Essential self-adjointness of Schrödinger operators with potentials singular along affine subspaces

Mikio Maeda
(Received September 19, 1980)

1. Introduction

The aim of this paper is to study the essential self-adjointness of a Schrödinger operator $-\Delta+q(x)$ acting in $L^{2}\left(\mathbf{R}^{m}\right), m \geqq 1$, with the domain $C_{0}^{\infty}\left(\mathbf{R}^{m} \backslash F\right)$, where F is the union of at most countable number of k_{α}-dimensional ($0 \leqq k_{\alpha} \leqq m-1$) affine subspaces $S_{\alpha}(\alpha \in A)$ in \mathbf{R}^{m} which satisfy

$$
r=\inf \left\{\operatorname{dist}\left(S_{\alpha}, S_{\beta}\right) ; \alpha, \beta \in A, \alpha \neq \beta\right\}>0 .
$$

Here dist $\left(S_{\alpha}, S_{\beta}\right)$ denotes the distance from S_{α} to S_{β}.
This study is motivated by a theorem proved by B. Simon [6], which is a generalization of the results of H. Kalf and J. Walter [1] and U. W. Schmincke [5]. In this theorem of Simon, which corresponds to the case of $F=\{0\}$, it is assumed that the potential $q=q_{1}+q_{2}$ is a real-valued function with $q_{1} \in L_{\text {ioc }}^{2}\left(\mathbf{R}^{m} \backslash\right.$ $\{0\})$ and $q_{2} \in L^{\infty}\left(\mathbf{R}^{m}\right)$ such that

$$
q_{1}(x) \geqq-(1 / 4) m(m-4)|x|^{-2} \quad\left(x \in \mathbf{R}^{m} \backslash\{0\}\right) .
$$

We extend this result to the case of the general F as stated above. The following is our theorem.

Theorem. Set $\Omega=\mathbf{R}^{m} \backslash F$ and let $a_{j} \in C^{1}(\Omega)(1 \leqq j \leqq m), q_{1} \in L_{\text {loc }}^{2}(\Omega)$ and $q_{2} \in L^{\infty}\left(\mathbf{R}^{m}\right)$ be real-valued functions. Assume that for some $\varepsilon(0<\varepsilon<r / 2), q_{1}$ satisfies the following conditions:
(C.1) For each $\alpha \in A$

$$
q_{1}(x) \geqq-(1 / 4)\left(m-k_{\alpha}\right)\left(m-k_{\alpha}-4\right)\left[\operatorname{dist}\left(x, S_{\alpha}\right)\right]^{-2}
$$

whenever $0<\operatorname{dist}\left(x, S_{\alpha}\right)<\varepsilon$.
(C.2) q_{1} is bounded from below on

$$
\cap_{\alpha \in A}\left\{x \in \mathbf{R}^{m} ; \varepsilon \leqq \operatorname{dist}\left(x, S_{\alpha}\right)\right\}
$$

Let $q=q_{1}+q_{2}$. Then the symmetric operator T acting in $L^{2}\left(\mathbf{R}^{m}\right)$ defined by

$$
T=-\sum_{j=1}^{m}\left(\partial / \partial x_{j}-i a_{j}(x)\right)^{2}+q(x), \quad D(T)=C_{0}^{\infty}(\Omega),
$$

is essentially self-adjoint.
For the proof of this theorem, we apply the method given in Simon [6] and Kalf-Walter [2].

2. Basic lemmas

Let us first recall Kato's inequality. Set $L=\sum_{j=1}^{m}\left(\partial / \partial x_{j}-i a_{j}(x)\right)^{2}$. If $u \in L_{\mathrm{ioc}}^{1}(\Omega)$ and $L u \in L_{\mathrm{loc}}^{1}(\Omega)$, then we have the following distributional inequality (see [3], [4], [7], [8]):

$$
\Delta|u| \geqq \operatorname{Re}[(\operatorname{sgn} \bar{u}) L u] .
$$

By the aid of this inequality, we obtain the following lemma as in [6] and [2].

Lemma 1. Let Ω and T be as in the theorem, and suppose that there exist functions Q, Φ and $\Phi_{n}(n=1,2, \ldots)$ which satisfy the following conditions:
(P.1) $Q \in C^{0}(\Omega), \quad \Phi \in C^{2}(\Omega) \cap L^{2}(\Omega),(-\Delta+Q) \Phi \in L^{2}(\Omega)$ and $\Phi_{n} \in C_{0}^{2}(\Omega)$ ($n=1,2, \ldots$).
(P.2) $\Phi_{n} \rightarrow \Phi$ weakly in $L^{2}(\Omega)$ and $(-\Delta+Q) \Phi_{n} \rightarrow(-\Delta+Q) \Phi$ weakly in $L^{2}(\Omega)$ as $n \rightarrow \infty$.
(P.3) $q_{1} \geqq Q$ on $\Omega, \Phi_{n} \geqq 0$ on $\Omega(n=1,2, \ldots)$ and $(-\Delta+Q+\delta) \Phi>0$ on Ω for some $\delta \in \mathbf{R}$.

Then the assertion of the theorem holds.
Before stating Lemma 2 we introduce some functions.
Let $\alpha(t)$ be a non-increasing function in $C^{\infty}(\mathbf{R})$ such that

$$
\begin{gather*}
\alpha(t)=1 \text { for } t \leqq 0, \quad \alpha(t)=0 \text { for } t \geqq 1, \\
0<\alpha(t)<1 \text { for } 0<t<1, \tag{2.1}\\
\sup _{0<t<1}\left|\alpha^{\prime}(t)\right|<3 \text { and } \sup _{0<t<1}\left|\alpha^{\prime \prime}(t)\right|<5 .
\end{gather*}
$$

Let f and $f_{n}(n=1,2, \ldots)$ be functions which satisfy the following conditions (1) ~(4):
(1) $f \in \mathscr{S}\left(\mathbf{R}^{m}\right)$ and $f_{n} \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)(n=1,2, \ldots)$, where $\mathscr{S}\left(\mathbf{R}^{m}\right)$ is the Schwartz space of C^{∞}-functions of rapid decrease.
(2) $f(x)>0$ and $0 \leqq f_{n}(x) \leqq f_{n+1}(x) \leqq f(x)$ for any $x \in \mathbf{R}^{m}$ and $n=1,2, \ldots$.
(3) If we set $D_{n}=\left\{x \in \mathbf{R}^{m} ; f_{n}(x)=f(x)\right\}(n=1,2, \ldots)$, then $D_{n} \subseteq \operatorname{Int} D_{n+1}$ ($n=1,2, \ldots$) and $\cup_{n=1}^{\infty} D_{n}=\mathbf{R}^{m}$, where Int D_{n+1} is the interior of D_{n+1}.
(4) For any $r>0, \quad x, y, \sigma, \tau \in \mathbf{R}^{m}$ with $|x-y|<r$ and $|\sigma|=|\tau|=1$, the following estimates hold:

$$
\begin{align*}
& \left|D_{\sigma} f(x)\right| \leqq f(x) \leqq e^{r} f(y), \quad\left|D_{\sigma} D_{\tau} f(x)\right| \leqq 3 f(x) \tag{2.2}\\
& \left|D_{\sigma} f_{n}(x)\right| \leqq 4 f(x) \quad \text { and } \quad\left|D_{\sigma} D_{\tau} f_{n}(x)\right| \leqq 20 f(x) \quad(n=1,2, \ldots),
\end{align*}
$$

where D_{σ} denotes the directional derivative in the direction σ.
An example of a set of f and f_{n} is given by (cf. [2])

$$
f(x)=\exp \left(-\left(1+|x|^{2}\right)^{1 / 2}\right), \quad f_{n}(x)=\alpha((|x| / n)-1) \cdot \exp \left(-\left(1+|x|^{2}\right)^{1 / 2}\right)
$$

Let f and f_{n} satisfy (1) $\sim(4), P$ be an orthogonal transformation acting in \mathbf{R}^{m}, and $a \in \mathbf{R}^{m}$. If we define \tilde{f} and $\tilde{f}_{n}(n=1,2, \ldots)$ by $\tilde{f}(x)=f(P x+a)$ and $\tilde{f}_{n}(x)=$ $f_{n}(P x+a)$, then \tilde{f} and \tilde{f}_{n} also satisfy (1) $\sim(4)$. We use this fact in the proof of Lemma 2.

Lemma 2. Let v be an arbitrary positive constant, S be a k-dimensional affine subspace in $\mathbf{R}^{m}(0 \leqq k \leqq m-1)$, and $f, f_{n}(n=1,2, \ldots)$ be functions which satisfy (1) $\sim(4)$ stated above. Set $V=\left\{x \in \mathbf{R}^{m} ; 0<\operatorname{dist}(x, S)<v\right\}$.

Then there exist functions ψ and $\psi_{n}(n=1,2, \ldots)$ which satisfy the following conditions (i) $\sim(\mathrm{v})$:
(i) $\psi \in C^{\infty}\left(\mathbf{R}^{m} \backslash S\right)$ and $\psi_{n} \in C_{0}^{\infty}\left(\mathbf{R}^{m} \backslash S\right)(n=1,2, \ldots)$.
(ii) $\psi(x)>0$ and $0 \leqq \psi_{n}(x) \leqq \psi_{n+1}(x) \leqq \psi(x)$ for all $x \in \mathbf{R}^{m}$ and $n=1,2, \ldots$.
(iii) If we set $E_{n}=\left\{x \in V ; \psi_{n}(x)=\psi(x)\right\} \quad(n=1,2, \ldots)$, then $E_{n} \subseteq \operatorname{Int} E_{n+1}$ ($n=1,2, \ldots$) and $\cup_{n=1}^{\infty} E_{n}=V$.
(iv) $\psi(x)=f(x)$ and $\psi_{n}(x)=f_{n}(x)(n=1,2, \ldots)$ for $x \in \mathbf{R}^{m} \backslash S \backslash V$.
(v) There is a constant $c>0$ depending only on v and m such that the following estimates ($\mathrm{v}-\mathrm{a}$), ($\mathrm{v}-\mathrm{b}$) and $(\mathrm{v}-\mathrm{c})$ hold:
(v-a) $\int_{V}|\psi|^{2} d x \leqq c \int_{V}|f|^{2} d x$.
(v-b) $\left|\left(-\Delta-(1 / 4)(m-k)(m-k-4)[\operatorname{dist}(x, S)]^{-2}\right) \psi(x)\right|<c \psi(x)$
for any $\quad x \in V$.
$(\mathrm{v}-\mathrm{c}) \int_{V}\left|\left(-\Delta-(1 / 4)(m-k)(m-k-4)[\operatorname{dist}(x, S)]^{-2}\right) \psi_{n}\right|^{2} d x$
$\leqq c \int_{V}|f|^{2} d x \quad$ for any $n=1,2, \ldots$
Proof. We prove this lemma only for $k \neq 0$; our proof is valid for $k=0$ under some modification.

By a coordinate transformation remarked just before Lemma 2, we may assume that $S=\mathbf{R}^{k} \times\{0\}$ from the beginning. Then $\operatorname{dist}(x, S)=\left|x_{2}\right|$ for any $x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{m}=\mathbf{R}^{k} \times \mathbf{R}^{m-k}$.

Set $\beta\left(x_{2}\right)=\alpha\left(2-(2 / v)\left|x_{2}\right|\right), x_{2} \in \mathbf{R}^{m-k}$ and define ψ and $\psi_{n}(n=1,2, \ldots)$ by

$$
\begin{aligned}
& \psi(x)=f(x) \beta\left(x_{2}\right)+\left|x_{2}\right|^{(4-m+k) / 2} f\left(x_{1}, 0\right)\left(1-\beta\left(x_{2}\right)\right), \\
& \psi_{n}(x)=f_{n}(x) \beta\left(x_{2}\right)+\left|x_{2}\right|^{(4-m+k) / 2} f_{n}\left(x_{1}, 0\right) \beta\left(n x_{2}\right)\left(1-\beta\left(x_{2}\right)\right)
\end{aligned}
$$

for $x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{m}=\mathbf{R}^{k} \times \mathbf{R}^{m-k}$ and $n=1,2, \ldots$.
Let us verify that ψ and ψ_{n} defined as above satisfy the conditions (i) $\sim(\mathrm{v})$. Since by definition (i), (ii), (iii) and (iv) hold evidently, we have only to prove (v). In what follows we use $c_{j}(j=1,2,3,4)$ to denote constants depending only on v and m.

First we remark that for any integer $s>-m+k$

$$
\begin{align*}
\int_{V}\left|x_{2}\right|^{s}\left|f\left(x_{1}, 0\right)\right|^{2} d x & =(m-k)(m-k+s)^{-1} v^{s} \int_{V}\left|f\left(x_{1}, 0\right)\right|^{2} d x \tag{2.3}\\
& \leqq m v^{s} e^{2 v} \int_{V}|f|^{2} d x
\end{align*}
$$

By this inequality we have

$$
\begin{aligned}
\int_{V}|\psi|^{2} d x & \leqq 2 \int_{V}|f|^{2} d x+2 \int_{V}\left|x_{2}\right|^{4-m+k}\left|f\left(x_{1}, 0\right)\right|^{2} d x \\
& \leqq 2\left(1+m v^{4-m+k} e^{2 v}\right) \int_{V}|f|^{2} d x
\end{aligned}
$$

which implies ($\mathrm{v}-\mathrm{a}$).
We proceed to prove (v-b). Let us set

$$
\begin{aligned}
& I(x)=\left(-\Delta-(1 / 4)(m-k)(m-k-4)\left|x_{2}\right|^{-2}\right) \psi(x) \\
& \Delta_{1}=\sum_{i=1}^{k} \partial^{2} / \partial x_{i}^{2} \quad \text { and } \quad \Delta_{2}=\Delta-\Delta_{1}
\end{aligned}
$$

We first note that

$$
\begin{equation*}
\left(\Delta_{2}+(1 / 4)(m-k)(m-k-4)\left|x_{2}\right|^{-2}\right)\left|x_{2}\right|^{(4-m+k) / 2}=0 . \tag{2.4}
\end{equation*}
$$

If $0<\left|x_{2}\right| \leqq v / 2$, then $\psi(x)=\left.\left|x_{2}\right|\right|^{4-m+k) / 2} f\left(x_{1}, 0\right)$, so that

$$
\begin{aligned}
& |I(x)| \leqq\left|x_{2}\right|^{(4-m+k) / 2}\left|\left(\Delta_{1} f\right)\left(x_{1}, 0\right)\right| \\
& \quad+\left.\left|\left(\Delta_{2}+(1 / 4)(m-k)(m-k-4)\left|x_{2}\right|^{-2}\right)\right| x_{2}\right|^{(4-m+k) / 2} \mid \cdot f\left(x_{1}, 0\right) \\
& \quad=\left|x_{2}\right|^{(4-m+k) / 2}\left|\left(\Delta_{1} f\right)\left(x_{1}, 0\right)\right|
\end{aligned}
$$

by (2.4). Since

$$
\left|\left(\Delta_{1} f\right)\left(x_{1}, 0\right)\right| \leqq 3 k f\left(x_{1}, 0\right)<3 m f\left(x_{1}, 0\right)
$$

in view of condition (2.2), it follows that $|I(x)|<3 m \psi(x)$ for $0<\left|x_{2}\right| \leqq v / 2$. We next consider the case $v / 2<\left|x_{2}\right|<v$. Noting that

$$
\begin{equation*}
\left|\left(\partial \beta / \partial x_{i}\right)\left(x_{2}\right)\right|<6 / v \text { and }\left|\left(\partial^{2} \beta / \partial x_{i}^{2}\right)\left(x_{2}\right)\right|<44 / v^{2} \tag{2.5}
\end{equation*}
$$

for $k+1 \leqq i \leqq m$ and using (2.2) we can see that there is a constant c_{1} such that $|I(x)|<c_{1} f(x)$. Combining this with the fact that

$$
f(x)=f(x) \beta\left(x_{2}\right)+f(x)\left(1-\beta\left(x_{2}\right)\right) \leqq\left(1+e^{v} \sup _{v / 2<t<v} t^{(m-k-4) / 2}\right) \psi(x),
$$

we obtain $|I(x)|<c_{2} \psi(x)$ for $v / 2<\left|x_{2}\right|<v$. Thus (v-b) is satisfied.
Finally we show (v-c). For simplicity we prove (v-c) only for $n=3,4, \ldots$. Let us set $\gamma_{n}\left(x_{2}\right)=\beta\left(n x_{2}\right)\left(1-\beta\left(x_{2}\right)\right)$ for $x_{2} \in \mathbf{R}^{m-k}$. Then by (2.5) we have

$$
\begin{align*}
\left|\left(\partial \gamma_{n} / \partial x_{i}\right)\left(x_{2}\right)\right| \leqq & \begin{cases}(6 / v) n & \text { if } v /(2 n)<\left|x_{2}\right|<v / n \\
6 / v & \text { if } v / 2<\left|x_{2}\right|<v \\
0 & \text { elsewhere }\end{cases} \tag{2.6}\\
\left|\left(\partial^{2} \gamma_{n} / \partial x_{i}^{2}\right)\left(x_{2}\right)\right| \leqq & \begin{cases}\left(44 / v^{2}\right) n^{2} & \text { if } v /(2 n)<\left|x_{2}\right|<v / n \\
44 / v^{2} & \text { if } v / 2<\left|x_{2}\right|<v \\
0 & \text { elsewhere }\end{cases} \tag{2.7}
\end{align*}
$$

for $i=k+1, \ldots, m$. Thus we have

$$
\begin{aligned}
& \left\{\int_{V}\left|\left(-\Delta-(1 / 4)(m-k)(m-k-4)\left|x_{2}\right|^{-2}\right) \psi_{n}\right|^{2} d x\right\}^{1 / 2} \\
& \quad \leqq\left\{\int_{V}\left|\Delta\left(f_{n}(x) \beta\left(x_{2}\right)\right)\right|^{2} d x\right\}^{1 / 2} \\
& \quad+(1 / 4)(m-k)|m-k-4|\left\{\int_{V}\left|x_{2}\right|^{-4}\left(f_{n}(x) \beta\left(x_{2}\right)\right)^{2} d x\right\}^{1 / 2} \\
& \quad+\left\{\int_{V}\left|x_{2}\right|^{\mid-m+k}\left(\gamma_{n}\left(x_{2}\right)\right)^{2}\left(\left(\Delta_{1} f_{n}\right)\left(x_{1}, 0\right)\right)^{2} d x\right\}^{1 / 2} \\
& \\
& \quad+\left\{\int_{V}\left|\left(\Delta_{2}+(1 / 4)(m-k)(m-k-4)\left|x_{2}\right|^{-2}\right)\left(\left|x_{2}\right|^{(4-m+k) / 2} \gamma_{n}\left(x_{2}\right)\right)\right|^{2}\right. \\
& = \\
& \quad I_{1}+I_{2}+I_{3}+I_{4},
\end{aligned}
$$

where $I_{j}(j=1,2,3,4)$ denotes the j-th term respectively.
By virtue of (2.2), (2.3) and (2.5), we can easily check that there is a constant c_{3} such that

$$
\begin{equation*}
I_{1}+I_{2}+I_{3} \leqq c_{3}\left\{\int_{V}|f|^{2} d x\right\}^{1 / 2} \tag{2.8}
\end{equation*}
$$

Now we estimate I_{4}. By virtue of (2.4), (2.6) and (2.7),

$$
I_{4}=\left\{\int_{V} \mid 2 \sum_{i=k+1}^{m} \partial / \partial x_{i}\left(\left|x_{2}\right|^{(4-m+k) / 2}\right) \cdot\left(\partial \gamma_{n} / \partial x_{i}\right)\left(x_{2}\right)\right.
$$

$$
\begin{aligned}
& \left.+\left.\left|x_{2}\right|^{(4-m+k) / 2}\left(\Delta_{2} \gamma_{n}\right)\left(x_{2}\right)\right|^{2}\left(f_{n}\left(x_{1}, 0\right)\right)^{2} d x\right\}^{1 / 2} \\
\leqq & (m-k)|4-m+k|\left\{\int_{V_{n}}\left|x_{2}\right|^{2-m+k}(6 n)^{2} v^{-2}\left(f\left(x_{1}, 0\right)\right)^{2} d x\right. \\
& \left.+\int_{V_{1}}\left|x_{2}\right|^{2-m+k}(6 / v)^{2}\left(f\left(x_{1}, 0\right)\right)^{2} d x\right\}^{1 / 2} \\
& +(m-k)\left\{\int_{V_{n}}\left|x_{2}\right|^{4-m+k}\left(44 n^{2}\right)^{2} v^{-4}\left(f\left(x_{1}, 0\right)\right)^{2} d x\right. \\
& \left.+\int_{V_{1}}\left|x_{2}\right|^{4-m+k}\left(44 / v^{2}\right)^{2}\left(f\left(x_{1}, 0\right)\right)^{2} d x\right\}^{1 / 2}
\end{aligned}
$$

where we set $V_{n}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{m}=\mathbf{R}^{k} \times \mathbf{R}^{m-k} ; v /(2 n)<\left|x_{2}\right|<v / n\right\}(n=1,2, \ldots)$. Since

$$
\begin{aligned}
& n^{2} \int_{V_{n}}\left|x_{2}\right|^{2-m+k}\left(f\left(x_{1}, 0\right)\right)^{2} d x=\int_{V_{1}}\left|x_{2}\right|^{2-m+k}\left(f\left(x_{1}, 0\right)\right)^{2} d x, \\
& n^{4} \int_{V_{n}}\left|x_{2}\right|^{4-m+k}\left(f\left(x_{1}, 0\right)\right)^{2} d x=\int_{V_{1}}\left|x_{2}\right|^{4-m+k}\left(f\left(x_{1}, 0\right)\right)^{2} d x
\end{aligned}
$$

for any $n=1,2, \ldots$, it follows from (2.3) that

$$
\begin{aligned}
I_{4} \leqq & (6 / v) m^{2}\left\{2 \int_{V_{1}}\left|x_{2}\right|^{2-m+k}\left(f\left(x_{1}, 0\right)\right)^{2} d x\right\}^{1 / 2} \\
& +\left(44 / v^{2}\right) m\left\{2 \int_{V_{1}}\left|x_{2}\right|^{4-m+k}\left(f\left(x_{1}, 0\right)\right)^{2} d x\right\}^{1 / 2} \\
\leqq & c_{4}\left\{\int_{V}|f|^{2} d x\right\}^{1 / 2}
\end{aligned}
$$

Combining this with (2.8), we obtain

$$
I_{1}+I_{2}+I_{3}+I_{4} \leqq\left(c_{3}+c_{4}\right)\left\{\int_{V}|f|^{2} d x\right\}^{1 / 2}
$$

which completes the proof of $(\mathrm{v}-\mathrm{c})$.
q.e.d.

3. Proof of the theorem

Now we fix a set of f and $f_{n}(n=1,2, \ldots)$ satisfying (1) (4). For each $\alpha \in A$ we apply Lemma 2 with $S=S_{\alpha}$ and $v=\varepsilon / 2$, and put

$$
\psi^{\alpha}=\psi, \quad \psi_{n}^{\alpha}=\psi_{n} \quad \text { and } \quad E_{n}^{\alpha}=E_{n}, \quad n=1,2, \ldots
$$

Let Q be a real-valued function in $C^{0}(\Omega)$ which satisfies the following conditions (a), (b) and (c):
(a) $\quad q_{1}(x) \geqq Q(x) \quad$ for any $\quad x \in \Omega$.
(b) For each $\alpha \in A$

$$
\begin{aligned}
& Q(x)=-(1 / 4)\left(m-k_{\alpha}\right)\left(m-k_{\alpha}-4\right)\left[\operatorname{dist}\left(x, S_{\alpha}\right)\right]^{-2}, \\
& \text { whenever } 0<\operatorname{dist}\left(x, S_{\alpha}\right)<\varepsilon / 2 .
\end{aligned}
$$

(c) Q is bounded on $\cap_{\alpha \in A}\left\{x \in \mathbf{R}^{m} ; \varepsilon / 2 \leqq \operatorname{dist}\left(x, S_{\alpha}\right)\right\}$.

Define Φ and $\Phi_{n}(n=1,2, \ldots)$ by

$$
\begin{aligned}
\Phi(x) & = \begin{cases}\psi^{\alpha}(x) & \text { if } 0<\operatorname{dist}\left(x, S_{\alpha}\right)<\varepsilon / 2 \\
f(x) & \text { elsewhere }\end{cases} \\
\Phi_{n}(x) & = \begin{cases}\psi_{n}^{\alpha}(x) & \text { if } 0<\operatorname{dist}\left(x, S_{\alpha}\right)<\varepsilon / 2 \\
f_{n}(x) & \text { elsewhere }\end{cases}
\end{aligned}
$$

We now prove that the conditions (P.1), (P.2) and (P.3) in Lemma 1 are satisfied with these Q, Φ and Φ_{n}. Let us set $V(\alpha)=\left\{x \in \mathbf{R}^{m} ; 0<\operatorname{dist}\left(x, S_{\alpha}\right)<\varepsilon / 2\right\}$ for each $\alpha \in A, W=\cup_{\alpha \in A} V(\alpha)$ and $\Xi=\Omega \backslash W$.

To verify (P.1) we have only to examine that $\Phi \in L^{2}(\Omega)$ and $(-\Delta+Q) \Phi \in$ $L^{2}(\Omega)$ since the other conditions in (P.1) are obvious. Using (v-a) and (v-b) in Lemma 2, we have

$$
\int_{\Omega}|\Phi|^{2} d x=\int_{\Xi}|f|^{2} d x+\sum_{\alpha \in A} \int_{V(\alpha)}\left|\psi^{\alpha}\right|^{2} d x \leqq \int_{\Xi}|f|^{2} d x+c \int_{W}|f|^{2} d x<+\infty
$$

and

$$
\begin{aligned}
& \int_{\Omega}|(-\Delta+Q) \Phi|^{2} d x=\int_{\Xi}|(-\Delta+Q) f|^{2} d x \\
& +\sum_{\alpha \in A} \int_{V(\alpha)}\left|\left(-\Delta-(1 / 4)\left(m-k_{\alpha}\right)\left(m-k_{\alpha}-4\right)\left[\operatorname{dist}\left(x, S_{\alpha}\right)\right]^{-2}\right) \psi^{\alpha}\right|^{2} d x \\
& \quad \leqq \int_{\Xi}|(-\Delta+Q) f|^{2} d x+c^{2} \sum_{\alpha \in A} \int_{V(\alpha)}\left|\psi^{\alpha}\right|^{2} d x<+\infty
\end{aligned}
$$

We proceed to verify (P.2). Since $0 \leqq \Phi_{n} \leqq \Phi$ on $\Omega(n=1,2, \ldots)$ and $\lim _{n \rightarrow \infty} \Phi_{n}(x)=\Phi(x)(x \in \Omega)$, it follows from Lebesgue's covergence theorem that $\Phi_{n} \rightarrow \Phi$ strongly in $L^{2}(\Omega)$. Let u be an arbitrary element of $L^{2}(\Omega)$. Then we have

$$
\begin{align*}
& \left|\int_{\Omega} \bar{u} \cdot(-\Delta+Q)\left(\Phi_{n}-\Phi\right) d x\right| \tag{3.1}\\
& \leqq\left\{\int_{\Pi(n)}|u|^{2} d x\right\}^{1 / 2}\left\{\int_{\Omega}\left|(-\Delta+Q)\left(\Phi_{n}-\Phi\right)\right|^{2} d x\right\}
\end{align*}
$$

where we set $\Pi(n)=\left\{x \in \Omega ;(-\Delta+Q(x))\left(\Phi_{n}(x)\right) \neq(-\Delta+Q(x))(\Phi(x))\right\}(n=1,2, \ldots)$. Since, from the condition (3) imposed on f and f_{n} and (iii) in Lemma 2, $\Pi(n+1) \subseteq$ $\left(\mathbf{R}^{m} \backslash D_{n}\right) \cup\left\{\cup_{\alpha \in A}\left(V(\alpha) \backslash E_{n}\right)\right\}$ for any $n=1,2, \ldots$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\pi(n)}|u|^{2} d x=0 \tag{3.2}
\end{equation*}
$$

On the other hand, by ($\mathrm{v}-\mathrm{c}$) and (2.2), we see that

$$
\int_{\Omega}\left|(-\Delta+Q)\left(\Phi_{n}-\Phi\right)\right|^{2} d x \leqq c^{\prime} \int_{\Omega}|f|^{2} d x
$$

for some constant c^{\prime} which is independent of n. Applying this fact and (3.2) to (3.1), we conclude that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \bar{u} \cdot(-\Delta+Q)\left(\Phi_{n}-\Phi\right) d x=0
$$

Finally let us verify (P.3). We define δ by

$$
\delta=20 m+c+\sup \{|Q(x)| ; x \in \Xi\}
$$

where c is the constant given in Lemma 2 for $v=\varepsilon / 2$. If $x \in \Xi$, then

$$
\begin{aligned}
& (-\Delta+Q(x)+\delta) \Phi(x)=-(\Delta f)(x)+Q(x) f(x)+\delta f(x) \\
& \quad \geqq-20 m f(x)-\sup \{|Q(x)| ; x \in \Xi\} \cdot f(x)+\delta f(x)>0
\end{aligned}
$$

If $x \in V(\alpha)$ for some $\alpha \in A$, then by ($\mathrm{v}-\mathrm{b}$) in Lemma 2

$$
\begin{aligned}
& (-\Delta+Q(x)+\delta) \Phi(x) \\
& \quad=\left(-\Delta-(1 / 4)\left(m-k_{\alpha}\right)\left(m-k_{\alpha}-4\right)\left[\operatorname{dist}\left(x, S_{\alpha}\right)\right]^{-2}+\delta\right) \psi^{\alpha}(x) \\
& \quad \geqq\left(-c \psi^{\alpha}(x)+\delta \psi^{\alpha}(x)\right)>0 .
\end{aligned}
$$

This completes the proof of (P.3).
q.e.d.

Acknowledgment

The author wishes to thank Professor F-Y. Maeda for constant aid and numerous suggestions.

References

[1] H. Kalf and J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in $C_{0}^{\infty}\left(\mathbf{R}^{n} \backslash\{0\}\right)$, J. Functional Anal. 10 (1972), 114-130.
[2] H. Kalf and J. Walter, Note on a paper of Simon on essentially self-adjoint Schrödinger operators with singular potentials, Arch. Rational Mech. Anal. 52 (1973), 258-260.
[3] T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148.
[4] M. Reed and B. Simon, Methods of modern mathematical physics, II: Fourier analysis, self-adjointness, Academic Press, New York, 1975.
[5] U. W. Schmincke, Essential self-adjointness of Schrödinger operators with strongly singular
potentials, Math. Z. 124 (1972), 47-50.
[6] B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Rational Mech. Anal. 52 (1973), 44-48.
[7] B. Simon, Schrödinger operators with singular magnetic vector potentials, Math. Z. 131 (1973), 361-370.
[8] B. Simon, An abstract Kato's inequality for generators of positivity preserving semigroups, Indiana Univ. Math. J. 26 (1977), 1067-1073.

Department of Mathematics,
Faculty of Science,
Hiroshima University

