Boundary limits of Green potentials of order α

Yoshihiro MIZUTA

(Received August 7, 1980)

1. Introduction

In the half space $D = \{x = (x_1, ..., x_n); x_n > 0\}, n \ge 2$, the Green potential of order α , $0 < \alpha < n$, of a non-negative measurable function f on D is defined by

$$G^f_{\alpha}(x) = \int_D G_{\alpha}(x, y) f(y) dy,$$

where $G_{\alpha}(x, y) = |x - y|^{\alpha - n} - |\overline{x} - y|^{\alpha - n}$, $\overline{x} = (x_1, \dots, x_{n-1}, -x_n)$ for $x = (x_1, \dots, x_{n-1}, x_n)$. Our aim in this note is to study the existence of boundary limits of G_{α}^f . One of our results is as follows:

Let
$$p > 1$$
, $\gamma < 2p - 1$ and f satisfy $G_{\alpha}^{f} \equiv \infty$ and

$$\int_{G} f(y)^{p} y_{n}^{\gamma} dy < \infty \quad \text{for any bounded open set} \quad G \subset D.$$

Then there exists a set $E \subset \partial D$ with $H_{n-\alpha p+\gamma}(E) = 0$ such that to each $\xi \in \partial D - E$, there corresponds a set $E_{\xi} \subset S_{+} = \{x \in D; |x|=1\}$ with the properties:

a) $B_{\alpha,p}(E_{\xi}) = 0;$ b) $\lim_{r \downarrow 0} G^{f}_{\alpha}(\xi + r\zeta) = 0$ for every $\zeta \in S_{+} - E_{\xi}$,

where H_{ℓ} denotes the ℓ -dimensional Hausdorff measure and $B_{\alpha,p}$ denotes the Bessel capacity of index (α, p) (see [3]).

In case $\alpha = 2$, according to Wu [8; Theorem 1], the exceptional set E_{ξ} has Hausdorff dimension at most n-2p; this is a consequence of our result in view of Fuglede [2].

Moreover, non-tangential limits, fine limits, mean continuous limits and perpendicular limits will be considered.

2. Preliminaries

Let us begin with the following lemma, which can be proved by elementary calculation.

LEMMA 1. There exist positive constants c_1 and c_2 such that

$$c_1 \frac{x_n y_n}{|x - y|^{n - \alpha} |\bar{x} - y|^2} \le G_{\alpha}(x, y) \le c_2 \frac{x_n y_n}{|x - y|^{n - \alpha} |\bar{x} - y|^2}$$

for $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ in D.

By Lemma 1, we can prove the next lemma.

LEMMA 2. Let f be a non-negative measurable function on D. Then $G^f_{\alpha} \equiv \infty$ if and only if $\int_{D} (1+|y|)^{\alpha-n-2} y_n f(y) dy < \infty$.

For $x \in \mathbb{R}^n$ and r > 0, denote by B(x, r) the open ball with center at x and radius r, and set $B_+(x, r) = B(x, r) \cap D$.

LEMMA 3. Let $\xi \in \partial D$, c > 0 and f be a non-negative measurable function on D such that $G_{\alpha}^{f} \equiv \infty$. Set

$$u(x) = \int_{\{y \in D; |x-y| \ge c | x-\xi|\}} G_{\alpha}(x, y) f(y) dy.$$

Then $\lim_{x\to\xi,x\in D} u(x) = 0$ if and only if $\xi \in \partial D - A$, where

$$A = \left\{ \xi \in \partial D; \limsup_{r \downarrow 0} r^{\alpha - n - 1} \int_{B_+(\xi, r)} f(y) y_n dy > 0 \right\}.$$

PROOF. Let $\delta > 0$. Then by Lemma 1,

$$\lim_{x \to \xi, x \in D} \int_{D - B(\xi, \delta)} G_{\alpha}(x, y) f(y) dy = 0$$

since $G_{\alpha}^{f} \equiv \infty$. Set $C_{\delta} = \sup \left\{ r^{\alpha - n - 1} \int_{B_{+}(\xi, \delta)} f(y) y_{n} dy; \ 0 < r \leq \delta \right\}$. We have again by Lemma 1,

$$\begin{split} &\int_{\{y\in B_+(\xi,\delta); |x-y|\ge c\,|x-\xi|\}} G_{\alpha}(x,\,y)f(y)dy\\ &\leq M_1 x_n \int_{B_+(\xi,\delta)} (|x-\xi|+|y-\xi|)^{\alpha-n-2}f(y)y_ndy\\ &\leq M_2 x_n \Big((|x-\xi|+\delta)^{\alpha-n-2} \int_{B_+(\xi,\delta)} f(y)y_ndy\\ &+ \int_0^{\delta} (|x-\xi|+r)^{\alpha-n-3} \left\{ \int_{B_+(\xi,r)} f(y)y_ndy \right\} dr \Big) \le M_3 C_{\delta}. \end{split}$$

where M_1 , M_2 and M_3 are positive constants independent of x and δ . It follows that $\limsup_{x \to \xi, x \in D} u(x) \leq M_3 C_{\delta}$, which proves the "if" part. Lemma 1 also gives

$$u(\xi + r(0,...,0,1)) \ge M_4 r^{\alpha - n - 1} \int_{\{y \in D; (1+c)r < |y-\xi| < 2(1+c)r\}} f(y) y_n dy$$

for some positive constant M_4 independent of r, from which the "only if" part follows.

REMARK. If $\alpha < 2$ and $f(y) = y_n^{-\alpha}$, then $G_{\alpha}^f \equiv \infty$ by Lemma 2 but $A = \partial D$. On the other hand, if $\alpha \ge 2$, then $G_{\alpha}^f \equiv \infty$ implies $H_{n-\alpha+1}(A) = 0$ (cf. [4; p. 165]), so that $A \neq \partial D$.

First we give the following result.

THEOREM 1. Let $\alpha p > n$, $\gamma < 2p-1$ and $n - \alpha p + \gamma < 0$. Let f be a nonnegative measurable function on D such that $G_{\alpha}^{f} \equiv \infty$, and let $\xi \in \partial D$. If $\int_{B_{+}(\xi,\rho)} f(y)^{p} y_{n}^{\gamma} dy < \infty$ for some $\rho > 0$, then G_{α}^{f} has limit zero at ξ .

PROOF. Let $\delta > 0$. First consider the case $\gamma \leq 0$. We have by Hölder's inequality and Lemma 1,

$$\begin{split} & \int_{B_{+}(\xi,\delta)} G_{\alpha}(x, y) f(y) dy \\ & \leq \left\{ \int_{B_{+}(\xi,\delta)} [c_{2}|x-y|^{\alpha-n}]^{p'} dy \right\}^{1/p'} \left\{ \int_{B_{+}(\xi,\delta)} f(y)^{p} dy \right\}^{1/p} \\ & \leq \text{const.} \left\{ \delta^{\alpha p-\gamma-n} \int_{B_{+}(\xi,\delta)} f(y)^{p} y_{n}^{\gamma} dy \right\}^{1/p}, \end{split}$$

where 1/p + 1/p' = 1. In case $0 < \gamma \le p$, we have

$$\begin{split} & \int_{B_{+}(\xi,\delta)} G_{\alpha}(x, y) f(y) dy \\ & \leq \left\{ \int_{B_{+}(\xi,\delta)} \left[c_{2} x_{n} y_{n}^{1-\gamma/p} | x-y|^{\alpha-n} | \overline{x}-y|^{-2} \right]^{p'} dy \right\}^{1/p'} \left\{ \int_{B_{+}(\xi,\delta)} f(y)^{p} y_{n}^{\gamma} dy \right\}^{1/p} \\ & \leq \left\{ \int_{B_{+}(\xi,\delta)} \left[c_{2} | x-y|^{\alpha-\gamma/p-n} \right]^{p'} dy \right\}^{1/p'} \left\{ \int_{B_{+}(\xi,\delta)} f(y)^{p} y_{n}^{\gamma} dy \right\}^{1/p} \\ & \leq \text{const.} \left\{ \delta^{\alpha p-\gamma-n} \int_{B_{+}(\xi,\delta)} f(y)^{p} y_{n}^{\gamma} dy \right\}^{1/p} . \end{split}$$

Let $\gamma > p$. Then,

$$\begin{split} & \left\{ \int_{B_+(\xi,\delta)} G_{\alpha}(x, y) f(y) dy \right\} \\ & \leq \left\{ \int_{B_+(\xi,\delta)} \left[c_2 |x-y|^{\alpha-n-1} y_n^{1-\gamma/p} \right]^{p'} dy \right\}^{1/p'} \left\{ \int_{B_+(\xi,\delta)} f(y)^p y_n^{\gamma} dy \right\}^{1/p} \end{split}$$

Letting $I(y) = |x - y|^{\alpha - n - 1} y_n^{1 - \gamma/p}$, we note

$$\begin{split} \int_{\{y \in B_+(\xi,\delta); y_n \ge x_n/2\}} I(y)^{p'} dy &\leq \int_{B(\xi,\delta)} \left[|x-y|^{\alpha-n-1} |x_n - y_n|^{1-\gamma/p} \right]^{p'} dy \\ &\leq \int_{B(x,\delta)} \left[|x-y|^{\alpha-n-1} |x_n - y_n|^{1-\gamma/p} \right]^{p'} dy \\ &= \operatorname{const.} \delta^{p'(\alpha p - \gamma - n)/p}; \end{split}$$

$$\int_{\{y \in B_+(\xi,\delta); y_n < x_n/2\}} I(y)^{p'} dy \leq \int_{B_+(\xi,\delta)} \left[|(x', 0) - y|^{\alpha - n - 1} y_n^{1 - \gamma/p} \right]^{p'} dy$$
$$= \text{const. } \delta^{p'(\alpha p - \gamma - n)/p},$$

where $x = (x', x_n)$. In all cases,

$$\int_{B_+(\xi,\delta)} G_{\alpha}(x, y) f(y) dy \leq \text{const.} \left\{ \delta^{\alpha p - \gamma - n} \int_{B_+(\xi,\delta)} f(y)^p y_n^{\gamma} dy \right\}^{1/p}$$

Since $G_{\alpha}^{f} \equiv \infty$, it follows that

$$\limsup_{x \to \xi, x \in D} G_{\alpha}^{f}(x) = \limsup_{x \to \xi, x \in D} \int_{B_{+}(\xi, \delta)} G_{\alpha}(x, y) f(y) dy$$
$$\leq \text{const.} \left\{ \delta^{\alpha p - \gamma - n} \int_{B_{+}(\xi, \delta)} f(y)^{p} y_{n}^{\gamma} dy \right\}^{1/p},$$

which implies that $\lim_{x\to\xi,x\in D} G^f_{\alpha}(x)=0$, and hence our theorem is established.

To study the case $\alpha p \leq n$ or $n - \alpha p + \gamma \geq 0$, it is important to note the following lemma.

LEMMA 4. Let $p \ge 1$ and f be a non-negative measurable function on D satisfying

(1)
$$\int_G f(y)^p y_n^{\gamma} dy < \infty \quad \text{for any bounded open set} \quad G \subset D,$$

and set

$$A_{p,\beta} = \left\{ \xi \in \partial D; \int_{B_+(\xi,\rho)} |\xi - y|^{\alpha p - \beta - n} f(y)^p y_n^\beta dy = \infty \text{ for any } \rho > 0 \right\}.$$

If $\beta > \gamma$, then $H_{n-\alpha p+\gamma}(A_{p,\beta}) = 0$; in case $n-\alpha p+\gamma \leq 0$, $A_{p,\beta}$ is empty.

PROOF. If $n - \alpha p + \gamma \leq 0$, then

$$\int_{B+(\xi,1)} |\xi-y|^{\alpha p-\beta-n} f(y)^p y_n^\beta dy \leq \int_{B+(\xi,1)} f(y)^p y_n^\gamma dy < \infty,$$

which implies that $A_{p,\beta}$ is empty. Let $n-\alpha p+\gamma>0$, and suppose $H_{n-\alpha p+\gamma}(A_{p,\beta})$ >0. Then by [1; Theorems 1 and 3 in §II], there exists a positive measure μ with compact support in $A_{p,\beta}$ such that

$$\mu(B(x, r)) \leq r^{n-\alpha p+\gamma}$$
 for every $x \in \mathbb{R}^n$ and $r > 0$.

Note that

$$\int |\xi - y|^{\alpha p - \beta - n} d\mu(\xi) \leq \text{const. } y_n^{\gamma - \beta}, \quad y \in D.$$

Taking N > 0 such that the support of μ is included in B(O, N), we obtain

Boundary limits of Green potentials of order α

$$\infty = \int \left\{ \int_{B_+(\xi,1)} |\xi - y|^{\alpha p - \beta - n} f(y)^p y_n^\beta dy \right\} d\mu(\xi)$$

$$\leq \int_{B_+(O,N+1)} \left\{ \int |\xi - y|^{\alpha p - \beta - n} d\mu(\xi) \right\} f(y)^p y_n^\beta dy$$

$$\leq \text{const.} \int_{B_+(O,N+1)} f(y)^p y_n^\gamma dy < \infty,$$

which is a contradiction. Thus $H_{n-\alpha p+\gamma}(A_{p,\beta})=0$, and our lemma is proved.

LEMMA 5. If p>1, $\gamma < 2p-1$ and f is a non-negative measurable function on D, then $A \subset A_{p,\beta}$, where A is the set given in Lemma 3.

COROLLARY. If $p \ge 1$, $\gamma < 2p-1$ and f is a non-negative measurable function on D satisfying (1), then $H_{n-ap+\gamma}(A)=0$.

REMARK. The function

$$f(y) = y_n^{-2} (\log (1 + y_n^{-1}))^{-1}$$

satisfies (1) when p>1 and $\gamma=2p-1$, but $A=\partial D$ for this function f, so that $H_{n-\alpha p+\gamma}(A)=\infty$ if $\alpha\geq 2$.

PROOF OF LEMMA 5. By Hölder's inequality, we have

$$\begin{aligned} r^{\alpha-n-1} \int_{B_{+}(\xi,r)} f(y)y_{n} dy \\ &\leq r^{\alpha-n-1} \left\{ \int_{B_{+}(\xi,r)} \left[|\xi-y|^{(n-\alpha+\beta)/p} y_{n}^{1-\beta/p} \right]^{p'} dy \right\}^{1/p'} \\ &\times \left\{ \int_{B_{+}(\xi,r)} |\xi-y|^{\alpha p-\beta-n} f(y)^{p} y_{n}^{\beta} dy \right\}^{1/p} \\ &= \text{const.} \left\{ \int_{B_{+}(\xi,r)} |\xi-y|^{\alpha p-\beta-n} f(y)^{p} y_{n}^{\beta} dy \right\}^{1/p}, \end{aligned}$$

which implies that $A \subset A_{p,\beta}$.

Let p > 1, k(x, y) be a non-negative Borel measurable function on $\mathbb{R}^n \times \mathbb{R}^n$ and G be an open set in \mathbb{R}^n . Following Meyers [3], we define the capacity

$$C_{k,p}(E; G) = \inf \|g\|_p^p, \quad E \subset \mathbb{R}^n,$$

where the infimum is taken over all non-negative measurable functions g on \mathbb{R}^n such that g=0 on $\mathbb{R}^n - G$ and

$$U_k^g(x) = \int k(x, y)g(y)dy \ge 1$$
 for every $x \in E$.

In case $k(x, y) = |x - y|^{\ell - n}$, we write $C_{\ell,p}$ for $C_{k,p}$; in case k is the Bessel kernel of

order ℓ (see [3]) and $G = R^n$, we write $B_{\ell,p}$ for $C_{k,p}(\cdot, R^n)$. We note the following properties (cf. [5; Lemma 1], [6; Sect. 2]).

(i) Let G and G' be bounded open sets in \mathbb{R}^n , and K be a compact subset of $G \cap G'$. Then there exists M > 0 such that

$$M^{-1}C_{\ell,p}(E; G) \leq C_{\ell,p}(E; G') \leq MC_{\ell,p}(E; G)$$
 whenever $E \subset K$.

(ii) For r > 0, let $T_r x = rx$, $x \in \mathbb{R}^n$. Then

$$C_{\ell,p}(T_r E; T_r G) = r^{n-\ell p} C_{\ell,p}(E; G).$$

(iii) Let E^* denote the projection of a set E to the hyperplane ∂D . Then

$$C_{\ell,p}(E^*; B(\xi, r)) \leq C_{\ell,p}(E; B(\xi, r))$$

for $\xi \in \partial D$ and r > 0.

(iv) Let \tilde{E} denote the radial projection of a set E to the surface S_+ , i.e., $\tilde{E} = \{\zeta \in S_+; r\zeta \in E \text{ for some } r > 0\}$. Then there exists M > 0 such that

$$C_{\ell,p}(\vec{E}; B(0, 3)) \leq MC_{\ell,p}(E; B(0, 3))$$

for $E \subset B(O, 2) - B(O, 1)$.

(v) If $C_{\ell,p}(E; G) = 0$ for some bounded open set $G \subset \mathbb{R}^n$, then $B_{\ell,p}(E) = 0$.

(vi) $B_{\ell,p}(E)=0$ if and only if $C_{\ell,p}(E \cap G; G)=0$ for any bounded open set $G \subset \mathbb{R}^n$.

3. Non-tangential and fine limits

A function u on D is said to have non-tangential limit zero at $\xi \in \partial D$ if

 $\lim_{x \to \xi, x \in \Gamma(\xi, a)} u(x) = 0 \quad \text{for any} \quad a > 1,$

where $\Gamma(\xi, a) = \{x = (x_1, ..., x_n); |x - \xi| < ax_n\}.$

THEOREM 2. Let f be a non-negative measurable function on D such that $G^f_{\alpha} \equiv \infty$. If $\xi \in \partial D - (A \cup A_{p,\beta})$ for some numbers β and p with $\alpha p > n$, then G^f_{α} has non-tangential limit zero at ξ .

REMARK. Let f satisfy the additional assumption (1), and define $B = A \cup (\bigcap_{\beta > \gamma} A_{p,\beta})$. Then the conclusion of Theorem 2 holds for $\xi \in \partial D$ except for the set B. In general, $H_{n-\alpha+1}(B)=0$, and if $\gamma < 2p-1$, then $H_{n-\alpha p+\gamma}(B)=0$ on account of Lemmas 4 and 5.

PROOF OF THEOREM 2. Write $G_{\alpha}^{f} = u + v$, where

Boundary limits of Green potentials of order α

$$u(x) = \int_{\{y \in D; |x-y| \ge x_n/2\}} G_{\alpha}(x, y) f(y) dy,$$
$$v(x) = \int_{\{y \in D; |x-y| < x_n/2\}} G_{\alpha}(x, y) f(y) dy.$$

By Lemma 3, u has non-tangential limit zero at ξ . If $x \in \Gamma(\xi, a)$, then Hölder's inequality yields

$$\begin{aligned} v(x) &\leq c_2 \int_{\{y \in D; |x-y| < x_n/2\}} |x-y|^{\alpha-n} f(y) dy \\ &\leq c_2 \left\{ \int_{\{y \in D; |x-y| < x_n/2\}} |x-y|^{p'(\alpha-n)} dy \right\}^{1/p'} \left\{ \int_{\{y \in D; |x-y| < x_n/2\}} f(y)^p dy \right\}^{1/p} \\ &= \text{const.} \left\{ x_n^{\alpha p-n} \int_{\{y \in D; |x-y| < x_n/2\}} f(y)^p dy \right\}^{1/p} \\ &\leq \text{const.} \left\{ \int_{B_+(\xi, 2ax_n)} |\xi-y|^{\alpha p-\beta-n} f(y)^p y_n^\beta dy \right\}^{1/p}, \end{aligned}$$

which implies that $\lim_{x\to\xi,x\in\Gamma(\xi,a)} v(x) = 0$ if $\xi \in \partial D - A_{p,\beta}$. Thus the theorem is proved.

Let $k_{\alpha,\beta}(x, y) = |x - y|^{\alpha - n} |y_n|^{-\beta/p}$. Then we can easily prove the following result.

LEMMA 6. (a) $C_{k_{\alpha,\beta},p}(T_rE; T_rG) = r^{n-\alpha p+\beta}C_{k_{\alpha,\beta},p}(E; G).$

(b) For a > 1, there exists a positive constant M (which depends on β) such that

$$M^{-1}C_{\alpha,p}(E; B(\xi, 3)) \leq C_{k_{\alpha,\beta},p}(E; B(\xi, 3)) \leq MC_{\alpha,p}(E; B(\xi, 3))$$

whenever $E \subset \Gamma(\xi, a) \cap B(\xi, 2) - B(\xi, 1), \xi \in \partial D$.

~

Following Meyers [4], we say that a set $E \subset \mathbb{R}^n$ is (α, p) -thin at $\xi \in \partial D$ if

$$\int_0^1 [r^{\alpha p-n} C_{\alpha,p}(E \cap B(\xi, r) - B(\xi, r/2); B(\xi, 2r))]^{1/(p-1)} \frac{dr}{r} < \infty.$$

Further we say that E is $(k_{\alpha,\beta}, p)$ -thin at ξ if

$$\int_0^1 \left(r^{\alpha p - \beta - n} C_{k_{\alpha, \beta}, p}(E \cap B(\xi, r) - B(\xi, r/2); B(\xi, 2r)) \right)^{1/(p-1)} \frac{dr}{r} < \infty.$$

By Lemma 6, we obtain the next result.

LEMMA 7. If E is $(k_{\alpha,\beta}, p)$ -thin at ξ , then $E \cap \Gamma(\xi, a)$ is (α, p) -thin at ξ for any a > 1.

For a non-negative measurable function f on D, we set

Yoshihiro MIZUTA

$$A'_{p,\beta} = \left\{ \xi \in \partial D; \int_0^\rho \left(r^{\alpha p - \beta - n} \int_{B_+(\xi,r)} f(y)^p y_n^\beta dy \right)^{1/(p-1)} \frac{dr}{r} = \infty \text{ for any } \rho > 0 \right\}.$$

THEOREM 3. Let f be a non-negative measurable function on D such that $G^f_{\alpha} \equiv \infty$. If $\xi \in \partial D - (A \cup A'_{p,\beta})$ for some numbers p > 1 and β , then there exists $E_{\xi} \subset D$ such that E_{ξ} is $(k_{\alpha,\beta}, p)$ -thin at ξ and

 $\lim_{x \to \xi, x \in D - E_{\varepsilon}} G_{\alpha}^{f}(x) = 0.$

REMARK 1. If f satisfies (1), then $B_{\alpha-\gamma/p,p}(A'_{p,\beta})=0$ for $\beta > \gamma$ on account of [4; Theorem 2.1]. We do not know whether $H_{n-\alpha p+\gamma}(A'_{p,\beta})=0$ or not in case $\beta > \gamma$.

REMARK 2. By Lemma 7, $E_{\xi} \cap \Gamma(\xi, a)$ is (α, p) -thin at ξ for any a > 1.

PROOF OF THEOREM 3. Write $G_{\alpha}^{f} = u + v$, where

$$u(x) = \int_{\{y \in D; |x-y| \ge |x-\xi|/2\}} G_{\alpha}(x, y) f(y) dy,$$
$$v(x) = \int_{\{y \in D; |x-y| < |x-\xi|/2\}} G_{\alpha}(x, y) f(y) dy.$$

If $\xi \in \partial D - A$, then Lemma 3 shows that $\lim_{x \to \xi, x \in D} u(x) = 0$.

Let $\xi \in \partial D - A'_{p,\beta}$, and take a sequence $\{a_i\}$ of positive numbers such that $\lim_{i\to\infty} a_i = \infty$ and

$$\sum_{i=j}^{\infty} \left\{ a_i 2^{i(n-\alpha p+\beta)} \int_{B_+(\xi, 2^{-i+2})} f(y)^p y_n^\beta dy \right\}^{1/(p-1)} < \infty,$$

where j is a positive integer such that

$$\int_0^{2^{-j+2}} \left(r^{\alpha p-\beta-n} \int_{B_+(\zeta,r)} f(y)^p y_n^\beta \, dy \right)^{1/(p-1)} \frac{dr}{r} < \infty.$$

Consider the sets

$$E_i = \{x \in D; \, 2^{-i} \leq |x - \xi| < 2^{-i+1}, \, v(x) \geq a_i^{-1/p} \}$$

for i=j, j+1,... If $x \in E_i$ and $|x-y| < |x-\xi|/2$, then $|y-\xi| < 2^{-i+2}$, so that

$$C_{k_{\alpha,\beta},p}(E_i; B(\xi, 2^{-i+2})) \leq a_i \int_{B_+(\xi, 2^{-i+2})} f(y)^p y_n^\beta dy.$$

Consequently,

$$\sum_{i=j}^{\infty} \{2^{i(n-\alpha p+\beta)} C_{k_{\alpha,\beta},p}(E_i; B(\xi, 2^{-i+2}))\}^{1/(p-1)} < \infty$$

which implies that $E = \bigcup_{i=j}^{\infty} E_i$ is $(k_{\alpha,\beta}, p)$ -thin at ξ . Clearly, $\lim_{x \to \xi, x \in D - E} v(x) = 0$, and our theorem is proved.

4. Mean continuous limits

A function u on D is said to have mean continuous limit zero of order q (or simply mc_a -limit zero) at $\xi \in \partial D$ if

$$\lim_{r \downarrow 0} r^{-n} \int_{B_+(\xi,r)} |u(x)|^q dx = 0 \quad \text{in case} \quad q < \infty,$$
$$\lim_{x \to \xi, x \in D} u(x) = 0 \quad \text{in case} \quad q = \infty.$$

THEOREM 4. Let f be a non-negative measurable function on D such that $G^f_{\alpha} \equiv \infty$. If $\xi \in \partial D - (A \cup A_{p,\beta})$ for some numbers p > 1 and β , then G^f_{α} has mc_q -limit zero at ξ , where q is given as follows:

i)
$$1/q = 1/p - (\alpha - \beta/p)/n$$
 if $0 \le \beta < 2p - 1$ and $0 < \alpha p - \beta < n$;
ii) $1 < q < \infty$ if $0 \le \beta < 2p - 1$ and $\alpha p - \beta = n$;
iii) $q = \infty$ if $0 \le \beta < 2p - 1$ and $\alpha p - \beta = n$;
iv) $1/q = 1/p - \alpha/n$ if $\beta < 0$ and $\alpha p < n$;
v) $1 < q < \infty$ if $\beta < 0$ and $\alpha p = n$;
vi) $q = \infty$ if $\beta < 0$ and $\alpha p = n$;
vi) $q = \infty$ if $\beta < 0$ and $\alpha p > n$.

PROOF. As in the proof of Theorem 3, write $G_{\alpha}^{f} = u + v$. If $\xi \in \partial D - A$, then Lemma 3 shows that $\lim_{x \to \xi, x \in D} u(x) = 0$. For v, we note the following estimates:

$$\begin{aligned} v(x) &\leq c_2 \int_{\{y \in D; |x-y| < |x-\xi|/2\}} |x-y|^{\alpha-n} f(y) dy & \text{ in case } \beta \leq 0, \\ v(x) &\leq c_2 \int_{\{y \in D; |x-y| < |x-\xi|/2\}} |x-y|^{\alpha-\beta/p-n} [f(y)y_n^{\beta/p}] dy & \text{ in case } 0 < \beta \leq p, \\ v(x) &\leq c_2 \int_{\{y \in D; |x-y| < |x-\xi|/2\}} |x-y|^{\alpha-1-n} y_n^{1-\beta/p} [f(y)y_n^{\beta/p}] dy & \text{ in case } p < \beta < 2p - 1. \end{aligned}$$

The remaining part of the proof can be carried out along the same lines as in the proof of [7; Theorem 6].

We say that a function u on D has non-tangential mean continuous limit zero of order q (or simply NT-mc_q-limit zero) at $\xi \in \partial D$ if

$$\lim_{r\downarrow 0} r^{-n} \int_{\Gamma(\xi,a,r)} |u(x)|^q dx = 0 \quad \text{for all} \quad a > 1,$$

where $\Gamma(\xi, a, r) = \Gamma(\xi, a) \cap B(\xi, r)$.

Yoshihiro MIZUTA

THEOREM 5. Let f be a non-negative measurable function on D such that $G^f_{\alpha} \equiv \infty$. If $\xi \in \partial D - (A \cup A_{p,\beta})$ for some numbers p > 1 and β , then G^f_{α} has NT-mc_a-limit zero at ξ , where q is given as follows:

- i) $1/q = 1/p \alpha/n$ if $\alpha p < n$;
- ii) $1 < q < \infty$ if $\alpha p = n$.

The case $\alpha p > n$ was considered in Theorem 2.

PROOF OF THEOREM 5. We write $G_{\alpha}^{f} = u + v$ as in the proof of Theorem 2. Then Lemma 3 shows that u has non-tangential limit zero at $\xi \in \partial D - A$, so that u has NT-mc_a-limit zero at $\xi \in \partial D - A$ for all $q \ge 1$.

Let $\xi \in \partial D - A_{p,\beta}$. First we consider the case $\alpha p < n$. For r > 0, set $\Delta(a, r) = \{x \in \Gamma(\xi, a); r/2 < |x - \xi| < 2r\}$. Then we have by Lemma 1 and Sobolev's inequality (cf. [7; Lemma 9]),

$$r^{-n} \int_{\Delta(a,r)} v(x)^{q} dx$$

$$\leq r^{-n} \int_{\Delta(a,r)} \left\{ c_{2} \int_{\Delta(3a,r/2) \cup \Delta(3a,2r)} |x-y|^{\alpha-n} f(y) dy \right\}^{q} dx$$

$$\leq M_{1} r^{-n} \left\{ \int_{\Delta(3a,r/2) \cup \Delta(3a,2r)} f(y)^{p} dy \right\}^{q/p}$$

$$\leq M_{2} \left\{ \int_{\Gamma(\xi,3a,4r)} |\xi-y|^{\alpha p-\beta-n} f(y)^{p} y_{n}^{\beta} dy \right\}^{q/p},$$

where M_1 and M_2 are positive constants independent of r. Therefore v has NT-mc_a-limit zero at ξ . The case $\alpha p = n$ can be proved similarly.

5. Radial limits

Our aim in this section is to establish the following theorem.

THEOREM 6. Let f be a non-negative measurable function on D such that $G_{\alpha}^{f} \equiv \infty$. If $\xi \in \partial D - (A \cup A_{p,\beta})$ for some numbers p > 1 and β , then there exists a set $E \subset S_{+}$ such that $B_{\alpha,p}(E) = 0$ and

 $\lim_{r \downarrow 0} G^{f}_{\alpha}(\xi + r\zeta) = 0 \quad for \; every \; \zeta \in S_{+} - E.$

To prove this, we need the next lemmas.

LEMMA 8. Let

$$v(x) = \int_{\{y \in D; |x-y| < |x-\xi|/2\}} G_{\alpha}(x, y) f(y) dy.$$

If $\xi \in \partial D - A_{p,\beta}$ for some numbers p > 1 and β , then there exists a set $E \subset D$ with the properties:

- (i) $\lim_{x \to \xi, x \in D-E} v(x) = 0;$
- (ii) $\sum_{i=1}^{\infty} 2^{i(n-\alpha p+\beta)} C_{k_{\alpha,\beta},p}(E^{(i)}; B(\xi, 2^{-i+2})) < \infty,$

where $E^{(i)} = \{x \in E; 2^{-i} \leq |x - \xi| < 2^{-i+1}\}.$

PROOF. Let $\{a_i\}$ be a sequence of positive numbers such that $\lim_{i\to\infty} a_i = \infty$ and $\sum_{i=i_0}^{\infty} a_i b_i < \infty$, where

$$\begin{split} b_i &= \int_{B_i} |\xi - y|^{\alpha p - \beta - n} f(y)^p y_n^\beta dy, \\ B_i &= \{ y \in D \, ; \, 2^{-i - 1} < |\xi - y| < 2^{-i + 2} \} \end{split}$$

and i_0 is a positive integer such that $\sum_{i=i_0}^{\infty} b_i < \infty$. Consider

$$E_i = \{x \in D; \, 2^{-i} \le |x - \xi| < 2^{-i+1}, \, v(x) \ge a_i^{-1/p} \}.$$

If $x \in E_i$ and $|x - y| < |x - \xi|/2$, then $y \in B_i$, so that

$$C_{k_{\alpha,\beta},p}(E_i; B_i) \leq c_2^p a_i \int_{B_i} f(y)^p y_n^\beta dy \leq \text{const. } a_i b_i 2^{-i(n-\alpha p+\beta)}.$$

Thus the set $E = \bigcup_{i=1}^{\infty} E_i$ has the required properties.

LEMMA 9. If E satisfies (ii) in Lemma 8, then

$$B_{\alpha,p}(\bigcap_{i=1}^{\infty}(\bigcup_{i=i}^{\infty}E^{(i)})^{\sim})=0,$$

where F^{\sim} in general denotes the set $\{\xi + \zeta; \zeta \in S_+ \text{ and } \xi + r\zeta \in F \text{ for some } r > 0\}$.

PROOF. Let $F = \bigcap_{j=1}^{\infty} (\bigcup_{i=j}^{\infty} E^{(i)})^{\sim}$. Then Lemma 6 together with (iv) in Section 2 implies that $C_{\alpha,p}(F \cap \Gamma(\xi, a); B(\xi, 3)) = 0$ for a > 1, from which $B_{\alpha,p}(F) = 0$ follows.

PROOF OF THEOREM 6. As in the proof of Theorem 3, write $G_{\alpha}^{f} = u + v$. If $\xi \in \partial D - A$, then $\lim_{x \to \xi, x \in D} u(x) = 0$ by Lemma 3. Further, if $\xi \in \partial D - A_{p,\beta}$, then there exists a set $E \subset S_{+}$ such that $B_{\alpha,p}(E) = 0$ and

$$\lim_{r\downarrow 0} v(\xi + r\zeta) = 0 \qquad \text{for every} \quad \zeta \in S_+ - E,$$

because of Lemmas 8 and 9. Thus the proof of Theorem 6 is complete.

6. Perpendicular limits

Let $e = (0, ..., 0, 1) \in S_+$.

THEOREM 7. Let $0 \le \gamma < 2p-1$, p > 1 and f be a non-negative measurable function on D satisfying (1) such that $G_{\alpha}^{f} \ddagger \infty$. Then there exists a set $E \subset \partial D$ such that $B_{\alpha-\gamma/p,p}(E)=0$ and

$$\lim_{r \downarrow 0} G^{f}_{\alpha}(\xi + re) = 0 \qquad for \ every \quad \xi \in \partial D - E.$$

PROOF. As in the proof of Theorem 2, we write $G_{\alpha}^{f} = u + v$. First note that $\lim_{r \downarrow 0} u(\xi + re) = 0$ for $\xi \in \partial D - A$ by Lemma 3. Since $H_{n-\alpha p+\gamma}(A) = 0$ by the corollary to Lemma 5, $B_{\alpha-\gamma/p,p}(A) = 0$ on account of [3; Theorem 21].

Let r > 0, and consider the sets

$$E_i = \{x = (x_1, \dots, x_n); 2^{-i} \le x_n < 2^{-i+1}, v(x) \ge a_{r,i}^{-1/p}\}$$

for i=1, 2,..., where $\{a_{r,i}\}$ is a sequence of positive numbers such that $\lim_{i\to\infty} a_{r,i} = \infty$ but

$$\sum_{i=1}^{\infty} a_{r,i} \int_{\{y \in B_+(0,2r); 2^{-i-1} < y_n < 2^{-i+2}\}} f(y)^p y_n^{\gamma} dy < \infty.$$

Since $|x-y| < y_n$ if $|x-y| < x_n/2$, we see from Lemma 1 that

$$a_{r,i}^{-1/p} \leq v(x) \leq c_2 \int_{\{y \in D; |x-y| < x_n/2\}} |x-y|^{\alpha - \gamma/p - n} y_n^{\gamma/p} f(y) dy$$

for $x \in E_i$. Hence it follows from the definition of $C_{\alpha-\gamma/p,p}$ that

$$C_{\alpha - \gamma/p, p}(E_i \cap B(O, r); B(O, 2r))$$

$$\leq c_2^p a_{r,i} \int_{\{y \in B_+(O, 2r); 2^{-i-1} < y_n < 2^{-i+2}\}} f(y)^p y_n^{\gamma} dy,$$

which gives

$$\sum_{i=1}^{\infty} C_{\alpha-\gamma/p,p}(E_i \cap B(O, r); B(O, 2r)) < \infty.$$

Set $E(r) = \bigcap_{j=1}^{\infty} (\bigcup_{i=j}^{\infty} E_i \cap B(O, r))^*$. Then by properties (ii) and (iii) in Section 2, we have $C_{\alpha-\gamma/p,p}(E(r); B(O, 2r)) = 0$, which implies that $B_{\alpha-\gamma/p,p}(E(r)) = 0$. Moreover, $\lim_{r \downarrow 0} v(\xi + re) = 0$ for $\xi \in \partial D \cap B(O, r) - E(r)$. Thus $E = \bigcup_{r=1}^{\infty} E(r)$ has the required properties.

REMARK 1. In case $\gamma = 0$, Theorem 7 is the best possible as to the size of the exceptional set; in fact, for $\gamma \leq 0$ and a set $E \subset \partial D$ with $B_{\alpha,p}(E) = 0$ we can find a non-negative measurable function f on D satisfying (1) such that $G_{\alpha}^{f}(\xi + i^{-1}e) = \infty$ for any $\xi \in E$ and any positive integer i.

REMARK 2. In case α is an integer and $0 \le \gamma < p-1$, Theorem 7 also follows from Theorem 3 in [7].

References

- [1] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
- B. Fuglede, Generalized potentials of functions in the Lebesgue classes, Math. Scand. 8 (1960), 287-304.
- [3] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
- [4] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
- [5] Y. Mizuta, On the limits of p-precise functions along lines parallel to the coordinate axes of Rⁿ, Hiroshima Math. J. 6 (1976), 353–357.
- Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415-437.
- Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717–747.
- [8] J.-M. G. Wu, L^p-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J. 28 (1979), 895–911.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University