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Introduction

Throughout this paper let K denote a field of characteristic zero and U(M)
the enveloping algebra of a Lie algebra M over K. Now let G be a Lie algebra
over K. Let H be a subalgebra of G and W be an H-module. Regarding U(G)
as a right U(H)-module, we can form the left G-module U(G)®yy W. This
module is called the G-module induced by W and discussed in [1, pp. 169-189].

In this paper we generalize the construction of the induced G-module to
define the generally induced G-module by taking a subalgebra R of U(G)
instead of taking a subalgebra of G. We mainly investigate the generally induced
G-module in the case that U(G) has a good basis, namely a regular basis, as a
right R-module.

For u € U(G) we say that u is permutable with R if Ru=uR. Then we have
an automorphism p(u) of R such that ru=up(u)(r) for any reR. We call it
the permuting map of R associated with u. The permuting map will play an
important role to investigate the generally induced module.

In §3 we give several conditions under which every R-endomorphism of an
irreducible R-module W is algebraic over K. Such conditions enable us to have
a central character of the R-module W when K is algebraically closed. We then
give criteria of the homogeneity of an R-submodule of U(G)®x W by using the
central character and the permuting map of R given in §2.

In §4 we discuss the structure and the classification of R[u,, u,]J®z W in the
case that u,u_e R, where u, and u, belong to a regular basis of U(G), u;#1 and
u.#1.

In § 5 and § 6 we apply the results given in §§ 1-4 to the case that G is sl(2, K)
or the Heisenberg algebra. Generally induced modules given in these sections
cannot be constructed as any modules induced by modules over their proper
subalgebras.

§1. Definition of generally induced modules

DEerINITION. Let G be a Lie algebra over K and R be a subalgebra of U(G).
For an R-module W we can form the left G-module

U(G) ®r W,
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regarding U(G) as a right R-module. We shall term it the G-module induced
by the R-module W. We shall also call such a G-module a generally induced
G-module.

If R=U(H) for some subalgebra H of G, the G-modules induced by R-
modules coincide with the G-modules induced by H-modules.

ExaMPLE. Let G={g) be a one-dimensional Lie algebra over K. Take
the subalgebra R of U(G) generated by g2. Let W=Kw be an R-module with
the action of R on W defined by g?w=0 and 1w=w. Since {1, g} is a basis
for a right R-module U(G), the generally induced G-module V is K(1®@w)+
K(g®w). Therefore Vis two-dimensional. On the other hand let H be a proper
subalgebra of G and W, be a non-trivial U(H)-module. Since H =0, the induced
module U(G)®g W, is infinite-dimensional. Hence V cannot be any G-module
induced by a module over a proper subalgebra of G.

§2. Pre-regular bases and regular bases

Let G be a Lie algebra over K and R be a subalgebra of U(G). If Ru=uR
for u € U(G), we say that u is permutable with R. We assume that u is permutable
with R. Since U(G) is integral, for any r € R there exists a unique element ' € R
such that ru=ur’. Therefore we have a map p(u) of R into itself such that ru=
up(u)(r) for any re R. We call p(u) the permuting map of R associated with u.
p(u) is obviously an automorphism of R. Now we state the following

DEFRINITION. Let G be a Lie algebra over K and R be a subalgebra of U(G).
U(G) is said to have a pre-regular basis as a right R-module if U(G) has a basis
including 1 as a right R-module such that every member of the basis is permutable
with R. U(G) is said to have a regular basis as a right R-module if U(G) has a
pre-regular basis as a right R-module such that all permuting maps of R associated
with members of the basis are distinct each other.

ExampLE 1. Let G be a Lie algebra over K with a basis {x, y} and with
multiplication [x, y]=y. Let R=K[x]. Then R=U({(x)) and U(G) has a
basis {1, y, y2,...} as a right R-module. Since xiyJ/=yi(x+j)i, every member
of this basis is permutable with R. Furthermore since p(y?)(x)=x+j, p(y’)#
p(»?) for i# j. Therefore U(G) has a regular basis {1, y, y%,...} as a right R-
module.

EXAMPLE 2. Let G be as above. Let R=K[xy, x]. Let w be a non-zero
element of U(G) and we write w=Y1, fi(x)y! where f(x)e K[x]. We claim
that wr € R for some non-zero element r of R. If n=0, our assertion is obvious.
If n>1, by using the formula
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y(x+1)-(x+m) = (xy)m

we have
wx+1)--(x+n) = i o fil()yi(x+1)(x+i)(x+i+1)---(x+n)
= >t o flx)(xy)i(x+i+1)---(x+n)eR.

This claim shows that 1 is linearly dependent on any non-zero element of U(G)
over R. Therefore U(G) does not have a pre-regular basis as a right R-module.

LemMMA 2.1. Let R be a commutative subalgebra of U(G) and u,,..., u, be
non-zero elements of U(G). Assume that each u; is permutable with R. If
p(uy),..., p(u,) are distinct, then u,,..., u, are linearly independent over R.

Proor. If n=1, our assertion follows from the fact that U(G) is integral.
Assume true for n and let > #4! u,r;=0 for some r;e R. Since r(X¥iur,)=
(X721 uyr)p(uy+ 1) (r)=0, we have

2i=1 ui(p(u) (r) = p(tp4 ) (r)r; =0 forany reR.

By induction hypothesis, (p(u;)(¥)— p(u,+ ) (r))r;=0 for any re R. Since p(u;)#
p(u,, ) for i=1,..., n, we conclude that r;=---=r,=0. Therefore u,,,r,.,;=0.
Since U(G) is integral, we have r,,,;=0. Q.E.D.

ProPOSITION 2.2. Let R be a commutative subalgebra of U(G) and let
U(G) have a regular basis {1, u,: A€ A} as a right R-module. Assume that
p(u;) has an order q. Then ujeR.

Proor. Let uf=31",u;ur;+ro where A(i)eA and r;eR. Since ruj=
uip(uy)!(r)=ujr and ruf=3 1=y u;;Pp(us) (N)ri+rro, we have p(u;g) (Nri=rr;
for any reR. Observing that p(u,;)#1 for i=1,..., n, we have ry=---=r,=0.
Hence uf=r,€eR. Q.E.D.

Let us denote R; =32, uiR. Then we have

COROLLARY 2.3. Under the same assumption as in the previous proposition
we have

Proor. Since 1, p(u,),..., p(u,)?"! are distinct, {1, u,,..., u§~1} is a linearly
independent set over R by Lemma 2.1. On the other hand since ufeR by
Proposition 2.2, {1, u,,..., uj~!} generates R,. Q.E.D.

COROLLARY 2.4. Let R be a commutative subalgebra of U(G) and let U(G)
have a regular basis {1,u,: Ae A}. Let A, te A with A#t. If{p(u,)*:n=0,1,...}
n{p(u)*: n=0, 1,...} ={1}, then R, n R,=R.
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ProOF. We prove our assertion in the case that p(u;), p(u,) has an order

n, m respectively. The other cases will be done similarly. Now let > 2=t uir,+r,

=Ym=lulr;+r; for some r;, r;eR. Since {p(u;)*: n=0, 1,...} n {p(u)*: n=0,

1,..3={} {1, us,..., 3™, u,...,um 1} is a linearly independent set over R by
Lemma 2.1. Therefore we have ry=---=r,_;=ri=---=r,,_,=0and ro=rg.

Q.E.D.

§3. Central characters

LeEMMA 3.1. Let R be an algebra over K and W be a non-trivial irreducible
R-module. If one of the following conditions is satisfied, every R-endomorphism
of Wis algebraic over K.

(1) R has an increasing filtration such that the graded algebra of R
associated with this filtration is finitely generated and commutative.

(2) R is finitely generated and R[R, RJRW=0.

Proor. (1)is Lemma 2.6.4 in [1, p. 87].

(2): Let B=R/R[R, R]R and let x be an R-endomorphism of W. Since
R[R, R]JRW=0, we can regard W as a B-module and x as a B-endomorphism.
Since B is finitely generated and commutative, x is algebraic over K by the first
assertion. Q.E.D.

If R satisfies one of the conditions (1) and (2) in Lemma 3.1 and if K is
algebraically closed, then every element of Z(R) acts on W as a scalar where Z(R)
is the center of R. Therefore we have the central character ¥ of R on W as

rw=y(r)w for reZ(R) and weW.

From now to the end of this paper let K be an algebraically closed field of
characteristic zero. We are now ready to investigate the homogeneity of generally
induced modules.

THEOREM 3.2. Let R be a subalgebra of U(G) and W be a non-trivial ir-
reducible R-module such that the condition (1) or (2) in Lemma 3.1 holds. Let
x be the central character of R on W. Assume that U(G) has a pre-regular basis
{u,: L€ A} as a right R-module. Then

(1) If xp(u,) # xp(u,) on Z(R) for any A, t€ A with A#1, then every R-sub-
module of U(G)®g W is R-homogeneous.

(2) If every R-submodule of U(G)®g W is R-homogeneous, then p(u,)#
p(u,) for any A, 1€ A with A#+.

Proor. (1): Let M be a non-trivial R-submodule of U(G)®@g W. Take a
non-zero element v=3"_, u,;,®w; of M with w;#0. We show by induction on



Generally induced modules in Lie algebras 289

n that u,,®w;eM for i=1,.,n. If n=1, it is trivial. Let n=2. Since
XP(U (1)) # XP(U3(y), there exists an element r, in Z(R) such that xp(u;)) (ro) #
xP(U3m) (ro). Then we have

roU — XP(“A(l)) (royv = 21— (XP(“A(;')) (ro) — XP(“AU)) ("o))“z(i) ®w,eM

and  (xp(U () (o) — xP(U 1)) (Fo))U sy ®@W,#0. By our induction hypothesis,
Um®@w,e M. Therefore > 7-{u,;,®w;e M. By induction hypothesis again
we have u;,,®w;e M for i=1,...,n—1.

(2): Forany 4, 7€ A with A# 1 we consider an R-submodule M of U(G)@r W
generated by u,®w—u,®w where w is a generator of the R-module W. Since M
is R-homogeneous, M =u,@ W+u , ®W. Therefore there exists an element r in
R such that

MU @w — u,@w) = u; @ w.

Hence u;®p(u,)(w=u,®w and u,®p(u,)(r)w=0. So we have p(u,)(r)w=w
and p(u,)(r)w=0, which implies our assertion. Q.E.D.

CoOROLLARY 3.3. Let U(G), R, W, x be as in the previous theorem. If R
is commutative, then the following two statements are equivalent:

(1) xp(us) # xp(u,) for any A, 1€ A with A # .
(2) Every R-submodule of U(G) ® g W is R-homogeneous.

ProoFr. Assume (2). For any A, te A with A#7 we consider an R-sub-
module M of U(G)®y W generated by u, ®w—u,®@w where w is a generator of W.
Since M is R-homogeneous, M=u,QW-+u ,@W. Therefore there exists an ele-
ment r in R such that r(u,®w—u,@w)=u,®w. Hence

xp(u)(Nu, @ w — xp(u)(MNu, @ w =u, @ w,

and we have yp(u,)(r)=1 and xp(u,)(r)=0. Hence (1) holds.
The converse is shown in Theorem 3.2. Q.E.D.

Let R be a subalgebra of U(G) and W be a non-trivial irreducible R-module
such that the condition (1) or (2) in Lemma 3.1 holds. Let x be the central
character of R on W. Then we can regard U(G)®x W as a Z(R)-module. The
set of all Z(R)-endomorphisms of U(G)®g W is called the centralizer of the
Z(R)-module U(G)®x W. We give a characterization of the condition (1) in
Theorem 3.2.

ProPOSITION 3.4. Let U(G), R, W, x be as in Theorem 3.2. Then the fol-
lowing two statements are equivalent:
(1) The centralizer of a Z(R)-module U(G)®g W is

{9 € Endg (U(G)@r W): gu,@W) S u, ® W for any AieAd}
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2) xp(u,) # xp(uy) on Z(R) forany A, teA with A#r.

Proor. If yp(u;)=yxp(u,) on Z(R) for some A, 1€ A with 151, then we can
construct a Z(R)-endomorphism f of U(G)® W defined by f(u,®w)=u.®w and
f(u,®w)=0 for y#4 and we W. Then f does not belong to the set given in the
statement (1). Conversely, let g be a Z(R)-endomorphism of U(G)®z W. Set
g @wW) =371 u;;,@w;+u;®w, where A(i)e Aand u,;y #u,. Since g(r(u,@w))
=rg(u,®w) for any r € Z(R), we have

xp(u) (Ng(u;@w) = 31y XP(“A(i)) (")“;.(i) @ w; + xp(uy) (Nu, @ wq.

Therefore we have yxp(u,)(rw;=xp(u.) (H)w; for i=1,...,n. Since yxp(u,)+#
xp(uziy) on Z(R), we have wy =---=w,=0. Hence g(u;@w)=u;®w,. Q.E.D.

We also give a following criterion about the irreducibility of generally induced
modules.

THEOREM 3.5. Let U(G), R, W, y be as in Theorem 3.2. Assume that
xp(uy) # xp(u,) on Z(R) for any A, 1€ A with A#t. Then the following two
Statements are equivalent:

(1) U(G)®g Wis an irreducible U(G)-module.

(2) For each u,, u, there exists a,, € U(G) such that

Ayl €U, + 3 ,cq Ui, Anng (W)
where w is a generator of W.

Proor. Assume (1). Then there exists a;, € U(G) such that a,(u,®w)=
u,®w. Therefore a,u;—u.eAnnyeg (1®w)=3,,u,Anng(w). Conversely,
assume (2). Let M be a non-trivial submodule of the U(G)-module U(G)®z W.
Since yp(u;)# xp(u,) on Z(R) for any A, 7€ A with A#7, M is R-homogeneous by
Theorem 3.2. Therefore u,@W <M for some LeA. Now for each te A we
select a;, € U(G) such that a,.u; eu,+ 3, 4 u, Anng (w). Then we have a,(u,®@w)
=u,®w, and u WM. Hence U(G)@g W= ., u,QW=M. Q.E.D.

§4' R[uh ut]@RW

Let R be a finitely generated commutative subalgebra of U(G) and assume
that U(G) has a pre-regular basis {1, u;: 1€ A} as a right R-module. We investi-
gate the structure of R[u,, u,]J®z Win the case that u,u,e R. In this section we
use the notation p, instead of p(u,;) and we denote by P,={p?: n=0, 1, 2,...}.
Let u,u,=seR. Then u,(uu,)=su,=u,p,(s). Therefore uu,=p,(s). Further-
more since R is commutative, ru u,=u,u,r and ruu,=uu,r for any re R. Then
we have p(p,(r))=r and p,(p(r))=r for any re R. Therefore p,=p;!. Hence
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p; has a finite order if and only if p, has a finite order. We remark that P,=P,
if p, or p, has a finite order.

PROPOSITION 4.1. Let R be a finitely generated commutative subalgebra
of U(G) and let U(G) have a regular basis {1, u,: L€ A} as a right R-module.
Let W be a non-trivial irreducible R-module with the central character y.
Hence W is one-dimensional and we write W=Kw. Let A, te A with A#rt.
Assume that u,u,=s for some se R and that P, n P,={1}. Then

(1) R[uzul®@pW=3X%, Kuj®@w+ K(1®W) + %, Ku] ®@w
(direct sum of K-vector spaces).
(2) Rl[u, u,] ®g W has the following structure,
u(ur®w) = xpi7"(s) (Ui @w), u(Wi®w) = xpi(s)(ui~'®w) for nz=1.

(3) R[u;, u,J®g W is R[u,, uJ-irreducible if ypi+#ypi for i#j=0 and
xpi(s)#0 for any integer n.

Proor. (1): 1, p;, p%,..., P, P2,... are distinct by the remark above. Then
{1, uy, u,..., u, u2,...} is a linearly independent set over R by Lemma 2.1. It
is easy to see by induction on n that uju”=sp31(s)---pi~"(s) and u’ul=p,(s)p3(s)
--.pi(s) for n=1. Then we have

wind = [ uiIspz(s)-p () if izjz1
U im0 j> iz,
il = 1 ui=I p,(s)p3(s)- - pi(s) if izjz1
T wdipdt () pi(s) it j>ix1.

Therefore {1, u,, u?,..., u,, u,...} generates the R-module R[u,, u,]. Hence we
have the first assertion.

(2) is immediate from the facts that u u? =u?"1pi~"(s) and uu%=u"1pi(s).

(3): Let N=K(1®w)+> 2, Kui®w. Then every R-submodule of N is
R-homogeneous by the similar proof to that of Theorem 3.2 (1). Now let M be
a non-zero R[u,, u.]J-submodule of R[u,, u]J®z W. Let v=3"_ aui@w+n
where ne N. If a,#0, then u%ve a,x(sp7(s)---pi () (1@W)+ > 2, Kui®@w.
Therefore ufv#0 and u?ve N. Hence M N N#0. Since M n N is R-homogene-
ous, in M n N there exists an element u7®w for some m=0. If m=1, u™(u?@w)
=x(p,(8):-p(s)) (1®w)e M. Therefore 1®w e M, which implies R[u,, u, @z W
=R[u;, u ](1®@w)cs M. Q.E.D.

COROLLARY 4.2. Let U(G), R, W, x be as in Proposition 4.1. Assume that
every R-submodule of R[u,, u,J®g W is R-homogeneous. Then R[u,, u, J®zr W
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is R[u,, u_J-irreducible if and only if ypi(s)#0 for any integer n.

ProoF. Assume that yp%(s)#0 for any integer n. Since every R-submodule
of R[u;, u,J®z Wis R-homogeneous, we can prove the irreducibility of R[u;, u.]
®g W as in the proof of the previous proposition. Conversely, if yp3(s)=0 for
some n=0, then > 2, Kut®w is a non-zero proper submodule of R[u;, u,]®z W.
If xp2(s)=0 for some n<0, then Y% ,_, Ku®w is also a non-zero proper sub-
module of R[u;, u,]®x W. Q.E.D.

We now classify the module R[u;, u_ ]|®zW.

THEOREM 4.3. Let R be a finitely generated commutative subalgebra of
U(G). Let W, W' be irreducible R-modules with the central characters x, x'
and with generators w, w' respectively. Assume that U(G) has a regular basis
{1, u,: Ae A} and P, n P,.={1} for A, 1€ A with A#t. If uu,=s for some se R
and if xpi(s)#0 for any integer n, then the following two statements are equiva-
lent:

(1) R[u;, uJ®g W' is isomorphic to R[u;, u,]J®gW as an R[u,, u.]-
module.

(2) x' =ypi for some integer q.

ProOF. Assume that y'#yp? for any integer q. Let f be an R[u,, u.]-
homomorphism of R[u,, u,]®z W’ into R[u,, u,J®z W. Let us write f(1Qw’)
=" aui@w+b1®w) + X", c;ul®w (a;, b, c;jeK). Since f(r(1Qw")=
rf(1®w’) for any r € R, we have

ZOfA®W) = Tl agpi(r)ul @ w + by( (1®W) + 7oy cjxp3 (rui ® w.

Therefore (x'(r)—xpi(r))a;=(x'(r)— x(rNb=('(r) — xp7/(r))c;=0 for any reR.
Since x'# xp4 for any integer g, we have a,=:--=a,=b=c,=---=c¢,=0. Hence

f=0.
Conversely, assume (2). Then we can construct an R[u,, u J-isomorphism

g of R[u;, u J®g W’ onto Rlu,, u. ]®z W as follows; if y’'=yp% for some q=0,
then g is given by

gui®w) =ui"'®@w (iz21) glew)=ui®w,

gui®w) = x(pipi~ () piH T @w  (Isjsq-1),

gui@w") = x(pi()Pi~(s)--Pi(S)p(s) (1®W),

g @w) = y(pY(SIPF~H () P3P ®w  (j=1).
If ' =yp34 for some g>0, then g is given by

guiew)=ulti®@w (j21), g1W)=ui®w,
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gui®@w) = x(pi~Us)pi~Us) - pirUu i @w  (1=5iZq-1),
gui®w") = x(pi~Us)pi~4s) - p31(s)s) (1@w),
guiti®w) = x(pi~U)piUs) - pr(ui®w  (iz1). Q.E.D.

Let R be a finitely generated commutative subalgebra of U(G). Then R can
be identified with the quotient of the algebra of polynominals in r indeterminates
T,,..., T, by a certain ideal I of K[T},..., T,]. Let t; be a canonical image of T;
in R. Let X(R) be the set of all characters on R. Then the map n of X(R)
into the variety E in K" vanished by I which is defined by #(3)=(x(t1),-.., x(t,) is
bijective by Hilbert’s Nullstellensatz.

Let g be an endomorphism of R, then g induces an endomorphism g, of
X(R) defined by g.(x)=yxcg for xe X(R). Then we have a morphism &(g)=
neggon~! of E into itself. If g is an automorphism of R, then &(g) is an automor-
phism of the variety E.

Now we assume that U(G) has a pre-regular basis {1, u;: Ae A}. For 4,
teA with A#1, assume that u,u_,=s for some seR. Since p; is an automor-
phism of R, &(p,) is an automorphism of the variety E. Let X¥(R) be the set of
all characters ¥ on R which satisfy ypi(s)#0 for any integer g. Since (p%), is a
bijective map of X%¥(R) into itself, we can define an equivalence relation ~ on
n(X*(R)) as follows: For a, ben(X*¥(R)), a~b if and only if b=¢(p,)%(a) for
some integer gq. Then we have the following

COROLLARY 4.4. Under the same assumption as in Theorem 4.3, for any
1 %' € X¥(R) the following two statements are equivalent:

(1) R[u;, u J®g W' is isomorphic to R[u,, u, |®x W.

2 100 ~nx).

§5. sI(2, K)

Let S be a Lie algebra over K with a basis {x, y, h} and with multiplication
[x, y1=h, [x, h]=2x and [y, h]=—2y. The following formulas in U(S) are
easily seen but useful.

LemMMA 5.1. For any positive integer n we have
hx" = x"h — 2nx", hy" = y*h + 2ny",
yxt = x"y — nx""h + n(n—1)x""1, xy" = y"x + ny""h + n(n—1)y"~1.

Let R be a subalgebra of U(S) generated by xy and h. Then R is a finitely
generated commutative subalgebra of U(S), and we have the following

PROPOSITION 5.2. Let B={1, x!, y/; i,j=1}. Then
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(1) B is a regular basis for a right R-module U(S).
(2) The permuting maps p(x'), p(1) and p(y’) are given as follows:
p(x)(xy) = xy —ih +i(i—1),  p(x’)(h) = h = 2i,
p(1)(xy) = xy, p()(h) = h,
P (xy) = xy + jh +j(G+D,  p(y) (W) = h + 2j.

In this section we simply denote p=p(x). Then pi=p(x?) and p~i=p(y?)
fori=1.

PROOF OF PROPOSITION 5.2. Let U” be the subspace of U(S) spanned by the
elements whose degree is less than or equal to n. Let us prove by induction on
i+jthat x’y/e 32, x\R+R+ X%, y/R.

If i+j=1, the assertion is obvious. We may assume that i, j=1. Then

xiyl = xiT(xy/ 1) = xFWyIx 4 jyI e + j(G—- Dy
= XIT1yIT ey — ) + 1y (D
€Y 2; xR+ R+ X%, y/R by assumption.
Therefore B generates the right R-module U(S). Let
ik QX (XYY R* + X o Demny e (xY)"h™ + 3 co(xy)*h* = 0,
where i, e=1. Since (xy)"—x"y"e U?"~1 and ymx"—x"yme Ur*™~1 we have
xi(xy)ih* € xitiyipk 4 Uit2itk=1,
ye(xy)mhn exmye+mhn + Um+2e+n—1,
(xy)sh* € xsysht + U2stt~1,

Therefore by the Poincaré-Birkhoff-Witt Theorem we may assume that i+2j+k
=m+2e+n=2s+t and that

Zijkaijk xi+jyjhk + Zemn bem”xmye+mhn + Zst cstxsysht = 0.

Since i+j> j and m<e+ m, we see that xi*Jy/hk, xmyetmpn and xsysht are linearly
independent over K. Then we have a;;,=b,,,=c,=0. Hence B is a linearly
independent set over R.

For i, j=1 we have

hxt = xi(h — 2i), (xy)x! = xi(xy — ih + i(i—1)),
hyl = yi(h + 2j) and (xy)y? = yi(xy + jh + j(j+1)). Q.E.D.
PROPOSITION 5.3. Let R be the subalgebra of U(S) given above and W be
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an irreducible R-module with the central character y and a generator w. Let
y(h)=0 and y(xy)=p. Then

1) US)@rW=22, KxX*\@w+K(1®w)+ X7 Ky/®w, where the right
side is a direct sum of K-vector spaces.

(2) U(S)®gxr W has the following structure: For nx1

x(y"®w) = (n* + (a—Dn + f—)y" 1 @w,
Y @w) = (n* — (a+1Dn + px""1 @ w.

(3) Every R-submodule of U(S)®z W is R-homogeneous.
@) US)®g Wis U(S)-irreducible if and only if {*—(a+1){+ =0 has no
integral solution.

Proor. By Proposition 5.2 (2), {p":n=0,1,...}n{p~™: n=0,1,...}={1}.
Since xy€eR, the assertion (1) follows from Proposition 4.1 (1). Combining
Proposition 4.1 (2) and Proposition 5.2 (2) we have our assertion (2).

(3): Since (xp"—xp™) (h)=2(m—n) for any integers m and n, we have our
assertion by Corollary 3.3.

(4): By Corollary 4.2, U(S)®g W is U(S)-irreducible if and only if yp"(xy)
#0 for any integer n. Since yp"(xy)=p—na+n(n—1), we complete the proof.

Q.E.D.

We now classify some irreducible S-modules induced by non-trivial one-
dimensional R-modules. Let X(R), E and # be the set of all characters on R, the
variety corresponding to R and the bijective map of X(R) onto E defined in §4
respectively. Let y be a character in X*(R)={ye X(R): xp"(xy)#0 for any
integer n}. Then we can regard K as an R-module by rz=y(r)z for reR and
ze K. Then we can construct a generally induced S-module U(S)®zK. We
denote this by V(x). It is not hard to see that V() is not isomorphic to U(S)
®umnW for any proper subalgebra H of S and an H-module W. By Corollary
4.4, V(y) is isomorphic to V(y') if and only if 5n(y)~n(x’). Since R is a tran-
scendental extension of K generated by the transcendental basis {xy, h}, E=K?2.
Since X*(R)={ye X(R): {2+ (x(h)+1){ +x(xy)=0 has no integral solution} by
Proposition 5.3 (2), n(X*(R))={(a, p)e K?: {2+ (¢+1){+ =0 has no integral
solution}. Since xp(h)=yx(h)—2q and xpi(xy)=x(xy)—qx(h)+q(g—1) for any
integer g, we have

eP)a, p) = (=24, ¢* — (@+1)g+p) for (x, f)en(X*(R)).
Therefore (a, )~ (', f) in n(X*(R)) if and only if there exists an integer g such
that o' =a—2q and 4(f—pf)=(a—a') (a+o' +2).

Let C(y) be the Casimir operator of V(). Then 8C(y)v=(—2xy—_2yx+ hh)v
forve V(y). Since —2xy—2yx+hheR and yp?(—2xy—2yx+hh)=a?+20—4p
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where y(h)=a and x(xy)=p, C(y) acts on V(y) as a scalar («2+2x—4p)/8. Then
we have the following

COROLLARY 5.5. V(Y) is isomorphic to V(y) if and only if a—o’ is an even
integer and C(x)=C(x").

Proor. Since C(y)=C(yx") if and only if 4(8—p)=(a—a')(x+0a'+2), our
assertion follows from Proposition 5.4. Q.E.D.

§6. Heisenberg algebra A4,

Let A be a Lie algebra over K with a basis {x, y, z} and multiplication
[x, y1=z, [x, zZ]=Ly, zZ]=0. Then we have the following

LemMMA 6.1. For any positive integer n we have
xy" = y"x + nzy"! and yx"=x"y — nzx""L

Let R be a subalgebra of U(A) generated by xy and z. Then R is a finitely
generated commutative subalgebra of U(A4). By the similar proof to that of
Proposition 5.2 we have the following

PROPOSITION 6.2. Let B={1, xi, y/:i,j=1}. Then
(1) B is a regular basis for the right R-module U(A).
(2) The permuting maps p(x*), p(1) and p(y’) are given by

p(x)(xy) = xy — iz, p(D)(xy) =xy,  p(y)(xy) = xy + jz,
p(x)(2) = z, r()(2) = z, p(y)(2) = z.

In this section we simply denote p=p(x). Then pi=p(x?) and p~i=p(y?)
for i=1.
We have the following result which corresponds to Proposition 5.3.

PROPOSITION 6.3. Let R be the subalgebra of U(A) given above and W be
an irreducible R-module with the central character x and a generator w. Let
¥(x)=a and y(xy)=p. Then

1) UA@rW=X2; Kx*\@w+K(1®w)+ > 7, Ky’®w, where the right
side is a direct sum of K-vector spaces.

(2) U(A)®g W has the following structure: For n=1,

x(y"@w) = (B+(n—Da)y" "t @ w, y(x"@w) = (B—n)x""' @ w.

(3) Every R-submodule of U(A)®g W is R-homogeneous if and only if
a#0.
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(4) Assume that a#0. Then U(A)®g W is U(A)-irreducible if and only
if a{+ =0 has no integral solution.

Proor. We can prove (1) and (2) as in the proof of Proposition 5.3.

(3): If a=0, then ypi(xy)=p for any integer q. Therefore K(x@w+1Q@w)
is a non-homogeneous R-submodule of U(4)®@z W. If a#0, then (xp"—xp™) (xy)
=m—n for any integers m and n. Therefore applying Corollary 3.3 we have our
assertion (3).

(4): By Corollary 4.2, U(A)®g Wis U(A)-irreducible if and only if yp"(xy)
#0 for any integer n. Since xp"(xy)=f — na, we complete the proof. Q.E.D.

Let X(R), E and 7 be the set of all characters on R, the variety correspond-
ing to R and the bijective map of X(R) onto E defined in §4 respectively. Let x
be a character in X*(R)={xe X(R): xp"(xy)#0 for any integer n}. Then we
can regard K as an R-module by rz=y(r)z for reR and ze K. Then we can
construct a generally induced A-module (not necessarily irreducible) U(A)®g K.
We denote this by A(y). It is not hard to see that A(y) is not isomorphic to
U(A)®ymyW for any proper subalgebra H of A and an H-module W. By Cor-
ollary 4.4, A(y) is isomorphic to A(y’) if and only if n(}x)~n(y’). As in §5 we
have E=K?2, X*(R)={xe X(R): y(z){+ x(xy)=0 has no integral solution} and
n(X*(R))={(o, ) e K2: a{+B=0 has no integral solution}. Since ypi(xy)=
x(xy)—qx(z) and xp%(z)=yx(z), we have

e(p)(a, B) = (¢, f—qu) for (x, B)en(X*(R)).

Therefore (a, f)~ (o', B') if and only if «=a’ and f—p’ is an integral multiple of
«. We have then the following

PROPOSITION 4. A(Y) is isomorphic to A(y') if and only if a=a’ and f—pf'
is an integral multiple of a.
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