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Introduction

The purpose of this paper is to show that the McKean’s conjecture in [2] is
valid for the set of all equivalence classes of irreducible unitary representations of
class one.

§1. Spherical functions

Let H be a separable Hilbert space over R (or C). In this paper, we fix,
once for all, an orthonomal basis {¢;; je N} of H, where IV is the set of all
positive integers. Let E be the space algebraically spanned by the basis {£;;
jeN}. We denote by E,, the space spanned by the set {{;; j=1,..., m}. Then
we have E=\UZ_, E,. Since a countable inductive limit of nuclear spaces is
nuclear, E is a nuclear space. Let G be the group of all isometries g of H such
that g&;=¢; except finitely many j in N. We denote by G,, the group of all
elements g in G such that g&;=¢; (j=m+1, m+2,...). Then we have G=
Ug.1 G,. By the inductive limit topology G is a topological group. For a g
in G, putting g&;=3>"n,9;;¢ (j=1,..., m), we can identify g with the matrix
(i) in O(m) (or U(m)).

We denote by E* the dual space of E, then we have a triple

E c Hc E*.

By the Bochner-Minlos theorem, there exists a probability measure u on E* such
that for any & in E we have

(1.1) e-lElz2 — S €00 du(x).

E

We use the same notation for the dual action of g on E*. Clearly u is G-
invariant. For any g in G and f in L2(E*, u) we define

(me(9)f)(x) = f(g~1x) for ae. x in E*.

Then it is easy to see that 7, is a unitary representation of G on L%(E*, p). For
P
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any finite dimensional unitary representation n of G,, let dn be the infinitesimal
representation of n. Then it is well known that dn(C,,) is a symmetric operator,
where C,, denote the Casimir operator of G,, (for the definition of the Casimir
operator see § 3 and §5).

Now we put K={geG; gé,=¢&}. Let (n,9) be an irreducible unitary
representation of G on §. We call = a class one representation (with respect to
K) if the following (A.1) and (A.2) hold.

(A.1) The space of all n(K)-fixed vectors is of one dimension.
(A.2) Let v, be a n(K)-fixed vector. Then v, is n(G,)-finite (meN) and
lim,,_, . dn(C,,)v, is convergent in $.

Let (w, ) be a class one repersentation of G. We pick a n(K)-fixed unit
vector v, and define a function ¢, on G by ¢,(g)=(vy, n(g)vo) (9 € G). Then by
(A.1) ¢, is independent of the choice of the unit vector v,. ¢, is called the spheri-
cal function on G.

PROPOSITION 1. Let (7, ) and (zn', ') be class one representations. Then
7 is equivalent to 7' if and only if ¢,=¢,..

PrOOF. Assume that =« is equivalent to n/, then we have an isometry U of §
onto $’ such that n'(g)U=Un(g) (g€ G). As U maps the space of n(K)-fixed
vectors onto the space of n'(K)-fixed vectors, by (A.1) we have ¢,=¢,..

Conversely assume that ¢,=¢,. We define U as follows;

U(Zi em(g)vo) = 2 cim'(9:)v.
If we put v=3; a;n(g;)v, and w=73"; b;n(h;)v, then we have

(Uv, Uw) = (X; am'(g)vo, 2 ; bin'(hj)vp)
=3, ;ab;jd. (g7 hy) = T a;b;d.(g7hy)
= (v, w).
It follows that U is well-defined and preserves the inner product. From the fact

that (n, ) and (7', H’) are irreducible, U can be extended to an isometry of §
onto $’, so that n is equivalent to ='.

§2. Casimir operator

Let (7, ) be a class one representation of G. Then by (A.1) there exists a
n(K)-fixed unit vector v,. We denote by §,, the smallest n(G,,)-invariant subspace
of § which contains v,. Then by (A.2) $,, is finite dimensional. Clearly d=(C,,)
is self-adjoint on 9,,. Let D¢y denote the space of all elements v in § such that
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lim,,_, , dn(C,)P,,v is convergent where P, is the orthogonal projection of $ onto
9w For any v in Dyycy We put
dn(C)v = lim,,_,,, dn(C,,)P 0.

Then it is easy to see that dn(C) defines an unbounded linear operator with domain
Djncy- It follows from (A.2) that v, is contained in D,y Since 7 is irreducible,
Dy (c) is dense in H. For any v and w in Dy, we have

(dn(C)v, w) = lim,,, o, (dn(C,,)P v, w) = lim,,_, o, (dn(C,)P,0, P,W)
= lim,,, o (P, dn(C,))P,w) = (v, dn(C)w).

This implies that dn(C)<dn(C)* where dn(C)* denotes the adjoint operator of
dn(C). Now suppose that w be any element of the domian of dn(C)*. Then
there exists a u in § such that

(dn(C)v, w) = (v, u) for all v in Dy,

For any m in N and for any v in §,, we have
(dn(C)v, w) = (dn(C,,)P,0, w) = (v, dn(C,)P,.W),
(v, u) = (v, P,u).

This shows that dn(C,)P,w=P,u (meN). Thus we get

lim,,, o dn(C,)P,w = lim,,_, o Pu = u.
This implies that w € Dygc). It follows that dn(C) is self-adjoint.

ProrosITION 2.  7i(g)dn(C) = dn(C)n(g) (g€G).

PrOOF. Let v be any vector in Dy, Then by (A.2) lim,,, dn(C,)P,v is
convergent. There exists an mq such that g€ G,,,. We remark that g € G,, for
any m such that m=m,. Thus we have

n(g)dn(C)v = n(g) lim,,, , dn(C,,)P,,v = lim,,_, o, dr(C,)7(g)P,,0.
Since §,, is n(G,,)-invariant we have
1(g)dn(C)v = lim,,_,,, dn(C,,)P,.(7(g)v).
This implies that
M9)Dircy = Durcy ™M9)dn(C) = dn(C)n(g) (g €G).

§3. Wiener-Itdo decomposition (real case)

In §3 and §4 we assume that E and H are real vector spaces. For each
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non-negative integer k we consider the Hermite polynomial;

Hy(f) = (—1)ke?? dit',‘(e—ﬂ (teR).
It satisfies the following equations;
(3.1) () — 2tH (1) + 2kH(t) = 0,
3.2) H(t) = 2kH_ (1),

(3.3) Hylegty +-+ city) = k! Xy wooqimi [ L (KD 7He )M H (8)),
where ¢2 4+ cZ2=1.
For any non-negative integer n we put
B, = {(H;'O=1 '1j!2"j)_1/2 H;o=1 Hn,(<x, éj>/21/2); 23‘21 h; = n, n; = 0}.

Then it is known that \UZ, B, is an orthonomal basis of L2(E*, u). We denote
by ##, the closed subspace spanned by B,. Then we have

LA(E*, p) = Y%, @s#, (Wiener-Itd decomposition), (see [1]).

From (3.3) we sce that 5, is m4(G)-invariant so that we have the subrepresenta-
tion n, of G on ##,. For any i in N we put

B1(x) = (nI27)2H,((x, E)1217)  (xe E¥).

The following Lemma 1~ Lemma 4 are well known, but for the sake of com-
pleteness, we give a brief outline of the proof of them.

LEMMA 1. % is a cyclic vector of m,.

ProoF. Let V be a space spanned by all elements of the form 7,(9)®} (g9 €
G). Pick any win VL and let

W =3 bemn Cny,... L1 Hy (K, E55[21/2).
Fix any m in N and any non-zero vector (¢,,..., t,,) in R™ and put
a; =+ + t2)" V2, (i=1,...,m).
Then there exists a g in G,, such that g&,=>", a;¢;. By (3.3) we have
(T @PD () = 1! Ty s men TL, (1,7 H, (G, E5[2117).

It follows that

0= (W’ ﬂ:n(g)¢'1l) = Zn1+---+nm=nnlzncnl,...,nma'lll"'ar'rllm'

Hence we have 3, +...n,=n Cny,..n(E1)"2 - (£)"™ =0,



On a certain class of irreducible unitary representations I 185

It follows that all coefficients of w are equal to zero. This implies that V is
dense in #,.

LEMMA 2. Any 7,(G)-fixed vector in o, is equal to zero if n#0.

PrOOF. We assume that n#0. For any j in N, there exists a g in G such
that m,(g)®P"=®}. Let v be any n,(G)-fixed vector in #,. Then we have

(v, @Y) = (m(9)v, m(9)P}) = (v, PY).

This implies that (v, #4)=0. Since v is a 7,(G)-fixed vector, from Lemma 1 we
conclude that v=0.

LemMmA 3. For any m,(K)-fixed vector v in #,, there exists a constant ¢
such that v=c®}.

Proor. Let v be a n,(K)-fixed vector, then v is written as follows;
U =3 ptemn Cn,o L1 Haf(X, £0122) = fo + 2oy f191,
where f, (I=0,..., n) are independent of {x, &;>. As ®! (I=1,..., n) are n,(K)-
fixed vectors, for any k in K, we have
Jo + Zi-1 1191 = v = n (k) = m(K) fo + X i1 (m, (k) )DL

This implies that f, (I=0,..., n) are n,(K)-fixed vectors. By Lemma 2, we have
fi=0if I#n. Thus we obtain v=c®} where c is a constant.

LEMMA 4. (m,, 5#,) is an irreducible unitary representation of G.

Proor. Let W be a n,(G)-invariant closed subspace in 5#,, and let P, be
the orthogonal projection of s, onto W. Since W' is again =,(G)-invariant
for any g in G and v in 5#,, we have

(3'4) Tcn(g)PWU = Pwﬂ"(g)v.
It follows that for any k in K
Py @} = Pyn, ()P} = ,(k)Py P1.

By Lemma 3, there exists a constant ¢ such that P, ®}=c®}. From Lemma 1
and (3.4) we have Py =cl where I is the identity operator on s#,. Thus we
conclude that W={0} or W=u7,.

Let g, be the Lie algebra of G,,, and let exp be the exponential mapping of
gn to G, as usual. We denote by E;; the m x m matrix with 1 in the i, jth posi-
tion and zeros elsewhere. And we put X;;=E;;—E;;. Then g, is canonically
identified with the linear Lie algebra generated by {X;; ISi<j<m}. We
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define a bilinear form B: g,,x g,,—R by (X, Y)—(m—2)trXY. Then B is non-
degenerate. We denote by C,, the element of the universal enveloping algebra
of g,, by the formula

(35) Cm = —Cp Zl§i<j§szzj’ Cn = 1/(2m_4)»
C,, is called the Casimir operator associated to B.
ProrosITION 3.  (m,, 5#,) is a class one representation of G.

ProOF. From Lemma 1~ Lemma 4, we have only to show that @} satisfies
(A.2). It is clear that @7 is n,(G,)-finite (meN). Put x;=<(x, {;> (jeN).
Then any element of the space spanned by 7,(G,,)®% can be regarded as a function
only of x,,..., x,,. Using this identification we get

2
dnn( _1) <xj£;~ xiéi_j'

As @7 is a function only of x,, we have

(6 dr(CHPI) = —enf(T9-2]) 503 — (m=Dx1 , 2} 01().

By the strong law of large numbers we have
3.7 lim, ,om™13m {x,¢>2=1 ae. xin E*
Since @7} does not depend on m, from (3.6) and (3.7) it follows that
lim,, .., d7,(C,)®1(x) = — 21 ( i ) "(x).
Using the formulas (3.1) and (3.2) we have
lim,,_,, dn,(C,)®? = 2~ 'nd}.
Finally we calculate the spherical function ¢, .

PROPOSITION 4. ¢, (g) = (&4, g& )" (ge@).

PrOOF. Let geG. Then there exists an m in N such that ge G,. We put
géi=2"-19;¢;. Using (3.3) we have
¢.,(9) = (P, n(g)P7)
= (127N (H(< -, E00[212), (@H S5 €15/21%)
= (n12")7W(H,({-, €:0/2'72), H(X7=1 91+ ;5[2Y/%))
=gt = <& gE™
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§4. McKean’s conjecture (real case)

We denote by A the group of all elements g in G, such that detg=1. Then
we have “the Cartan decomposition’’; G=KAK. We can identify A with
SO(2), and we denote by a, the element of A defined by

4.1) agl, = cos0f, —sin0&,, agf, = sin 6, + cos 0¢,.

Let (m, ) be a class one representation of G, and let v, be a n(K)-fixed unit
vector. As the spherical function ¢, is K-biinvariant, ¢, can be considered as
a function on A. We define the function F, on A by F,(0)=¢.(ap) (as€ A).
From Proposition 2 we can use the Schur’s Lemma, and conclude that dn(C) is
a scalar operator; dn(C)=yx,(C)I where x,(C) is a constant and I is the identity
operator on 9.

THEOREM 1. Let (n, 9) be a class one representation of G with respect to
K. Then 2y,(C) is a non-negative integer, and (n, ) is equivalent to (n,, 5#,)
where n=2y,(C).

ProOF. By (A.2) there exists a n(K)-fixed unit vector v, such that lim,,_,
dn(C,)v, is convergent. From the above remark we have

4.2) X{(CVF (0) = (vo, m(ag)dn(C)vo).

On the other hand we have (v, n(ag)dn(C)vy)=1lim,, . (vy, m(ag)dn(C,,)ve).
Using the formula (3.5) and the fact that exp tX;;e K (i=2,..., m), we get

4.3) (vg, T(ag)dn(C,)vy) = — ¢, 2"z (vg, M(ag)dn(Xy;)%vo).
The following formulas are easily checked.
4.4) Ad(ap) !X ,; = cos0X,; — sin 0X,; (j=3,..., m),
4.5) [Ad(ag)~1X,;, X,;] =sin0X,, (j=3,...,m).
Using (4.4) and (4.5) we have
(4.6) X3, = cosec? 0(Ad(4,)71X ;)2

— cot 0 cosec {2(Ad(ae)"*X,; — sin 0X,} + cot? 6X%;

(j=3,..., m).
We note that

4.7) m_2 (vo, T(ag)dn(X {;)*v,)
= (vo, M(a)dn(X 1,)*vo) + 273 (vg, M(ag)dn(X ;;)*v).
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Clearly the first term is a2 F.(6). Substituting (4.6) into the second term of (4.7),

d0?
and after some calculations we obtain

(4.8) (vo, 7(as)dn(C)vy) = —lim,, .. c., { ;HZF (6) + (m—2)cot -4 F (e)}
= —2tcot§ -5 d FL().
Thus by (4.2) and (4.8) we have

1 C)F(6) = —27" cot 0 jezF,,(B),

Since F, is C* and F,(0)=1, we conclude that 2y,.(C) is a non-negative integer
and that if we put 2y, (C)=n we have

F(6) = cos™ 6.

On the other hand, from Proposition 4, putting g=k'apk we can compute
the spherical function of the representation (r,, 5#,) as follows;

é.(9) = <&, g€y )" = cos" 0.

Thus we have ¢,=¢, . It follows from Proposition 1 that (r, §) is equivalent
to (w,, #,)-

§5. Wiener-Ité6 decomposition (complex case)
In §5 and § 6 we assume that E and H are complex vector spaces. For any
non-negative integers p and g, we consider the complex Hermite polynomial;

H, (1, T) = (= hr+aet %:T et (teC).

It satisfies the following equations;

02 N o 0 . B
AT H, (i 1)- t—a—i—Hp,q(t, 1) +qH, (1) =0,

(5.1)
0? 0 .
5?61‘ 1’ q(t t) ot P ‘l(t t) + pHp,q(t’ t) =0.
0 . s .
(52) WHp’q(t’ t) =pHp_1’q(t, I), %Hp,q(t, f) = qu,q—l(t: I) .

(5.3) Ift=3%m, a;t; with |a,|>+ - +]a,|*=1, then
Hp,q(t9 i) = P!q!z Hj (pj!qj!)_1(aj)pj(aj)qupj,qj(tj, fj);

where 3 is taken over all non-negative integers p;, q; (j=1,..., m) with 3 ; p;=p,
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Zj q;=4-
We put
B,, = {[1%: (p;lg;N12H,, , Kz, &), <z, E);
Py + p2+=p, 4y + 4, +-=4, pj, 4;20}.

Then it is known that \UjZ (\J 4 4=, B,,) is an orthonomal basis of L%(E*, p),
(see [1]). We denote by &, , the closed subspace spanned by B,,. Then we
have

LAE*, ) = 2720 @ X pig=n ® #,, (Wiener-Itd decomposition).

From (5.3) we see that &#, ; is m,(G)-invariant, so that we have the subrepresen-
tation m, , of G on s, ,. Foranyiin N we put

Pz, 7) = (plq!)~'2H, Kz, &, {2, &)).
The following Lemma 5~ Lemma 8 can be proved similarly to the real case.
LEMMA 5. @%:% is a cyclic vector of # .
LemMA 6. Any m, (G)-fixed vector in 5, , is equal to zero if (p, q)# (0, 0).

Lemma 7. For any n, (K)-fixed vector v in 5, ,, there exists a constant ¢

such that v=c®?}-1.

p,q°

LemMaA 8. (m,,, ), ,) is an irreducible unitary representation of G.

Let g, be the Lie algebra of G,, and let E;; be the m x m matrix defined in
§3. We put X;;=E;;—E;, Y,;=i(E;;+Ej) for i<j and Y;=iE;. Then g, is
canonically identified with the linear Lie algebra generated by {X;;, Y;;, Y;;
1Zi<j<m}. We define a bilinear form B: g, xg,—C by (X, Y)—2mtrXY.
Then B is non-degenerate, so we define the Casimir operator C,, associated to B
by the formula;

(5'4) Cm = —Cp Zl§i<j§m (Xlzj + Y121 - 2cm z'in=1 Y%b Cp = 1/4m
PROPOSITION 5. (7, ,, o, ,) is a class one representation of G.

ProoF. From Lemma 5~ Lemma 8, we have only to show that ®%-? satis-
fies (A.2). It is clear that @§- is n, (G,)-finite (me N). Let z;={z, ;) (ieN,
ze E¥). Then any element of the space spanned by 7, (G,,)®%:? can be regarded
as a function only of z4,..., z,,, Z;,..., Z,. Using this identification we get

0 0 ,- 0 = 0 \?
P 2 = s —_— P A i A= i A=
(5.5) dn, (X)) (z, oz, z; a, +2z; 7z, Z; 5,)
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0 0 - 0 = 0\
=—(z,0 4, 9 _5 0 _5 O
(5.6) dn,,,(Y3)) <z, o tge R 02) ,
d - 0\
6.7 ay (¥i)? = (250 ~Zigr) -
As @77 is a function only of z, and z,, using (5.5), (5.6) and (5.7), we have
0 - 0
P4 — Jy-1 0 o
(5.8)  dn,  (C) P! {2 <zl o+ g
62

+2c (zza—2 + 22——)—40 >m zi—az—} 24
m\"10z% 1022 m &=ttt 6.0z, T
By the strong law of large numbers we have
(5.9) lim, ,om™ ' Y™, Kz, {;H|> =1 ae. z in E*.

Since %7 does not depend on m, it follows from (5.8) and (5.9) that
. 0 , - 0 0?
P9 — 1 —_ p, q
lim,,,, dn, ,(C,) P4 = 2~ <21 iz, +z, 7, 6z16 )@

Using the formula (5.2) we obtain

lim,,,o d7, 4 (C,) P71 = 27(p+q) P

PROPOSITION 6. ¢, () = (&, g&,>P(&(, 9& )¢ (9€G).
ProorF. Let geG. Then we have an m in N such that geG,. We put
g&;=2"_19;:&;. Using the formula (5.3), we have
b, (9) = (P9, 7, (D)%)
= (Pl Hp (o5 €05 o5 E0) Hp -5 981D, <-4 98100
= (plg) W Hp K-, 800, <5 €D,
P'a'T IT; (Pa;)Hg;07 G 1) % Hp, 0 (-5 €505 <5 ED))
= g59% = <&, g&0PLEL, g€,

where Y is the same as in (5.3).

§6. McKean’s conjecture (complex case)

We put T=G,. And we denote by a4 the element of G, defined by (4.1).
Let A be the group of all elements a,. Then we have “the Cartan decomposi-
tion”’; G=KTAK. We note that kt=tk (teT, ke K). We denote by ¢, the
element of T defined by t,6,=e'¢f,. Then Tis isomorphic to U(1), so that the
character group T of T is isomorphic to Z where Z is the additive group of all
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integers. We denote by o the canonical isomorphism of T to Z defined by
o(n)=1 where ne T and n(t,)=e!* (1,€ T).

Let (7, ) be a class one representation of G and let v, be a n(K)-fixed unit
vector. For any ¢, in T and k in K, it follows that

m(k)n(t,)vg = n(t,)n(k)ve = n(t,)vo.

Thus 7(t,)v, is a m(K)-fixed vector. By (A.1) there exists a constant #,(t,) such
that n(t,)vo=n,(t,)vo. Then we have

I'ln(t(p)l = 1’ rln(t(ptq;’) = r’n(tq:)r’n(t(p’) .

Thus 7, is a character of T.
From Proposition 2 dn(C) is a scalar operator, so that we put dn(C)=
1O

THEOREM 2. Let (m, ) be a class one representation of G with respect to
K. Then 2y,(C) is a non-negative integer, and if |o(n,)|=<2x.(C) (7, O) is
equivalent to (n, 4, 3, ,) where p+q=2y,(C) and p—q=0(,).

Proor. By (A.2) there exists a n(K)-fixed unit vector v, such that
lim,,, », dn(C,)v, is convergent. As in the real case, we denote by F, the func-
tion on A4 such that F,(8)=¢,(as). Since ¢, is K-biinvariant, putting g=k't a,k,
we have

Dn(g) = €7H?F(0) where | =0(n,).
Now we note that
6.1) X(COF (0) = (vy, T(ag)dn(C)vy) = lim,,_. o (v, T(ag)dn(C,)vo) .
Using the fact that exp tX;;, exp t;; and exp tY; are in K if i=2, we have
(6.2) (vg, M(ag)dn(C,)vo) = — Cp 22 (vg, T(ag)dn(X y;)?vo)
— Cp 23 (g, T(ag)dn (Y} ;)?09) — 2€,(Vo, T(ag)dm(Yy)?v,) .

As in the real case, the first term of (6.2) is

(6.3) —c,,,{j—; Fy(0) + (m—2) cot 0 -4 F,,(e)} .

It is easy to get the followings;
Ad(ao)_lY2j=COSBY2j'— Sin HYI_] (j=3, 4,...),
[Ad(ao)_lej, Yzj] = Sin 0X12 (j=3, 4,...).

Then we have
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(6.4) Y2, = cot20Y%; + cot 0X,, — 2 cot O cosec 0 Ad(ag)~'Y,;Y;;
+ cosec? 0 (Ad(ap)1Y,,)? (j=3,4,..).

We substitute (6.4) into the second term of (6.2), and after some calculations we
get

6.5) — ¢u{(vo, m(ag)dn(Y,,)?vy) + (m—2)cot 6(vy, n(ag)dm(X,)vy)} .
To calculate the first term of (6.5), we use the following formula;
Ad(ag)"1Y;; = cos20Y,, + cosOsin 0 Y,, + sin? 0Y,,.
Then we have
Y2, = sec? 0 cosec? 0{(Ad(a,)~1Y,,)> + cos*0Y?2, + sin* Y2,

— cos? 6(Ad(ag)~1Y,, Yy, + Yy Ad(ag)~1Y;y)

— sin? 0(Ad(ag) 1Y, Ys, + Yo, Ad(ag)~1Y;)

+ sin20cos? (Y, Y,, + Y5, Y1)}
Since exp tY;, € T (te R), we have

(vo, m(ag)dn(Ad(as)™'Y11)v) = — IPF,(0),

(vg, T(ag)dn(Ad(ag)~ 1Y, )dn(Y,,)ve) = — IPF(6),

where I=0(n,). It follows from these equations that the first term of (6.5) is
2cot20 2 d LoF(6) — I tan? OF (6) .

Thus the second term of (6.2) becomes
6.6) —c, {2 cot20 -2 d - F,(0)— 2 tan? 0F,(0) + (m—2) cot 0 L F (9)}
It is easy to see that the third term of (6.2) is
6.7) 2¢,,I2F (6).
Finally, substituting (6.3), (6.6) and (6.7) in (6.1), we obtain

1(OF(0) = — 271 cot 02 F(6).

Since F, is C* and F,(0)=1, we conclude that 2y,(C) is a non-negative integer.
Putting 2y,(C)=n, we have F (0)=cos"f. Thus we get ¢ (g)=e"?¢cos” §
where g=k't ,aok.

If |o(n,)] =2x.(C), then there exist non-negative integers p and g such that
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p+qg=nand p—g=I1. From Proposition 6, putting g =k't,a.k, we can compute
the spherical function of representation (=, 4, 5, ,) as follows;

¢1rp,q(g) = <€13 gf&”{&, g€1>q = e~ i(P=9)9 cosPta @,

Thus we have ¢,=¢,, ,. From Proposition 1 we see that (n, $) is equivalent to
(Tp.05 # p.g)-

[1]
[2]

[31]

4]
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