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1. Introduction and results

Let D denote the Euclidean half-space i?Mx(0, H-oo), where n>l, and let
dD denote the Euclidean boundary of D. Arbitrary points of D and dD are de-
noted by M = (X, x) and P = (T, 0), respectively, where X, TeRn and xe(0, + oo).
We write \M\ for the Euclidean norm of M.

If fi is a signed measure on dD such that

(1)
JdD

then the Poisson integral /M of \i is defined in D by the equation

dD

where sn+i is the surface-area of the unit sphere in Rn+1. The condition (1) is
necessary and sufficient for 1^ to be harmonic in D (see Flett [5], Theorem 6), and
we say that a measure fi on dD is of class J5" if (1) is satisfied. If, further, fi is
non-negative, we write jue^+ .

For each point P of dD and each positive number r, we write

<T(P, r) = {MED: \M-P\ = r},

t(P, r) = { Q e 3 D : | 0 - P | < r } ,

and we denote surface-area measure on <r(P, r) or 3D by 5.
If ft is the difference of two non-negative harmonic functions in D, then the

function ^(h, P, -), defined on (0, + oo) by

uT(fc, P, r) = r-»~2 { xh(M)ds{M),

is real-valued and continuous on (0, + oo) and is bounded on any interval of the
form [a, +oo), where a>0. In the case where h>0 in D, the mean Jt(h, P, r)
is a decreasing function of r and a convex function of r~n~x on (0, + oo). Papers
dealing with this mean include those of Dinghas [2], [3], Kuran [9], [10] and
the author [1].
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Here we compare the behaviour of the three functions

WT,y), •*(/„, P,r), /i(T(P,r))

as y-*0 + and r->0 + for a measure \i of class !F. Analogous work on Gauss-
Weierstrass integrals has been done by Watson [12]. Some of the work pre-
sented here is inspired by [12], but consideration of Jt(I^ •, •) in this context
seems to be new.

Before proceeding to the main results, we give the following lemma.

LEMMA 1. / / v e J + and P = (T, 0)edD, then the following are equivalent:

( i ) [* r»-2v(T(P, t))dt = +oo,
Jo

(ii) Iim,^o+ y-VJT, y) = + oo,

(iii) limr^0+ J!(Iy, P, r) = + oo.

THEOREM 1. Suppose that fie^, v e ^ + , that P = (T, 0)edD and that one
of the conditions (i), (ii), (iii) in Lemma 1 is satisfied. Then

n(r(P r\\ //(T P r\ T (T M\

lim infr̂ o+ ^Y^p Jfi < lim inf^0+ ^Yf'pl £ lim inf,^0+ fYj y(

{"' p' i ^ lim supr̂ o+ -&k

Much work has been done on angular limits and fine limits of ratios of
harmonic (and even superharmonic) functions (see, for example, the papers of
Brelot-Doob, Doob, and Nairn, cited in [8]). We remark that Theorem 1 fails
if the upper and lower normal limits are replaced by angular or fine upper and
lower limits. To see this it is enough to consider the case where v is n-dimen-
sional Lebesgue measure on dD (so that /v = 1) and fj. is n-dimensional Lebesgue
measure restricted to that part of dD which lies on one side of a hyperplane passing
through P and meeting dD in an (n — l)-dimensional plane. In this case it is clear
that fi(T(P, r))/v(r(P, r))->l/2 as r-»0 + , but IJIV possesses neither an angular
limit nor a fine limit at P.

By taking v in Theorem 1 to be n-dimensional Lebesgue measure on dD, we
obtain as a corollary the well-known result that if fi possesses a symmetric deriva-
tive / at P, then /„ has a normal limit / at P. (See [8], Theorem 3.1, for a proof of
the corresponding result for a ball.) By making other appropriate choices of v,
we obtain the following.

THEOREM 2. Suppose that a>0, and let f be a real-valued, continuous,
increasing function on [0, a~] such that f is differentiate on (0, a) and
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(2) [" r-2f(t)dt = +00.

Jo

Define functions co and £ on (0, a] by

+ l)-1r--V(O) if / (0)#0

( )r r*-*f(i)dt if /(0) = 0

and

(2n + 2) (sn+,)- V J° t(y2 + t*y(n+vi2f{t)dt if /(O) = 0.

If fie ^ and P={7,0) e 3D, then

^ ^ p < liming

< lim s u p r . 0 + ^ ^ > .

COROLLARY. Suppose that fie^ and that P=(T, O)edD. IfO<«<n + i,
then

T, y) < BaiBlimsup^0+ y'-'I^T,- y)

^(Itl, P, r) < limsup^0+ r-*n(x{P, r)),

where
Ax,n =

and

Further (corresponding to the case a = n + l),

liminfr^0+ r - " - 1 ^^ , r)) < liminfr^0+ (log(l/r))-1^/^ P, r)

(« +1)"1 limsup^0+ (y log(l/j;))-1/^^ y)

, P, r) <; limsupr^0+ r-"-ln(x(P, r)).

An obvious consequence of the Corollary is that if its hypotheses are satisfied
and if either
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l im r ^ 0 + r"a/i(T(P, r))

or

lim^o+ r"*1-*^!^ P, r)

exists for some a such that 0<a</t + l, then

exists. We give next some partial converses of these results. For this we require
some new terminology. If g is a real-valued function on (0, -f oo), we shall say
that g is slowly increasing if for each positive number e there exists a positive
number <5 such that

g(u) - g(v) > -s

whenever (1 — S)v<u<v<S. Thus the slowly increasing property is a condition
on the behaviour of g near 0. In particular, it is easy to show that if the function
w->ug'(u) exists and is bounded above on some non-empty interval (0, a), then
g is slowly increasing.

THEOREM 3. Suppose that \ie&, that P=(T, 0)edD and that 0 < a < n + l.
Suppose also that

where I is finite.
(i) If the function r^r"*1"*^!,,, P, r) is slowly increasing and is bounded

on (0, 1], then

lim r_0+ r « + 1 - ^ ( / ^ , P, r) = 5M+1Z{(n + l)(n + 3)B((a + 2)/2, (n-oc + 3)/2)}-K

(ii) Ifa^n + 1 and the function ri-»r~aju(T(P, r)) is slowly increasing and
is bounded on (0, 1], then

lim r_0+ r-'iMP, r)) = B^l.

Our final result limits the size of the set of points P = (T, 0) in 3D for which
,̂ P, r)\ grows rapidly as r-»0+ (and, a fortiori, limits the size of the set of

points for which I/^T, y)\ grows rapidly as y-*0 + .) For each y such that 0<y
< n, let my denote the Hausdorff measure on 3D constructed from the function
t*-*ty. (See, for example, [7].) Then the Hausdorff dimension of a subset E
of 3D is

inf{y:my(E) = 0}.

THEOREM 4. Suppose that \ie^ and that 0 < a < n . Let
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Sa = {PedD: limsupr_+0+ rw + 1-a |^f(/M , P, r)| = +00}

and

Ta = {PedD: limsupr_0+ r»+1-"|^(JM, P, r)\ > 0}.

Then ma(Sa) = 0 and the Hausdorff dimension of Ta is at most a.

2. Preparatory lemmas

Throughout this section, we suppose that P = (T9 0) e dD9 and given a measure
\i on dD9 we define a function /x* on [0, -f 00) by writing

Ai*(0) = 0, M*(r) = M<P, r)) ( r > 0 ) .

LEMMA 2. / / ju e J^, r/ien
( i ) r-"-y(r)->0 (r->oo),

(ii) \ t~n~2fi*(i)dt exists and is finite,

(iii) J^(l^ P, r) is bounded and continuous on each interval [a, + 00),
w/iere a > 0 , and rends to 0 as r->oo.

To prove (i), note that if r>r o >0, then

lA**(r) - M*(ro)|r-»-i < (^|* ( r ) _ ^[•(ro))r-»-i

< T r»-id\ii\*(t) = f |P-Q\-«-ld\ii\ (Q).
Jro JaD\T(P,r0)

Since fie^, the last integral can be made arbitrarily small by taking r0 to be
sufficiently large, and (i) now follows easily.

If r 2 >r 1 >0, then

(3) I [r2 rn~2n*(t)dt < [r2 r*-2\ii\*(t)dt

= (n-f I)"1

Since

t) = \

we find, by using (i) and the fact that fi e « \̂ that the expression on the left-hand
side of (3) can be made arbitrarily small by taking rx and r2 to be sufficiently
large. The result (ii) now follows from the general convergence principle for
integrals.



240 David H. ARMITAGE

By working with /z+ and pr if necessary, we may suppose, in proving (iii),
that \xe&+. The continuity of ^{1^ P, •) is proved in [2], Theorem 1. It
therefore suffices to note that, by [9], Theorem 4,

^ ( / M , P, r ) - 0 0-KX)),

since there is no positive constant c such that the function AfWac minorizes 1^
in D.

LEMMA 3. / / \ie& and r > 0, f/ten

^ ( / M , P, r) =

LEMMA 4. If pe^ and y>0, then

IJLT, y) = (2n+2)(Sn+,)-V JJ * ? +

= 2(n + l)(n + 3 ) ( s , t l ) - y (°° t"+\y2 + f2)-<«+5)/2^(J/J, P, t)dt.
Jo

To prove Lemma 3, we note first that by an easily justified change of order of
integration

M, P , r) = ( n + 1 ) \ [
JdDJS

where S denotes the sphere of centre P and radius r. Next, by noticing that the
(ball) Poisson integral of the function M*-*x2 on S is the function

M^x2 -(n + rrHIP-MI2 - r2},

we find that the inner integral in the above equation is sn+i(n + l)~1r when Qe
T(P, r). Similarly, by using the Poisson integral formula for the complement of
a closed ball (see [8], Lemma 9.1), we find that when QedD\r(P, r) the inner
integral is sn+1(n+l)~1rn+2\P — Q\~n~1. By the monotone convergence theorem,
this continues to hold when Q e dD\x(P, r). It now follows that

uf (/„, P, r) =

and the result follows by Lemma 2(i).
In proving Lemma 4, we may again suppose that ^ e ^ " + . To prove the

first equation in Lemma 4, we have
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(y2 + \P-Q\2)-<n+1»2dKQ) = y T (y2

dD JO

Since, by Lemma 2(i), the limit here is 0, the result follows.
Since fi* is increasing on [0, + oo), it follows from Lemma 3 that

for all but countably many non-negative values of r. Hence by the first equation
in Lemma 4,

T9 y) = - y[ t»+\y2 + t2)-w2**'(I,9 P, i)dt
Jo

= -y[t»+\y2 + t2)-(»+3)/2^(JAt, p , 0]?

|4, P, *>fc.

Since ^(7^, P, t)-^° as t->oo and t^Jtil^ P, 0-^0 as r->0+, by Lemmas 2(iii)
and 3, the second equation in Lemma 4 follows.

3. Proof of Lemma 1 and Theorem 1

The equivalence of (i) and (iii) in Lemma 1 follows from Lemmas 3 and
2(ii). By Lemma 4, for each positive y

, y) = (2n+2)(sB+1)"i
Jo

so that, by the monotone convergence theorem,

l im^0 + y-%{T, y) = (2n + 2)(sn+1)-1JJ r»-2v*(t)dt.

Hence, in view of Lemma 2(ii), we have the equivalence of (i) and (ii).
In proving Theorem 1, we need only consider the inequalities between the

upper limits, for if these are proved, the inequalities between the lower limits will
follow by working with — \i instead of fi.

We start with the final inequality. Let the value of the last upper limit be
A. The inequality is trivial if 1 = + oo. We therefore suppose that X< + oo and
let A be such that X<A< + oo. Then there exists a positive number r0 such that
u*(r)<Av*(r) for all r such that 0 < r < r o . B v Lemmas 3, 2(ii) and 1, if 0 <
r<r09 then
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r»-2ii*(t)dt + 0(1) (r

r»-2v*(r)df + 0(1) = (A + o(l)) r r"-2v*(t)dt

whence the required inequality follows.
In proving the penultimate inequality in Theorem 1, we may suppose that

the value of the penultimate upper limit, k say, is not + oo. Let K be such that
k<K< + oo. Then there is a positive number rx such that

„, P, 0 < x^(/v, P, o
whenever 0 < / < r 1 . Hence by Lemmas 4, 2(iii) and 1,

T, y) = y*['1 t»+2(y2 + t2)-^^2^!^ P,
Jo

r i tn+2(y2 + r2)-(«+5>/2^(/v, P,
o

^ tn+2(y2 + f2)-<w+5)/2^(/v, P, rM^ + 0(y3)
o

Jv(r, y)

= (K + o(l))2-%+1(n + l)-Kn + 3)^IXT, y),

and the required inequality follows.

4. Proof of Theorem 2

To deal with the case where / (0 )=0 , define a measure v on dD by writing

v(£) = (sn)-i ( f'(\P-Q\)\P-Q\1-"ds(Q),
j£flT(P,fl)

for each Borel subset E of dD. Then

v*(r) = f(r) (0 < r < a), v*(r) = f(a) (r > a) ,

so that condition (i) in Lemma 1 holds. Hence, by Lemmas 4 and 1,

IJLT, y) = (2n + 2)(sH+1)-*y \° t(y2 + t2)^n+3)/2Kt)dt + 0(y) (y
Jo
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so that

Also, by Lemma 3,

uf(/v, P, r) = £ r»-2f(t)dt + 0(1) = (1 + o(l))co(r) (r->0+).

The case where/(0) = 0 of Theorem 2 now follows from Theorem 1.
To deal with the case where /(0)^0, let v be/(0)<5p, where 5P is the Dirac

measure concentrated at P. Then v*(r) =/(0) for all positive r. Also,

7V(M) = 2(s n + ir
l / (0)x |M-P|-«- 1 (MeD),

so that, in particular,

and by Lemma 3,

^ ( J v , P , r ) = / ( O ) \ r»-2dt = co(r).

Again we can apply Theorem 1.
If we take /(r) = ra for each r e [0, 1], where 0 < a < n -f 1, then the conditions

of Theorem 2 are fulfilled and for r e (0, 1]

a)-i(ra-n-i _ ^ (0< a < n + 1)

-logr (a = n + 1).

Also, if ye(0, 1], then in the case where a = 0

and in the case where 0<a<n + l,

ri/y2

Jo

so that in the case where a = n +1

«)0 = 2(n + l)(5w+1)-1y(-logy + 0(1))

and in the case where 0<a<n + l
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Collecting together these results and applying Theorem 2, we obtain the Corollary.

5. Proof of Theorem 3

The proof depends on the following form of a Tauberian theorem of Wiener.

THEOREM A. Let $ and \j/ be real-valued functions on (0, +oo) such that

i) f \<Kt)\dt < +oo,
Jo

(ii) \ (f>(t)riudt # 0 for each real number w,
Jo

(iii) \// is bounded on (0, + oo) and slowly increasing,
(iv) there is a real number k such that

4>{tlu)\l/{i)dt > k r <j)(t)dt (u->0 + ) .
o Jo

Then ^(M)~>/C as u->0 + .

This result is given by Hardy [6], Theorems 233 and 235. Note that in
Theorem 233 Hardy gives details of the corresponding result in the case where
w->oo. To pass to the case where «-»0+ (Theorem 235), it is necessary to ob-
serve that a function ij/ on (0, + oo) is slowly increasing if and only if the function
t\-^\l/{t~1) is slowly decreasing in the sense of [6], § 6.2.

To prove Theorem 3(i), we note that, by Lemmas 4 and 2(iii),

(4) y - ° W y) = 2(n + l)(n + 3)(sn+1)-1r+3"a T tn+2(y2 + f2)-(»+5>/2
Jo

, P, t)dt + 0(1) (y-+0+)

where

^ ( f ) = f«+l(l + f2)-(»+5)/2 (, ;> 0)

and

f t"+1-«uf(/M, P, t) (0 < I < 1)

[0 ( t>l) .

The functions 4>1 and i/̂ ! satisfy the hypotheses (i) and (iii) of Theorem A. Also,
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by (4), the hypothesis (iv) is satisfied with

k =" sn+1l{2(n + l)(n + 3)

The hypothesis (ii) is also satisfied, since

ev(/>1(e
v)e-iuvdv

a-m)/2) # 0.

(See, for example, [4], p. 120, formula (21).) We can now apply Theorem A to
obtain tAi(r)-*/c as r->0 + , which is the required result.

To prove Theorem 3(ii), we note first that by Lemmas 4 and 2(ii),

(5)

where

and

r*ii*(t) (0 < t < 1)

0 (t > 1).

The functions <f)2 and \j/2 satisfy the hypotheses (i) and (iii) of Theorem A. Also,
by (5), the hypothesis (iv) is satisfied with

k = sn+1l{(2n + 2) ( <j>2(i)dt}-^ = BaJ.
Jo

The hypothesis (ii) is also satisfied, since

(°° <$>i(f)t~iudt = \ ev(j)2(e
v)e-iuvdv

Jo J-oo

a-iu)/2) ± 0

([4], /oc. ci7.). We can now apply Theorem A to obtain il/2(
r)-*k a s r-*0 + 9

which is the required result.

6. Proof of Theorem 4

This proof is borrowed from [12]. We can assume that Sa and Ta are
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bounded. By the corollary of Theorem 2,

limsupr_M)+ r"+1-«|uT(/M, P, r)\ < Iimsupr^0+ r«+ 1- a^(JH , P, r)

< (^a)M)-1limsup^0+ r-a|^|(T(P, r)).

Further, if J(P, r) denotes the closed n-dimensional cube in dD with centre P,
edge length 2r and faces orthogonal to the co-ordinate axes, then

P, r)) < (2v/n)alimsupr^0+ (2rVw)"a|/x| (J(P, r))

[sup7 {(diam(J))-a|/z|(J): PeJ, diam(J) < 5}]

where J denotes any non-trivial, n-dimensional interval in dD. Hence if Z denotes
the set where this last limit is infinite, we have Sa^Z. By [11], Lemma 4, mJ^Z)
= 0, so that ma(Sa) = 0.

The result for Ta is trivial when a = n, and when 0<a<n it follows from the
fact that TagS^ for each p such that oc<p<n.
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