and jB[7,
Z]/(n, 7, Z)sB'[y, x7~1]/(n', 7, xY-^A/m. Put C' = F[7, x7-1](n%YjJcy-1).
Then we obtain a surjective ring homomorphism C-»C' which sends -Y, 7 and Z
to x, 7and X7"1 respectively. We denote by 30 the kernel of C-»C;.

LEMMA 2. Yis C/30-regular and Γ\n(Yn, 3oK?3o
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PROOF. Since Y is B'\_Y, xY^l-regular, 7 is also C'-regular. Hence Y is
C/30-regular because C/30 = C". We shall show B'^C. Assume that b is an ele-
ment of B' such that 6 = 0 in C'. Then there is an element Σ^o.^o b^Y^xY'^J
of B'[Ύ, xY"1] not contained in (n'? Y, xY"1) such that (ΣufcJY ί(xY"1)J> = 0,
where bueBf. We see that bOQ<£ri and (ΣibuXl)b = Q. Since ΣAiX1^'*
b = 0 in B'. Therefore B'^C'. It thus follows from Lemma 1 and the equality
x = (xy-i)y that Λπ YnC'^r\nx"B'ή=U. This shows that Λn(Yπ, 30)C^30.

q.e.d.

Let M be an >l-module. We denote by λssA (M ) the set of prime ideals p
of A which are minimal prime ideals of Ann (/1m) for some meM. Note

Let Zl5..., Zr (where r>Dim^4) be distinct indeterminates over A[X9 7, Z]
and put JR = ̂ [Z, 7, Z, Zl5..., ZΓ](m>x>y>Z}Zlj_>Zr). Furthermore let 9M be the
maximal ideal of C. Then the ring # is isomorphic to C[Zl5..., ZΓ](aΛfZlί ...fZr)

Put 3' = πn(FΛ, 30)C and Λ = (30, Zi3',-, Zr30*

LEMMA 3. Γ/iβre exisίs φeAttRCR/Λ) SMC/I ί/iαί Dim
(Therefore the R-module JR/ft ^it es α counterexample to our question.)

PROOF. Let c be an element of C. If c7e3o> then ce3o because Yis
C/3o-regular. If cYe 3', then c 6 3'. In fact, we can write c Y= anY

n + 6n (n = 1,
2,...) where αn e C and ί?π e 3o Since bn = (c- anY

n~l)Ye 30 and Yis C/30-regular,
we have c-anY

n~^ e3o Therefore ce3' It is now easy to see that Yis C[Zl5

..., Zr]/(3o, ZiS',..., ZΓ3>regular. In particular, Y is Λ/Λ-regular.
We next prove that Gr(R/ft) = Gr(C/30) + r, that is, GrΛ {91; K/Λ} =

Grc{9K; C/30} + r where 91 is the maximal ideal of R. In fact, R/(Y, K)R =
R/(Y9 3o) X = (C/(y, 3o) C) [Z1?..., Zr](aR/(y§3o)CfZl ..... Zr). Therefore GrΛ {91; K/ft}
= GrR{9l; Λ/(7, Λ)X} + 1. Put Λ'β (C/(Y, 30)O[Zl5..., Zr](aϊZ/(yj5o)C,Zl)...,Zr).
Since {Z1?..., Zr} is an K-sequence on R' composed of elements of 91,

Grκ {91; R/(Y9 Λ)K} = GrΛ {91; R'l(Zi9...9 Zr)Λ'} + r = Grc {9K; C/(Y, 30)C} + r,

and hence

GrR {91; K/Λ} = Grc {SR; C/(Y, 30)C} + r + 1 = Grc {9K; C/30) + r.

Finally, by Lemma 2, we can find an element u of 3; not contained in 30.
Then Λ:ΛM3Z l5..., Zr and so Λ:Λu=(30:cw, Zlv.., Zr)R. Let now p be a
minimal prime ideal of 30:cw. Then φ=(p, Zl9..., Zr)R is a minimal prime ideal
of ft:Λu and therefore yekssR(RI$t)^MtR(R/&). Since Λ/φ=4/p, we
conclude that Dim (Λ/φ) = Dim (A/p) ^ Dim A < r ̂  GrΛ {91 JR/ft} = Gr (Λ/Λ).
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Summarizing the above discussion, we have the following:

THEOREM. Let A be a non-noetherian quasi-local ring and m the maximal
ideal of A. Suppose that Dim .4 is finite. Then for sufficiently many distinct
indeterminates Zl9...,Zr, there exists an ideal ft of R = A[Zl9...9 Zr](m>Zl Zr)

such that Dim (£/$) <Gr (£/ft) for some φ e AttΛ (R/K).
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