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1. Introduction and summary

The theory of a fractional factorial design was originated by Fisher [18], who
treated the development of confounding systems for factorial designs (cf. [17,
40]), and further Finney [16] gave the first definitive approach. This theory
takes aim at the search of "good" fractional factorial designs (cf. [14, 19]).
There are many criteria of goodness, some of which are:

A. Save the number of assemblies (treatment combinations).
B. Estimate the unknown effects independently.
C. Minimize the value of some function f(T) on a class of designs T having

the same size (the number of assemblies) N9 where f(T) evaluates a sort of
the loss of the information.

As/(T), the following types are used commonly:

det(Fr), tr(F r) and the maximum characteristic root of VT,

where G2VT is the variance-covariance matrix of the estimates of the effects based
on a design T. These optimality criteria are called the determinant, trace and
maximum root criteria, respectively. They aim to minimize the volume of a
confidence region for the effects of interest, the average variance, and the largest
variance of the estimates of all normalized linear combinations of the effects,
respectively (cf. [33]).

The complete design satisfies the criteria B and C, but it needs a large
number of assemblies, which imply that the complete design is unreasonable in
the sense of the criterion A. An orthogonal design, defined by Rao [27] in sm

factorials in which each of m factors has s levels, satisfies the criteria B and C
(cf. [1, 4, 6, 15, 20, 26]). This design can reduce the number of assemblies in
comparison with the complete design. However, an orthogonal design exists
only for special values of the size, and the use of such a design may be, in general,
uneconomic in the sense that it involves more than the desirable size. For an
example of 27 factorials of resolution V (the term resolution was defined by Box
and Hunter [2]), an orthogonal design needs 26 = 64 or 27 = 128 (the complete
design) assemblies since there exists no orthogonal design of size 25 = 32 and of



380 Ryuei NISHII

resolution V (see Chopra [9]). On the other hand, the number of unknown

effects is 1 + 7 + ^2^ = 29. In an attempt to remedy this defect, Chakravarti [5]

proposed a balanced array (BA) by relaxing certain conditions to be an orthogo-

nal array. A fractional factorial design derivable from a balanced array has a

goodness such that

D. The variance-covariance matrix of the estimates is invariant under any
permutation of factors' symbols.

A design satisfying the criterion D is called a balanced fractional factorial (BFF)
design, and it asserts some invariant test (see Section 5 in detail). The equiva-
lence between a BFF design and a balanced array was proved by Yamamoto,
Shirakura and Kuwada [38] in 2m factorials of resolution 2^ + 1. Furthermore,
Kuwada [22], and Kuwada and Nishii [24] gave the similar equivalence in 3m

factorials of resolution V and in sm factorials of resolution 2^ + 1, respectively.
The analysis of a BFF design is not so easy since the estimates of the effects

of interest have some correlation. Srivastava and Chopra [34] gave the charac-
teristic polynomial of the information matrix of a balanced fractional 2m factorial
(2m-BFF) design of resolution V by the direct computation. They further ob-
tained trace optimal designs (cf. [7, 8, 10-13, 30, 32, 35, 36]). It is natural to
consider the class of BFF designs since they reflect the relation inherent to the
structure of the effects. The algebra generated by relation matrices can be
expressed as a direct sum of two-sided ideals. This fact enables to make the
analysis of a BFF design relatively easy. Yamamoto, Shirakura and Kuwada
[39] succeeded to give the characteristic polynomials of the information matrix
of a BFF design of resolution 2^ + 1. Optimal 2m-BFF designs of resolution
VII are given by Shirakura [28, 29]. These results are derived by using the
property of the triangular multidimensional partially balanced association scheme
defined in the set of the effects up to ^-factor interactions. The algebraic struc-
ture of the multidimensional relationship enabled Kuwada and/or Nishii [23, 25]
to get the characteristic polynomial of the information matrix of 3m- and of sm-
BFF designs of resolution V, respectively. Kuwada [21] further obtained
optimal designs in 3m'factorials of resolution V.

On another viewpoint of the development of a fractional factorial design,
a fold-over design in 2m factorials was introduced by Box and Wilson [3], who
showed that a fold-over design has a good property such that no two-factor inter-
actions appear as aliases of the main effects. This property turned out to be
useful to construct 2m-FF designs of resolution IV (cf. [37]). A generalization of
the concept of a fold-over design will be proposed in Section 9.

This paper consists of ten sections. Section 2 provides the preliminary
results on an rmxs"-FF design. In Section 3, asymmetrical orthogonal arrays
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are introduced, and the equivalence between orthogonal arrays and orthogonal
designs in rm x sn factorials is proved. Section 4 is devoted to propose asym-
metrical balanced arrays and balanced designs in rm x sn factorials. Section 5
provides the definition of a multidimensional relationship. In particular we
define a multidimensional relationship in the set of unknown effects to show the
equivalence between balanced arrays and balanced designs in rmxsn factorials.
In Section 6, some methods of constructing asymmetrical balanced arrays are
described. Sections 7 and 8 deal with the derivation of the characteristic poly-
nomial of the information matrix of balanced designs in rm x sn factorials. This
approach is based on the the structure of the algebra containing the information
matrix. In Section 9, level-symmetric designs are proposed and their goodness
is newly shown. Section 10 deals with some structural properties of balanced
level-symmetric designs in 2m factorials.

For convenience, the notations and symbols below are used throughout this
paper. Their meanings are as follows:

m

n

Zk

\S\

Ik

Gkl

A!

w(a)

vv (̂a)

w2(a)

dab

(Bk

A(k)

R(Sl9 S2)

diag[X!,

is

The set {1, 2,..., m}.
The set {1, 2,..., n).
The set {0, 1,..., fc —1} for any natural number k.
The cardinality of a set S.
The unit matrix of order k.
The kx / matrix whose elements are unity everywhere, and Gkt

denoted by j k .
The transposed matrix of A
The number of non-zero elements contained in a vector a = (a l v . . ,

**) •

The number of occurrence of \j/ among elements of a vector a.
The r-rowed vector (wo(a), w^o),..., wr_1(a)).
The s-rowed vector (wo(a), vv^a),..., ws>1(a)).
Kronecker's delta.
The symmetric group of k objects.
The /c-times Kronecker product of a matrix A, A®-~®A9 for /cgrl
and v4(0) is defined to be 1. k

The set of matrices of size |SX| x \S2\ over the real field, where St and
S2 are nonempty finite sets, and the rows and columns of matrices
are numbered by the elements of Sx and S2, respectively.
Kk~]: A matrix of size 2?=i nix Xi=i nt whose diagonal positions
are given by Kt (i = l,..., k) and the remaining positions are given by
zero matrices, where K{ is a matrix of size nt x nt.
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2. Fractional designs in rm x sn factorials

Consider an rmxsn factorial design with m + n factors Fu..., Fm9 Gi9...,Gn9

where Ft (1^/^m) has r levels in Zr and Gj (l^j^n) has s levels in Zs. An
assembly (treatment combination) will be represented by a row vector £ = ( / r ••/„,,
9i'"9n)> where ft (eZr) and g} (eZs) denote levels of the factors Ft and GJ9 re-
spectively. Let y(t) be the observed value based on *, and its expectation will be
denoted by rj(t) for any assembly t. Let rj be an rms"-columned vector of all
rj(t) which are arranged in the lexicographic order of t e Zr

m x Zs
n, i.e.,

V' = MO-.0, 0-0), i/(0-0, 0-01),..., ij(0-0, 0-Os-l),...,

rj(O-"O, s - l - s - l ) , . . . , i / ( r - l - r - l , s - l - s - 1 ) ) .

We consider a linear model that rj can be decomposed as

V = D(m)®E(n)0,

where ^ is an rms"-columned vector composed of effects 6(e) arranged in the
lexicographic order of s = (^ • • -£TO, Ci • • -Q e Zr

m x Zs
n, and

r), £ = [c(flf, 0 ] to, f 6Zs)

are, respectively, r x r, s x s non-singular matrices whose first columns are com-
posed of l's and whose all column vectors are mutually orthogonal. The above
equality is equivalent to

(2.1) rj(t) = £^zr,c;ezsn?=i d(fi9 6)113 = 1 «to* C/)G«i•••£«, C i - Q

for any assembly * = (/1---/w, 0r••£„).
The effects 0(0-0, 0-0), 0(0-060-0, 0-0) ( 1 ^ 6 ^ r - l ) and 0(0-0,

O'"OCjO'"O) (ISCj^s — 1) are called the general mean, the main effects of the
factor Ft and those of the factor Gj9 respectively. In general, 0(£x—6,,, £i'~Cn) ̂

s

called a /c-factor interaction if precisely k elements among 6- and £/ are non-zero.
Note that in the quantitative equi-spaced case, d(f, £) and e(g, 0 are often

defined to be ^ ( / ) and W^g) where ^^ and W^ are orthogonal polynomials on
Zr and Zs of degree £ and £> respectively. For example, D and £ are defined by

/ I - I N fl -l ! \
( 1 1 and 1 0—2 , respectively, when r= 2 and s = 3.
V 1 ^ VI 1 1 /

Throughout this paper, we shall consider the situation that the set of unknown
effects is given by the following (9X or©2 and the remaining effects are assumed
to be negligible:
Case 1. 0X = {6(e)\e = (£, C), w(s )^} for ^(g
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Case 2. 92 = {0(e) | « = (?, C), w(|) g £F> w(C) ̂  ^.} for £r( g m) and 4( g n).
Put

V* =

Let 0f be a vrcolumned vector composed of all effects in 0t (i = l, 2).
Let T be a fractional rm x s" factorial (rm x sn-FF) design with N assemblies

tW = (f[")'>-f%\ g[«)'''g(
n«

)) = (f(«\ gW) for a=l,...,JV. Then T can be par-
titioned into two submatrices F of size N x m and G of size Nxn, which is denoted
by T=[F:G]. Let y(T) = [X*(a))] (a=l,..., iV) be the iV-columned vector
composed of the observed values y(t(a)). From (2.1), it can be expressed by

where ET is the design matrix (of size N x vt) of T, and e(T) is the error vector (of
size N x 1) whose components are assumed to be uncorrelated and each has mean
zero and the same variance a2. The normal equation for estimating 0t can be
written as

where MT = E'TET is called the information matrix (of size vt x vf). If MT is non-
singular, the best linear unbiased estimate of 0t is given by M'^1Ef

Ty{T) and its
variance-covariance matrix is a2Mjl. In this case, the resolution of a design T
is defined to be 2^-f 1 or (2^ r+l, 2^s + l) according as i = l or 2.

The rows and columns of ET are numbered by the elements of y(T) and 0t,
respectively. The (y(t(a)), 0(e))-entry of ET is given by

d(f["\ fi)-d(/<?\ U ^ i a \ f i ) - ^ i a ) , O (= </(*(a), «,) say),

where *<a> = (/(
1

a)-/La), ^ i a ) -^« ) ) and e = (^..^m, d - Q . Thus a (0(e), 0(e*)>
entry of MT, denoted by mT(6(e)9 8(e*))9 can be expressed by

(2.2) mT(6(e\ 0(e*)) = E?=i d{t^\ *)d(**\ «*),

where «* = (£?•••<**, Cf-CJ), if eZ r and £JeZs. This relation implies that
mT(6(d), 9(d*)) = mT(6(e), 0(e*)) if the fc-th element of d and a* are, respectively,
given by those of e and e* or those of e* and e for fc= 1, 2,..., m + n.

Note that if e* = 0 = (0---0, 0---0) in (2.2), then

since d(*9 0) = e(*9 0) =



384 Ryuei NISHII

Now some symbols describing an rm x sn-FF design T= [F: G] are introduced,
where F and G are matrices composed of elements in Zr and Zs, respectively.

For sequences u=(u1---up) with l^u1<"'<upSm and ^ = (f1---^) with
l^t;1<---<i; f l^n, let TUtV=[Fu: GJ be the Nx(p + q) submatrix of T=[F: G],
where Fu is the ATxp submatrix of F generated by wf-th columns (l^i^p) of F
and Gv is the JV x q submatrix of G given in the same way. In the special case
p = 0 or q = 09 Tuv is defined to be Gv or Fu. For a (p-f g)-rowed vector (/, g) =
(fx'-fp, gl--gq) in Zf x Z / , let /i^;* be the number of times that (/, g) occurs in
TUtV as row vectors. Let y ^ = z t i ^ ( a \ e) for any (£, O = « i -£ j» Ci-C,)e
Z / x Zs«, where

(2.3) e = ( 0 - 0 ^ 0-OcL 0-0 , 0-Od 0-0C€ C-0).
(Hi) (Up) (Vl) (Vq)

{ft} and {y} are arranged in the lexicographic order of upper indices (/, g) e Zr
p x

Zs« and (£, C) e Z / x Zs« as

Then we have the following

LEMMA 2.1. For (w, t;) = (w1---wp, i?!•••!?,) ( l^M1

VqSn), it holds that

(2-4) ru,o = (D'(p)®E[<l))MuiV.

PROOF. From the definitions of yjj;£ and /if;^, and d(*9 0) = e(*, 0 ) = l , we
have

(2.5) y « = SSf-i ^ ( a )
? «) = Z?- W

for any ($, C) = (f r t # ^ , (i'"Cq)€Zr
p x Z / , which yields the required relation.

Here (/, g) = (fi--fp, gr~gq) and e is given in (2.3).

3. Equivalence between orthogonal arrays and orthogonal designs

An orthogonal array OA[N, m, r, d~\ was defined by Rao [27] as aniVxm
matrix with entries in Zr whose any Nxd submatrix contains all possible d-rowed
vectors in the same frequency h( = N/rd). An OA is an interesting subject in
combinatorics, and many works have been done. Now we shall extend the con-
cept of an orthogonal array.

Consider an Nx(m + ri) matrix T=[F: G], where F and G are Nxm and
N xn matrices with entries in Zr and Zs9 respectively. We present following
definitions of an OA according to unknown effects 0X or <92.
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DEFINITION 3.1. An N x (m + n) matrix T is called an asymmetrical orthogo-
nal array of type 1 of strength t, size JV, (m, n) constraints, (r, s) levels and index
set {Ap>€} (for brevity, AOA1[JV, (m, n), (r, 5), Q), if for arbitrary non-negative
integers p and g satisfying p + q = t, O^p^m and O^q^n, fi{;^ = Xpq for any

o - ^ i ^ n ) and any

REMARK, (i) It is unnecessary to assume that t^m and fgn. (ii) N =
rpsqkpr (iii) F and G are orthogonal arrays of levels r and s, respectively.

DEFINITION 3.2. T is called an asymmetrical orthogonal array of type 2
of strength (d, e), size AT, (m, n) constraints, (r, s) levels and index X (for brevity,
AOA2[JV, (m, n), (r, 5), (d, «?)]), if n{;* = X for any (w, i;) = (tt1--tid, î !—«e)

...<i>l.^n) and any ( / , g ) = ( / i - / ^ i -

REMARK, (i) N = rdseL (ii) F and G are an OA[iV, m, r, d] and an
OA[JV, n, s, g], respectively.

DEFINITION 3.3. An rm x sw-FF design T is called an orthogonal design of
resolution 2^ + 1 or (2^ r+l, 2^ s+l) if its information matrix MT, with unknown
effects <9X or 6)2, is diagonal.

Let 0X be the set of effects given in Section 2 satisfying 2/^m + n, and T=
IF: G] = [e(a>]a=1>.><>N be an rmxsw-FF design of resolution 2^ + 1, where t^ =
(/ia)*• •/if\ 9ia)"'Gna))e zrm x zsw ' I n this case, we have

THEOREM 3.1. An rm x sn-FF design T is an orthogonal design of resolution
if and only if T is an AOA\\_N, (m, n), (r, 5), 2i\

PROOF (Sufficiency). Let ^(e) and ^(e*) be elements in Ov Then the sum
of the number of non-zero elements of e and e* is at most 2£. We can assume
that {i |{ | 760or {f^O}c{ii1 , . . . , t tp}cmand {./IC^Oor Cj¥^O}cz{vl9...9vq}c:n
for p + q = 2£ (O^p^m, O^q^n), where © is given by (2.3) and e* is defined by
changing £f into £f, and Cj into C* in the elements of e. Here £f, £f (eZ r) and
Cy, C* ( e Zs) may be equal to zero. From the assumption, the Nx2£ submatrix
Tuv contains all possible 2^-rowed vectors in the same frequency kpA = Nj(rpsq),
where (w, U) = (W1---MP, vi'--vq). Since D and E are non-singular and their column
vectors are mutually orthogonal respectively, the relation (2.2) can be reduced to
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r = 0 if 6*6*,

I > 0 if e = e*.

This shows that MT is a diagonal matrix.
(Necessity). Let Tbe an rm x s"-FF design whose information matrix MT is

diagonal. Any off-diagonal entry, mr(0(e), 6(6*)), of M r is equal to zero for

00), 9(6*) e <9 x. This fact implies

Tu,v = (N,o,...,oy

for any (w, v) = (u1--up, v^'-v^ (I^u1<--<up^m; l^t?1<--- <vq^n), where
= 2£ (O^prgm; O^q^ri). Solving (2.4) with respect to pUtV, we have

)-i)(p) <g> (£(£'£)"%}(N, 0,..., 0)' = NI(rPS«)jrPsq

since D'D and £ '£ are diagonal and the first columns of D and E are j r and ys,
respectively. Thus Tis an AOA1 with index set {AM = N/(r's«) | p + q = 2£}.

For T being an AOA1, the non-singularity of the information matrix MT

yields

JV^rank£T = rankE'TET = \GX\ = vx.

Therefore, we have the following

COROLLARY 3.2. For an ^4O^41[iV, (m, n), (r, 5), 2^] satisfying 2 ^

COROLLARY 3.3. i^or an ^10^1 [JV, (m, n), (r, s), 2^ + 1] satisfying 2^ + 1

PROOF. Let G* = G1 u {0(«)|« = « i - ^ C i - O , 5 i # 0 , w(e) = ^ + l} and
let ©** = ©! u{0(«)|Ci#O,w(«) = ^ + l} . The information matrix MJ of T
given by unknown effects 0* is diagonal, since

where (11, U) = (M1---WP+1 , u r - -^ ) (l = w1<w2<---<Wp
and p + q + l=2£ + l. Similarly, the information matrix M£* given by unknown
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effects @** can be shown to be diagonal. Therefore JV^max{|©*|, |6>**|}.

Let ©2 be the set of effects given in Section 2 satisfying 28r^m and 2£s^n9

and let Tbe an rmxsw-FF design of resolution (2^ r+l, 2^s+l). An argument
similar to Theorem 3.1 and Corollaries 3.2-3 shows the following theorem and
corollary.

THEOREM 3.4. T is an orthogonal design of resolution (2£r-\-l, 2fis+\) if
and only if T is an A0A2[_N, (m, n), (r, s), (2£r9 2SJ].

COROLLARY 3.5. For an A0A2[N, (m, n), (r, s), (d, e)], it holds that

where

Lr{d) =

Ls(e) =

if d = 2d* (even),

if d =

if e = 2e* (even),

i/ e = 2e* + 1 (odd).

4. Asymmetrical balanced arrays and balanced designs

Orthogonal designs are desirable in the sense that all unknown effects can be
estimated uncorrelatedly. However, since the existence conditions of an orthogo-
nal design are severe, such a design exists only in restricted cases. Next we con-
sider the criterion D in Section 1.

As an illustration of goodness, we consider a 2m x 3W-FF design T of resolution
III, in which unknown effects are the general mean and all main effects. Let
0* be a (m + n)-columned vector composed of some main effects

fl; = (0(10.--0, 0-0),..., 0(0-.-01, 0-0), 0(0---0, 10-0),..., 0(0-0, 0-01)).

For testing hypothesis H: O* = cjm+n for a given constant c against alternative
+v.of A -+ni hn9 w e give the statistic F defined bythat

where

F =

u = [0: Im+n: V]VTE'Ty{T) - cjm+n,

S2=y(T)'(IN-ETVTE'T)y(T)9
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is the variance-covariance matrix of 6* and VT = MT
1.

Here F is distributed according to a noncentral F-distribution with m-hn and
N — v* degrees of freedom and the noncentrality parameter (0* — cjm+r)'V%1 •
(0* — cJm+n) if the distribution of the error vector e(T) is JV(O, o2IN). This test is
desirable to be symmetric in F l 9 . . . , Fm and in Gl5..., GM. This requirement means
that F j 1 should belong to the matrix algebra ^ * which is generated by (m + n) x
(m + n) matrices

0\ IGm,m 0\ /0 G _ \ / 0 0\ /0 0\ . 10 0

0 0/ \ 0 0/ \0 0 / \GM>m OF \0 IJ \0
M>m

In this case, V*1 e 88* holds if MT is invariant under any permutation of Fl9...9 Fm

and of Gl9..., Gn, i.e., MT = MTr,P for any t e S m and / ) e S n , where T = [ F : G],
TT>p = [FT: GP2 and F7 denotes the matrix whose i-th column is given by r(i)-th
column of F (i e m) and G^ is defined in the same way. Thus it is reasonable to
consider designs having the good property that MT is invariant under any per-
mutation of the factors F l 5 . . . , Fm and G1?..., Gn, respectively.

Let T=[F:G] be an rmxsn-FF design with unknown effects 0 , where
O = 0i or <92.

DEFINITION 4.1. The information matrix MT is said to be balanced with
respect to 0 if MT=MTT,P for any (T, p) e SOT x ©B.

DEFINITION 4.2. A fraction T is called a balanced design if M r is non-
singular and MT1 = MT19P for any (T, p) e 6 m x Sn .

The following definitions of an asymmetrical balanced array (ABA) are given
by relaxing the some condition of the asymmetrical orthogonal array of type 1
or of type 2.

DEFINITION 4.3. An N x(m + n) matrix is called an asymmetrical balanced
array of type 1 of strength t9 size JV, (m, n) constraints, (r, s) levels and index set
{KPo'"Pr-u 4o---4s-i)IZi=oPi+Z}=o<?/ = '> 2 p f ^ m , Zqj^ri} (for brevity,
ABAl[iV, (m, n), (r, s), f] {A(jp,g)», if !*{;$ = KPo~'Pr-u «o"-«s-i) f o r anY ( / g )
= (fi-~fp,9i"'9q) satisfying u71(/) = (p0-"Pr-i) and U72(gr) = («o—«a-iX and for
any (w, t;)=(w1---wp, iv••!>,) ( l ^ « i < - - - < M p ^ m ; l ^ ^ i < - - - < ^ ^ n ) , where ^
and qj are non-negative integers such that ^pt = p and Zqj = q. Here p + q = t.

DEFINITION 4.4. An Nx(m + n) matrix is called an asymmetrical balanced
array of type 2 of strength (d, e)9 size N, (m, n) constraints, (r, s) levels and
index set {KPo~'Pr-u flo"-0.-i)l El=oP* = d, I ; = o 4 , = e} (for brevity, ABA2[N,
(m, n), (r, s), (d, e)] {A(p, g)}), if lif

u;§ = KPo~'Pr-D qo'"Qs-i) for any (f,g) =
(fi~'fd>9i~-9e) satisfying w1(f) = (p0--pr-1) and w2(g) = (q0--qs-i)9 and for any
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(u, v) = (u1'"Ud, v1'"Vd) ( l^M 1 <---<w d ^m; I^v1<"'<ve^n), where p( and qj
are nonnegative integers such that Ipt = d and yLqj = e.

Then we have the following

THEOREM 4.1. Let T be an rmxsn-FF design with unknown effects 0X

satisfying 2£^m + n. Then MT is balanced with respect to ©1 if and only if T
is an ABA1[N, (m, n), (r, s),

PROOF (Sufficiency). Suppose T be an ABAl[iV, (m, n), (r, s), 2&\ Then
any entry, mT(8(e), 6(e*)), of MT can be expressed as

mT(0(e), 0(«*))

where ^ = <̂f = 0 for any lent —{M1 V . . , wp} and C</ = CJ = Ofor any j e n - ^ , . . . , vq}
and p + q = 2£ (O^p^m, O^q^ri). From the assumption of T,

This relation shows that mT(9(e), 0(e*)) = mT(0(eco), 0(6*")) for any CO = (T, p )e
S m x 6 w , where ea) = ({T(1)--^ t (m) , Cp(1)--Cp(B)) and e*60 is defined similarly.
Therefore M r is balanced with respect to 6>x.

(Necessity). The assumption that MT is balanced implies that all yl>t\ de-
pend only on wt(§) and w2(Q for any (?, C) = (^r--{i,, Ci'~Q, and for any
(M, v) = (u1'-'Up, v^'-Vq) ( l ^w 1 <- - -<M p ^m; l ^ U i < - - - < ^ ^ n ) , where
(O^p^m, O^^f^n). Solving (2.4) with respect to fiUtV9 we have

Therefore, /£ay does not depend on (w, t;) since j*UtV depends only on p and q. We
can define A ( p o - P r - i ^ o - ^ - i ) bY i " ^ i f ^ i(s r) = (Po**-JPr-i) and w?2(/) =
(^o"*^s-i) f ° r anY Pi a n d ^j satisfying Ipi + Iqj = 2£, since /*£;£ depends only
on wx(f) and w?2(g). Thus T is shown to be an ABA1[N, (m, n), (r, s),

An argument similar to Theorem 4.1 shows the following

THEOREM 4.2. Let T be an rm x sn-FF design with unknown effects 02

satisfying 2£r^m and 2£s^n. Then MT is balanced with respect to G2 if and
only ifT is an ABA2[N, (m, n), (r, s), (2£r, 2£j]Mpo>-pr-l9 qO'~qs-i)}.
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5. Multidimensional relationships

As a generalization of an association scheme, a multidimensional partially
balanced association scheme was introduced. By omitting the condition that the
relation of a multidimensional partially balanced association scheme is sym-
metrical, we have a multidimensional relationship. The following definition is
due to Kuwada [21].

Consider p mutually disjoint nonempty finite sets S l v . . , Sp with 15,1 = 71,-
each. Suppose that an association is defined for each ordered pair (xia, xjb),
where xiaeSt and xjbeSj. Let nitJ' be a set of associations defined on the set
St x Sj. We denote

S" = {Su...9Sp} and 0t = {771*1, J71*2, 772*1,..., 77*-*}.

DEFINITION 5.1. The pair (&*, &) is called a multidimensional relationship
if the following two conditions are satisfied.
Cl. With respect to any xiaeSi9 the objects of Sj can be divided into nUj dis-

joint classes and the number of objects in the set {xjb e Sj | the association of
(xia, Xjb) is a} is nl

a>
J for a e W>j. The numbers nitj and n^j are independent

of the particular object xia chosen in St.
C2. Let Si9 Sj and Sk be any three sets, where they are not necessarily distinct.

Let the association of (x/fl, Xjfc)e5fx57- be a, where oceIIifJ\ Then the
number of objects xkc ( e Sk), which satisfies that the associations of (xia, xkc)
and of (xkc, xjb) are respectively fi and y, is g(i, j , a; fe, /?, y) which is de-
pendent only on i, j , a, /c, /? and y, where Pell1^ and yeIIk>J.

Consider an association cueW'i. Let A*;* eR{Si9 Sj) be the adjacency
matrix defined by

1 if the association of (xia9 xjb) is a,

0 otherwise,

where A\>j = \_A^ J(xia, xJb)]. Let £>£' J = [D^ J\x, x*)] e R(Wf= i Si9 Wf= x St) be
the relation matrix defined by

1 if (x, x*) e St x Sj and the association of (x, x*) is a,

0 otherwise.

Then we have

LEMMA 5.1. The matrices A^^ and Dl
a>

j satisfy the following:
( I ) Ai'Jjn=n^'jni for
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(II) Z«n«.Mi'' = < W
(III) A^Ak

y'J = ̂ aeni,jq(iJ,oi;k,p9y)A^ for PeW>k and yell*-'.
(IV) I i J E « e i i i , J ^ = G«,« where a = £n, .
(V) D^D**^ = ̂ S « n i . ^ a , J , « ; f c , Ay)^ty / " i»eil'.* am* yell**-/.

LEMMA 5.2. Tfte linear closure 38 of Dl*J' (aei7ijJ'; i, j = l,..., p) is a matrix
algebra.

PROOF. Lemma 5.1 (V) shows that AB e 88 if A and B are contained in 88.
Therefore 88 is a matrix algebra.

Consider an rm x s"-FF design with unknown effects (9, where 0 = 0 ± or <92.
A multidimensional relationship is defined in 0 as follows:
The set of all effects {0(e)|« = (£r ••£„,, (i•••£„)> &eZr, C,-eZs} is partitioned
into U Spq, where

Sp,q = {9(e) I e = (^. . .^ , C i - O = (£, C), Wl(e) = p , w2(O = q}

= (p0'-pr-i)iq = (q0-~qs-1). Here p, and qj are non-negative integers
satisfying ZP» = m a n d Z ^ = w. The set Sp>9 has m!n!/(jpo!---pr-i!^o!--^-i0
{ — npiq, say) elements. Let 5r x 5r* be a subset of 0 x 6), where r = (p, q) and
r* = (p*,g*). Let

f
/7r.r*= Pf=((7, F)

U:rxrJ'rU' = pJrU =

where all entries of C/ = [M(I, /*)] and V=[v(j,j*y] are non-negative integers for
i, i* e Zr and j , j * e Zs. An association of (0(e), 0(e*)) eSrx 5r* is defined by
W=(U, V)eII"'* if u(U i*) = \{uem\Zu=i, Z* = i*}\ and vU,j*)=\{ven\t:o=j9

C*=;*}| for any i,i*eZr and j,j*eZs, where e = (^ r.^m, Cr**CM) and e* =
(̂ i"*^m5 Ci •••£*)• It can be shown that the associations, defined in the set 09

satisfy Cl and C2. Put # = {7Jr'r* }.

THEOREM 5.3. T/ze p^ir (<9, ̂ ) zs a multidimensional relationship and the
algebra £8 generated by all relation matrices contains the unit matrix I.

PROOF. It follows that Ar^r=Inr if W =(diag (p), diag (q))9 where r = (jp, g).
Therefore 88 contains /.

The parameters of the associations are given below:

nr = \Sr\ = m!n!/(po!-Pr-i!«o!-^-i0, «r'r* = \n*"*\,

* )!-.i<j, 5-1)!)},
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where Y^x extends over all non-negative integers xijk (O^i, j , fc^r—1) such that
Hi^ijh = u3(j\ fc), E,X;./k = wi(>'> fc) and S* **./* = W2OW), and £ y extends over all
non-negative integers yo-fc (O^iJ, fc^s-1) such that yZtyijk = vz{h k), 2 ; ^ =
^ ( i , fc) and Zfcyl7k = tf2(U)- Here r = ( jv \P r - i> 4o-"4s-i)> r* = Q>o •••£?-1, 4*
- t f - i ) , r** = (Po**"^*-*i, qr-qf-M and ^ ( [ f t f i , **)], [^(7, j*)]

l;Z = l , 2 , 3).

Note that M r (or Mj;1) is balanced, i.e., MT = MTX,P for any (T, p) e ®m X ®B,
if and only if MT (or M^1) is contained in ^ , since a maximal invariant with
respect to Sm x Sw is W=(U, V).

In this case, we have the following

THEOREM 5.4. Let T be an rm x sn-FF design of resolution 2£ + 1 or (2£r+1,
2^ s +l) . Then the following conditions are equivalent each other:
( i ) Tis an asymmetrical balanced array.
(ii) MT is balanced.
(iii) M j 1 is balanced.

PROOF. Theorems 4.1 and 4.2 show that conditions (i) and (ii) are equiva-
lent. Since @ is a matrix algebra with the unit matrix I, it follows that MT

is equivalent to M

6. Constructions of asymmetrical balanced arrays

Srivastava [31] gave a necessary and sufficient condition for the existence
of a balanced array [AT, m, 2, f] by solving some linear program when m = t + l
and t + 2. His method can be extended to the general case m = t + l ( /^3).
But it is difficult to solve its linear program when / is large. For practical use,
we may only consider a simple array, named by Shirakura [29] in 2m factorials.
We now construct an asymmetrical balanced array derivable from a balanced
array.
Ml. Simple array method.

Let Q(Po—pr-i,qo—qs-i) be a matrix of size {m\nll(pol"-pr^1lqol'"
qs-il)} x(m + n) whose all row vectors are different each other and each row
vector (fi-'-fm^gi'-'dn) has the same weights Wi(/i---/m) = GV"Pr- i ) and
W2(9i"'9n) = (qo'"qs-i)> where pt and qj are non-negative integers satisfying
X)pf = m and Y,qj = n- The row vectors of Q(p0-~pr-u #o*"#s-i) a r e considered
as assemblies of an rm x s"-FF design. T is called a simple array with index set
{KPo'~Pr-u qo'~qs-i)\Pi^Q> qj^®> ZP» = ^ Hqj = n} if T is composed of
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r any (po-~pr-u qO'~qa-i).
Then T is an ABAl[iV, (m, n), (r, s), m + n] with index set {KPo"'Pr-u Qo'"

M2. Direct concatenation method
Let F be a balanced array [AT, m, r, t] and G be a balanced array [iV*, n, s,

**]. Then T, defined by the direct concatenation of F and G, is an ABA2[iViV*,
(m, n), (r, 5), (t, **)]. Indices of T, KPo'"Pr-u qo'~4*-i)> a r e g i v e n bY ' M i V
Pr-iMG(4o***#s-i)> where >lF(-) and AG(«) are indices of F and G, respectively.
Now the direct concatenation Tof F = [/y] and G=\_gk{\ is defined by the matrix
of size NN* x(m + n) whose rows are given by (Jiw-Jun^ 9ki>—> 9kn) 0-^i^N,

M3. Reduction method
Let <j> and \j/ be mappings from Zs* into Zr and from Zs* into Z5, respectively.

Let T* be a BA[N, m*, s*, t] for m* = m + n. Partitioning T* as [F*: G*]
(F* = [/y] and G* = [̂ fc J are matrices of size Nxm and Nxn, respectively), T is
defined by [</>(F*): ^(G*)], where 0(F*) and ^(G*) are derived from 0 and ^,
i.e., 0(F*) is a matrix of size Nxm whose f-th row is given by
and ^(G*) is a matrix of size Nxm whose i-th row is given by
Then Tis an ABAl[iV, (m, n\ (r, s), r].
M4. Fold-over method

Let T* = [F*: G*] be an ABAl[iV, (m, n), (r, s), i]. Let mappings </>: Z r ^
Zr and i/r: ZS->ZS such that 0(i) = r—1 — i and \l/(j) = s — l—j for any zeZ r and

j e Z s . Then the 2Nx(m + ri) matrix £(&*}'. 1 cr*} *s a ' s o a n ABAl[2iV,
(m, ri), (r, s), f], which, further, is a fold-over design. Note that the definition
of a fold-over design was given by Box and Wilson [3].

7. Notations of the associations

We consider the multidimensional relationship algebra defined in the set of
effects ©f = {fl(«)|« = ( 5 i - { m , Ci---O, w(e)^2} i.e., 0? is the set of effects up
to two-factor interactions.

Let W=(U, V) be an association defined in the set SrxSr*a0f x <9f,
where r = (p, q) = (po-~Pr-i> 4o*"4s-i), r*=(jp*5 q*) = (p$—p*-l9 q$-~q?-i), U =
[MtjliiJeZr) and V= [i;w] (fe, / e Zs). Here pi9 pf, uij9 qk, q%, vkl are non-
negative integers satisfying

(7.1) ^ 2, Zf=l/7f + £ l - \ r f ^ 2,

E!=O^H = ?*
 a n d Zfc

s=o^z
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Hence the number of non-zero elements among pt (1 :g i ̂  r — 1) or pf (1 g i ̂  r — 1)
is at most two. According to the non-zero elements of p, p* and U, the matrix
U will be denoted as follows:

UQ it Po = Po =
 WQO

 = m,

w(0, k; 0) if Po = m, p$ = m —1, p£ = 1, w00 = m —1, wOfc = 1,

M(0, fcfc; 0) if po = m, p$ = m-2, pf = 2, wOo = m - 2 , wOk = 2,

w(0, kl; 0) if po = m,p$ = m-2, pf = pf = 1, u00 = m - 2 , wOk = u0l = 1,

2, AC, J.^ II P o ~*" Po ~~~ ^^"~~ 5 JP£ ~~ Pk ~~~ ' 0 0 ~~ ^^ "~~ ' iO "~~ Ok ~~~ '

M(Z, fc/c; 0) if p0 = m —1, pt- = 1, p% = m — 2, pf = 2, u00 = m — 2,

u(i, kk; 1) if p0 = m - 1 , pt = 1, p* = m - 2 , pf = 2, M00 = m - 2 ,

u(i, kl; 0) if p0 = m - 1 , p£ = m - 2 , p. = pf = pf = 1, u00 = m - 2 ,

u(i, kl; 1) if po = m —1, p£ = m — 2, pt = pf = pf = 1, u00 = m — 2,

w(i, kl; 2) if po = m—1, p$ = m — 2, p> = pf = pf = 1, MOO = m —3,
Wofc = Wo/ = = W/o = = l j

u(ii, kk; 0) if po = p* = m-2, pt = pf = 2, u00 = m - 2 , w/k = 2,
U = u(ii, kk; 1) if po = p* = m - 2 , p. = p* = 2, M00 = m - 3 ,

WfO = UOk = uik = 1»

u(ii9 kk; 2) if p0 = p* = m - 2 , pt = p* = 2, w00 = m - 2 , ui0 = wOk = 2,

ti(ii, fc/; 0) if po = p* = m - 2 , pt = 2, p* = pf = 1, MOO = m - 2 ,

M ik = un = 1»

u(ii, kl; 1) if po = p j = m - 2 , pt = 2, p* = pf = 1, wOo = m - 3 ,

W(H = "iO = Wife = 1 ,

f*(ii, kl; 2) if po = p j = m - 2 , pf = 2, pf = pf = 1, M00 = m - 3 ,

WOfc = WfO = M« = 1 ,

u(ii, kl; 3) if po = p* = m-2, pt = 2, p* = pf = 1, M00 = m - 4 ,

ui0 = 2, uok = u0, = 1,
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u(ij, fc/; 0) if p 0 = p$ = m - 2 , pt = p7- = p j = pf = 1, M00 = m - 4 ,

u(i/, fc/; 1) if po = p* = m-2, pt = pj = pt = pf = 1, u00 = m-2,

«» = % = !>

M(I/, fc/; 2)if p 0 = p% = m - 2 , pf = p} = pf = pf = 1, M00 = m - 3 ,

wOj = w/fc = M i o = 1 ,

w(z/, /c/; 3)if po = p§ = m - 2 , ^ = p7 = pf = pf = 1, M00 = m - 3 ,

WOfc = Ui0 = tty, = 1 ,

w((/, fe/; 4) if 1)0 = ^0 = m - 2 , Pi = pj = p* = pf= 1, woo = ^ - 3 ,

Wo* = ii« = w j 0 = 1,

n(i/, fe/; 5) if p0 = p* = m - 2 , p, = pj = p* = p* = 1, w00 = m - 3 ,

W0J = Wfo = Wjfe = 1>

w(ij, k/; 6) if p0 = p* = m - 2 , p£ = pj = pf = pf = 1, «0 0 = m - 4 ,

Wo* = Wo/ = "to = "jo = 1 .

where 1 ^ / , , / g r - l , i < j , l^fe, / ^ r - 1 , fe</.
Furthermore, the transposed matrix of u(x, y\ •) in the above will be denoted by
u(y9 x; •) for (x, j ) = (0, fc), (0, fcfc), (0, fcQ, (i, fcfc), (i,-fcO and (ii, fc/).

The notation on F is defined by changing U, w, p, m and r into V, v, q, n
and s, respectively. These matrix notations on (7 and Fwill be used from now on.
(We notice that these notations are different from those used in Kuwada and
Nishii [25].)

8. Irreducible representations of MT with effects 0f

We consider an rm x s"-BFF design with unknown effects

THEOREM 8.1. The algebra & generated by the relation matrices D(r, r*;
W) of size vf xv? is a semi-simple, completely reducible matrix algebra, where

» ? = 'VT =

PROOF. Let B(r, r*; W) be a symmetric matrix of size v? x vf defined as
follows:
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B(r,r*; W) =\
I D(r, r*;

D(r, r*; W) if U' = U and V = V,

W) + D(r, r*; W) otherwise,

where W=(U, V) is the ordered pair of matrices U and F, and W' = (U', V).
Then 08 is generated by symmetric matrices B(r9r*', W). This completes the
proof.

We can represent D(r, r*; W) by the linear combination of D*(r, r*) which
are the basis of two-sided ideals of 38 (see Kuwada [21], Kuwada and Nishii
[25]). In fact we have the following relations between D(r, r*; W) and
D? (r, r*), where PF=(17, F), r = (p, q) and r* = (p*, g*). (We use the notation
D? instead of D?(r, r*), for brevity.)

In the case V=v0 (i.e., q = q* = (n, 0,..., 0)),

if U = u0,

if U = u(0, k;0),

if t/ = u(0, kk;O),

if l/ = u(0, fc/;0),

(8.1)

{2(m-l)}1/2Dg

+

(m-2)(m-l)1/2£»g - {2(m-2)}"2i)}14

2(m-2)D* - 2D\ + (m-4)D}2

if 1/ = u(i, k; 0),

if I/ = u(i, fcfe;0),

,g _ (m-2)»/22)Ji2 if [7 = u(i, fcfc; 1),

13 + {(m-2)/2}i/2i)*i4

if I7 = u(i,fc/;0),

if U = u(i,kl; 1),

if I7 = u(i, kl;2),

if U = u(ii, fcfc;0),

if {/ = u(ii, fcfc; 1),

if 17 = u(n, fcfc; 2),

if U = u(ii,kl;0),
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(l/2)i/2[2(m-2)Z)S - 2Z>? + {m(m-2)yi2D}23 + (w-4)D}24]

if U = u(ii,kl; 1),

(l/2)!/2[2(m-2)Dg - 2Df - {m(m-2)y'2D}23 + (m-4)D}2J

if U = u(ii, kl;2),
21/2\(m2~2)Do + Di- (W-3)£>}241 if 17 = u{ii, kl;3),

Dg + D\ + D% + D}3 3 + D}4 4 if 17 = u(ij, kl;O),

Dl + Dt-Di- D}33 + D/44 if U = u(ij, kl;l),

(m-2)DS - D? - D\ + (m-2)/2D}33 + (1/2){m(m-2)}!/2[D^4 + D}43]

+ (m-4)/2D}44 if U = u(ij, kl;2),

(m-2)Dg -Dl-D*2 + (m-2)/2£>}22 - (l/2){m(m-2)}1/2[D}34 + £>}43]

+ (m-4)/2D}44 if l7 = u(y,fc/;3),

+ (m-4)/2D}44 if U = «(i/, ki; 4),

(m-2)Z)g - Df + D | - (m-2)/2D}33 - (l/2){m(m-2)}1/2[D}34-D}43]

+ (m-4)/2Z)}44 if C7 = u(y,k/; 5),

2 ( W2~2)D° + 2I>* ~ 2Cm-3)D*44 if 17 = u(y, k/; 6).

In the case 17=M0 (i.e., p=p*=(m, 0,...,0)), D(r, r*; W) is expressed by the
linear combination of Df(r, r*) by changing [7, u, p,f, r, m, Dt and D2 into F, w,
q, g, s, n, D3 and D4, respectively. For example,

D(r, r*;W) = 2{n-2)D*0 - 2D| + (n-4)I>*22 if U = u0 and F== t<ii, kk; 1).

In the case [7 = u(*. 0; 0) and V=v(0, *; 0),

D(r, r*; W)

if U = u(i, 0; 0), F = <0, k; 0),

D-S if U = u(ii, 0 ;0) , F= t ) (0 , k ; 0 ) ,

2£>g if 17 = u(y, 0; 0), F = t < 0 , f c ; 0 ) ,

Dg if l/ = «(i, 0 ;0) , F = t>(0, kfc; 0) ,
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1/2 _

1/2

if 17 = u(ii9 0; 0), V= v(09 kk\ 0),

if £7 = ii(y, 0; 0), F = t<0, fefc; 0),

if U = u(i9 0;0), F = i<0, /c/;0),

if 17 = u(n, 0; 0), F = t<0, fc/; 0),

In the case V=v(j9 0; 0), we get D(r, r*; W) by multiplying n1'2 to (8.1). For
example,

D(r, r*; Pf) = n1 if U = u(i, fc; 0) and F = t;(j, 0; 0).

In the case U = u(j9 0; 0), we get D(r, r*; W) by changing m, n, p, C7 and u,
which are contained in the terms given by multiplying n1/2 to (8.1), into n, m, q,
V and t>, respectively. For example,

D(r, r*; Pf) = {2m(n-l)}V2D*

if I7 = tt0\0;0) and F = i<i, fcfc; 0).

In the case U = u(iJ\ 5U) and V=v(k, /; <5,) (Su9 dv = 09 1),

* + D*giJ-lD*fli+Dn if 5 B = 1 and 5, = 0,

if M̂ = 0 and 8V=1,

)D"Ux + Di if = 5V = 1.

In the case U = u(0J; 0) and V=v(09 I; 0), it holds that D(r, r*;
where l^j^r-1 and 1^ /^ s—1.

Let D*(r», r) = DJ(r, r*)' (a = 0, 1,..., 5), D«fij(r*, r) = D*fji(r9 r*)' and
Dlu(r, r*) = D*gji(r9 r*)', where D?(r, r*) are matrices appear in the above re-
lation. Note that D(r9 r*9 W)' = D(r*9 r; W). Then any of the relation
matrices D(r9 r*; W) is expressed by a linear combination of D*(r, r*).

Let @a9 38f and 38g be the linear closures [D*(r, r*)], [D*fij(r9 r*)] and
[/>Jw(r, r*)], respectively, for a = 0, 1,..., 5. These ideals satisfy the following
theorem and we omit its proof.
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T H E O R E M 8.2. ( i ) @0L@p = d0Lifi@a,
 f o r a> P = ®> !»-..» 5 , / , # . (ii) The multi-

dimensional relationship algebra is decomposed into the direct sum of eight
two-sided ideals &x (a = 0, 1,..., 5,/, g), i.e.,

@ = &o © ^ i ©*••© ^ 5 © # / © &g-

(in) &a is isomorphic to the complete Taxta matrix algebra for a = 0, 1,..., 5,/,
g, where T0 = (r + s)(r + s-l)/2, T i :=r(r-l)/2, T2 = ( r - l ) ( r -2) /2 , T3 = 5(S-1) /2 ,

(r + s-1).
(iv) Tn^ multiplicity of the irreducible representation of Mr with respect to

is

n(n —

Let Tbean ABAl[iV, (m, n), (r, 5), 4] with index set {X(p0- -pr-u ^o***^s-i)}-
Let p(W) be the entry, mT(0(e)9 0(e*)), of M r if an association of (0(e), 0(e*)) is
W=(U, V\ where 6(e), 0(e*)e6>1. All p(W) can be expressed by linear com-
binations of {7} (see Lemma 9.3 described shortly), where y is given by the linear
combination of {A} (see (2.4)).

The information matrix MT is represented by D(r, r*; W) (see Theorem 5.4).
Therefore MT is also represented by D%r, r*) as

*(r, r*) ^ / r , r*)

Here we recall the fact that r and r* are represented by U and F(see (7.1)).
Then Ka(r, r*) are given as follows:

In the case V=v0,

*o(r, r*)

(8.2) (w(i, fe; 0), (m-l)p(u(i, fc; 1), oo),

u(U kk; 0), i;0) + (m-2)p(u(i, kk; 1),
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(m- iy'2{p(u(i, kl; 0), v0) + p(u(i, kl; 1), v0)}

+ (m-2)p(u(i,kl;2),v0),

ii, kk; 0), v0) + 2(m-2)p(u(ii, kk; 1), »0) + ( m J2)p(ti(ii, kk; 2), v0),

i{ii, kl; 0), v0) + (m-2){p(u(ii, kl; 1), v0) + p{u(ii, kl; 2), v0)}

+ (^2 JP(u(u, kl; 3), i;0)J

u(ij, kl; 4), v0) + p(u(ij9 kl; 5), v0) + 2(m~2)p(u(ij, kl; 6), v0).

In the case £/=M0 , K0(r, r*) is expressed by p(U, V) as above by changing U, u,
p, r and m into F, y, q, s and n, respectively. For example,

K0(r, r*) = J2( n
2 ) } V2 p(«o, »(0, /c/; 0)).

In the case U = u(*, 0; 0) and V=v(0, *; 0),

K0(r, r*) =

{( ^ )«}1/2p(M(n, 0; 0), u(0, fc; 0)),

)«}1/2p(«(y, 0; 0), <0, fc; 0)),

2 X 2

K ? X 2
J2m( J )}1/2p(«(', 0; 0), v(0, kl; 0)),

K ? X 2 )}1/2^"("'' °; °>' ̂ °' fc/' °»»
, K ? )( 2 )}1/2P(«(»/. 0; 0), t)(0( W; 0)).

In the case V=v(j, 0; 0), we get K0(r, r*) by multiplying n1'2 to (8.2). For
example,

Ko(r, r*) = n^ipiuii, k; 0), »(./, 0; 0)) + (m-l)p(u(i, k; 1), v(j, 0; 0))}.

In the case U=u(0,j, 0), we get K0(r, r*) by changing m, n, p, U and «, which
are contained in the terms given by multiplying n1'2 to (8.2), into n, m, q, V and
v, respectively.
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= {m(n-l)l2yi2{2p(u(0,j; 0), v(i, kk; 0)) + (n-2)p(u(0,j; 0), v(i, kk; 1))} .

In the case U=u(i, j ; *) and V=v(k, I; *), it holds that

K0(r, r») = K«(U; o), v{k, /; o)) + (m-iM«(«, j ; l), «<fc,*; o))

+ (n — \)p(u(i,7; 0), v(k9 I; 1)) -f- (m —l)(n —l)p(w(i, j ; 1), i?(fc, /; 1)).

(ii(ii, fck; 0), t>0) - 2p(n(ii, kk; 1), t>0) + p(u(ii9 kk; 2), i;0),

^MK^"' , kl; 0), i;0) - p(ii(ii, kl; 1), i;0) - p(ii(ii, kl; 2), t?0)

^
K (r, r*) = \

(w(i/, kl; 0), i?0) + p(M(i/, kl; 1), t?0) - p(w(i;, kl; 2), t>0)

- p(«(i/, kl; 3), t?0) - p(w(y, kl; 4), %) - p(«(y» kl; 5), t?0)

+ 2p(u(ij9 kl;6),v0).

K3(r9 r*) is given in the same way as Kx(r9 r*). For example,

K3(r9 r*) = Xwo> K»'» fefc; °)) ~ 2POo> »(»", kk; 1)) + p(u09 v(ii9 kk; 2)).

*20% r*) = K«(y> k/; 0), v0) - p(«(y» k/; 1), v0) - /<«(»/» k/; 2), i?0)

- K«(y» k/; 3), i?0) + p(u(ij9 kl; 4), v0) + p(u(ij9 kl; 5), v0).

/c4(r, *r) = p(u0, v(ij9 kl; 0)) — p(u09 v(ij9 kl; 1)) — p(u0, v(ij, kl; 2))

- p(u09 v(ij9 kl; 3)) + p(u09 v(ij, kl; 4)) + p(u09 v(ij9 kl; 5)).

K5O, r*) = p(u(i, j ; 0), v(k, I; 0)) - p(i#(i, j ; 1), i<k, /; 0))

- p(u(ij; 0), i<fc, I; 1)) + p(fi(U; 1), i<fc, /; 1)).

f jp(u(i, j ; 0), v0) - p(u(i9 j ; 1), t?0),

\m^2{p(u(i9 j ; 0), v(09 k; 0 ) ) - p(u(i, j ; 1), t;(0, k; 0))} .

*/12(r, r*) = (m-2yi2{p(u{i9 jj; 0), i?0) - p(u(i9 jj; 1), i?0)} .

Kfl3(r9 r*) = (m/2)1/2{p(u(i, kl; 0), %) — p(M(^ k/; 1), v0)}.

ic/l4(r, r*) = {(m-2)/2y/2{p(u(i, kl; 0), f?0) + K ^ kl; 1), f>o)-2Kn(i, « ; 2), i?0)} .

Kf22(
r> r*) = P(U(}U kk; 0), t;0) + (m — 4)p(u(ii9 kk; 0), t;0)

- (m-3)p(u(ii9 kk; 0), t;0).

(tt(ii, kl; 1), i>o) - p(w(n*, kl; 2), t?0)}.
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*/!>» r*) = (1/2)1/2[2K«(»', kl; 0), »0) + (m-4){p{u(ii, kl; 1), »0)

+ p(u(ii, kl; 2), p0)} - 2(m-3)p(u(ii, kl; 3), »0)].

Kf33(r, r*) = (l/2)[2{p(M(i/, kl; 0), p0) - p(tt(i/, kl; 1), i>0)}

+ (m-2){j<u(i/, fc/; 2), c0) + P(«(U, kl; 3), p0) - ?(«('./, kl; 4), e0)

-p(ii(y,fcj; 5), »„)}].

^/3>. r*) = (1/2)(w(m-2)}^{piuiij, kl; 2), v0) - p{u{ij, kl; 3), %>}.

(u(y, W; 0), »0) + p(u(ij, kl; 1), »0)}
+ (m-4){p(u(ij, kl; 2), v0) + p(u(ij, kl; 3), v0) + p(u(ij, kl; 4), v0)
+ p(u(ij, kl; 5), v0)} - 4(m-3)p("(y, fc/; 6), »„)].

Kw(r, r*) ( l g i ^ 7 ^ 4 ) are given in the same way as KfjJ(r, r*). For example,

Kgi2(r, r*) = (n-2)>/2{p(«o, «<«, 775 0)) - p(«0, <i, j j ; 1))}.

Here Ka(r*, r), Ky /̂r*, r) and Kgjl(r*, r) are defined by Kx(r, r*), Kf..(r, r*)
and Kff(J(r, r*), respectively, for 0 ^ a ^ 5 and l ^ i ^ j ^ 4 .

Let Kx = [Ka(r, r*)] (of size Ta x TJ for a = 0, 1,..., 5. Let

(f2 )

^/2l(2> 1) Kf22 Kf23 ^/24

^/34

X/41(4, K
/ 4

Kf

(r-l)(s-l)
^ v

/21(2, 5)

/ 3 1 (3 , 5)

/ 4 1(4, 5)

[ Kflt(5, 1) K/l2(5, 2) X/IS(5, 3) Kfl4(5, 4) X / n(5, 5) J

of size Tfxy, where X / y = K>,,= [K/w(r, r*)] (2gi, jg4), K / l t(l, i) = Kfn(i, 1)'
= [*/„((/»> (n0-0)), (p*, g*))] 0 = 1, 2,..., 4),

x / l ((5, l) = Kfn(j, 5)' = [^.((p. , q), (P*, (no-o))]«:i:::::;ii

(the range ofp* is dependent on / = 1, 2,3,4), Kfi((5, 5) = [Kfli((pa, qy), (pp, g3))]

(a, fi=l r-l;y,5 = l,...,s-i). Here p a = ( m - l , 0,...,0, 1, 0,...,0) and qy
(o) («) (r-l)

=(n —1, 0,..., 0, 1, 0,..., 0). We define the matrix Kg of size tgxig in the same
(o) (O (s-l)

way as X r .
From Theorem 8.2, there exists an orthogonal matrix P of order vf such that

<^5 </»/

'MjP - diag[X0) Ku..., Ku..., K5,..., K5, Kf,..., Kf, Kg,...,
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Now MT is the information matrix of size vfxvf, and vf is dependent on
constraints m and n. As shown above, however, MT can be expressed by the
matrices Ka of size Ta x ra for a = 0, 1,..., 5 , / , g. Note that Ta is independent of
m and n.

Thus we have established the folio wings:

THEOREM 8.3. Let T be an ABAl[_N, (m, n), (r, s), 4]. Tfterc T is a bal-
anced design of resolution V if and only if all Ka (oc = 0, 1,..., 5 , / , g) are positive
definite.

THEOREM 8.4. The characteristic polynomial of MT is given by

det(M r-xJv;) = [n^ = o {det(K.-x/Ty)}*-] {det(Kf-xIZf)}*f{tet(Kg-xlXg)}*°,

if T is an ABAi\_N, (m, n\ (r, s), 4].

COROLLARY 8.5. For T being a balanced rm x sn-FF design of resolution V,
the inverse matrix of MT is expressed as

Xo1, Kr1,..., Xr1,..., Kj 1 , . . . , K j 1 , X71,..., K71, X^ , . . . , K~^F.

The trace and determinant of M j 1 are ̂ iren by

trCM?1) = Z^o^trCXo1) + ^/tr^J1) +

det(M^) = [Z^ol

There are, in general, a large number of possible balanced rm x sn-FF designs
of resolution V with each number of assemblies N ( ^ vf). Out of these designs,
one must choose a design which allows us to estimate all vf effects and, further,
which minimizes the loss of the information in some sense. The functions, which
evaluate the loss of information, are mostly defined in terms of characteristic
roots of the information matrix MT as shown in Section 1. Thus it is very useful
to obtain the characteristic polynomial of MT (or M^1).

Consider a 22x32-FF design of resolution V derived from an ABA1[JV,
(2, 2), (2, 3), 4] with index set {X(popl9 qo<li<l2)\Po + Pi=2, 4o + 4i + 42 = 2} for
v? ( = 20)^iV^36. In Table, optimal balanced designs with respect to the
trace and determinant criteria are given with values of tr(Mrx) and det(Mj1),
respectively, for each N in the above-mentioned range. Here matrices D and E

are defined by ( T 1 ) and 1 1 — 2 , respectively.
V1 i y \1 0 l)



404 Ryuei NISHII

TABLE Optimal balanced 22 x 32-FF designs of resolution V

N X

20 011101100110110001 1.83025

21 011101110010101101 1.45307

22 010101111010101101 1.31019

23 011101110011101101 1.14578

24 010101101110111101 1.06156

25 100111011101101111 0.99675

26 010101101111111101 0.93256

27 100111111101101111 0.87151

28 011101101111110111 0.81967

29 110111111101101111 0.76828

30 110111101111110111 0.71995

31 011101110111111111 0.69937

32 101111110111111111 0.65344

33 111111110111111102 0.63474

34 111111110111111111 0.59375

35 110111111111111111 0.57465

36 111111111111111111 0.55556

100011011100110011

001100110011011101

010101101110111001

011100110011011101

110011011101110011

011101101110111101

111011010110111011

110011011101111111

011110111011011110

010110111011111111

111011110111111011

110011011111111111

110111011111110111

110111011111111111

110111111111110111

110111111111111111

111111111111111111

6.36818E-26
9.43434E-27
2.23445E-27
5.89646E-28
1.47412E-28
5.70625E-29
2.21117E-29
8.57667E-30
3.53788E-3O
1.41515E-30
6.14215E-31
2.50913E-31
1.O9681E-31
4.83634E-32
2.13269E-32
9.47862E-33
4.21272E-33

2, 002), ̂ (02, Oil), ̂ (02, 020), X{02, 101), ̂ (02, 110), ̂ (02, 200),
X{\\, 002), J(ll, 011), X{\\9 020), X{\\3 101), X{\\, HO), ̂ (11, 200),
^(20, 002), >l(20, 011), >*(20, 020), ^(20, 101), ̂ (20, 110), ̂ (20, 200)).

9. Optimality of level-symmetric designs in s1--sm factorials

We consider an Si--«sm factorial design with m factors Fl9...,Fm9 where Ft

has levels 0, 1,..., st—l for i = l,..., m. We use notations similar to Section 2.

The assembly t = (tl9...,tm) is represented as an element of ZS lx ••• xZSm. Let

7] and 0 be the expected values of all observations and all factorial effects, respec-

tively. Then we assume that TQ can be expressed by the effects 0 as

Here Dt = [^(f, e)]o^M^S |-i = W(0), di(l),...,di(si-l)'] is an sfx5f non-singular

matrix whose first column d^O) is composed of 1 's, whose all column vectors are

mutually orthogonal, and whose entries dt(t9 e) satisfy ^(s;— 1 —19 s) = (—l)sdi(t, e)

for any t, seZs. (z' = l,..., m). Note that the matrix Di9 defined by orthogonal

polynomials, satisfies these restrictions.

We assume that (^H-l)-factor and more interactions are negligible, i.e., all

unknown effects are elements of

£ l , . . . , em) ^ £}.
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Let On be a v^-columned vector composed of all effects in <9£, where vja = |
Let T be a fractional Si*--sm factorial ( s^ - s^FF) design with N assemblies *<«> =
(t[a\..., t^y). Then Tcan be identified with an iVxm matrix whose a-th row is
£(a). Let y(£(a)) be the observation based on an assembly £<a) and y(T) be an
N-columned vector [y(*(a))] expressed by

where e(T) is the error vector whose components are assumed to be uncorrelated
and each has mean zero and the same variance a2. The (y(t(a)), 0(e))-entry of
the design matrix ET is given by

<*i('i"\ *d-dj&\ O ( = d(«*K «), say).

The normal equation for estimating 0£ can be written as

where MT = E'TET is the information matrix whose (0(e), 0(e*))-entry is given by

, •*) ( = mT{e{e\ 0(«*)), say)

for e = (£l5..., em) and e* = (ef,..., £*). An JV x m matrix T is called the fractional
s1'"Sm factorial design of resolution 2^ + 1 if MT is non-singular. For the
design of resolution 2.0 + 1, the best linear unbiased estimate of 0^ can be obtained
by

d, = VTE'Ty(T),

where F r = Mj 1 . The variance-covariance matrix of 0^ can be shown to be

Let y(«)= S2f=i d(*(a)» «) f o r anY e e ZS1 x ••• x ZSm. Let A(f) be the multi-
plicity of the assembly t in T for any t = (tl9...9 tm). Using A(f), we have

Therefore we can get the following

LEMMA 9.1. y = Di ® * * * ® ^m^,

where y and X are the s^"Sm-columned vectors

r = [y(ci,...,Cw)] and X = {_X{tu...,tJ] (ei9tieZa).

DEFINITION 9.1. An Nxm matrix, T, is called an orthogonal array of
strength d if any N x d submatrix Tt contains all possible J-rowed vectors in the
same frequency lt for any sequence i = 0'i •"*<*) with I ^ i 1 < - " < i d ^ w , where Tt
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is given in the same way as Section 2. Here hv is equal to Nl(sh-~sid).

We have the following by an argument similar to Theorem 3.1.

THEOREM 9.2. Let T be an s^-s^FF design of resolution 2^-fl , where
2£^m. Then 0^ can be estimated uncorr elatedly, i.e., Mj1 becomes a diagonal
matrix, if and only if T is an orthogonal array of strength 2£.

REMARK. One of the assumptions on Dt, d^Si—l — t, e) = (—l)edi(t, e)
( l^ i rgm) , is not necessary to prove Lemma 9.1 and Theorem 9.2.

The following definition of a level-symmetric design is a generalization of the
concept of a fold-over design.

DEFINITION 9.2. For T being an s ^ - s ^ F F design, T is called a d-level-
symmetric design if the following relation holds:
Z * ^ , . . . , tit,..., tid,..., tm) = S*^i, . . . , sh-l-th,..., sid-\-tid,..., tm)
for any I^i1<--<id^m and any (th,..., tid) (tik = 0, 1,..., sik—l), where two sum-
mations X* extend over tj = O, 1,..., Sj — 1 for any jem—{il9...9 id}.

Note that if T is a d-level-symmetric design, then T is also a d'Mevel-sym-
metric design for any d* = l,..., d— 1.

An effect 0(B 1 V . . , sm) is called an odd or even effect according as J^et is odd
or even. The set of unknown effects && can be partitioned into the two sets
Gio and Q%e composed of odd and even effects, respectively. Corresponding to
this partition, the vector 6^ can be decomposed into

LEMMA 9.3. Let mT(6(a), 0(fi)) be an entry of MT such that E ( a i + A) is
an odd integer, where a = (a l9..., am) and i8 = (j81,..., j?m) are elements in ZSl x •••
x ZSm. Then mT(8(a), #(#)) can be represented by a linear combination of
elements of {y(el5..., em) | £e» is odd}.

PROOF. An entry mT(6(a), 6(0)) is given by ^£td1(t1, a1)d1(t1, j9±)---
dm(tm, ocm)d(tm, j W i , . . . , tj. The column vector (^(0, a)^(0, jS),..., rffe-l, a) •
dfa-l, P))' ( = cff(a)*^(W, say) can be expressed as di(a)*di(P)=yZsei=o1 •
cf(e; a, P)di(e) = Dici(ct, fi) where cf(a, j5) = (cr<0; <x, p),..., c ^ - l ; a, £)y is given
by (DJDf) - 1 / ) ;^ )*^^) . Therefore we have cf(e; a, p) = ci(e)di(e)'di(oc)*di(p),
where q(e) is the (s, s)-entry of (DJD,.)"1, since D\Di is a diagonal matrix. By
the condition d^-l-t, s) = (-l)Edi(t, s), it holds that

ct(s; a, P) = 0 if e + a + j5 is odd.
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Any entry of MT can be expressed as a linear combination of elements of {y(el5...,
em)} as follows:

mT(6(a), 009)) = Z.IIIr=i {Ulthcfa; «i, /Wft

2 , . . . , e m ) .

Here cfa; al9 P^—cJ^', ccm, pm) = 0 if Z f a + A) is an odd integer and 2>j is
an even integer. This completes the proof.

THEOREM 9.4. Let T be an s^^-'-s^FF design of resolution 2.0 + 1, where

^m and s f^3 (i = l,..., m). 77ie besf linear unbiased estimate 0£ =

satisfies Co\(0io, 0&)e) = O if and only if Tis a 2£-level-symmetric design, where
Cov(X, Y) denotes the covariance matrix between random variables X and Y.

PROOF (Sufficiency). Consider e = (sl9...9 sm)eZSl x ••• xZSm such that the
sum of eik (1^/c^n) is odd and the remaining elements are equal to zero where
lf^n^2£. Since T i s an n-level-symmetric design and d(t, e) = (—l)reid(**, e),
the following relation holds:

where ** = (rf,...,r*) is defined by ( s 1 - l - f 1 , . . . , s m - l - O for any « = (^,..., fj»
the summations X* an(* Z** extend over all th,..., tin and the remaining tj9 re-
spectively, and <5 = Xfii (odd). Therefore Lemma 9.3 leads to mT(6(a), 6(fi)) = 0
for any 6(a) e QUo and any 0(j9) e 6)£>e. Thus we have Cov (0£)O, ĵB>e) = 0.

(Necessity). The submatrix of MT corresponding to 0£jO-row and 0&e-
column is 0 since Cov (0£>o, ££,e) = 0, i.e., mT(6(a), P(fi)) = 0 for all 0(a) e 6)^^ and
6(fi)e 0si,e' These relations and the assumption that sfg;3 imply y(sl,..., em) = 0
for any e = (e1,..., sm) (eZSi x ••• x Z J such that w(e)^2^ and J> ; is odd.
Solving the relation in Lemma 9.1 with respect to k, we get

(9.1) ^ = £ 1 ® . . . ® £ m r ,

where E — D ^ ' A ) " 1 - T h e entries of the stxsi matrix £ ,= [>;(*, e)] (̂ , eeZSi)
satisfy ^ ( s f - l - - r , e) = (-l)eei(t, s) since D ^ is diagonal. Put ex(tu e^-"
Cmitm* em) = K*> e)- T h e n it holds that
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Furthermore, we have e(t*, e) = (—l)£8ie(t, e). Let {iu...9 i2&} be any subset
of m and let {Ju-'^Jm-is) be m — {il9...9 J2JJ. Let X( i l v . . , ^ J O ^ I 1 ® •"®Imm>
where xI/c = l (fe = l,..., 2^), xjs = 0 (s = l,..., m — 2£) and

H'r
From (9.1) we have

(9.2) X(ii,-.., i2&)* = ( I? 1 ^) ®-"® (I^JSJf .

If x a =0, then Ij«£a=j";aEa=(l, 0,..., 0). The relation (9.2) yields

where the summations ^tj and 2 ^ extend over all tjs ( l ^ s ^ m —2^) and sik

(l£kg,2£)9 respectively. Now ^O-'Oe^O—0ei2l0--0) = 0 when £s f k is odd.
Hence the range of the last summation can be restricted to eik satisfying X eik i

s

even. Recall the relation Ul=ieik(h^ ^0 = 1111^^^-1-^ eik) for eik satis-
fying Xeik i

s even. Thus we have

E ^ ^ l v ) S^ —1 — ^ j , . . . , Sf2£ —1 —^2 f i , . . . , fm)

which implies that Tis a 2^-level-symmetric design.

In the case sx = ••• =sm=2, we have the following

THEOREM 9.5. Lef T be a 2m-FF design of resolution 2.0 + 1,
^ m . T/ie feesf linear unbiased estimate of 0& satisfies Cov(0^^ 0i,e) = O if and

only if Tis a (2# — i)-level-symmetric design.

10. Structural properties of 2m-BFF designs

Throughout this section, we consider a balanced fractional 2m factorial
(2m-BFF) design T of resolution 2^ + 1 with N assemblies, where D is defined by

f , ~ | ) . For simplicity, we use symbols 6$ and 0h...ik instead of 6(0, 0,...,0)

and 0(el5..., sm), respectively, where eii = -~=ei = 1 and the remaining elements
k

are all equal to zero. Let y0 and yk be y(0, 0,..., 0) ( = N) and y(l,..., 1, 0,..., 0).
Since T is a 2m-BFF design, yk = y(ei9...9 em) for any (6 l v . . , em)eZ2

m satisfying
w(e1,..., e j = fc, where l ^ f c ^ (cf. [38]).

We use the method of the analysis of a 2m-BFF design in Yamamoto,
Shirakura and Kuwada [39] to derive the following two theorems.
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THEOREM 10.1. Let T be a 2m-BFF design of resolution V derived from a
BA[N, m, 2, 4] with index set {fi0, /Jil9...9 jU4}. The covariance matrix be-
tween the estimates of main effects and those of two-factor interactions is zero
if and only if the indices satisfy iu0 = iu4 and iu1=jw3.

PROOF (Sufficiency). The relations jUo = 04 a n d 01=03 suggest that Tis a
4-level-symmetric design. This fact implies that T is also a 3-level-symmetric
design. Therefore Theorem 9.5 yields Cov(02>o, 02>e) = O, where 0'2tO = (Ql9...9 0m)
and02 > e = (^ , 012, 013,...,0w_1>m).

(Necessity). The information matrix, MT, of a balanced design T can be
decomposed by the orthogonal matrix P2 of order vf as

Mr = P2diag [Xo, f ^ T

where vf = l + m + ( ^ j and Ko, Kx and X2 are matrices of size 3 x 3 , 2 x 2 , l x l ,

respectively. By changing K( for Kj1 (i = 0, 1, 2), M^1 can also be represented
in the same way. Since the submatrix corresponding to 02>o-row and 0 2 e -
column is 0, Kj1 is diagonal and the (2, 3)-entry of K^1 is zero, while K± is given
by

l -?3) 1

(m-4)72-(m-3)y4J

Therefore 71=73, and further from the form of

we get Vi(70~')'2)=0- Since Kj is positive definite, yo""V2>0- Hence yt =y3=0.
The relation between ^f and 7̂  is given by

02

03

04 J

=(1/16)

1 - 4 6 - 4 1

1 - 2 0 2 - 1

1 0 - 2 0 1

1 2 0 - 2 - 1

1 4 6 4 1

72

7s

174

Thus we have 0o=04=(l/16)(yo and / z 1 =^ 3 =
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THEOREM 10.2. Let T be a 2m-BFF design of resolution 2£ + 1 derivable
from a BA[N, m, 292£] with index set {fi0, fil9...9 jU2JJ, where 6^2£^m.
The covariance matrix between the estimates of p-factor interactions and those
of q-factor interactions is Ofor any l^p<q^£ if and only ifT is an orthogonal
array of strength 2^ — 1, i.e.,

0o + 0i = 0i + 02=-"

0o =02="-=02£ and

or

PROOF (Sufficiency). Let T be an orthogonal array of strength 2^ — 1.
Then mT(6iv..ip9 0J.i...J.fl) = O for all p-factor and ^-factor interactions ( l g p < g ^
^). Therefore the estimates of p-factor interactions and those of ^-factor inter-
actions have no correlations.

(Necessity). There exists an orthogonal matrix P£ of order vj such that

(T)-(A)
M r = k diag X l v . . 5 Xx, K29..., K2,...9 KA9...9 K^P,,

where Kv is a (̂  - i + l )x(^- i + l) matrix (i = 0, 1,..., ^) and vf = 1+f 7 V "• +
/ YYi\ \ A /
f /, J because Tis a balanced design. From the assumption on MT, Mj\p9 q) is
the zero matrix for l^p<q^£, where M^1(p, q) (resp. MT(p, q)) denotes a sub-
matrix of M j 1 (resp. M r ) corresponding to (p-factor interactions)-rows and
(g-factor interactions)-columns. Therefore Kt and Kj1 are diagonal for 1 ̂  i < £.
Here all entries of MT(£ — 1, ^) equal either y1? y3,..., y2s,-3 or y2£-i> a n ( i (^~l>
£ — i + l)-entry of X^ is given by some contrast of these elements (l^i^£ — 1).
These contrasts are linearly independent. Therefore y1 =y3 = . . . =y2jn-i since
^ i ( 1 ^ * ' ^ — 1) is diagonal. Considering M^\£ — 2, ^), we can also prove that
72 = 74= " ^ 7 2 4 - 2 - Now our assumption on M^1 implies that KQ1 can be
expressed by

a0

10

On the other hand, Ko is given by

7o m1

K
W
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The (1, 2)-, (3, 2)-, and (4, 2)-entries of KQKQ1 ( = I& + 1) imply that yoa1 + m1'2y1b1

= 0, y2al+m1/2ylbl=0, and y1a1 + m1/2y2b1=0, respectively. These relations
must hold for some (al9 bj. Here bx >0 since KQ1 is positive definite. There-
fore we have (72)2-(7i)2 = 0 a n d 7o72-(7i)2 = 0. Thus 72(y2-7o) = 0, i.e., y2 = 0
or y2 = y0. If 72 7̂ 0* the relation y2 = 7o ( = N) must hold. This contradicts the
assumption that MT is non-singular. Therefore 7i=/y2 = ---='y2J()-i=0, i.e., T
is an orthogonal array of strength 2^ — 1. Here T is a balanced array of strength
2£ and with index set {/x0, jU1?..., /i2j>}- It can be easily proved that T is also a
balanced array of strength 2£ — 1 and with index set {fio + fil9 )W1+/i2,..., ^ 2£-i +
)U2£}. For Tbeing an orthogonal array of strength 2^ — 1, the relation Ju0 + iu1 =
^i+J"2 = -"=M2£-i+A<2£ must hold, i.e., 1*0 = 1*2 =— =1*21 and ju1=/x3 = . . .=
\i2i-\> This completes the proof.
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