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Introduction

Recently Stitzinger [7] presented some equivalent conditions for a subalgebra
to be an ω-step ascendant subalgebra in a locally solvable, ideally finite Lie algebra.
Subsequently Togo, Honda and Sakamoto [9] generalized and sharpened the
results of [7] by using the concepts of weakly ascendant subalgebras, £-ρairs and
Eoo-pairs of subalgebras. On the other hand, Stewart [6] investigated properties
of serial subalgebras of a locally finite Lie algebra.

In this paper we shall introduce the concept of weakly serial subalgebras of
a Lie algebra generalizing that of serial subalgebras. The purpose of this paper
is first to investigate properties of weakly serial subalgebras of a locally finite Lie
algebra, and secondly to generalize the results of [6] by using the concept of
weakly serial subalgebras, and thirdly to develop the results analogous to those of
[9, §§2 and 3] by using the concepts of weakly serial subalgebras and weakly
descendant subalgebras.

In Section 2 we shall show that in a locally solvable, locally finite Lie algebra
all the weakly serial subalgebras are precisely the serial subalgebras (Theorem 2.7).
We shall also show that if H is a subalgebra of a locally finite Lie algebra L, then
the condition H wser L is equivalent to each of the following conditions: (a)
iίwser</ί, X} for any finite subset I of L; (b) ifwser<iϊ, x> for any xeL;
(c) Hwser<iί, [*,„#]> for any xeL(rceN); (d) For any xeL there exists an
n = n(x) e N such that H wser (H, [x,M #]> (Theorem 2.8). Furthermore, we shall
show that for a subalgebra H of a locally finite Lie algebra L, H wser L if and only
if λm(H)^\L and Hjλm{H)^t{Ljλ^{H)) (Theorem 2.12). This generalizes
[6, Theorem 5]. In Section 3 we shall generalize [9, Theorems 2.1 and 2.2]
(Theorem 3.1). We shall also show that if H is a subalgebra of a locally solvable,
ideally finite Lie algebra L, then the condition if<α ω L is equivalent to each of the
following conditions: (a) HserL; (b) if wser L (Theorem 3.3). In Section 4
we shall show that if L is an abelian-by-nilpotent Lie algebra and if σ is an infinite
ordinal, then all the σ-step weakly descendant subalgebras of L are precisely the
σ-step descendant subalgebras of L (Corollary 4.3). We shall also show that if
L is an ideally finite Lie algebra such that Ljζ^L) is countable-dimensional and
if if is a weakly serial nilpotent subalgebra of L, then if is an ω2-step weakly
descendant subalgebra of L (Theorem 4.5 and Corollary 4.6). In Section 5 we
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shall present several examples in connection with the results in Sections 2 and 4.

The author wishes to express his thanks to Professor S. Togo for his valuable

comments in preparing this paper.

1.

Throughout the paper we always consider not necessarily finite-dimensional

Lie algebras over a field ϊ of arbitrary characteristic unless otherwise specified.

Let L be a Lie algebra. The set of all left Engel elements of L is denoted by

e(L). For a subalgebra H of L, (H, L) is an E^-pair [3] iff for each xeL there

exists an integer n = n(x)>0 such that [x,M h]eH for any hsH. (H, L) is an

£-pair [9] iff for any xeL and any heH there exists an integer n = n(x, h)>0

such that [x,nK]eH.
Let S be a non-empty set. A local system

on S is a collection of subsets of S such that each finite subset of S lies within some

member of L (cf. [4, p. 94]).

Let us recall some classes of Lie algebras:

L G 21 iff L is abelian.

L G 5 iff L is finite-dimensional.

L e 9t iff L is nilpotent.

L e $ln iff L is nilpotent of class < n.

L e E31 iff L is solvable.

Let X, 2) be any classes of Lie algebras. When LeX, L is called an X-

algebra.

LeXV) iff L has an ideal IeX such that L/Iety. When L€Xs!), L is called an
ΐ-by-^-algebra.

L G L3£ iff there exists a local system on L consisting of X-subalgebras of L. When

L G L(5, L is called a locally finite Lie algebra.

L G L( J)3E [9] iff there exists a local system L on L such that X eX and X A L for

all X G L, where A is any of the relations <a, si and so on. When L e L ( < )g, L is

called an ideally finite Lie algebra.

Now we introduce the following notation: Let H be a subalgebra of L.

We say L to lie in L(#-perm)5 if there exists a local system on L whose members

are finite-dimensional subalgebras of L permuting with H. If L e L ( O ) 3 T then

clearly L G L(if-perm)g for any subalgebra H of L. However, the converse is not

necessarily true (see Remark 2 of Theorem 3.1).

Let H be a subalgebra of L. For a totally ordered set Σ, a series from H to

L of type Σ is a collection {Λσ, Vσ: σeΣ} of subalgebras of L such that
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(1) H < Λσ and H < Vσ for all σ e l ,

(2) Λτ<Vσifτ< σ,

(3) L\H=\JσeΣ(Λσ\Vσ),

(4) Fσ<i Λσ for all σeΣ.

H is a serial subalgebra of L, denoted by H ser L, if there exists a series from H

to L. For an ordinal σ, H is a σ-step ascendant subalgebra of L, denoted by

i f o σ L, if there exists an ascending series (#α)α<σ of subalgebras of L such that

(1) Ho = H and Hσ = L,

(2) # α <i ί^α+i for any ordinal α < σ,

(3) //A = KJa<λHo for any limit ordinal 2 < σ.

H is a σ-step descendant subalgebra of L, which we denote by ϋ/<3 σ L, if there

exists a descending series (Hα)α<σ of subalgebras of L such that

(1) Ho = L and Hσ = H,

(2) Hα+1<] Hα for any ordinal α < σ,

(3) i/λ = r\x<λHΛ for any limit ordinal λ < σ.

H is an ascendant subalgebra (resp. a descendant subalgebra) of L, denoted by

H ascL (resp. HdescL), if H o σ L (resp. H^σL) for some ordinal σ. When σ

is finite, H is a subideal of L and denoted by H si L. It is well known that

H asc L (resp. f/ desc L, # si L) if and only if there exists a series from H to L of

type Γ where I1 is a well-ordered set (resp. a reversely well-ordered set, a finite set)

(cf. [1, p. 27]).

Togo [8] introduced the following concept generalizing that of ascendant

sublagebras: For an ordinal σ, H is a σ-step weakly ascendant subalgebra of

L, denoted by H<σ L, if there exists an ascending chain (Mα)α<σ of subspaces of

L such that

(1) M o = H and Mσ = L,

(2) [M α + 1 , /f] c Mα for any ordinal α < σ,

(3) MΛ = yjα<λMα for any limit ordinal λ < σ.

The chain (Mα)α^σ is called a σ-step weakly ascending series from H to L. // is

a weakly ascendant subalgebra of L, denoted by //wascL, if H <σ L for some

ordinal σ. When σ is finite, // is a weak subideal of L and denoted by H wsi L.

We analogously introduce the following concepts generalizing those of serial

subalgebras and descendant subalgebras: For a totally ordered set Σ, a weak

series from H to L of type Γ is a collection {Λσ, Vσ: σeΣ} of subspaces of L such

that

(1) H s Λσ and # £ jς for all σ e Γ,

(2) Λτ £ Fff c Λff if τ < σ,

(3) L\H = W σ e ^(^\Pς),

(4) [ > ! „ # ] £ Fσfor a l lσeZ.

i ί is a weakly serial subalgebra of L, which we denote by HwserL, if there

exists a weak series from if-to L. For an ordinal σ, H is a, σ-step weakly de-
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scendant subalgebra of L, which we denote by H<σL, if there exists a descending

chain (Mα)α^σ of subspaces of L such that

(1) M o = L and Mσ = H,

(2) [Mα, //] c M α + 1 for any ordinal α < σ,

(3) M λ = Λ a < λ M α for any limit ordinal λ < σ.

We call the chain (Mα)α<σ a σ-step weakly descending series from LtoH. H is a

weakly descendant subalgebra of L, which we denote by HwdescL, if H<σL

for some ordinal σ.

We can show the following fact as in [1, p. 27].

LEMMA 1.1. Let H be a subalgebra of L.

(1) H wascL if and only if there exists a weak series from H to L of type

Σ where Σ is a well-ordered set.

(2) H wdesc L if and only if there exists a weak series from H to L of type

Σ where Σ is a reversely well-ordered set.

(3) H wsi L if and only if there exists a weak series from H to L of type

Σ where Σ is a finite set.

Next we state elementary properties of weakly serial subalgebras.

LEMMA 1.2. Let H, K be subalgebras of L.

(1) //HwserK and X<L, then HnXwserKnX.

(2) When θ is a homomorphism of L such that Kerθ<H, ίίwserL if and

only if Θ(H) wser Θ(L).

(3) J/HwserL and L e g , then HwsiL.

PROOF. (1) If {Λσ9 Vσ: σeΣ} is a weak series from H to K, then {Λσ n X,

Vσ OX: σeΣ} is a weak series from HnX to KnX.

(2) If {Λσ9 Vσ: σeΣ} is a weak series from # to L, then {0(i4σ), 0(7 σ ) :σeΣ}

is a weak series from Θ(H) to 0(L). Conversely, if {Aσ, Vσ: σeΣ} is a weak series

from 0(#) to 0(L), then {θ-\Άσ\ θ-\Vσ): σeΣ} is a weak series from H to L.

(3) is trivial.

Let σ be any ordinal. All the above statements remain true, when we replace

wser by < σ .

Let H be a subalgebra of L. The ideal closure series of H in L is the de-

scending series (HL'a)(X^0 of subalgebras of L defined inductively by

# L ° = L,

#L,α+i = # H ^ « f o r a n y ordinal α,

#L»Λ, = r\a<λH
L>Λ for any limit ordinal λ.

This is the Lie-theoretic analogue of the standard series in group theory. In
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particular, the countable part (HL>n)n<ω is the ideal closure series in the sense of

[1] and HL>ω is denoted by limLH in [1].

We inductively define the chain (HLa)a^0 of subspaces of L by

HLto = L,

HL,K+\ — C#L,α> H] + H f° r a n y ordinal α,

HL,x = Γλ<z<λHLf<x for any limit ordinal λ.

Then we call the chain (HLa)a^Q the weak closure series of H in L.

The following properties on these series are elementary.

LEMMA 1.3. Let H be a subalgebra of L and let oc be any ordinal. Then

(1) H < i / L ' α + 1 < 3 H L α .

(2) H s HL,a+ί £ tfL>α αnJ [f/Lfβ, H] £ H L , α + 1 .

(3) HL>aςzHL>*.

By set-theoretic considerations there exist ordinals σ, τ such that

HL,σ = //L,α fQr a n y α > σ >

Jί L τ = HLtΛ for any α > τ.

That is, each of the series (HLf<x)a^0 and (HLa)a^0 terminates for some ordinal.

But it is clear that none of these series necessarily terminates in H.

The following lemma states the relation between descendant subalgebras

(resp. weakly descendant subalgebras) and the ideal closure series (resp. the weak

closure series).

LEMMA 1.4. Let H be a subalgebra of L and let σ be an ordinal.

(1) H^σL if and only if HLσ = H.

(2) H <σL if and only if Hu<s = H.

PROOF. Suppose #<ι σ L and let (Ha)a^σ be a descending series from L to H.

Using transfinite induction we have HL'a<Ha for any α < σ . Hence HL>σ = H.

Conversely, suppose HLβ — E. By Lemma 1.3(1) (HL>a)a^σ is a descending series

from L to H. Therefore H^\σL and (1) is proved. (2) is similarly proved.

2.

In this section we shall investigate properties of weakly serial subalgebras of

a locally finite Lie algebra.

In group theory, the notion of a serial subgroup can be expressed in functional

form (cf. [2]). We here use the same method to characterize weakly serial sub-
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algebras. First we show how to express the notion of a weakly serial subalgebra

in functional form.

Let L be a Lie algebra over f and let H be a subalgebra of L. Suppose that

// is a weakly serial subalgebra of L and let {Λσ, Vσ: σe Σ} be a weak series from

H to L. For each x e L\H there exists a unique σ(x) e Σ such that x e Λσ(x)\

Vσ{x). Then the σ(x) is simultaneously the least element of Σ such that x e Λσ(X)

and the greatest element of Σ such that x ^ Vσ{x). We can define a binary function

fL: LxL->{0, 1} as follows: for any x, yeL

if x e H or if x, y ^ H and σ(x) < σ(y),

otherwise.

Let xeH and let y^H. We shall show that /L(y, [x, y]) = l. Since yeΛσ{y),

[x, y]e[//, Λσ(y)]<ΞKσ(y). ϊf [x, y ] e # then clearly /L(y, [x, y]) = 1. Hence

we may assume that [x, y] ^H. Since σ([x, y]) is the greatest element of Σ such

that [x, y] ξ Kσ([JCϊiV]), we have σ([x, y])<σ(y). Therefore /L(y, [x, y]) = 1.

Furthermore, we can easily see that the function fL has the following properties,

where x, y, zeL and α, βeI:

( i ) If/L(x, y) =fL(y, z) = 0 then fL(x, z) = 0.

(ii) Either /L(x, y) = 0 or fL(y, x) = 0.

(iii) If xeH then /L(x, y) = 0.

(iv) If /L(x, z) =/LCv, z) = 0 then fL(xx + βy9 z) = 0.

(v) If x ε # and y ^ H then fL(y9 [x, y]) = 1.

Conversely, suppose that there exists a binary function fL: LxL~>{0, 1}

satisfying the conditions (i)-(v). Let x~y mean that/L(x, y)=fL(y, x) = 0. By

(i) and (ii) the relation ~ is an equivalence relation on L. By (iii) and (v) we have

H = {xeL: x~0}. Let Σ denote the set of all ~-equivalence classes except H.

Let σ, τeΣ. We write σ < τ if σ ^ τ and/L(x, y) = 0 for any xeσ and any yeτ.

It is a simple matter to check that < is a total order on Σ. We define the terms

of a weak series determined by fL as follows: for each σeΣ

Λσ = {xeL:/L(x, y) = 0 for all yeσ},

\Jτ<σΛτ if {τeΣ:τ<σ} * φ,

H otherwise.

It is not hard to show that {Λσ, Vσ: σeΣ} is a weak series from H to L. Here we

verify only [_Λσ, H~]cVσ. Let xeH and let yeAσ. Assume that [x, y ] ^ F σ .

Then clearly y^H. Hence by (v) we have/L(y, [x, y]) = 1. On the other hand,

we can find a τ e Σ such that [x, y] ex. Since [x, y ] ^ Vσ and [x, y] ex^Λτ9 we

have σ<τ. Since y eΛσ and [x, y] eτ, we have/L(y, [x, y]) = 0. This is a con-
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tradiction. Hence [ x j ] e F f f . Therefore [Λβ, if] £ pς. Thus {Λσ, Vσ: σeΣ}
is a weak series from H to L. Furthermore, the binary function on L determined
by this weak series coincides with the original function.

We obtain the following

LEMMA 2.1. Let L be a Lie algebra over I and let H be a subalgebra of L.
Then //wserL if and only if there exists a binary function fL: LxL-»{0, 1}
satisfying the conditions (i)-(v).

The following result is essential to the argument in this section.

PROPOSITION 2.2. Let H be a subalgebra of a Lie algebra L. Assume that
there exists a local system L on L consisting of subalgebras of L. Then
H wser L if and only if H Π X wser X for any X e L.

PROOF. If ΉwserL, then by Lemma 1.2(1) i/nXwserX for any Xe^L.
Conversely, suppose that H Π X wser X for any X e L. By making use of Lemma
2.1, for each l e L there exists a binary function fx: X x X->{0, 1} satisfying the
conditions (i)-(v) given by replacing L, H with X9 H Π X respectively. Owing to
[4, Lemma 8.22], there exists a binary function/: LxL-+{0, 1} such that, given
any finite subset {(xh yt) : 1 < i < n} of L x L, there exists an X e L for which
{(xi5 yi):l<i<n}^XxX and f(xu yj =fχ(xh yt\ l<i<n. Since each of the
conditions (i)-(v) involves a finite number of elements of L, the function / also
satisfies the conditions (i)-(v). Again using Lemma 2.1 we have /ίwserL.

As special cases of Proposition 2.2 we have the following two results.

COROLLARY 2.3. Let X be a class of Lie algebras and let LehX. Then
for a subalgebra H of L, H wser L if and only if H n X wser X for any X-sub-
algebra X of L.

COROLLARY 2.4. Let H be a subalgebra of a locally finite Lie algebra L.
Then H wser L if and only if H Π F wsi F for any finite-dimensional subalgebra
FofL.

REMARK. It is known that the notion of a serial subalgebra can be also
expressed in functional form. Therefore the statements of Proposition 2.2,
Corollaries 2.3 and 2.4 remain true, when we replace wser, wsi by ser, si respec-
tively (cf. [1, Proposition 13.2.4]).

The following two results, corresponding to [2, Theorem A], are deduced
from Corollary 2.4.

PROPOSITION 2.5. Let H be a weakly serial subalgebra of a locally finite
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Lie algebra L. If θ is a homomorphism of L, then Θ(H) is a weakly serial sub-

algebra of Θ(L).

PROOF. It suffices to show that if / is an ideal of L then H + I/I wser L/J.

Let F/I be a finite-dimensional subalgebra of L/I. By modular law

(H+///) n (F//) = (H+1) n F/I = (H n F ) + / / / .

There exists a finitely generated subalgebra Ho of H n F such that (if n F) + f =

Ho + /, and there exists a finitely generated subalgebra F o of F such that F o + / = F

and H0<F0. Since L e Lg, F o e g. Hence // n F o wsiF o . Therefore

(H n F o) + /// wsi Fo + /// = F//.

Clearly (H Π F) + I = H0 + I<(H n F 0 ) + / < ( H n JF) + / and hence

Therefore we have

(H + IjI) n (F//) wsi F/I.

This being true for all F/I we can appeal to Corollary 2.4 to deduce that

i f + ///wser L/J.

PROPOSITION 2.6. Let {Hλ:λeA} be any collection of weakly serial sub-

algebras of a locally finite Lie algebra L. Then Γ\λeΛ Hλ is a weakly serial sub-

algebra of L.

PROOF. Put H=Γ\λeΛHλ and let F be any finite-dimensional subalgebra of

L. Then for each λeΛ, HλΠF wsi F and hence there exists an n(λ) e N such that

[F,Π ( Λ ) Hλ n F] £ Hλ n F. For any A e 4

n π < ω ([F,n // n F] + (H n F)) c [ F , B ( A ) Hλ n F ] + (HA n F ) = i ί λ n F .

Therefore (if n F ) F j ω = n n < ω ( [ F , π H n F] + (H fl F)) = H n F. By Lemma 1.4(2)

we have H Π F<ωF. Since F eft, H Γ\F wsi F. By using Corollary 2.4 we have

if wser L.

Under the assumption of Proposition 2.6, <HA: ΛeΛ) is not necessarily a

weakly serial subalgebra of L (see Example 5.1).

Now we set about showing the main results of this section.

THEOREM 2.7. Let LeL(E$In g) and let H be a subalgebra of L. Then

H wser L if and only if H ser L.

PROOF. One implication is trivial. Suppose if wser L and let F be any

finite-dimensional solvable subalgebra of L. Then if Π F wsi F. By making use
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of [8, Theorem 1], we have H Π F si F. Note that the statement of Corollary 2.3

remains true, when we replace wser by ser. Therefore H ser L and the theorem

is proved.

As a special case of [9, Theorem 2.2] we have the following fact: Let H be

a subalgebra of a finite-dimensional Lie algebra L. Then the following con-

ditions are equivalent:

(1) if wsi L.

(2) H wsi <#, X) for any finite subset X of L.

(3) H wsi (H, x> for any x e L .

(4) H wsi <#, [x,rt if]> for any x e L (n e N).

(5) For any x e L there exists an n = n(x)eN such that H wsi <//, [x , π #]>.

We generalize this fact in the following

THEOREM 2.8. Let H be a subalgebra of a locally finite Lie algebra L.

Then the following conditions are equivalent:

(1) if wser L.

(2) H wser <if, X} for any finite subset X of L.

(3) H wser <iί, x> for any xeL.

(4) H wser <#, [x, π #]> /or any xeL (neN).

(5) For any x e L ί/zere exists ann = n(x) e N such that H wser <fί, [x,π //]>.

PROOF. (l)c=>(2)«=ί>(3)'=ί>(4)'=>(5) is trivial. We have to show that (5) implies

(1). Let F be any finite-dimensional subalgebra of L and let x e F . By the

condition (5) we can find an n = n(x)eN such that f/wser<iJ, [x,MH]>. By

Lemma 1.2(1) and (3) we have

H n F wsi < # , [x,πH]> n F.

Clearly < # n F, [x,M if n F]> < <#, [*,„ if]> n F. Hence

# n F wsi < # n F , [ X , Π H n F]>.

Using the previous fact we have H n F wsi F. Therefore by Corollary 2.4 we have

H wser L.

As a direct consequence of Theorems 2.7 and 2.8 we obtain the following

result, in which the equivalence of (1) and (3) was shown by Stewart [6].

COROLLARY 2.9. Let L e L(E9Ϊ Π S) and let H be a subalgebra of L. Then

the following conditions are equivalent:

(1) H ser L.

(2) H ser <if, X} for any finite subset X of L.

(3) Hser <if, x> for any xeL.
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(4) Hser <#, [x,M//]> for any xEL (n eN).
(5) For any XEL there exists an W = H(X)GN such that Hser (Jί9 [xinH~\y.

Let X be a class of Lie algebras. The ϊ-residual λχ(L) of L is the inter-
section of the ideals / of L such that L/I e 3ί. It is clear that

λm(L)<L« and λM(L) < U»\

where Lω = Γ\n<ωLn+1 and L(ω> = Λ n < ω L ( / l ) . We shall show a generalization of
[6, Theorem 5]. To do this we need the following

LEMMA 2.10. IfH<ωL then H ω<i Land H«°^ L.

PROOF. By [3, Lemma l(b)] we have Hω^L. Another one is shown as
in the proof of [3, Lemma l(b)].

PROPOSITION 2.11. // H is a weakly serial subalgebra of a locally finite
Lie algebra L, then λm(H)<zL and λh

PROOF. Here we prove only AL^(H)<ιL by modifying the proof of [6,
Theorem 5]. Another one is similarly proved. Let g(L) denote the set of all
finite-dimensional subalgebras of L. Put K=^Fe^(L)(H Π F)ω. Let XEL and
let F E g(L). Since L e L$, <F, X> G g(L). Therefore H n <F, x> wsi <F, x>.
By Lemma 2.10 (H n F)ω<(H n <F, x»ω<i <F, χ>. Hence [(if Π iΓ)ω, x] <=
(H n(F,x})ω^K. Therefore K^L. On the other hand, we can show K =

as in the proof of [6, Theorem 5]. Thus λ

The following result, corresponding to [6, Corollary 6], characterizes weakly
serial subalgebras of a locally finite Lie algebra.

THEOREM 2.12. Let H be a subalgebra of a locally finite Lie algebra L.
Then HWSQTL if and only ifλ^(H)^L and

PROOF. Suppose iίwserL. By Proposition 2.11 we have λm{H) o L.
We denote images under the natural map L-^Ljλ^H) by bars. Let EEH and
let XEL. Then <β, x> e g. Since H wser L, H n </ί, x> wsi </i, x>. Clearly
Ϊ7 e L9t and therefore J7 n <S, x> e ^ . Hence <β> si F Π <K, x>. Therefore we
have </ϊ> wsi</ϊ, x>. It follows that [x,π/ΐ] = 0 for some πeN. Thus H^
e(L).

Conversely, suppose that λm(H) <] L and Hlλm(H)^^L/λm(H)). Let F
be any finite-dimensional subalgebra of L. Since 5^e(L), (IF Π F, F) is an E-
pair. By making use of [9, Theorem 2.1] we have Hf]F<ωF. Since P e $ ,
HnFwsiF. Using Corollary 2.4 we have HwserL. Therefore by Lemma
1.2(2) H wser L.
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3.

In this section we shall develop the results analogous to those of [9, §§ 2 and

3] by using the concept of weakly serial subalgebras.

We have the following result generalizing [9, Theorems 2.1 and 2.2].

THEOREM 3.1. Let H be a subalgebra of a Lie algebra L. Assume that

L e L(//-perm)5 Then the following conditions are equivalent:

(1) tfwserL.

(2) tfwascL.

(3) H<ωL.

(4) (H, L) is an E-pair.

(5) (tf, L) is an E^-pair.

(6) H wser <//, X} for any finite subset X of L.

(7) Hwser </f, x) for any xeL.

(8) H wser <H, [x,n//]> for any xeL (neN).

(9) For any xeL there exists an n = n(x)eN such that H wser <H,

[*,„#]>.

PROOF. First we show (2)o(3) by modifying the proof of [9, Theorem

2.1]. One implication is trivial. Suppose H wascL and let (Ha)a<σ be a weakly

ascending series from H to L. By the assumption we have L = \JλeΛ A(λ), where

each A(λ) is a finite-dimensional subalgebra of L permuting with iϊ. We con-

sider L/H as an H-module by the adjoint action. Let λeA. Then for any

n e N, lyl(X),M if] + H/H is a finite-dimensional iί-submodule of L/H. Each

ffα/if is also an ϋ-submodule of L/H. Let μ(n) be the first ordinal such that

[Aβ^Hll+HIH^HμwlH. Since [A(λ),HIΓ] + HIH is finite-dimensional, μ(n)

is not a limit ordinal. Therefore μ(n + l)<μ(n) unless μ(n) = 0. Since the

ordinals <σ are well-ordered, there exists a n n e N such that μ(w) = 0. Then we

Put

Mn = {xeL: [x,ΛH] c H} for each n e N ,

Then M ω = WAeyl>l(/l) = L and therefore (Mα)α^ω is an ω-step weakly ascending

series from H to L. Thus we have H<°> L.

(3)t=>(5)=>(4) is clear and (4)t=>(3) is shown as in the proof of [9, Theorem

2.1]. Therefore the conditions (2), (3), (4) and (5) are equivalent. On the other

hand, the equivalence of (1), (6), (7), (8) and (9) is proved in Theorem 2.8. Fur-

thermore, it follows from Theorem 2.12 that (1) implies (4). Therefore all the

conditions (l)-(9) are equivalent.
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REMARK 1. [9, Theorem 2.1] showed that if LeL(iί)g, that is, there exists

a local system on L consisting of finite-dimensional H-invariant subalgebras of

L, then the conditions (2), (3), (4), (5) and another one are equivalent.

2. For a subalgebra H of L, if L e L(f/)g then L e L(f/-perm)g. However,

the converse is not necessarily true. In fact, let A be an abelian Lie algebra with

basis {au a2---} and let x be the derivation of A defined by aix = ai for each i> 1.

Form L = A-\-(x}, the split extension of A by <x>. Then it is easy to see that

LeL(iί-perm)g for any subalgebra H of L. But <x^>=L and therefore L ^

L(A)%. In particular, L^L(<i)gr.

3. Theorem 3.1 states indirectly the fact that if L e L(//-perm)3: then for

any ordinals α f >ω ( l < ί < 5 ) the following conditions are equivalent:

(1) H<«iL.

(2) H <«2 <i/, X} for any finite subset X of L.

(3) if < α 3 <#, x> for any xeL.

(4) H <«4 <if, [>,„ #]> for any x e L (nε N).

(5) For any x e L there exists an n = n(x) e N such that H<a*(H, |>,n #]>.

This fact is a generalization of [9, Theorem 2.2].

The following result is an immediate consequence of Lemma 2.10 and

Theorem 3.1.

COROLLARY 3.2. Under the assumption of Theorem 3.1, if H wserL then

and ff

By Corollary 3.2 we see that if L e L(72-perm)3r then for any ordinal α

( i ϊL,«)ω< ] L a n d

In particular, (limLif)ω = (i/L 'ω)ω<iL and

In [9, Theorem 3.1] several conditions for a subalgebra to be ω-step ascend-

ant were given. We can add two weaker equivalent conditions in the following

THEOREM 3.3. Let LeL(<ι)(E9ί n g) and let H be a subalgebra of L.

Then the following conditions are equivalent:

(1) H^<°L.

(2) ifserL.

(3) HwserL.

PROOF. By Theorem 2.7 the conditions (2) and (3) are equivalent. By

Theorem 3.1 and [9, Theorem 3.1] the conditions (1) and (3) are equivalent.

Therefore the equivalence of (1), (2) and (3) is shown.

Under the assumption of Theorem 3.3, we see that HL*a<3ω L for any ordinal

α.
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Finally we show the following result which sharpens [9, Proposition 3.5].

PROPOSITION 3.4. Let LeL(si)(E$In 5) and let H be a finitely generated

subalgebra of L. Then the following conditions are equivalent:

(1)
(2)

(3)

(4)

(5)

(6)

HserL.
H desc L.

HήL.

H wser L.

H wdesc L.

H wsi L.

PROOF. It is sufficient to show that (4) implies (3). Suppose //wserL.

Since L e L(SI) (E$1 Π *5)> there exists a finite-dimensional solvable subideal K of L

containing H. Then H wsi K. By using [8, Theorem 1] we have H si K.

Therefore H si L.

REMARK. Let H be a finitely generated subalgebra of L. If L e L(si)g then

the above conditions (1), (2) and (3) are equivalent. If LeL(wsi)g then the

above conditions (4), (5) and (6) are equivalent. The proofs are similar to the

above one.

4.

In this section we shall investigate properties of weakly descendant sub-

algebras.

We begin with the following lemma corresponding to [8, Lemma 3].

LEMMA 4.1. Let H be a subalgebra of L and let K be an H-invariant sub-

algebra of L such that K2<H. For an ordinal σ, if H<σL then

PROOF. We may assume that L=H + K. First we show that i f L ' α = i f L α

for any ordinal α. To do this we use transfinite induction on α. It is trivial for

α = 0. Let α > 0 and suppose that HLiβ = HLβ for any β<oc. If α is a limit ordi-

nal, then clearly HL>a = HLθL. Suppose that α is not a limit ordinal. Then by

induction hypothesis we have if L » α ~ 1 =iί L > α _ 1 . Since L=H + K, HLβ =

(HLiβ Π K) for any ordinal β. Hence

HL>a_Λ = ίH + (HLtΛ 0K)9H + (HLtβ.± fl X)]

£ H2 + [ifL>α, tf] + [if, tf^.J + K2 s JΪ L > β .

Therefore HL^ = HHLal^HLiΰL. By Lemma 1.3(3) we have HL>" = HLtOί. In

particular, HL>σ = HLσ. Using Lemma 1.4 we obtain
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In general, a weakly descendant subalgebra is not necessarily a descendant
subalgebra (see Example 5.2). However, we have the following result.

THEOREM 4.2. Let Le$Πftrt with neN and let H be a subalgebra of L.
For an ordinal σ, if H<σL then

PROOF. There exists an abelian ideal A of L such that LjA e 9ln. Then by
Lemma 4.1 we have H<3σH + A. On the other hand, H + A/A^LIAe^ and
hence H + A/A^nL/A. It follows that H + A<^nL. Therefore we have
#<.„+, L.

If σ is an infinite ordinal, then n + σ = σ for any neN. Thus we obtain

COROLLARY 4.3. Let L e 2ϊ9i and let H be a subalgebra of L. Then for an
infinite ordinal σ, H<σL if and only if H^σL.

REMARK. The above result remains true, when Le$I£>, where Φ is the
class of Lie algebras in which every subalgebra is a subideal.

Next we present some conditions for a subalgebra to be a weakly descendant
subalgebra in an ideally finite Lie algebra. To do this we need the following
lemma due to Stewart.

LEMMA 4.4 ([5, Proposition 3.5]). If L is an ideally finite Lie algebra such
that L/Ci(L) is countable-dimensional, then L/ζ^L) is embedded in a direct
sum of countably many finite-dimensional Lie algebras.

PROOF. Put L = Ljζ1{L). Then there exists an ascending chain {L^)i<ω of
finite-dimensional ideals of L such that Lo = 0 and L = \ji<ωLi. For each Ϊ > 1 ,
we can find an ideal Kt of L such that i^nlC^O and L/Kieft. Define /,=
Li-i + Ki Then 7f<ιL and LjIiE^. Furthermore, LinIi = Li-.1. Hence
Λf^i/ί = 0. Let θ denote the natural homomorphism of L into the Cartesian
sum Cr^i (L/Ii). Then θ is injective and the image of L under θ is contained in
the direct sum

THEOREM 4.5. Let L be an ideally finite Lie algebra such that L/ζ^L) is
countable-dimensional. Assume that H is a subalgebra of L such that H + ζx(L)l
ζx(L)e9ln with neN. If HwserL then H<ω+n+1L.

PROOF. Put L = L/ζ^L) and H=H + ζ^/ζ^L). By the proof of Lemma
4.4, L has a collection {It :i<ω} of ideals of finite codimension such that Γ\i<ωIi
= 0 and the image of L under the natural monomorphism θ: L-^Cri<ω(LIIi) is
contained in Dr ί<ω(L/J,). Let πt denote the projection map Ότi<ω{LjI^-^LjIi

and put Lf = πfθ(L), Hi = πβ{H). By Proposition 2.5 ^wserL;. Since L f eg,
there exists a fc = k(i)e N such that [Lf 9k jffj c if.. Hence
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k<ω (LΣi<ω L>ι ,fc Σ i < ω - " J "+" Σi<ω -"i)

= ^fe<ω Σi<ω

= Έi<ω Γ^k

By Lemma 1.4(2) we have Σi< ω # / < ω Σί<ω A Put X = θ"109(L) n Σί<ω#ί).

Then K<ωL. On the other hand, it is easy to see that K = r\i<ω(H + Ii).

Hence

[Knit] ^ Λ ί < ω(J7»+ 1 +/,) = Λ i < ω / i = 0.

It follows that H<nK. Therefore H<ω+nL, whence # + ζx(L)<ω+nL. Thus

wehave i/< ω + M + 1 L.

By Theorems 3.1 and 4.5 we obtain

COROLLARY 4.6. Let L be an ideally finite Lie algebra such that L/ζ^L)

is countable-dimensional and let H be a nilpotent subalgebra of L. Then the

following conditions are equivalent:

(1) HwserL.

(2) tfwdescL.

(3) H<ω2L.

(4) H<ωL.

In the above statement we cannot replace the condition (3) by the condition

H<ωL (see Example 5.4).

COROLLARY 4.7. Let LeL(<i)g n (9X91) such that Ljζ^L) is countable-

dimensional and let H be a nilpotent subalgebra of L. Then the following con-

ditions are equivalent:

(1) HserL.

(2) HάescL.

(3) H^ω2L.

(4) H<iωL.

(5) HwserL.

(6) HwdescL.

(7) H<ω2L.

PROOF. By Theorem 3.3 and Corollary 4.6 all the conditions except (2)

and (3) are equivalent. By Corollary 4.3 the conditions (3) and (7) are equivalent.

On the other hand, (3)«=t>(2)«=ί>(l) is trivial. Therefore all the conditions (l)-(7)

are equivalent.
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5.

It is well known that the set of all serial subgroups of a locally finite group G

is a complete sublattice of the lattice of all subgroups of G (cf. [2, Theorem A]).

However, the following example shows that the set of all weakly serial subalgebras

of a locally finite Lie algebra L is not necessarily a sublattice of the lattice of all

subalgebras of L, even if L is finite-dimensional.

EXAMPLE 5.1. Let ί be a field of characteristic zero. Then there exists a

finite-dimensional Lie algebra L over ϊ containing x, y such that

(1) <Λ;> wsi L and <>>> wsi L,

(2) <x, y> is not a weak subideal of L.

In fact, let L be a split simple Lie algebra over I of type A2. Then it is a

well-known fact that L has linearly independent generators {el9 e29fuf2, hu h2)

satisfying the following relations, where i, j e {1, 2}:

2et if ί = j ,

if i*j,

- 2 / ; if / = ; ,

fi if ι*J,

Oi,2 ej] = Uui fji = 0 if i ^ j .

Clearly euf1et{L). Therefore <e1>wsiL and </1>wsiL. If <β 1,/ 1>wsiL,

then we can find an n e N such that [L, π ft i]£<ei,/i>. But If2>nhi]=f2^

<^i) + </i) + <^i> = < ei 5/i)> a contradiction. Thus <e l J / 1 > is not a weak sub-

ideal of L.

The following example shows that a weakly descendant subalgebra is not

necessarily a descendant subalgebra.

EXAMPLE 5.2. Let I be a field of characteristic zero. Then there exists a

countable-dimensional abelίan-by-simple Lie algebra L over I containing x

such that

(1) < * > < ω L ,

(2) <x> is not a descendant subalgebra of L.

In fact, let A be an abelian Lie algebra over ϊ with basis {ai9 a2,...} and let

x, y, z be respectively the derivations of A defined by
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*iχ = βi+i 0'>i)>

axy = 0 and aty = i(ί-l)ai^1 (i > 2),

atz = 2iat (i > 1).

Put S = <x, .y, z><Der(v4). Then S is a 3-dimensional split simple Lie algebra

with multiplication

[x, z] = 2x, [y, z] = -2y, [x, y] = z.

We construct the split extension L = A + S, which is the example described in

[8, § 3]. Then L is abelian-by-simple. It is easy to see that

<*>L,n = <a»+i, «n+25 > + O> (n > 2).

Hence <x>L,ω = ^n<ω<:x:>L,n = <Λ:> By Lemma 1.4(2) we have < x > < ω L . On

the other hand, clearly <x>L '1 = <x L >=L and therefore <x>L>α = L for any

ordinal α. Using Lemma 1.4(1) we have (2).

The following example shows that in Theorem 4.5, Corollaries 4.6 and 4.7

we cannot remove the assumption that L is ideally finite.

EXAMPLE 5.3. There exists a countable-dimensional Lie algebra L con-

taining x such that

(1) L e L g n S I 2 and L^L(-α)g,

(2) < x > ^ - + 1 L ,

(3) <x> is not a weakly descendant subalgebra of L.

In fact, let A be an abelian Lie algebra with basis {a0, au...} and let x be the

derivation of A defined by

aox = 0 and atx = ai_1 (i > 1).

We construct the split extension L = A + (xy, which is the example described in

[1, p. 119]. Then Le3ω+ι n 2 ί 2 < L g Π 9ί2. Therefore <x> <i ω + 1 L. On the

other hand, <x> L 1 = [L, x] + < x > = ^ + <x> = L and hence <x>L α = L for any

ordinal α. By using Lemma 1.4(2) we have (3). Since <x>L j l = L, <xL> = ( x ) 1 " 1

= L and therefore

Finally we present an example showing that an ω-step weakly ascendant

subalgebra of an ideally finite Lie algebra is not necessarily an ω-step weakly

descendant subalgebra.

EXAMPLE 5.4. There exist a countable-dimensional Lie algebra L and an

abelian subalgebra H of L such that
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(1) LeL(<)g n si2,

(2) H<*>U

(3) H^ωL.

In fact, let A be an abelian Lie algebra with basis {a0, aί9...}. For each

n> 1, put An — <κai\ 0<i<n}<A and let xM be the derivation of An defined by

aoxn = 0 and atxn = at_ 1 (1 < i < ή).

Form the split extension Ln = An + <xM> of 4̂M by <xrt>. Then it is easy to see that

for any n > 1

(xny<*^Ln and Ci(Ln) = <fl0>.

First we show that there exist a Lie algebra L containing α and monomorphisms

Θn: Ln^L, n> 1, such that

(a) L = Σ ^ i 0 r t ( L M ) ,

(b) [ΘW(LJ, 0n(Lrt)] = 0 if m * n,

(c) α = θn(a0) for all n > 1.

Put Z) = D r n ^ 1 L n and let cn denote the inclusion map of Ln into D. Put / =

<-*n(ao) + cn+i(ao)'' n>iy<D. Since / < d ( D ) , 7<nD. Define L = D/I. Let

p denote the natural homomorphism of D onto L and let θn = pocn for each n e N .

We can easily see that cn(Ln) Π / = 0 . Hence each θn is injective. Clearly we have

(a) and (b). Furthermore, for any n > 1

<»+iOo) = cn(a0) + ( - ^ ( α 0 ) + ^ + i ( ^ o ) ) e ^ ( a o ) + /

and therefore θn(a0) = θn+ί(a0). (c) is also proved.

Each θn(Ln) is a finite-dimensional metabelian ideal of L. Hence L is an

ideally finite metabelian Lie algebra. Also L is countable-dimensional. Define

H=Σn>ι <θn(xn)><L' Then H is abelian. Since <θn(xn)}<n+ί θn(Ln) for any

n> 1, we have H<ω L. On the other hand, for any rc> 1

a = θn(a0) = [βn{an\n θn{xn)~] e [L,M H ] .

Hence α e Λ w < ω ( [ L , r t i / J + # ) = //L>ω. But clearly aέξH. Therefore H^HLω.

Using Lemma 1.4(2) we have H^ωL. (It is actually shown that H<ω+ιL.)
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