On the trace mappings in the space $B_{1,\mu}(\mathbb{R}^N)$

Mitsuyuki Itano

(Received May 18, 1981)

Let μ be a temperate weight function on $\Xi^N = (R^N)'$, that is, a positive valued continuous function on Ξ^N such that

$$\mu(\xi + \eta) \leq C(1 + |\xi|^k)\mu(\eta), \quad \xi, \eta \in \Xi^N$$

with positive constants k and C[4, p. 7]. By $B_{p,\mu}(\mathbb{R}^N)$, $1 \le p \le \infty$, we denote the set of all temperate distributions $u \in \mathscr{S}'(\mathbb{R}^N)$ such that its Fourier transform \hat{u} is a locally summable function and

$$\|u\|_{p,\mu}^p = (2\pi)^{-N} \int_{\Xi^N} |\hat{u}(\xi)|^p \mu^p(\xi) d\xi < \infty,$$

and when $p = \infty$ we shall interpret $||u||_{\infty,\mu}$ as ess. $\sup |\hat{u}(\xi)\mu(\xi)| [1, p. 36]$.

In our previous papers [2, 3] we have investigated the trace mappings in the space $B_{p,\mu}(\mathbb{R}^N)$ with $1 . The purpose of this paper is to develop the analogues of the theorems in [3] for the space <math>B_{1,\mu}(\mathbb{R}^N)$.

Let N = n + m. We shall use the notations: $x = (x', t) \in \mathbb{R}^N$, $x' = (x'_1, ..., x'_n)$, $t = (t_1, ..., t_m)$ and $\xi = (\xi', \tau) \in \Xi^N$, $\xi' = (\xi'_1, ..., \xi'_n)$, $\tau = (\tau_1, ..., \tau_m)$. For a polynomial $P(\xi) = \Sigma a_{\alpha} \xi^{\alpha}$ in ξ , we put $\overline{P}(\xi) = \Sigma \overline{a}_{\alpha} \xi^{\alpha}$ and $P(D) = \Sigma a_{\alpha} D^{\alpha}$ with $D = (D_1, ..., D_N)$, $D_j = -i\partial/\partial_j$. $P^{(\alpha)}$ means $i^{|\alpha|} D^{\alpha} P$. Let μ_1 and μ_2 be temperate weight functions on Ξ^N . Then $\mu_1 + \mu_2$, $\mu_1 \mu_2$ and $1/\mu_1$ are temperate weight functions on Ξ^N .

If μ is a positive valued function on Ξ^N satisfying the inequality

$$\mu(\xi + \eta) \leq (1 + C|\xi|)^k \mu(\eta), \quad \xi, \eta \in \Xi^N$$

with positive constants k and C, then we have

$$(1 + C|\xi|)^{-k} \leq \mu(\xi + \eta)/\mu(\eta) \leq (1 + C|\xi|)^k,$$

which implies the continuity of $\mu[1, p. 34]$. Putting $v(\xi') = \sup_{\tau} \mu(\xi', \tau)$, we have $v(\xi' + \eta') \leq (1 + C|\xi'|)^k v(\eta')$ for any $\xi', \eta' \in \Xi^n$.

Let μ be the function defined on Ξ by $\mu(\xi) = 1$ for $\xi \le 0$, $\mu(\xi) = 1 + (2\xi - \xi^2)^{1/2}$ for $0 < \xi < 1$ and $\mu(\xi) = 2$ for $\xi \ge 1$. Then μ is a temperate weight function but it does not satisfy the inequality $\mu(\xi + \eta) \le (1 + C|\xi|)^k \mu(\eta)$ with positive constants k and C. If $\mu(\xi) = 1 + \arg(\xi' + ie^t)$ on Ξ^2 , then μ is a temperate weight function but $v(\xi') = \sup_{\tau} \mu(\xi', \tau)$ is not continuous.

According to L. Hörmander [1, p. 36] we shall first prove

PROPOSITION 1. Let μ be a positive valued function on Ξ^N satisfying the inequality

$$\mu(\xi + \eta) \leq C(1 + |\xi|^k)\mu(\eta), \quad \xi, \eta \in \Xi^N$$

with positive constants k and C. For any $\delta > 0$ if we put

$$\mu_{\delta}(\xi) = \sup_{\zeta \in \Xi^N} e^{-\delta|\zeta|} \mu(\xi - \zeta),$$

then $\mu_{\delta}(\xi)$ is a temperate weight function on Ξ^N and there are positive constants C', C_{δ} such that

$$\mu_{\delta}(\xi + \eta) \leq (1 + C'|\xi|)^{k} \mu_{\delta}(\eta), \quad \xi, \eta \in \Xi^{N}$$

and

$$1 \leq \mu_{\delta}(\xi)/\mu(\xi) \leq C_{\delta}, \quad \xi \in \Xi^{N}.$$

PROOF. From the relations

$$\mu(\xi) \leq \mu_{\delta}(\xi) \leq C\mu(\xi) \sup_{\zeta \in \mathbb{Z}^N} e^{-\delta|\zeta|} (1+|\zeta|^k)$$

we have $1 \le \mu_{\delta}(\zeta)/\mu(\zeta) \le C_{\delta}$, where $C_{\delta} = C \sup_{\zeta \in \mathbb{Z}^N} e^{-\delta|\zeta|} (1 + |\zeta|^k)$. For any $\zeta, \eta \in \mathbb{Z}^N$ we have

$$\mu_{\delta}(\xi + \eta) = \sup_{\zeta} e^{-\delta|\zeta|} \mu(\xi + \eta - \zeta)$$

$$\leq C(1 + |\xi|^{k}) \sup_{\zeta} e^{-\delta|\zeta|} \mu(\eta - \zeta) = C(1 + |\xi|^{k}) \mu_{\delta}(\eta)$$

and

$$\mu_{\delta}(\xi + \eta) = \sup_{\zeta} e^{-\delta|\xi + \eta - \zeta|} \mu(\zeta) \leq \sup_{\zeta} e^{\delta|\xi|} e^{-\delta|\eta - \zeta|} \mu(\zeta) = e^{\delta|\xi|} \mu_{\delta}(\eta).$$

If $|\xi| \ge 1$, then we have

$$C(1 + |\xi|^k) \leq 2C|\xi|^k < (1 + (2C)^{1/k}|\xi|)^k$$

and if $|\xi| < 1$, then we have

$$e^{\delta|\xi|} \leq 1 + (e^{\delta} - 1)|\xi| \leq \begin{cases} (1 + (e^{\delta} - 1)|\xi|)^k & (k \geq 1) \\ (1 + (e^{\delta/k} - 1)|\xi|)^k & (k < 1). \end{cases}$$

Thus there exists a positive constant C' such that

$$\mu_{\delta}(\xi + \eta) \leq (1 + C'|\xi|)^{k} \mu_{\delta}(\eta), \quad \xi, \eta \in \Xi^{N},$$

which completes the proof.

Hereafter, by $\tilde{\mu}$ we denote μ_1 defined in the above proposition for a temperate weight function μ . Then $B_{p,\mu}(\mathbb{R}^N) = B_{p,\tilde{\mu}}(\mathbb{R}^N)$.

LEMMA 1. Let P be a non-trivial polynomial on Ξ^N . Then the function \tilde{P}_{∞} defined by $\tilde{P}_{\infty}(\xi) = \max_{|\alpha| \ge 0} |P^{(\alpha)}(\xi)|$ is a temperate weight function on Ξ^N and there exist positive constants C, M such that

$$\widetilde{P}_{\infty}(\xi + \eta) \leq (1 + C|\xi|)^{M} \widetilde{P}_{\infty}(\eta), \quad \xi, \eta \in \Xi^{N}.$$

PROOF. Clearly $\tilde{P}_{\infty} > 0$. From Taylor's formula $P^{(\alpha)}(\xi + \eta) = \sum_{|\beta| \ge 0} (\beta!)^{-1} \cdot \xi^{\beta} P^{(\alpha+\beta)}(\eta)$, we have the inequality

$$|P^{(\alpha)}(\xi + \eta)| \leq \widetilde{P}_{\infty}(\eta)(1 + C|\xi|)^{M}$$

with positive constants C and M. Thus we have $\tilde{P}_{\infty}(\xi+\eta) \leq (1+C|\xi|)^M \tilde{P}_{\infty}(\eta)$.

Let μ be a temperate weight function on Ξ^N . Then $B_{1,\mu}(\mathbb{R}^N)$ is a Banach space with the norm $\|\cdot\|_{1,\mu}$ and $\mathscr{S}(\mathbb{R}^N) \subset B_{1,\mu}(\mathbb{R}^N) \subset \mathscr{S}'(\mathbb{R}^N)$ in the topological sense.

Let us consider the trace mappings in the space $B_{1,\mu}(\mathbb{R}^N)$. For any $u(x', t) \in \mathcal{D}(\mathbb{R}^N)$, the trace u(x', 0) on \mathbb{R}^n belongs to the space $\mathcal{D}(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n)$. $\mathcal{D}(\mathbb{R}^N)$ is dense in $B_{1,\mu}(\mathbb{R}^N)$. If the mapping $\mathcal{D}(\mathbb{R}^N) \ni u \rightarrow u(x', 0) \in \mathcal{D}'(\mathbb{R}^n)$ can be continuously extended from $B_{1,\mu}(\mathbb{R}^N)$ into $\mathcal{D}'(\mathbb{R}^n)$, then the extended mapping is called the trace mapping on \mathbb{R}^n and the image of $u \in B_{1,\mu}(\mathbb{R}^N)$ is called the trace of u and denoted by u(x', 0).

Since the strong dual of $B_{1,\mu}(\mathbb{R}^N)$ is $B_{\infty,1/\mu}(\mathbb{R}^N)$, the trace mapping is defined if and only if $\phi \otimes \delta \in B_{\infty,1/\mu}(\mathbb{R}^N)$ for any $\phi \in \mathcal{D}(\mathbb{R}^n)$, where δ is the Dirac measure in \mathbb{R}_t^m .

PROPOSITION 2. Let P be a non-trivial polynomial on Ξ^N . Then a necessary and sufficient condition that the trace mapping $u \rightarrow [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $\mathscr{D}'(\mathbb{R}^n)$ may be defined, is that one of the following equivalent conditions is satisfied:

- (1) $\sup_{\tau} \tilde{P}_{\infty}(\xi', \tau)/\mu(\xi', \tau) < \infty$ for some point $\xi' \in \Xi^n$.
- (2) $\sup_{\tau} |P(\xi', \tau)|/\mu(\xi', \tau) < \infty$ for every point $\xi' \in \Xi^n$.

In this case, $[P(D)u](x', 0) \in B_{1,\mu_{\widetilde{P},\infty}}(\mathbb{R}^n)$ with $\mu_{\widetilde{P},\infty}(\xi') = \inf_{\tau} \widetilde{\mu}(\xi', \tau)/\widetilde{P}_{\infty}(\xi', \tau)$.

PROOF. Suppose the trace mapping $u \to [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $\mathscr{D}'(\mathbb{R}^n)$ may be defined. For any $\eta \in \mathbb{Z}^N$ the map $u \to e^{i\langle x, \eta \rangle} u$ is continuous from $B_{1,\mu}(\mathbb{R}^N)$ into itself and $P(D)e^{i\langle x, \eta \rangle}u = e^{i\langle x, \eta \rangle}P(D+\eta)u$. For any $\phi \in \mathscr{D}(\mathbb{R}^n)$ the map

$$u \longrightarrow \langle [P(D+\eta)u](x', 0), \phi \rangle = \langle u, \overline{P}(D+\eta)(\phi \otimes \delta) \rangle$$

is a continuous linear form on $B_{1,\mu}(\mathbb{R}^N)$ and therefore

$$\overline{P}(D+\eta)(\phi\otimes\delta)\in(B_{1,\mu}(R^N))'=B_{\infty,1/\mu}(R^N)$$

for any $\eta \in \Xi^N$ and $\phi \in \mathscr{D}(\mathbb{R}^n)$. Namely,

Mitsuyuki Itano

$$ar{P}(\xi+\eta)\hat{\phi}(\xi')/\mu(\xi)=\hat{\phi}(\xi')\Sigma(lpha!)^{-1}\eta^{lpha}ar{P}^{(lpha)}(\xi)/\mu(\xi)\in L^{\infty}(\Xi^N)$$
 ,

which implies

$$\hat{\phi}(\xi')\overline{P}^{(\alpha)}(\xi)/\mu(\xi) \in L^{\infty}(\Xi^N)$$
.

As a result,

$$\hat{\phi}(\xi') \sup_{\tau} |\tilde{P}_{\infty}(\xi', \tau)| / \mu(\xi', \tau) < \infty$$
 for a.e. $\xi' \in \Xi^n$.

Since $\hat{\phi}(\xi' - \xi'_0)$ is the Fourier transform of $e^{i\langle x', \xi'_0 \rangle} \phi(x')$, we have

$$\sup_{\tau} |\tilde{P}_{\infty}(\xi', \tau)| / \mu(\xi', \tau) < \infty \quad \text{for a.e. } \xi' \in \Xi^n.$$

Put $\kappa = \tilde{P}_{\infty}/\tilde{\mu}$ and assume $\sup_{\tau} \kappa(\xi'_0, \tau) < \infty$ for a point $\xi'_0 \in \Xi^n$. Then κ is a temperate weight function and we have

$$\sup_{\tau} \kappa(\xi', \tau) \leq (1 + C|\xi' - \xi'_0|)^k \sup \kappa(\xi'_0, \tau)$$

with positive constants k and C. Thus $\sup_{\tau} \kappa(\xi', \tau)$ is finite for every $\xi' \in \Xi^n$ and $\sup_{\tau} \kappa(\xi', \tau) = 1/\mu_{\tilde{P},\infty}(\xi')$ is a temperate weight function on Ξ^n .

The implication $(1) \Rightarrow (2)$ is trivial.

Suppose (2) holds true. Let $u \in \mathscr{D}(\mathbb{R}^n)$. For any $\phi \in \mathscr{D}(\mathbb{R}^n)$ we have

$$\begin{aligned} |\langle [P(D)u](x', 0), \,\overline{\phi} \rangle| &= (2\pi)^{-N} |\int P(\xi)\hat{u}(\xi)\overline{\phi}(\xi')d\xi| \\ &\leq \{\sup_{\xi',\tau} (|\widehat{\phi}(\xi')| |P(\xi', \tau)|/\mu(\xi', \tau))\} \, \|u\|_{1,\mu}. \end{aligned}$$

Let $P(\xi) = \Sigma(\alpha'!)^{-1} \xi'^{\alpha'} P^{(\alpha')}(0, \tau)$. From the inequality $\mu(0, \tau) \leq C(1 + |\xi'|^k) \mu(\xi)$ we have

$$\sup_{\tau} |P^{(\alpha')}(0, \tau)| / \mu(\xi', \tau) \leq C(1 + |\xi'|^k) \sup_{\tau} |P^{(\alpha')}(0, \tau)| / \mu(0, \tau)$$

and therefore $\sup_{\tau} |P(\xi', \tau)|/\mu(\xi', \tau)$ is a slowly increasing function of ξ' . Since $\hat{\phi}$ belongs to the space $\mathscr{S}(\Xi^n)$, the trace mapping $u \to [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $\mathscr{D}'(\mathbb{R}^n)$ is defined and we have

$$\begin{split} \| [P(D)u](x', 0) \|_{1,\mu\overline{p},\infty} &= (2\pi)^{-n-m} \int \mu_{\overline{p},\infty}(\xi') \Big| \int P(\xi) \hat{u}(\xi) d\tau \Big| d\xi' \\ &\leq (2\pi)^{-N} \int \mu_{\overline{p},\infty}(\xi') (\sup_{\tau} |P(\xi', \tau)| / \mu(\xi', \tau)) \Big(\int |\hat{u}(\xi)| \mu(\xi) d\tau \Big) d\xi' \\ &\leq \| u \|_{1,\mu}. \end{split}$$

Since $\mathscr{D}(\mathbb{R}^N)$ is dense in $B_{1,\mu}(\mathbb{R}^N)$ we see that $[P(D)u](x', 0) \in B_{1,\mu_{\overline{P},\infty}}(\mathbb{R}^n)$ for every $u \in B_{1,\mu}(\mathbb{R}^N)$.

THEOREM 1. Suppose $\mu_{\tilde{P},\infty}(\xi') = \inf_{\tau} \tilde{\mu}(\xi',\tau)/\tilde{P}_{\infty}(\xi',\tau) > 0$. Then each of the following conditions is necessary and sufficient in order that the trace mapping

On the trace mappings

$$\widetilde{\mathcal{O}}: B_{1,\mu}(\mathbb{R}^N) \ni u \longrightarrow [P(D)u](x', 0) \in B_{1,\mu_{\widetilde{p},\infty}}(\mathbb{R}^n)$$

may be an epimorphism:

(1) The range of the transposed map ${}^{t}\mathcal{O}$ is closed in $B_{\infty,1/\mu}(\mathbb{R}^{N})$.

(2) $\mu_{\bar{p},\infty}$ is equivalent to v_{∞} , where $1/v_{\infty}(\xi') = \sup_{\tau} |P(\xi', \tau)|/\mu(\xi', \tau)$: Namely, $C_1 v_{\infty} \leq \mu_{\bar{p},\infty} \leq C_2 v_{\infty}$ with positive constants C_1 and C_2 .

(3) If $f(\xi')\overline{P}(\xi)/\mu(\xi) \in L^{\infty}(\Xi^N)$ with $f(\xi') \in L^1_{loc}(\Xi^n)$, then $f/\mu_{\overline{P},\infty} \in L^{\infty}(\Xi^n)$.

PROOF. For any $v \in B_{\infty,1/\mu \mathfrak{p},\infty}(\mathbb{R}^n)$ and $f \in \mathscr{D}(\mathbb{R}^N)$ we have

$$\begin{split} \langle \widetilde{\mathcal{O}}f, \, \overline{v} \rangle &= (2\pi)^{-n} \int_{\Xi^n} \left(\left[P(D)f \right](x', \, 0) \right)^{\wedge} (\xi') \overline{b(\xi')} d\xi' \\ &= (2\pi)^{-N} \int_{\Xi^N} P(\xi) \widehat{f}(\xi) \overline{b(\xi')} d\xi \end{split}$$

and

$$\langle \overline{t} \widetilde{0} v, f \rangle = (2\pi)^{-N} \int_{\Xi^N} \overline{t} \widetilde{0} v(\xi) \widehat{f}(\xi) d\xi,$$

and therefore ${}^{t}\widehat{\mathscr{O}}v(\xi) = \widehat{v}(\xi')\overline{P}(\xi)$. If ${}^{t}\overline{\mathscr{O}}v = 0$, then

ess.
$$\sup_{\xi'} (|\hat{v}(\xi')| \sup_{\tau} |P(\xi', \tau)|/\mu(\xi', \tau)) = 0.$$

Since the polynomial $P(\xi', \tau)$ is non-trivial, $\sup_{\tau} |P(\xi', \tau)|/\mu(\xi', \tau)$ does not identically vanish in any relatively compact open subset of Ξ^n . Thus $\hat{v}(\xi')=0$ a.e. in Ξ^n , which implies v=0.

Thus \mathcal{O} is an epimorphism if and only if the range of ${}^{t}\mathcal{O}$ is closed in $B_{\infty,1/\mu}(\mathbb{R}^{N})$.

Suppose (1) holds. Then we have

$$\|v\|_{\infty,1/\mu,\overline{p},\infty} \leq C \|t' \overline{O} v\|_{\infty,1/\mu}$$

with a positive constant C for any $v \in B_{\infty, 1/\mu \bar{p}, \infty}(\mathbb{R}^N)$; namely,

ess. $\sup_{\xi'} |\hat{v}(\xi')| / \mu_{\mathcal{P},\infty}(\xi') \leq C$ ess. $\sup_{\xi',\tau} |\hat{v}(\xi')P(\xi',\tau)| / \mu(\xi',\tau),$

which implies $v_{\infty} \sim \mu_{\vec{P},\infty}$.

Suppose (2) holds. Let $f(\xi')\overline{P}(\xi)/\mu(\xi) \in L^{\infty}(\Xi^N)$ for any $f \in L^1_{loc}(\Xi^n)$. Then we have immediately $f/\mu_{\overline{P},\infty} \in L^{\infty}(\Xi^n)$.

Suppose (3) holds. We shall first note that

$$\sup_{\tau} |P(\xi', \tau)|/\mu(\xi', \tau) > 0$$

for any $\xi' \in \Xi^n$. Let $\xi'_0 \in \Xi^n$ and let B be a closed unit ball with center ξ'_0 . Let E be the set of $f \in L^1_{loc}(\Xi^n)$ such that supp $f \subset B$ and Mitsuyuki Itano

ess.
$$\sup_{\xi',\tau} |f(\xi')P(\xi)|/\mu(\xi) < \infty$$
.

Then E is a Banach space with the norm $||f||_E$:

$$\|f\|_E = \int_B |f(\xi')| d\xi' + \operatorname{ess.} \sup_{\xi' \in B, \tau \in \Xi^m} |f(\xi')P(\xi)| / \mu(\xi).$$

Let $f \in E$. Then $f/\mu_{\overline{P},\infty} \in L^{\infty}(\Xi^n)$ by (3). By the closed graph theorem, the map $f \rightarrow f/\mu_{\overline{P},\infty}$ is continuous from E into $L^{\infty}(\Xi^n)$ and there exists a positive constant C such that

ess.
$$\sup_{\xi'} |f(\xi')| / \mu_{\overline{p},\infty}(\xi') \leq C ||f||_E.$$

Taking the characteristic function $f = \chi_{\varepsilon}$ of a closed ball B_{ε} with center $\zeta'_0 \in \Xi^n$ and radius ε , $0 < \varepsilon < 1$, and passing to the limit $\varepsilon \to 0$, we have

$$0 < \sup_{\tau} \tilde{P}(\xi'_0, \tau) / \tilde{\mu}(\xi'_0, \tau) \leq C \sup_{\tau} |P(\xi'_0, \tau)| / \mu(\xi'_0, \tau).$$

Let $\{v^j\}$ be any sequence in $B_{\infty,1/\mu \overline{P},\infty}(\mathbb{R}^n)$ such that ${}^t \overline{\mathcal{O}} v^j$ tends to u in $B_{\infty,1/\mu}(\mathbb{R}^N)$. Namely, $\hat{v}^j(\xi')\overline{P}(\xi)/\mu(\xi)$ tends to \hat{u}/μ in $L^{\infty}(\Xi^N)$. Then $\hat{v}^j(\xi') \cdot \sup_{\tau} |\overline{P}(\xi',\tau)|/\mu(\xi',\tau)|$ is a Cauchy sequence in $L^{\infty}(\Xi^n)$. Since $\sup_{\tau} |\overline{P}(\xi',\tau)|/\mu(\xi',\tau)| = 0$ we see that $\hat{v}^j(\xi')$ converges in $L^1_{loc}(\Xi^n)$ to $f(\xi')$ and $\hat{u} = f(\xi')\overline{P}(\xi)$. By the condition (3) $f/\mu_{\overline{P},\infty} \in L^{\infty}(\Xi^n)$. Thus the range of ${}^t \overline{\mathcal{O}}$ is closed in the space $B_{\infty,1/\mu}(\mathbb{R}^N)$, which completes the proof.

COROLLARY. If v_{∞} is a temperate weight function, then $v_{\infty} \sim \mu_{P,\infty}$ and the trace mapping $u \rightarrow [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $B_{1,\mu_{P,\infty}}(\mathbb{R}^n)$ is an epimorphism.

PROOF. For any $\eta \in \Xi^N$ with $|\eta| \leq 1$ we have

$$C_1/\nu_{\infty}(\xi') \ge 1/\nu_{\infty}(\xi' + \eta') \ge \operatorname{Csup}_{\tau} |P(\xi + \eta)|/\mu(\xi)$$

with positive constants C, C_1 , and therefore

$$1/v_{\alpha}(\xi') \geq C' \sup_{\tau} |P^{(\alpha)}(\xi)|/\mu(\xi)|.$$

Thus we have $v_{\infty} \sim \mu_{F,\infty}$, which completes the proof.

EXAMPLE 1. Suppose $\mu_{F,\infty}(\xi') > 0$. If the differential operator P(D) is hypoelliptic, that is, $P^{(\alpha)}(\xi)/P(\xi) \to 0$ when $\xi \to \infty$ in \mathbb{R}^N for $\alpha \neq 0$ [1, p. 100], then the trace mapping $u \to [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $B_{1,\mu_{F,\infty}}(\mathbb{R}^n)$ is an epimorphism.

In fact, by the definition of hypoellipticity we see that there exist positive constants C and K such that

$$|P^{(\alpha)}(\xi)| \leq C|P(\xi)|$$
 for $|\xi| > K$.

Let $P(\xi) = \Sigma(\alpha''!)^{-1} \tau^{\alpha''} P^{(\alpha'')}(\xi', 0)$. Even though P vanishes at ξ_0 , there exists

 α'' with $P^{(\alpha'')}(\zeta'_0, 0) \neq 0$ by hypoellipticity of *P*. Thus there exist positive constants C_0 and $\sigma_j \in \Xi^m$, $1 \leq j \leq s$, such that for any $|\zeta| \leq K$

$$|P^{(\alpha)}(\xi)| \leq C_0(|P(\xi)| + |P(\xi', \tau + \sigma_1)| + \dots + |P(\xi', \tau + \sigma_s)|).$$

Consequently there exists a positive constant C_1 such that for any $\xi \in \Xi^N$

$$|P^{(\alpha)}(\xi)| \leq C_1(|P(\xi)| + |P(\xi', \tau + \sigma_1)| + \dots + |P(\xi', \tau + \sigma_s)|).$$

Since μ is a temperate weight function we have

$$\sup_{\tau} |P(\xi', \tau + \sigma_j)| / \mu(\xi', \tau) = \sup_{\tau} |P(\xi', \tau)| / \mu(\xi', \tau - \sigma_j)$$
$$\leq C_j \sup_{\tau} |P(\xi', \tau)| / \mu(\xi', \tau)$$

with a positive constant C_j and therefore

$$\sup_{\tau} |P^{(\alpha)}(\xi',\tau)|/\mu(\xi',\tau)| \leq C \sup_{\tau} |P(\xi',\tau)|/\mu(\xi',\tau)|$$

with a positive constant C. Thus $v_{\infty} \sim \mu_{\bar{P},\infty}$. By virtue of Theorem 1 the trace mapping $u \rightarrow [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $B_{1,\mu\bar{P},\infty}(\mathbb{R}^n)$ is an epimorphism.

REMARK. With the same notations as in [3] we can similarly show that if $\mu_{\overline{P},p'}(\xi') > 0$ with $1 < p' < \infty$ and P is hypoelliptic, then the trace mapping $u \rightarrow [P(D)u](x', 0)$ from $B_{p,\mu}(\mathbb{R}^N)$ into $B_{p,\mu,p'}(\mathbb{R}^n)$ is an epimorphism.

EXAMPLE 2. If P(D) is a polynomial of D_t and

$$1/v_{\infty}(\xi') = \sup_{\tau} |P(\tau)|/\tilde{\mu}(\xi', \tau) < \infty,$$

then v_{∞} is a temperate weight function on Ξ^n and the trace mapping $u \to [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $B_{1,\nu_{\infty}}(\mathbb{R}^n)$ is an epimorphism.

In fact, from the relations

$$1/v_{\infty}(\xi' + \eta') = \sup_{\tau} |P(\tau)|/\tilde{\mu}(\xi' + \eta', \tau) \ge (1 + C|\xi'|)^{-k} \sup_{\tau} |P(\tau)|/\tilde{\mu}(\eta', \tau)$$

with positive constants k and C, we have $v_{\infty}(\xi' + \eta') \leq (1 + C|\xi'|)^k v_{\infty}(\eta')$. Since $v_{\infty}(\xi') > 0$, v_{∞} is a temperate weight function on Ξ^n . By virtue of the above corollary the trace mapping $u \rightarrow [P(D)u](x', 0)$ from $B_{1,\mu}(\mathbb{R}^N)$ into $B_{1,\nu_{\infty}}(\mathbb{R}^n)$ is an epimorphism.

Suppose that for some non-negative integer M

$$\inf_{\tau} |\tau|^{-M} \mu(\xi', \tau) > 0.$$

For any $k = (k_1, ..., k_m)$, k_j being non-negative integers, such that $|k| \leq M$ we put

$$v_{k,\infty}(\xi') = \inf_{\tau} |\tau^{-k}| \tilde{\mu}(\xi', \tau).$$

Then $v_{k,\infty}$ is a temperate weight function on Ξ^n . We consider the trace mapping $\tilde{\mathcal{O}}: u \to \{D_t^k u(x', 0)\}$ from $B_{1,\mu}(\mathbb{R}^N)$ into $\prod_{|k| \le M} B_{1,\nu_{k,\infty}}(\mathbb{R}^n)$.

THEOREM 2. The trace mapping \mathcal{O} is an epimorphism if and only if the range of the transposed map \mathcal{O} is closed in $B_{\infty,1/\mu}(\mathbb{R}^N)$.

PROOF. Let $\vec{v} = \{v_k\} \in \prod_{|k| \le M} B_{\infty, 1/v_{k,\infty}}(\mathbb{R}^n)$. In the same way as in the proof of Theorem 2 [3, p. 174] we have

$$t \widehat{\widetilde{\mathcal{O}}} v(\xi) = \sum_{|k| \leq M} \hat{v}_k(\xi') \tau^k.$$

By this equation we see that the transposed map ${}^t \widetilde{\mathcal{O}}$ is injective. Thus $\widetilde{\mathcal{O}}$ is an epimorphism if and only if the range of ${}^t \widetilde{\mathcal{O}}$ is closed in $B_{\infty,1/\mu}(\mathbb{R}^N)$.

In the same way as in the proofs of Theorem 3 and its corollary in our previous paper [3] we can prove

THEOREM 3. The following conditions are equivalent:

(1) If $u \in B_{\infty,1/\mu}(\mathbb{R}^N)$ and $\hat{u}(\xi) = \sum_{|k| \leq M} f_k(\xi')\tau^k$, then $f_k/\nu_{k,\infty} \in L^{\infty}(\Xi^n)$ for any k with $|k| \leq M$.

(2) If $u \in B_{\infty,1/\mu}(\mathbb{R}^N)$ and $\hat{u}(\xi) = \sum_{|k| \leq M} f_k(\xi')\tau^k$, then

$$\hat{u}(\xi', \tau_1, ..., \tau_{i-1}, 2^{-1}\tau_i, \tau_{i+1}, ..., \tau_m)/\mu \in L^{\infty}(\Xi^N)$$

for every j = 1, 2, ..., m.

(3) If $u \in B_{\infty,1/\mu}(\mathbb{R}^N)$ and $\hat{u}(\xi) = \sum_{|k| \leq M} f_k(\xi')\tau^k$, then

$$\hat{u}(\xi', 2^{-i_1}\tau_1, \dots, 2^{-i_m}\tau_m) \in L^{\infty}(\Xi^N)$$

for any non-negative integers i_i.

In this case, the trace mapping $u \to \{D_t^k u(x', 0)\}$ from $B_{1,\mu}(\mathbb{R}^N)$ into $\prod_{|k| \le M} B_{1,\nu_{k,\infty}}(\mathbb{R}^n)$ is an epimorphism.

COROLLARY. If $\mu(\xi', \tau_1, ..., \tau_{j-1}, 2\tau_j, \tau_{j+1}, ..., \tau_m) \ge C\mu(\xi)$ with a positive constant C for j = 1, 2, ..., m, then the trace mapping $\tilde{0}: u \to \{D_t^k u(x', 0)\}$ from $B_{1,u}(\mathbb{R}^N)$ into $\prod_{|k| \le M} B_{1,v_k,\infty}(\mathbb{R}^n)$ is an epimorphism.

PROPOSITION 3. Let $\{f_k\}$ be an arbitrary element of $\prod_{|k| \leq M} B_{1,v_{k,\infty}}(\mathbb{R}^n)$ and suppose for each k there exist a positive valued continuous function λ_k on Ξ^n and a slowly increasing continuous function Φ_k on Ξ^m such that

$$\mu(\xi', \lambda_k(\xi')\tau) \leq \lambda_k^{|k|}(\xi')v_{k,\infty}(\xi')\Phi_k(\tau).$$

Let $\psi \in \mathcal{D}(\mathbb{R}^m)$ satisfy $\psi = 1$ in a neighbourhood of 0. If we put

$$\hat{u}_{x'}(\xi', t) = \sum_{|k| \le M} (k!)^{-1} \hat{f}_{k}(\xi')(it)^{k} \psi(\lambda_{k}(\xi')t),$$

then $u \in B_{1,\mu}(\mathbb{R}^N)$ and $D_t^k u(x', 0) = f_k(x')$ for $|k| \leq M$.

PROOF. From the equation

$$\begin{aligned} \hat{u}(\xi) &= \sum_{|k| \le M} (-i)^{|k|} (k!)^{-1} \hat{f}_k(\xi') D_{\tau}^k \int_{\Xi^m} \psi(\lambda_k t) e^{-i\langle t, \tau \rangle} dt \\ &= \sum_{|k| \le M} (-1)^{|k|} (k!)^{-1} \hat{f}_k(\xi') \lambda_k^{-|k|-m} D_{\tau}^k \hat{\psi}(\lambda_k^{-1} \tau) \end{aligned}$$

we have

$$\begin{split} \int_{\mathbb{R}^N} |\hat{u}| \mu d\xi &\leq \sum_{|k| \leq M} (k!)^{-1} \int_{\mathbb{R}^n} \lambda_k^{-|k|} |\hat{f}_k(\xi')| \int_{\mathbb{R}^m} |D_\tau^k \hat{\psi}(\tau)| \mu(\xi', \lambda_k(\xi')\tau) d\xi' d\tau \\ &\leq \sum_{|k| \leq M} (k!)^{-1} \int_{\mathbb{R}^n} |\hat{f}_k(\xi')| v_{k,\infty}(\xi') d\xi' \int_{\mathbb{R}^m} |D_\tau^k \hat{\psi}(\tau)| \Phi_k(\tau) d\tau < \infty. \end{split}$$

Thus $u \in B_{1,\mu}(\mathbb{R}^N)$ and clearly $D_t^k u(x', 0) = f_k(x')$ for $|k| \leq M$.

EXAMPLE 3. Let μ_1 , μ_2 be temperate weight functions defined on Ξ^n such that $\mu_2 \leq C\mu_1$ with a positive constant C and put $\mu(\xi) = \mu_1(\xi') + |\tau|^a \mu_2(\xi')$ with a positive real number a. Then μ is a temperate weight function on Ξ^N and

$$v_{k,\infty} \sim \mu_1^{1-|k|/a} \mu_2^{|k|/a}$$
 for $|k| \le a$.

If we take $\lambda_k = (\mu_1/\mu_2)^{1/a}$ and $\Phi_k(\tau) = 1 + |\tau|^a$ for $|k| \leq a$, then

$$\mu(\xi', \lambda_k(\xi')\tau) \leq C\lambda_k^{|k|}(\xi')v_{k,\infty}(\xi')\Phi_k(\tau).$$

In fact, from the relations

$$v_{k,\infty}(\xi') \sim \inf_{\tau} |\tau^k|^{-1} (\mu_1(\xi') + |\tau|^a \mu_2(\xi'))$$

= $\mu_1^{1-|k|/a} \mu_2^{|k|/a} \inf_{\tau} |\tau^k|^{-1} (1+|\tau|^a),$

we have $v_{k,\infty} \sim \mu_1^{1-|k|/a} \mu_2^{|k|/a}$ and therefore

$$\lambda_{k}^{|k|}(\xi')\nu_{k,\infty}(\xi')\Phi_{k}(\tau) \sim (\mu_{1}/\mu_{2})^{|k|/a}\mu_{1}^{1-|k|/a}\mu_{2}^{|k|/a}(1+|\tau|^{a})$$
$$=\mu_{1}(\xi')(1+|\tau|^{a}).$$

On the other hand, we have

$$\begin{split} \mu(\xi', \, \lambda_k(\xi')\tau) &= \mu_1(\xi') + |\lambda_k(\xi')\tau|^a \mu_2(\xi') \\ &= \mu_1(\xi') + |\tau|^a \mu_1(\xi') = \mu_1(\xi')(1+|\tau|^a). \end{split}$$

Thus Proposition 3 is applicable to this case.

In Section 5 of our previous paper [3], we have investigated the relation between the trace mappings and other notions in the space $B_{p,\mu}(\mathbb{R}^N)$, $1 . With necessary modifications, our treatments will also hold for the space <math>B_{1,\mu}(\mathbb{R}^N)$.

Mitsuyuki Itano

Under the same notations and terminologies as in the paper [3] we have

THEOREM 4. For the space $B_{1,\mu}(\mathbb{R}^N)$ the following statements are equivalent:

(1) The trace mapping $B_{1,\mu}(\mathbb{R}^N) \ni u \rightarrow u(x', 0) \in \mathscr{D}'(\mathbb{R}^n)$ is defined.

(2) The section for t=0 exists for every $u \in B_{1,\mu}(\mathbb{R}^N)$.

(2)' The condition (2) holds in the strict sense.

(3) The partial product δu exists for every $u \in B_{1,\mu}(\mathbb{R}^N)$, where δ is the Dirac measure in \mathbb{R}_t^m .

(3)' The partial product $\delta \cdot u$ exists for every $u \in B_{1,u}(\mathbb{R}^N)$.

(4) The distributional limit $\lim_{j\to\infty} (1\otimes\delta)(u*\rho_j)$ exists for a fixed restricted δ -sequence $\{\rho_j\}, \rho_j \in \mathcal{D}(\mathbb{R}^N)$, for every $u \in B_{1,\mu}(\mathbb{R}^N)$.

(5) The distributional limit $\lim_{j\to\infty} \rho_j u$ exists for a fixed δ -sequence $\{\rho_j\}, \rho_j \in \mathcal{D}(\mathbb{R}^m_t)$, for every $u \in B_{1,\mu}(\mathbb{R}^N)$.

Let μ be a temperate weight function on Ξ^N and suppose $\inf_{\tau} \mu(0, \tau) > 0$. If we put $v_{\infty}(\xi') = \inf_{\tau} \tilde{\mu}(\xi', \tau)$, then v_{∞} is a temperate weight function on Ξ^n . Let $t_0 \in \mathbb{R}^n$ and $u \in \mathscr{D}(\mathbb{R}^N)$. In the proof of Proposition 2 we have shown

$$||u(\cdot, t_0)||_{1,\nu_{\infty}} \leq ||u||_{1,\mu}.$$

Thus the trace $u(\cdot, t_0)$ on $t = t_0$ belongs to the space $B_{1,\nu_{\infty}}(\mathbb{R}^n)$ for any $u \in B_{1,\mu}(\mathbb{R}^N)$. Furthermore $u(\cdot, t)$ may be considered as a $B_{1,\nu_{\infty}}(\mathbb{R}^n)$ -valued continuous function u(t) of t.

References

- [1] L. Hörmander, Linear partial differential operators, Springer, 1969.
- [2] M. Itano, On a trace theorem for the space $H^{\mu}(\mathbb{R}^{N})$, J. Sci. Hiroshima Univ. Ser. A-I **30** (1966), 11-29.
- [3] —, On the trace mappings for the space $B_{p,\mu}(\mathbb{R}^N)$. Hiroshima Math. J. 8 (1978), 165–180.
- [4] L. R. Volevich and B. P. Paneyakh, Certain spaces of generalized functions and embedding theorems. Uspehi Mat. Nauk 121 (1965), 3-74; Russian Math. Surveys 20 (1965), 1-73.

Faculty of Integrated Arts and Sciences, Hiroshima University