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1. Introduction

This paper is concerned with a class of control problems where the control
(or input) /(*) and the output (or trajectory) u(f) are related by the differential
equation

(1.1) du(t)ldt = Au(f) + Bf(i).

Here A is the infinitesimal generator of a C0 semigroup of bounded linear operators
U(t\ f^O, on a Banach space X, and B is a bounded linear operator from a
Banach space Y to X.

For any UQ e X and Y-valued locally summable function/, we define

(1.2) ιι(0 = I7(0u0 + U(t-s)Bf(s)ds
JO

to be a mild solution of (1.1) with the initial state w(0) = w0. It is well known that
if f(f) is continuously differentiate in ί>0 and u0 is in the domain of A, then
u(t) defined by (1.2) is a genuine solution of (1.1) with w(0) = w0.

When a subspace D of X9 which is called a controlled space, is given, the usual
controllability problem is as follows.

For any u0 and w x in D, is there at all a control /which steers the initial state
MO to the final state ut ?

In this paper, unlike the usual controllability problem, we require that the
controls are constrained in a prescribed set, which is called a constraint set. When
a constraint set is given, as are posed by Fattorini [5], [6], the following three
questions arise naturally.

(a) For any w0 and ul in D, is there at all a control /in the constraint set
which steers the initial state u0 to the final state u^l

(b) Assuming the answer to (a) is affirmative, does there exist a control /0

that does the transfer in minimum time? When there exists such an /0, it is
called an optimal time control.

(c) If there exists an optimal time control, is it unique? What additional
properties does it have?

In case the dimensions of X and Y are finite and the constraint set is {f(t) \
f(t)e W almost everywhere in ί}, where Wis a compact set in 7, some necessary
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and sufficient conditions for the controllability in the constraint set have been
obtained by many authors, e.g. Lee and Markus [9], Saperstone [14], Saperstone
and Yorke [15], Brammer [3], etc. When W is a unit ball in Y, Bellman,
Glicksberg and Gross [2] showed that (b) is affirmative, and gave an answer to
(c) in terms of the so-called "maximal" principle or "bang-bang" principle.

In case the dimensions of X and Fare infinite, the answer to the question (b)
is by now well known ([1], [4]). As for the problems (a) and (c), a few results
have been obtained for special control systems. Fattorini [4] considered the
problem (c) in the case where D = X= Y and B is the identity map. Further in
[5] he considered the problems (a) and (c) for a control system described by the
wave equation. The control system considered by Fattorini is given by

(1.3) d2u/dt2 - Σ d2u/dx? = /(*, ί) in Ω x (0, oo) ,

(1.4) u(x, 0 = 0 on dΩ x (0, oo)

with constraint

(1.5) \ |/(x, i)\2dx ^ 1 almost everywhere in t,
JΩ

and the controlled space D = #J(Ω)xL2(Ω). Here Ω is a bounded domain in
Rn with smooth boundary dΩ and #J(ί2) is the usual Sobolev space. The system
(1.3), (1.4) can be reduced to a first order equation in the usual way: Set V(t) =

and wrίte C1-3) ίn the form

(1.6) dV(t)ldt = AV(t) + Bf(t)

where

0 1
A =

Δ 0

and B is the projection to the second coordinate. However, Fattorini did not
treat the system in the form (1.6) because B is not the identity operator ([5],
Footnote 3).

In this paper we consider the equation (1.1) where B is not the identity operator
and show results similar to those in the case the dimensions of X and Y are finite.

As for problem (c), Fattorini [6] and Schmidt [16] considered a system
described by the heat equation with boundary control. But here we do not
refer to that control system.

2. Basic notations and definitions

Let X and Y be Banch spaces. For l^p^oo, 1̂ (0, T; Y) denotes the
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space of all strongly measurable, Y-valued functions /(f) defined in Ogί^

\\f\\P = (\ Q
ao

endowed with the norm \\ \\p (the definition is modified in the usual way when
p= oo). We take the constraint set of the controls as

(2.1) JF* = WΓ > 0 {/ei/(0, T; Y)\ \\f\\, ^ η} for η > 0.

As is stated in the introduction, A is the infinitesimal generator of a C0 semigroup
U(t)9 ί^O, on X and B is a bounded linear operator from 7 to X. Furthermore
we define the attainable set K% by

(2.2) Kp

τ = Q U(T- s)Bf(s)ds fe ί/(0, T;

To state admissible controllability, we recall some definitions.

DEFINITION 1. (1) A subspace D of X is said to be controllable in

Z/(0, Γ; y)if.Xf=)D.
(2) A subspace D of X is said to be null controllable in L*>(0, T; Y) if for

each u0eD there exists /el/(0, T; 7) such that

l/(7>o + Γ U(T-s)Bf(s)ds = 0.
Jo

(3) The control system (1.1) is said to be exactly controllable and exactly
null controllable in I/(0, T; 7) if the whole space X is controllable and null
controllable in 1̂ (0, T; 7) respectively.

DEFINITION 2. (1) A subspace D of X is said to be admissibly controllable
in the constraint set ^"J if for each MO and w x in D, there exists /e^JJ such that

ii i = l/(7>o +Γl/(Γ-s)J3/(s)ds.
Jo

(2) A subspace D of X is said to be admissibly null controllable in the
constraint set &* if for each u0 e D there exists fe ̂  such that

£7(7>o +Γ U(T-s)Bf(s)ds = 0.
Jo

(3) The control system (1.1) is said to be admissibly controllable and
admissibly null controllable in ̂ ^ if the whole space X is admissibly controllable
and admissibly null controllable in &p

n respectively.
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3. Admissible controllability

In this section we discuss problem (a), that is, the admissible controllability
in the constraint set ^p

η (pΦ 1).

THEOREM 1. Lei l<p^ao and assume the following (1)~(4):

(1) the controlled space D is a Banach space endowed with a norm \\ \\D

stronger than the norm \\ \\x of X, that is, there exists some positive constant y
such that \\u\\ x^y \\u\\ D for any u eD;

(2) the controlled space D is invariant under U(i) for all f^O, that is,
U(t)Dc:Dfor αΠί^O;

(3) 17(0 is contractive on D, that is, \\U(t)u\\D£ \\u\\ D for all ί^O;
(4) the controlled space D is null controllable in Lp(0, Γ0; Y) for some

F0>0.
Then the controlled space D is admissibly null controllable in the con-

straint set ^vfor any positive η.

PROOF. Let 1 < p < oo . First we define a closed subspace jV* of ί/(0, T0 7)
as

, T0; 7) U(TQ-s)Bf(s)ds = 0
I Jo

and denote by & the quotient space L*(0, T0 7)/Λ/\ By assumption (4), to each
u0 eD there corresponds /0 ε Lp(0, T0; 7) satisfying

l/(T0)«o + U(T0- s)β/0(s)ds = 0.
Jo

Let F be the operator which maps w0 to the equivalent class of /0. By the bounded-
ness of U(TQ) on X and B from 7 to X, and by assumption (1), it is easy to see
that F is a closed operator from D to &. Hence by the closed graph theorem, F
is a bounded operator from D to &.

For a positive number α, let us put

there exists/eί/(0, T0; 7) such that ||/||J ^ α ϊ

and E7(T0)tto + Γ° ί/(Γ0 - s)Bf(s)ds = 0 f
Jo )

For any given MO e D, let L= ||MO||D. Then by the boundedness of F, there exists
a positive number M such that £L={M eD \ \\u\\D^L} is contained in AM.

Now we choose a sequence {w f c}ι<k<n in D so that

(3.1) u, = w0 - Ltio/OΦoIlD) = (1 - l/")"o,
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(3.2) uk =

for 2g/cgn. By assumption (2), {uk}ί^k^n is well defined. Furthermore by
assumption (3),

\\uk\\D=

for k^.2. Thus there exists an integer m such that

||ιιm||D ^ L/n, 1 ̂  m ̂  n.

If i eZ) and ||ι;||D^L/rc, then nvεBL. Thus there exists /el/(0, Γ0; 7) such
that

||/(OH'Λ ^ M, C/(To)(nt?) + U(T0-s)Bf(s)ds = 0.
o Jo

Putting g(t)=f(i)/n9 we have

Γ° l l f l f (Ol l p Λ ^ M/n^, t/(Γ0)ι; + Γ° U(TQ-s)Bg(s)ds = 0.
Jo Jo

Since | |w0-ι/1 | |D= ||l/(Γ0)wfc-1-Mfc||ί) = L/« (2^fc^m), there exists /fceL*(0, T0;
Y) satisfying

(3.3) Γ°
Jo

for 1^/c^m, and

(3.4) £/(Γo)[tt0-Hι] + U(T0-s)Bf1(s)ds = 0,
Jo

(3.5) 17(Γ0) [l/(Γ0K_ t - « J + f Γ° 17(Γ0 - s)Bfk(s)ds = 0
Jo

. Since

||t7(Γo)ιιw||D^ llMji, g L/n,

there exists /m+ j eL^(0, T0; 7) such that

(3.6)

and

(3.7) 17(T0) [l/(Γ0)ιι J + Γ° £7(Γ0 - 5)B/m+ ̂ ds = 0.
Jo

By the equations (3.4), (3.5) and (3.7), we obtain
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0 = U(T0)ϋ(T0)um + U(T0-s)Bfm+ι(s)ds
JO

U(T0-s)BfJίs)ds]
o Jo

= [7(2Γ0)[l7(Γ0)l7(T0)um_2 o

U(2T0-s)Bfm(s)ds + Γ° V(T0-s)Bfm+ι(s)ds
Jo

t/(T0 - s)BΛ(s)ds]

ΣΓ-i Γ°
Jo

+ ΣSί Γ° U(kT0-s)Bfm+2-k(s )ds.
Jo

Since

k)Γ0

we have

5 (m+2-fe

(m+l-k

f(m+l)T 0

I7((m + l)Γ0)ιio + \ I7((m + 1)T0Jo
rfs = 0.

Jo

Here

for

1 ^ fc^ m + 1.

By the inequalities (3.3) and (3.6),

Γ(m+l)Γn Γ^o

II^OII'Λ = Σϊίί ll/m +Jo Jo

If we choose n so large that

then gE^p

n. Thus we have admissible null controllability of the controlled
space D in &p

n.
The proof for the case p — oo is similar.
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When the whole space X is taken as the controlled space, assumptions (1),
(2) are trivially satisfied and assumption (3) means that U(t) is a contraction C0

semigroup. Thus we have

COROLLARY 1. Let l<p^co and A be the infinitesimal generator of a
contraction C0 semigroup. If the control system (1.1) is exactly null con-
trollable in Lp(0, Γ0; 7), then the system (1.1) is admissibly null controllable

in «^"ίj for any positive η.

If A is the generator of a contraction C0 semigroup 17(0 and the domain of
( — A)Λ (αg O), D(( — A)Λ\ is taken as the controlled space, then assumptions (1),
(2) and (3) are satisfied. Here D(( — A)*) is endowed with the norm

IMIixί-A).) = Mx+\\(~AYw\\x for weD((-Λ)«).

Thus we have

COROLLARY 2. Let l<p^co and A be the infinitesimal generator of a
contraction C0 semigroup. For some positive α, if D(( — A)a) is null controlla-
ble in ί/(0, T; 7), then D((-A)Λ) is admissibly null controllable in ^p

η for any

positive η.

REMARK 1. We cannot obtain the same result in the case p=l. Here we
show two simple examples which satisfy the assumptions of Theorem 1, but one
is admissibly null controllable and the other is not admissibly null controllable in
jri.

Let us consider the heat equation

(3.8) [du/dί] (x, 0 - Au(x, t) = /(x, ί) in Ω x (0, T)

with Dirichlet or Neumann boundary condition, that is,

(3.9) u(x, 0 = 0 on dΩ x (0, T)

or

(3.10) [Sw/dii] (x, 0 = 0 on dΩ x (0, T) .

Here Ω is a bounded domain with smooth boundary dΩ, d/dn denotes the out-
ward normal derivative on dΩ. Let us put X=Y=L2(Ω), A = A with D(A) =
H2(Ω)Γ\H^(Ω) or {u eH2(Ω)\du/dn — Q} according as the boundary condition is
(3.9) or (3.10), where H^(Ω) and H2(Ω) denote the usual Sobolev spaces. Then the
control system

(3.11) du(t)/dt = Au(t)+f(t)

means (3.8) with (3.9) or (3.10). These control systems are exactly null con-
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trollable in L°°(0, T; Y) at any positive time T. (See [7], [13].) Therefore these
are null controllable in 1̂ (0, T; 7).

First let us consider the control system (3.8) with Dirichlet boundary con-

dition (3.9). Let UJfc=1>2,..., Q<λl<λ2< <λn< , be the eigenvalues of -A
with Dirichlet boundary condition and {φkι} 1=1,2 mk be the eigenfunctions for

the eigenvalue λk, where mk is the multiplicity, such that {φM}k=ιt2t...;i=ι,2 ..... mk

form an orthonormal basis for the space L2(Ω). If the admissible null con-
trollability holds, then for any u0eL2(Ω) there exists T(>0) and /(x,
satisfying the equality

(3.12) I7(7>o + Γ U(T- s)f(s)ds = 0.
Jo

Let us expand u0(x) and /(x, t) as

(3.13)

(3.14)

Then

(3.15)

and

(3.16)

for almost every t e [0, T]. The equation (3.12) is expressed as

(3.17) Σ cklφkl(x) exp (- λkT) + Σ ^fMφ^x) exp (-λk(T-s))ds = 0.

Comparing the coefficients of φkl9 we have

(3.18) ckl exp (-λkT) + (* fkl(s) exp(-λk(T-s))ds = 0.
Jo

Now let

Then it is easy to see that the equality (3.18) holds for each /c, /. Furthermore
we have

Σ |/kj(0l2 ^ sup, [Ak/(exp (AfcΓ)- 1)]2 Σ |cH|2 .

Hence by (3.15) and (3.16)

Since 0<A 1<A 2< <A/I< ,
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supt|A»T/[exp(AtT)-l]|-»0 as Γ-κ».

Thus we can take Γ ( > 0) satisfying

This means that the control system (3.8) with (3.9) is admissibly null controllable
in &\.

Next we consider the control system (3.8) with Neumann boundary con-
dition (3.10). We shall see that this system cannot be admissibly null controlla-
ble in J^J. In fact, integrating the equation (3.8) over Ωx(0, Γ) and using
Green's formula, we obtain

(3.19) ( u(x, T)dx-( u(x, 0)dx =(* ( f ( x , t)dxdt
JΩ JΩ Jo JΩ*

for the genuine solution of (3.11). Let us choose the sequences in D(A) and
CHO, T; L2(β)) ( = the space of all L2(Ω)- valued continuously differentiable
functions) which converge to u0 in L2(Ω) and to /(x, i) in Lx(0, Γ; L2(Ω)) respec-
tively. By taking limit, the equality (3.19) holds for the mild solution of (3.11)

with initial state u0. If the system is admissibly null controllable in ^\, then
there exist Γ(>0) and/eJ^J which satisfy

(3.20) -ί Ho(*)Λc=Γ( f(x,ί)dxdt.
JΩ JO JΩ

Now let us take u0(x)=— y, where γ>η\Ω\~1/2. Then the left integral is γ\Ω\.
On the other hand

O JΩ
f(x9t)dxdt ^

O

Since 7>^y|Ω|~1 / 2, the equality (3.20) cannot hold for UQ(X)= —y. Therefore the
control system (3.8) with Neumann boundary condition (3.10) is not admissibly
null controllable in ̂ \ for any

REMARK 2. When U(t) is a unitary group, any nonzero subspace D is not
admissibly null controllable in J^J. In fact, if the controlled space D is admis-
sibly null controllable in J^J, then for any u0eD there exists /eJ^J satisfying

C7(7>o +Γ U(T-s)Bf(s)ds = 0.
Jo

Since l/(T) is unitary,

||l/(7>oll = Noll for any uQεD.
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On the other hand, any function /(f) in «^J satisfies

\\\TU(T-s)Bf(s)ds\\ ^ \\B\\ (T\\f(s)\\ds ^ \\B\\η.
I I J o I I J o

Hence u0eD which satisfies ||w0|| >ff | |JB| | cannot be steered to the zero state by
f ( i ) in &\. Thus any nonzero controlled space is not admissibly null con-
trollable in &\.

The wave equation considered by Fattorini [5], which is stated in the intro-
duction, generates a unitary group. Therefore the control system (1.3) with (1.4)
is not admissibly null controllable in &\.

REMARK 3. Null controllability and admissible null controllability can also
be considered when the controls are applied on the boundary. For example, let
us consider the wave equation

(3.21) 32w/5ί2- Σ52w/dx2 = 0 in β x (0, T)

with boundary condition

(3.22) αιι(x, t) + β(du/dή)(x9 i) =/(*, t) on 8Ω x (0, T) .

Here α and β are constants satisfying a2 + β2^Q. Let a control function /(x, t)
be defined on dΩ x (0, Γ).

By Russell [11], for any given [w0, w j eH2(Ω)x H1(Ω) and [vo^v^e
H2(Ω) x H\Ω\ there exist a positive time T and a control /(x, ί) in L^O, Γ;
Hs(δΩ)) such that the solution w(ί) of (3.21) with (3.22) satisfies

and

[w(T), ((

Here

( 1/2 if β Φ 0,
s = \

[ 3/2 if 0 = 0.

As is stated in the introduction, if /=0, (3.21) with (3.22) can be reduced to a
first order equation of the form (1.6) and the operator with the domain

{[ii, υ] E H2(Ω) x Hl(Ω) \ αw + β(du/dn) = 0 on dΩ}

when 0^0 and (H2(Ω) n HJ(O)) x HJ(Ω) when jS = 0, generates a unitary C0

semigroup L/(ί) on X, where X is if^Q) * £2(Q) when β^O and H^(Ω)xL2(Ω)
when /?=0. If we take the domain of A as the controlled space D, then D is
admissibly controllable in "̂{J for any p> 1 and f/>0. Here
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, T;

In fact, noting that D is controllable in L°°(0, Γ; H5(<3Ω)), U(t)DcD and

for any [w0, w j eD, we obtain the admissible null controllability of D in ^^ as
in the proof of Theorem 1. Since (3.21) and (3.22) are invariant under time
reversal, the controlled space D is admissibly controllable in &*.

By Graham and Russell [8], when the domain Ω is a sphere and α = 0, the
whole space ίT1(Ω)xL2(Ω) is controllable in L2(0, T; L2(dΩ)) = L2((0, Γ)xdΩ)
for positive Γ greater than diam Ω. Then, when the domain Ω is a sphere and
α = 0, the control system (3.21) with (3.22) is admissibly controllable in ̂ 2.

For simplicity we have considered the case when the controls are applied
on the whole boundary. But if the region where the controls are applied is
limited to a subset of the boundary which satisfies the "star-complemented"
condition, we obtain similar results by the same arguments. For details see

Russell [12].
For the heat equation with boundary control we can also state similar results.

As for the control systems described by the heat equation, see Fattorini and
Russell [7], Russell [11], [12], Seidman [17], [18].

As an example of Corollary 1, let us consider a vibrating string. The forced
motion of a string with density p(x) and modulus of elasticity c(x) is described by
the equation

(3.23) p(x) ίd2u/dt2-] - (d/dx) [φc) (du/dx)-] = y(jc)/(ί), 0 < x < 1, t > 0.

By means of transformations we obtain a simplified equation

(3.24) d2u/dt2 - d2u/dx2 - r(x)u = g(x)f(t), 0 < x < L, ί > 0,

where r(x) is a continuous function on [0, L] and g(x) is a function in L2(0, L).
The function g(x) is called the force distribution function. Let 7=JR1 and con-
trol space be L2(0, T; 7) = L2(0, Γ). For simplicity let both the end-points be
fixed, that is,

(3.25) w(0, t) =

Then as is stated in the introduction, (3.24) can be reduced to a first order equation
on the Hubert space X = #J(0, L)xL2(0, L). According to Russell [10], under
some assumption on g(x)9 any initial state in (//2(0, L) n #o(0, L)) x HJ(0, L) can
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be steered to the zero state by a control f(i) in L2(0, 2L). This means that the
controlled space D = (#2(0, L) n H0(0, L)) x #i(0, L) is null controllable in
L2(0, 2L).

Let {Λ,fc} and {φk} be the eigenvalues and eigenfunctions respectively of
— d2/dx2 — r(x) with Dirichlet boundary condition. Furthermore let {φk} form
an orthonormal basis in L2(0, L). Then the assumption on g(x) is as follows:
If g(x) is expanded as

000 = Σ9k<Pk(x)>

then

9k ^ 0, /c = 0, 1, 2,...,

and

liming oo fc|0J > 0.

Since the controlled space D is a domain of

0 1

I 0

which generates a contraction C0 semigroup, we can apply Corollary 1. Thus

the controlled space D = (/f2(0, L)n#J(0, L))x#J(0, L) is admissibly null con-
trollable in ^2. Since (3.24) and (3.25) are invariant under time reversal, the
controlled space D is admissibly controllable in ̂ 2.

Now let us assume the hypotheses in Theorem 1 and u l e X is represented in
the form

(3.26) Uί=\Tl U^-s^BMsϊds,
Jo

where ft (ί) e L"(0, Tj Y) (1< p < oo) and

G o

1/P

By Theorem 1, for any u0eD there exist some positive number T0 and/0(ί)e
, TO 7) satisfying

U(T0)u0 + U(T0-s)Bf0(s)ds = 0
Jo

and

G o
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If we put

/(O =
/0(0,

then we have

-s)Bf(s)ds

and

OΓo+T l / p 1/P /P

Thus there exists f ( t ) in ̂  which steers u0 to M J . In the case of p =00, in a
similar way, any u0eD can be steered in &™ to M A eX of the form (3.26) with

I ^^7 almost everywhere on [0, TJ.
Now let us define

and

Then we have

U(T-s)Bf(s)ds

U(T-s)Bf(s)ds

COROLLARY 3. Let the control system (1.1) and ffte controlled space D
satisfy the hypotheses of Theorem 1. Then for any u0eD and uί eXp

n, l<p<oo,
or M j e^ί*, ί/zere exists /(ί)e^ or ̂  w/?ίc/ι steers u0 ίo w l 5 ί/iaί is,

4. Optimal time control and extremum principle

Suppose for given u0 and M X in X there exists a control f ( t ) in ^"J which
steers w0 to w l s that is, for some positive number T

M l = t/(T)ιι0

Then the time Γ is called a transition time and the infimum of transition times,
when the control varies in the constraint set ^"{J, is called an optimal time. If
there is a control f0(t) in ̂  which steers u0 to uί with the optimal time, then it
is called an optimal time control.
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The existence of the optimal time control is by now well known.

THEOREM 2. Assume I/(0, Γ; Y) = L<(0, T; 7*)*, l/p+ 1/0 = 1, w/ι<?re *
denotes the adjoint space. Assume, further, that w0, uίeX are such that there
exists an admissible control in J^JJ transferring u0 to w t . Then there exists an
optimal time control.

For the proof see [1], [4].

Now we show a characterization of optimal time control, i.e., the extremum
principle, for 1 < p < oo .

THEOREMS. Let \<p<co and the control system (1.1) satisfy the hy-
potheses of Theorem 2. Let us assume that the control system (1.1) is exactly
null controllable in Lp(Q, T0; Y). Further let f0(t) be an optimal time control
in &p

η and T be its optimal time. If T>TQ, then f0(t) satisfies the extremum
principle, that is,

G o = n

PROOF. Let/0(ί) be an optimal time control which steers u0 to u t at the
optimal time Γ, that is,

u, = U(T)u0 + (TU(T-s)Bfo(s)ds.
JO

Suppose that

and T>T0. For any 0<ε< T, we have

(4.1) M t = l7(T-ε)w0 + [t/(Γ)

-f (C U(T-s)Bfo(s)ds + Γ U(T-s)Bf0(s)ds.
Jo Jc

As we showed in the proof of Theorem 1, for any positive constant γ there exists
some positive constant δ such that for any u contained in the ^-neighborhood of
the origin in X there exists g(t) in Z/(0, T0 Y) which satisfies

t/(Γ0)ιι 4- Γ° U(T0-s)Bg(s)ds = 0
Jo

and

\1/PO
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and ε be so small that

547

Let y = (η —

and

Then we can choose g^i) and #2(0 *n Lp(Q, T0; Y) which satisfy

(4.2) l/(Γ0) [l/(e)-/]ιι0 + Γ° U(T0-s)Bgι(s)ds = 0,
Jo

(4.3) ^^[Jό t>(β-*)B/o(s)<fr] + Jo

Γ° U(T0-s)Bg2(s)ds = 0

and

Γ0 l/pOΓ
o II^(OIN< ^r 0=1,2).

Operating U(T- T0-ε) on (4.2) and (4.3), we have

(4.5) [17(Γ) - t/(Γ-e)]«o = - Γ°
JO

and

(4.6)

Now putting

/(O =
ί

and using (4.1), (4.4), (4.5) and (4.6), we have

M l = l/(Γ-c)ιι0

and

GΓ-ε l/p

Thus the control f(t) belongs to &p

n and steers u0 to uί at the time T— ε. This
contradicts that Γis an optimal time.

It is well known that in general an optimal time control does not satisfy the
"extremum" principle or "bang-bang" principle. Under some assumptions we
shall classify X in two parts : the initial datum which are steered to the zero state
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by optimal time controls satisfying the extremum principle and the others.
Let us assume that there is some Tu such that

(4.7)

implies /=0. If w t is represented in the form

(4.8)

where

O Tu
I!

1/P

then any optimal time control which steers the zero state to uί does not satisfy
the extremum principle. Indeed if f0(t) is an optimal time control and T0 is the
optimal time, then Γ0 g Tu and

= U(Tu-s)Bg(s)ds
Jo

where

0(0 =
0,

By (4.7) and (4.8), /(O = 0(0- Thus

G o

/P

Hence/0(0 does not satisfy the extremum principle. Clearly if

O Tu \ί/P ^

o /

then an optimal time control, which steers the zero state to ul9 satisfies the ex-
tremum principle. By similar arguments we obtain the same results for an opti-
mal time control which steers u0 to the zero state.

Now we define the critical time Tc as the infimum of the time T for which the
control system is exactly null controllable in Lp(0, T; Y). Let us put

there exists/(/) such that

U(Tc)u0 +ΓC U(Tc-s)Bf(s)ds = 0 and
Jo

l/P

<
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and

there exists/(ί) such that

(S
Ul=\ U(TC-s)Bf(s)ds and

l /P

< n-

Then we have shown

THEOREM 4. Let the control system (1.1) satisfy the hypotheses of Corollary
1 and Theorem 2. Further let us assume that

implies/=0. Then any optimal time control f0(f), which steers any u0 in N0 to
the zero state, or the zero state to any ul in Nί9 does not satisfy the extremum
principle. An optimal time control, which steers any u0 in X — N0 to the zero
state, or the zero state to any UΛ in X? — Nl9 satisfies the extremum principle.

Let fι(t),f2(t)€&rη be optimal time controls which steer u0 to ul9 then
[/ι(0+/2(0]/2 is also an optimal time control. Therefore if the optimal time is
greater than Γ0, then

Hence if Z/(0, T; 7) is strictly convex, then/! =/2. Thus we have

COROLLARY 4. Let us assume that Y is strictly convex and let Tlt be a time
such that

(TuU(Tu-s)Bf(s)ds = 0
Jo

implies/=0. Then the optimal time control whose optimal time is greater than
Tc or smaller than Tu is unique.

Now as an example for Corollary 4, we consider a control system which is

slightly different from the one considered in section 3, that is,

(4.9) d2u/dt2 - d2u/dx2 - r(x)u =/(x, ί), 0 < x < L, t > 0,

(4.10) w(0, 0 = w(L, 0 = 0, t > 0.

Let an external force be applied only on the limited subset E of the string, that is,
/eLp(0, oo L2(0, L)) and the support of /(x, 0 is contained in £x(0, oo).
Here £ is a measurable subset with positive measure. The control system can be
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reduced to a first order equation on the Hubert space X = #J(0, L)xL2(0, L).
The control space is taken as 7={weL2(0, L)|supp wc:£}. By solving the
moment problem, we obtain the controllability of this control system as follows.
Let the initial state [w0, w j e #£(0, L) x L2(0, L) be expanded as

where <pfc(x), fc=l, 2,..., are the eigenfunctions of —d2/dx2 — r(x) which form an
orthonormal basis in L2(0, L). Let {ωk} be square roots of the eigenvalues.
Then a necessary and sufficient condition that/(x, t) steers [MO, w j to the zero
state is

(4.1 1) βk = - (T( cos (ωki)φk(x)f(x,
Jo JE

(4.12) α* = Γ ( ω* * sin (ω*0<P*(*)/(*, Odxdί, fc = 1, 2,... .
JO JE

For T^2L there exists a biorthogonal system {pΛ(f)» 4/t(0} f°r {cos(ωfcί)?

sin(ωfcί)} in L2(0, T), that is,

cos (ωkt)Pl(i)dt = δkl9 Γ cos (ωkt)qι(t)dt = 0,
Jo

Putting

/(x, 0 = - Σ
E

+ Σ«*ωrf*(OΦ*(*)Γ( I^WI2^]"1 for xeE,
LJ£ J

/(x, 0 = 0 for xe(0, L) - £,

we have/(x, ί)eL2((0, L)x(0, Γ)) = L2(0, T; L2(0, L)),

supp/(x, 0 <= JS x (0, T)

and the equalities (4.11) and (4.12).
Thus this control system is exactly null controllable in L2(0, T; 7) for

T^2L. Hence by Corollary 1, we have the admissible null controllability in
^"2. The admissible null controllability and the invariance under time reversal
imply X* = X. Hence by Corollary 3, this system is admissibly controllable in
«^"2. By the finite propagation speed of the support, it is clear that the system
is not null controllable in a short time. Hence Γc>0. But we do not know the
exact values of Tc and Tu.
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