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1. Introduction

The aim of this paper is to study the essential self-adjointness of a Schrodinger
operator -A + q(x) acting in L2(Rm), m ^ l , with the domain Q?(Rm\F), where F
is the union of at most countable number of /ca-dimensional ( 0 ^ a ^ m - l ) affine
subspaces Sa (a e A) in Rm which satisfy

r = inf {dist(Sa, Sp); a, fie A, a*£} > 0.

Here dist (<Sa, Sp) denotes the distance from Sa to Sp.
This study is motivated by a theorem proved by B. Simon [6], which is a

generalization of the results of H. Kalf and J. Walter [1] and U. W. Schmincke
[5]. In this theorem of Simon, which corresponds to the case of F = {0}, it is
assumed that the potential q = q1 + q2is & real-valued function with qx eL2

oc(R
m\

{0}) and q2 e L°°(Rm) such that

qi(x) ^ -(l/4)m(m-4)|x|-2 (xeR*\{0}).

We extend this result to the case of the general F as stated above. The fol-
lowing is our theorem.

THEOREM. Set Q = Rm\F and let ajeC\Q){\^j^m\ q^eL^Q) and
q2eL°°(Rm) be real-valued functions. Assume that for some e (0<e<r/2), qx

satisfies the following conditions:
(C.I) For eachoceA

qi(x) ^ -(l/4)(m-fcj(m-fca-4)[dist(x, Sa)T
2

whenever 0<dist(x, Sa)<s.

(C.2) q± is bounded from below on

Let q = q± + q2- Then the symmetric operator T acting in L2(Rm) defined by
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is essentially self-adjoint.

For the proof of this theorem, we apply the method given in Simon [6] and
Kalf-Walter [2].

2. Basic lemmas

Let us first recall Kato's inequality. Set L = X7=i (d/dxj-ia/x))2. If
ueL\0Q(Q) and Lu e Ljoc(Q)9 then we have the following distributional inequality
(see [3], [4], [7], [8]):

A\u\ ^ Re [(sgn u)Lu].

By the aid of this inequality, we obtain the following lemma as in [6] and
[2].

LEMMA 1. Let Q and T be as in the theorem, and suppose that there exist
functions Q9 # and <Pn (n = l, 2,...) which satisfy the following conditions:

(P.I) QeC°(Q\ 0eC2(Q) (]L2(Q), (-A + Q)<PeL2(Q) and

(P.2) <Pn^><P weakly in L2(Q) and (-A+Q)$n-*(-A + Q)<P weakly in
L2(Q) as n-+oo.

(P.3) qt ^QonQ,<Pn^Q on £ (n = l, 2,...) and (-A + Q + d)<P>0 on Q
for some 8eR.

Then the assertion of the theorem holds.

Before stating Lemma 2 we introduce some functions.

Let a(f) be a non-increasing function in C°°(R) such that

<x(0 = 1 for t^ 0, <x(0 = 0 for t ^ 1,

(2.1) 0 < a ( 0 < l for 0 < t < 1,

supo<,<i |a'(r)| < 3 and sup0<f<1 |a"(0l < 5.

Let/and/„ (n = l, 2,...) be functions which satisfy the following conditions
(1)~(4):

(1) /e^(R m ) and /BeQ(Rffl) (n = l, 2,...), where ^(Rm) is the Schwartz
space of C00-functions of rapid decrease.

(2) /(x)>0 and 0^fn(x)^fn+1(x)^f(x) for any xeRm and n = l, 2,....
(3) If we set DB = {xeR»;/,(x)=/(x)}(n = l,2,...), then DMgIntDn+1

(n = l, 2,...) and W*=1 Dn = Rm, where IntDn+1 is the interior of Dn+1.
(4) For any r > 0, x, y, o9 xeRm with \x-y\<r and \a\ = |T| = 1, the follow-

ing estimates hold:
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(2.2) |D./(x)| g/(x) g e'f(y), \DaDJ(x)\ :g 3/(x),

\DafJLx)\£4f(x) and \DaDJn(x)\ ^ 20/(x) (n = l,2,...),

where Da denotes the directional derivative in the direction a.

An example of a set of/and/,, is given by (cf. [2])

f(x) = exp(-( l + \x\2)^l fn(x) = a(

Let / and /„ satisfy (1)~(4), P be an orthogonal transformation acting in
Rm, and a e Rm. If we define / and /„ (n = 1, 2,...) by /(*) =/(Px + a) and /„(*) =
fn(Px + a), then / and /„ also satisfy (1)^(4). We use this fact in the proof of
Lemma 2.

LEMMA 2. Let v be an arbitrary positive constant, S be a k-dimensional
affine subspace in Rm(0^fc^m —1), and f,fn (n = l, 2,...) be functions which
satisfy (1)~(4) stated above. Set V={xeRm; 0<dist(x, S)<v}.

Then there exist functions \j/ and \j/n (n=l, 2,...) which satisfy the following
conditions (i)~(v):

( i ) il/e C°°(R-\5) and <^ e Q(R-\S) (n = 1, 2,...).
(ii) i/<x)>0 and O^\l/n(x)S*l'n+i(x)S*l'(x) for allxeRm and n = l, 2,....
(iii) If we set En={xeV;\l/n(x) = il/(x)} (n = 1, 2,...), then En^IntEn+1

(iv) iK*)=/(x) anrf U*)=Ux) (n = l, 2,...)/or
(v) T/zere 15 # constant c>0 depending only on v and m such that the

following estimates (v-a), (v-b) and (v-c)

(v-a)

(v-b) |( - J - (1/4) (m - fc) (m - fe - 4) [dist (x, S)y2)ij/(x)\ < c^(x)

/or any x e F.

(v-c) f | ( - J - (l/4)(m-fe)(m-fe-4)[dist(x, S)T2)^n\
2dx

Jv

for any n = 1, 2,....

PROOF. We prove this lemma only for /c^O; our proof is valid for fc=0
under some modification.

By a coordinate transformation remarked just before Lemma 2, we may
assume that S = Rfex{0} from the beginning. Then dist(x, S)=|x2| for any

Set j3(x2) = a(2-(2/v)|x2|), x2GRm"fe and define \j/ and \j/n (n = l, 2,...) by
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- /J(x2)),

= /»(x)/J(x2) + |x2|<*-*+*>/V.(*i, 0)/J(wx2)(l - j8(x2))

n = l, 2,. . . .
Let us verify that r̂ and {//„ defined as above satisfy the conditions (i)~(v).

Since by definition (i), (ii), (iii) and (iv) hold evidently, we have only to prove (v).
In what follows we use Cj (j = l, 2, 3, 4) to denote constants depending only on
v and m.

First we remark that for any integer s> —m + k

(2.3) ^ \x2\'\f(x» 0)\2dx = (m-fcXm-fc + s r V ^ |/(xlf 0)\2dx

^ mvse2v { \f\2dx.
JV

By this inequality we have

\xj,\2dx ^2^ \f\2dx + 2 Jfr|x2r-*+*|/(x1, 0)\2dx

^ 2(1 + mv*-m+ke2*) [ \f\2dx9Jv

which implies (v-a).
We proceed to prove (v-b). Let us set

^i = E*=i 22/3x? and 4 2 = A - At.

We first note that

(2.4) (A2 + (l/4)(m-fc)(m-fc-4)|x2|-2)|x2|<4-m+*>/2 = 0.

If 0<|x2 |^v/2, then tKx) = |x2|<
4-'"+*>/2/(x1, 0), so that

+ \{A2 + (l/4)(m-fe)(m-fe-4)|x2|-
2)|x2|(

4-'»+t)/2|./(x1) 0)

= \x2\(4-m+k)/2KAJ)(xu 0)|

by (2.4). Since

\(AJ)(xu 0)| S 3fe/(x1; 0) < 3mf(xlt 0),

in view of condition (2.2), it follows that |7(x)|<3m^(x) for 0<|x2 |^v/2. We
next consider the case v/2< |x2| < v. Noting that

(2.5) midx)(x2)| < 6/v and Wpjdxf,(x2)\ < 44/v2
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for fc + l ^ i ^ m and using (2.2) we can see that there is a constant c1 such that
| < c1f(x). Combining this with the fact that

f(x) = supv/2

we obtain |/(x)|<c2\l/(x) for v/2< |*2| < v. Thus (v-b) is satisfied.
Finally we show (v-c). For simplicity we prove (v-c) only for n = 3, 4, . . . .

Let us set yn(x2) = P(nx2) (1 - p(x2)) for x2 e Rm~k. Then by (2.5) we have

(2.6)

(2.7)

for i = k+l,..., m. Thus we have

\(-A - (l/4)(m-k)(m-k-4)\>

\(8yJdXi)(x 2 ) 1 , <

2)1 ^ <

i (6/v)n

6/v

io
(44/v>

44/v2

0

if v / (2n)< |

if v/2 < |x2|

elsewhere,

2 if V/(2B)

if v/2<

elsewhere

x2 | < v/n

< V

< |x2| < v/n

|X2 | < V

(l/4)(m-fc)|m-fc-4|

1/2

where /,- (j = l, 2, 3, 4) denotes thej-th term respectively.
By virtue of (2.2), (2.3) and (2.5), we can easily check that there is a constant

c3 such that

(2.8) I1+I2 + I3Sc

Now we estimate 74. By virtue of (2.4), (2.6) and (2.7),
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(m-k)\4-m + k\ j( \x2\
2-m+k(6n)2v-2(f(xu 0))2dx

(m-k) jf lx2|
4-m+*(44n2)2v-4(/(x1, 0))2dx

where we set FB={x=(xt, x2)eRm=R* xR™-fc; v/(2n)<|x2|<v/n} (n = l, 2,...).
Since

for any n = l, 2,..., it follows from (2.3) that

J4 S (6/v)m2

/ A A I *}\ l i ^ l i \ A --_L I. /• /» y A \ x ^ t I '

Combining this with (2.8), we obtain

h + 12 + J3 + U ^ Oa + c4) -

which completes the proof of (v-c). q. e. d.

3. Proof of the theorem

Now we fix a set of /and/ , (n = l, 2,...) satisfying (1)~(4). For each <xeA
we apply Lemma 2 with S = Sa and v = e/2, and put

Let Q be a real-valued function in C°(O) which satisfies the following con-
ditions (a), (b) and (c):

(a) qx(x) ^ Q(x) for any xeQ.
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(b) For each oceA

Q(x) = _(l/4)(m-fcj(m-fc.-4)[dist(x, Sa)T
2,

whenever 0 < dist (x, Sa) < e/2.

(c) Q is bounded on r\aeA {xeRm; e/2 g dist(x, SJ} .
Define 0 and <Pn (n = l, 2,...) by

*/(*)

;) if 0 < dist (x, Sa) < e/2 for some a

elsewhere,

r ^J(x) if 0 < dist (x, SJ < e/2 for some a
1 /n(x) elsewhere.

We now prove that the conditions (P.I), (P.2) and (P.3) in Lemma 1 are
satisfied with these Q, 0 and <Pn. Let us set F(a) = {xeRm ; 0<dist(x, 5a)<e/2}
for each oceA,W= KJaeA F(a) and S = Q\W.

To verify (P.I) we have only to examine that <PeL2(Q) and ( — A + Q)<Pe
L2(Q) since the other conditions in (P.I) are obvious. Using (v-a) and (v-b) in
Lemma 2, we have

\\ j Jf\ £ae^(a)I^N ^ J J/| ^Jff + CX)

and

l(

[ \r\2dx<+oo.

We proceed to verify (P.2). Since 0 ^ # n ^ # on O(n = l, 2,...) and
. ^ <Pn(x) = <P(x) (xeQ), it follows from Lebesgue's covergence theorem that
<!> strongly in L2(Q). Let u be an arbitrary element of L2(Q). Then we have

Uii

(3.1)

where we set II(n)={xeQ; (-A + Q(x))($n(x))*(-A + Q(x))(<P(x))} (n = l, 2,...).
Since, from the condition (3) imposed on/and/n and (iii) in Lemma 2, II(n + l )g
(Rm\Dn) u {V^(y(a)\EJ} for any n = l, 2,..., we obtain

|W |^xl1 /2{(
(n) J
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(3.2) l i n w \ \u\2dx = 0.
Jn(n)

On the other hand, by (v-c) and (2.2), we see that

[ \f\*dx[ \
JQ

for some constant c' which is independent of n. Applying this fact and (3.2) to
(3.1), we conclude that

(
JQ

Finally let us verify (P.3). We define 8 by

5 = 20m + c + sup{|Q(x)|; xeS},

where c is the constant given in Lemma 2 for v = e/2. If x e E, then

(~A + Q(x) + S)*(x) = - (Af)(x) + Q(x)f(x) + Sf(x)

^ - 20m/(x) - sup {|Q(x)|;xeS} ./(x) + Sf(x) > 0.

If x e V(a) for some a e A, then by (v-b) in Lemma 2

= (-J-(l/4)(m-/ca)(m-/ca-4)[dist(x, 5a)]"2

^(-ci/ra(x) + (5iAaW)>0.

This completes the proof of (P.3). q. e. d.
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