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1. Introduction

In this paper we study the oscillatory and nonoscillatory behavior of solutions
of the linear retarded differential equation

(E) x<">(0 + p(t)x(g(t)) = 0, tZa,

where n is even and the following conditions are always assumed to hold:
(a) p(i) is a positive continuous function on [α, oo);
(b) g(i) is a continuously differentiate function on [α, oo) such that g(t)^t,

g'(t)>0 for t^a and 1^1^00^(0=00.
A solution x(t) of (E) defined on [Tx, oo) is called oscillatory if x(t) has an

unbounded set of zeros, and otherwise it is called nonoscillatory. Equation (E)
is said to be oscillatory if every solution of (E) is oscillatory, and nonoscillatory
if at least one solution of (E) is nonoscillatory.

In the oscillation theory of differential equations one of the important prob-
lems is to find conditions on p(i) which imply that (E) is oscillatory or (E) is
nonoscillatory. For the second order ordinary differential equation

(1) x" + XO* = 0, t^a,

there is an extensive literature on this subject (see Swanson's book [11]). Espe-
cially, the following theorem is well known.

THEOREM A. (i) (Fite [2]) Equation (1) is oscillatory if

(2)

(ii) (Hille [4]) Suppose (2) fails. Then equation (1) is oscillatory if

rco
(3) lim sup, _ oo t \ p(s)ds > 1,

or if

(4) lim inf t_«, t (°° p(s)ds > 1/4.

Equation (1) is nonoscillatory if
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(oo

(5) lim sup,^ t \ p(s)ds < 1/4.

For example, the equation

(6) x" + kt*x = 0, t ^ 1,

is oscillatory if either α> — 2, fc>0 or α=—2,/c>l/4, and nonoscillatory if
either α< — 2, fc>0 or α = — 2, fc< 1/4. Note that in case α> — 2 (6) is oscillatory
for any fc>0, and in case α< — 2 (6) is nonoscillatory for any fc>0.

In general, motivated by Nehari [9], we define as follows: Equation (E) is
said to be strongly oscillatory if the related equation

(Eλ) *<»>(0 + λp(t)x(g(ί)) = 0, t ^ a,

is oscillatory for all positive values of λ. Equation (E) is said to be strongly
nonoscillatory if (Eλ) is nonoscillatory for all positive λ. For the second order
equation (1) necessary and sufficient conditions of strong oscillation and strong
nonoscillation are established on the basis of (ii) of Theorem A.

THEOREM B (Nehari [9]). Suppose (2) fails. Equation (1) is strongly
oscillatory if and only if

|*00

lim sup,.̂  t \ p(s)ds = oo.

Equation (1) is strongly nonoscillatory if and only if

f°°lim,_> oo t \ p(s)ds = 0.

Note that, by (i) of Theorem A, (1) is strongly oscillatory if (2) holds. Thus
equation (6) is strongly oscillatory iff α>—2 and strongly nonoscillatory iff
α<-2.

The purpose of this paper is to extend Theorems A and B to equation (E).
More precisely, we reduce oscillation and nonoscillation of (E) to those of as-
sociated second order equations, and as a consequence we are able to characterize
completely the strong oscillation and strong nonoscillation for certain classes of
(E) including the ordinary differential equation

(7) x<M> + p(t)x = 0, t ^ α.

Related results for (7) and (E) can be found in Chanturiya [1], Grimmer
[3] and Lovelady [6, 7].
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2. Results

We begin with lemmas which are needed in establishing our oscillation and
nonoscillation criteria.

LEMMA 1 (Kiguradze [5]). If x(f) is an eventually positive solution of (E),
then there are an odd integer ^e{l,..., n — 1} and a number T^α such that
forί^T

>0
(8)

(9)

>0

LEMMA 2 (Onose [10]). Equation (E) is nonoscillatory if and only if there
exists an eventually positive function y(t) satisfying the inequality

y(n\t) + p(t)y(g(t)) £ 0, t^a.

LEMMA 3 (Mahfoud [8]). Let g~l(f) be the Inverse function of g(t). If
the ordinary differential equation

is oscillatory, then equation (E) is oscillatory.

THEOREM 1. Suppose that for every T^a the second order equation

(10) w"(0 + (nllv(g(t)-τy-*P(t)w(g(ί)) = o, t^a,

is oscillatory. Then equation (E) is oscillatory.

PROOF. We shall prove that the existence of a nonoscillatory solution of
(E) implies that for some T^a equation (10) has a nonoscillatory solution.
Suppose x(t) is a nonoscillatory solution of (E). We may assume with no loss of
generality that x(i) is eventually positive. By Lemma 1 there exist an odd integer
^6 {!,..., n-1} and a number T^α such that (8) and (9) hold for t^T. We
may suppose that x(g(f)} > 0 for t ̂  T. Applying Taylor's formula with remainder,
we find that
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= .-r(-D^(τ)
j=o J !

for τ^/^T. Taking (8) into account and letting τ->oo, we obtain

for f 2ΐ T. From the above inequality it follows that

+ (B-j-i)i J" (̂  (« -s)"-i-

for ί ̂  T. Therefore, by virtue of the inequality

{' (u-sY-^ds^— ̂ -(ί
Jr M~*

we conclude that

(11) χ('-«(0 ̂  χ('-«(Γ) + - ĵr J^. (« - T)"-ίp(u)x(g(uy)du

+ (n-t)i 0- Γ) J" (« - TO'-'-^MM

for ί ̂  Γ. Denote the right hand side of (11) by y(t). In view of (9) we see that

for all large ί. Then by differentiation

/'« + («Λ)! O-ry-'-VOWgCO) = o

and so

for all large /. It follows from Lemma 2 that equation (10) is nonoscillatory,
contradicting the hypothesis. This completes the proof.
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THEOREM 2. (i) Equation (E) is oscillatory if

(12)

(ii) Suppose that (12) fails. Then equation (E) is oscillatory if

(13)

or i/

(14) lira inf,^ 0(ί) J" [flf(s)]"-2Xs)d5 > (n-l)!/4.

PROOF. According to Theorem 1 and Lemma 3, it is sufficient to show that
the second order ordinary differential equation

is oscillatory for every Γ^α. With the aid of Theorem A we can easily observe
that the above equation is oscillatory if any one of the conditions (12), (13), (14)
is satisfied. The proof is complete.

THEOREM 3. Suppose that for some T^a the second order equation

(15) w"(0 + -! (*-r)"-2XOw(<7(0) = 0, t ^ a,
(72-2)!

is nonoscillatory. Then equation (E) is nonoscillatory.

PROOF. Let w(ί) be an eventually positive solution of (15). Find T0Ξ>T
such that w(0>0 and w(g(t))>Q for t^ T0. It is easily verified that

w(ί) ^ w(T0) + ( n 2 γ (ιι - Tγ-*

for f^T0, so

(16) w(ί) ^ w(T0) + (72_^2)! J^ JJ (ii -s)«-2

for ί ̂  T0. Denote the right hand side of (16) by y(f). In view of (16) we see that

y(n\t) + p(f)y(g(i)} ^ y(»)(ί) + XfX0(0) = 0

for all large ί. Now from Lemma 2 it follows that equation (E) is nonoscillatory.
This completes the proof.

THEOREM 4. Suppose that
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Γ°°\ sn~2p(s)ds
Ja

Then equation (E) is nonoscillatory if

(17) limsup^β ί J"s«-2Xs)ds < (n- 2)1/4.

PROOF. It is enough to prove that equation (15) is nonoscillatory for some
^a. Applying Theorem A, we see that the ordinary differential equation

" "(n-2)\

has an eventually positive solution y(t) under the condition (17). Since y(t) is
increasing for all large t (see Lemma 1), it follows that

w"2 ^ o

for all large ί, where T^a is a positive constant. Thus by Lemma 2 we conclude
that equation (15) is nonoscillatory. The proof is complete.

On the basis of Theorems 2 and 4, a characterization of strong oscillation
and strong nonoscillation of (E) is established.

THEOREM 5. Assume that

(18) liminf^^O/f >0.

(i) Equation (E) is strongly oscillatory if and only if either

Γ°°
(19) \ sn~2p(s)ds = oo

Ja

or

$00
sn~2p(s)ds = oo.

(ii) Equation (E) is strongly nonoscillatory if and only if

(21) (* s»~2p(s)ds < oo
Jfl

and

(22) lim^β

PROOF. Condition (18) implies that there is a positive constant c such that
^ct for all large f.
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(i) Suppose (E) is strongly oscillatory. Since (EΛ) is oscillatory for every

λ>0, if (19) does not hold, then

lim sup^ λt ί°° sn~2p(s)ds ^ (n-2)1/4

for every λ>0 by Theorem 4, so that (20) must be satisfied. Conversely, suppose
either (19) or (20). If (19) holds, then by (i) of Theorem 2 it is clear that (E) is
strongly oscillatory. If (20) holds, then

Ϊ
oo

t [00)]"~ = oo

for all positive λ, which shows the oscillation of (EΛ) for all positive λ by (ii) of
Theorem 2.

(ii) If (E) is strongly nonoscillatory, then (21) holds by (i) of Theorem 2
and the inequality

lim sup,.,,, λg(f) ^ [g(sKn-2p(s)ds ^ (n-l)l

is satisfied for all λ>0 by (ii) of Theorem 2 and hence (22) holds. Conversely,
if (21) and (22) hold, then

("00

lim sup,.̂  λt \ sn~2p(s)ds < (n-2)1/4

for all A>0 is obvious and so (E) is strongly nonoscillatory by Theorem 4. The
proof is complete.

EXAMPLE 1. Let r be a nonnegative number and consider the equation

(23) jc<">(0 + kt«x(t-r) = 0, t ^ 1,

where k is a positive constant. Then equation (23) is strongly oscillatory if and
only if α> — n, and strongly nonoscillatory if and only if α< — n.
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