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Introduction

Recently Stitzinger [7] presented some equivalent conditions for a subalgebra
to be an w-step ascendant subalgebra in a locally solvable, ideally finite Lie algebra.
Subsequently T6g6, Honda and Sakamoto [9] generalized and sharpened the
results of [7] by using the concepts of weakly ascendant subalgebras, E-pairs and
E . -pairs of subalgebras. On the other hand, Stewart [6] investigated properties
of serial subalgebras of a locally finite Lie algebra.

In this paper we shall introduce the concept of weakly serial subalgebras of
a Lie algebra generalizing that of serial subalgebras. The purpose of this paper
is first to investigate properties of weakly serial subalgebras of a locally finite Lie
algebra, and secondly to generalize the results of [6] by using the concept of
weakly serial subalgebras, and thirdly to develop the results analogous to those of
[9, §§2 and 3] by using the concepts of weakly serial subalgebras and weakly
descendant subalgebras.

In Section 2 we shall show that in a locally solvable, locally finite Lie algebra
all the weakly serial subalgebras are precisely the serial subalgebras (Theorem 2.7).
We shall also show that if H is a subalgebra of a locally finite Lie algebra L, then
the condition H wser L is equivalent to each of the following conditions: (a)
H wser (H, X) for any finite subset X of L; (b) H wser {(H, x) for any xeL;
(c) Hwser {H, [x,, H]) for any xe L (neN); (d) For any x e L there exists an
n=n(x) € N such that H wser (H, [x,, H]) (Theorem 2.8). Furthermore, we shall
show that for a subalgebra H of a locally finite Lie algebra L, H wser L if and only
if Ag(H)<tL and H/Ag(H)<e(L/An(H)) (Theorem 2.12). This generalizes
[6, Theorem 5]. In Section 3 we shall generalize [9, Theorems 2.1 and 2.2]
(Theorem 3.1). We shall also show that if H is a subalgebra of a locally solvable,
ideally finite Lie algebra L, then the condition H<1® L is equivalent to each of the
following conditions: (a) Hser L; (b) H wser L (Theorem 3.3). In Section 4
we shall show that if L is an abelian-by-nilpotent Lie algebra and if ¢ is an infinite
ordinal, then all the o-step weakly descendant subalgebras of L are precisely the
o-step descendant subalgebras of L (Corollary 4.3). We shall also show that if
L is an ideally finite Lie algebra such that L/{,(L) is countable-dimensional and
if H is a weakly serial nilpotent subalgebra of L, then H is an w2-step weakly
descendant subalgebra of L (Theorem 4.5 and Corollary 4.6). In Section 5 we
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shall present several examples in connection with the results in Sections 2 and 4.
The author wishes to express his thanks to Professor S. T6gd for his valuable
comments in preparing this paper.

1.

Throughout the paper we always consider not necessarily finite-dimensional
Lie algebras over a field f of arbitrary characteristic unless otherwise specified.

Let L be a Lie algebra. The set of all left Engel elements of L is denoted by
e(L). For a subalgebra H of L, (H, L) is an E _-pair [3] iff for each x € L there
exists an integer n=n(x)>0 such that [x,, h]e H for any heH. (H, L) is an
E-pair [9] iff for any xe L and any h e H there exists an integer n=n(x, h)>0
such that [x,, h] e H.

Let S be a non-empty set. A local system

L

on S is a collection of subsets of S such that each finite subset of S lies within some
member of L (cf. [4, p. 94]).

Let us recall some classes of Lie algebras:
L e A iff L is abelian.
Le § iff L is finite-dimensional.
L e N iff L is nilpotent.
LeR, iff L is nilpotent of class <n.
L eeU iff L is solvable.

Let X, 9 be any classes of Lie algebras. When Le X, L is called an X-
algebra.
LeXx9 iff L has an ideal I € X such that L/Ie€%. When Le X%, L is called an
X-by-9-algebra.
L e LX iff there exists a local system on L consisting of X-subalgebras of L. When
LeL, L is called a locally finite Lie algebra.
L e L(4)X [9] iff there exists a local system L on L such that X e X and X 4 L for
all X e, where 4 is any of the relations <1, si and so on. When LeL(<)g, Lis
called an ideally finite Lie algebra.

Now we introduce the following notation: Let H be a subalgebra of L.
We say L to lie in L(H-perm) if there exists a local system on L whose members
are finite-dimensional subalgebras of L permuting with H. If Lei(<) then
clearly L € L(H-perm)§ for any subalgebra H of L. However, the converse is not
necessarily true (see Remark 2 of Theorem 3.1).

Let H be a subalgebra of L. For a totally ordered set X, a series from H to
L of type X is a collection {A4,, V,: o € 2} of subalgebras of L such that
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(1) H<A,and H<V, foralloeX,

2 4. <V,ift<o,

(3) L\H = Ua'e.‘.‘ (Aa\Va H

4 V,<A,forall geZ.

H is a serial subalgebra of L, denoted by H ser L, if there exists a series from H
to L. For an ordinal ¢, H is a g-step ascendant subalgebra of L, denoted by
H<° L, if there exists an ascending series (H,),, of subalgebras of L such that

(1) Hy=Hand H, =1L,

(2) H,< H,,, for any ordinal « < g,

(3) H,; = \U,<,; H, for any limit ordinal 4 < g.

H is a o-step descendant subalgebra of L, which we denote by H<a, L, if there
exists a descending series (H,),<, of subalgebras of L such that

(1) Hy=Land H = H,

() H,,,< H, for any ordinal « < o,

(3) H, = N,<; H, for any limit ordinal 1 < o.

H is an ascendant subalgebra (resp. a descendant subalgebra) of L, denoted by
H asc L (resp. H desc L), if H<1? L (resp. H<1, L) for some ordinal . When o
is finite, H is a subideal of L and denoted by H si L. It is well known that
H asc L (resp. Hdesc L, HsiL) if and only if there exists a series from H to L of
type Z where X is a well-ordered set (resp. a reversely well-ordered set, a finite set)
(cf. [1, p. 27]).

To6gd [8] introduced the following concept generalizing that of ascendant
sublagebras: For an ordinal o, H is a g-step weakly ascendant subalgebra of
L, denoted by H <° L, if there exists an ascending chain (M,),, of subspaces of
L such that

(1) My=Hand M, =1L,

2 [M,., H] € M, for any ordinal « < o,

B) M, =\U,<; M, for any limit ordinal 4 < o.

The chain (M,),<, is called a o-step weakly ascending series from H to L. H is
a weakly ascendant subalgebra of L, denoted by H wasc L, if H<° L for some
ordinal 6. When o is finite, H is a weak subideal of L and denoted by H wsi L.

We analogously introduce the following concepts generalizing those of serial
subalgebras and descendant subalgebras: For a totally ordered set Z, a weak
series from H to L of type X is a collection {A4,, V,: o € X} of subspaces of L such
that

() HcA,and H< V, forall 6eZ,

2 A, csV,c4,ift<o,

(3) L\H Uae! (Ao'\V)

4 [A,H]cV, foralloeX.

H is a weakly serial subalgebra of L, which we denote by H wser L, if there
exists a weak series from H to L. - For an ordinal ¢, H is a o-step weakly de-
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scendant subalgebra of L, which we denote by H <, L, if there exists a descending
chain (M,),<, of subspaces of L such that

(1) My=Land M, =H,

2 [M, H]l = M,,, for any ordinal a < g,

3) M, =nN,<; M, for any limit ordinal 1 < g.
We call the chain (M,),<, a o-step weakly descending series from Lto H. Hisa
weakly descendant subalgebra of L, which we denote by H wdesc L, if H<, L
for some ordinal o.

We can show the following fact as in [1, p. 27].

LeMMA 1.1. Let H be a subalgebra of L.

(1) H wasc L if and only if there exists a weak series from H to L of type
X where X is a well-ordered set.

(2) Hwdesc L if and only if there exists a weak series from H to L of type
X where X is a reversely well-ordered set.

(3) HwsiL if and only if there exists a weak series from H to L of type
2 where X is a finite set.

Next we state elementary properties of weakly serial subalgebras.

LEmMMA 1.2. Let H, K be subalgebras of L.

(1) IfHwserK and X<L, then Hn X wser Kn X.

(2) When 0 is a homomorphism of L such that Ker §<H, H wser L if and
only if 0(H) wser 6(L).

(3) IfHwserL and Le§, then H wsi L.

Proor. (1) If {A4,, V,: 60X} is a weak series from H to K, then {4,Nn X,
V.nX: oeZX}is a weak series from Hn X to K n X.

(2) If{A,, V,: 0 €2} is a weak series from H to L, then {6(A,), 8(V,): 0 € X}
is a weak series from 0(H) to 6(L). Conversely, if {4,, V,: 6 € X} is a weak series
from 6(H) to 6(L), then {071(A,), 071(V,): 6 X} is a weak series from H to L.

(3) is trivial.

Let o be any ordinal. All the above statements remain true, when we replace
wser by <,.

Let H be a subalgebra of L. The ideal closure series of H in L is the de-
scending series (HL:%),~o of subalgebras of L defined inductively by

HL,O = L’
HL.o*t1 = HHY* for any ordinal «,

HY4 = N, ., H* for any limit ordinal A.

This is the Lie-theoretic analogue of the standard series in group theory. In
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particular, the countable part (HL:"),.,, is the ideal closure series in the sense of
[1] and HL-@ is denoted by lim; H in [1].
We inductively define the chain (H, ,),>, of subspaces of L by

HL,O = L,
H ,+1 =[H., HI + H for any ordinal «,

Hyp ;= Nu<;Hy, forany limit ordinal A.

Then we call the chain (H} ,),>0 the weak closure series of H in L.
The following properties on these series are elementary.

LemMMA 1.3. Let H be a subalgebra of L and let o be any ordinal. Then
(1) H < HLatlg Lo,

(2) HcHy, 41 = Hy,and [Hy,, H1 S Hy .44

(3 H,,< HL=

By set-theoretic considerations there exist ordinals ¢, T such that

HL:o = HL.# forany o > o,

H,.=H;, for any o > 1.

That is, each of the series (H:%),5, and (Hj ,),»o terminates for some ordinal.
But it is clear that none of these series necessarily terminates in H.

The following lemma states the relation between descendant subalgebras
(resp. weakly descendant subalgebras) and the ideal closure series (resp. the weak
closure series).

LEMMA 1.4. Let H be a subalgebra of L and let ¢ be an ordinal.
(1) H<,L if and only if H*° = H.
(2 H<,L ifandonlyif H ,=H.

Proor. Suppose H<a, L and let (H,),<, be a descending series from L to H.
Using transfinite induction we have H:*<H, for any «a<o. Hence H:-9=H.
Conversely, suppose H:-*=H. By Lemma 1.3(1) (H%-%),., is a descending series
from L to H. Therefore H<t, L and (1) is proved. (2) is similarly proved.

2.

In this section we shall investigate properties of weakly serial subalgebras of
a locally finite Lie algebra.

In group theory, the notion of a serial subgroup can be expressed in functional
form (cf. [2]). We here use the same method to characterize weakly serial sub-
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algebras. First we show how to express the notion of a weakly serial subalgebra
in functional form.

Let L be a Lie algebra over f and let H be a subalgebra of L. Suppose that
H is a weakly serial subalgebra of L and let {A4,, V,: 0 € Z} be a weak series from
H to L. For each xeL\H there exists a unique o(x)e 2 such that xe 4,,)\
Vs Then the o(x) is simultaneously the least element of X such that x € A,
and the greatest element of X such that x& V,,,. We can define a binary function
foi LxL—{0, 1} as follows: for any x, ye L

0 if xeH orif x, y&H and o(x) < a(y),
Sux, y) = .

1 otherwise.
Let xe H and let y& H. We shall show that f;(y, [x, y])=1. Since y € A,
[x, y1e[H, Ayy)1€V,) If [x, yle H then clearly fi(y, [x, y])=1. Hence
we may assume that [x, yJ& H. Since a([x, y]) is the greatest element of X such
that [x, y]& V,(x,;> We have o([x, y])<o(y). Therefore fi(y, [x, yD=1.
Furthermore, we can easily see that the function f, has the following properties,
where x, y, ze L and «, fef:

(1) Iffu(x, ) =f(y, 2) =0 then fi(x, z) =0.

(ii) Either fi(x, y)=0 or f.(y, x) =0.

(iii) If xe H then f,(x, y) =0.

@iv) If fu(x, z) = f(y, z) =0 then fi(ax+ By, z) =0.
(v) If xeH and y&H then f,(y, [x, y]) = 1.

Conversely, suppose that there exists a binary function f;: Lx L—{0, 1}
satisfying the conditions (i)-(v). Let x~y mean that f;(x, y)=f.(y, x)=0. By
(i) and (ii) the relation ~ is an equivalence relation on L. By (iii) and (v) we have
H={xeL:x~0}. Let X denote the set of all ~-equivalence classes except H.
Let o, 7€ 2. We write <7 if o1 and f,(x, y)=0 for any xeo and any yer.
It is a simple matter to check that < is a total order on 2. We define the terms
of a weak series determined by f, as follows: for each 6 € X

A, ={xeL:f(x,y) =0 forall yeo},

. Ur<o Ae if {teZ:t<oa} =9,
| H otherwise.
It is not hard to show that {A,, V,: o € X} is a weak series from H to L. Here we
verify only [A,, H]cV,. Let xeH and let ye A,. Assume that [x, y]&V,.
Then clearly y&s H. Hence by (v) we have f;(y, [x, y])=1. On the other hand,
we can find a t €2 such that [x, y]Jer. Since [x, y]&V, and [x, ylet=4,, we
have o <7. Since ye A, and [x, y] €1, we have f;(y, [x, y])=0. This is a con-
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tradiction. Hence [x, y]e V,. Therefore [A4,, HI<V,. Thus {4, V,:ceZX2}
is a weak series from H to L. Furthermore, the binary function on L determined
by this weak series coincides with the original function.

We obtain the following

LEMMA 2.1. Let L be a Lie algebra over t and let H be a subalgebra of L.
Then H wser L if and only if there exists a binary function f,: Lx L—{0, 1}
satisfying the conditions (i)~(v).

The following result is essential to the argument in this section.

PrOPOSITION 2.2. Let H be a subalgebra of a Lie algebra L. Assume that
there exists a local system L on L consisting of subalgebras of L. Then
H wser L if and only if Hn X wser X for any X € L.

Proor. If Hwser L, then by Lemma 1.2(1) Hn X wser X for any X eL.
Conversely, suppose that H n X wser X for any X e L. By making use of Lemma
2.1, for each X €L there exists a binary function fy: X x X—{0, 1} satisfying the
conditions (i)-(v) given by replacing L, H with X, H n X respectively. Owing to
[4, Lemma 8.22], there exists a binary function f: L x L—{0, 1} such that, given
any finite subset {(x;, y;) :1<i<n} of Lx L, there exists an X e L for which
{(x;, yp:1<i<n}c X x X and f(x;, y)=fx(x;, y), 1<i<n. Since each of the
conditions (i)«(v) involves a finite number of elements of L, the function f also
satisfies the conditions (i)—~(v). Again using Lemma 2.1 we have H wser L.

As special cases of Proposition 2.2 we have the following two results.

COROLLARY 2.3. Let X be a class of Lie algebras and let LeLX. Then
for a subalgebra H of L, H wser L if and only if Hn X wser X for any X-sub-
algebra X of L.

COROLLARY 2.4. Let H be a subalgebra of a locally finite Lie algebra L.
Then H wser L if and only if Hn F wsi F for any finite-dimensional subalgebra
F of L.

REMARK. It is known that the notion of a serial subalgebra can be also
expressed in functional form. Therefore the statements of Proposition 2.2,
Corollaries 2.3 and 2.4 remain true, when we replace wser, wsi by ser, si respec-
tively (cf. [1, Proposition 13.2.4]).

The following two results, corresponding to [2, Theorem A], are deduced
from Corollary 2.4.

PROPOSITION 2.5. Let H be a weakly serial subalgebra of a locally finite
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Lie algebra L. If 6 is a homomorphism of L, then O(H) is a weakly serial sub-
algebra of 6(L).

Proor. It suffices to show that if I is an ideal of L then H+1I/I wser L/I.
Let F/I be a finite-dimensional subalgebra of L/I. By modular law

(H+I/I)n (F/I) = (H+1) 0 F/I = (HnF)+I/I.

There exists a finitely generated subalgebra H, of H n F such that (Hn F)+1=
H,+1, and there exists a finitely generated subalgebra F, of F such that Fo+I=F
and Hy<F,. Since LeLy, Foe§. Hence Hn F,wsiF,. Therefore

(Hn Fy)+1I/I wsi Fo+I/I = F|I.
Clearly (HNF)+I=Hy+I<(HNnFy)+I<(Hn F)+1I and hence

(HnF)+I/I = (HnFy)+1/I.
Therefore we have
(H+I/I) n (F/I) wsi F/I.

This being true for all F/I we can appeal to Corollary 2.4 to deduce that
H+ 1[I wser L/I.

PROPOSITION 2.6. Let {H, :1€ A} be any collection of weakly serial sub-
algebras of a locally finite Lie algebra L. Then N ;.4 H, is a weakly serial sub-
algebra of L.

ProOF. Put H=\,. 4, H, and let F be any finite-dimensional subalgebra of
L. Then for each A€ A, H, n F wsi F and hence there exists an n(1) € N such that
[FmayH,NF]SH;NF. Forany AeA

Nu<o((Fn HNF] + (HNF)) € [F,yy HnF]1 + (H,nF) = H,NF.

Therefore (HN F)pp=Np<o (F,n HNF1+(HNF))=HNF. By Lemma 1.4(2)
we have HNF<,F. Since Fe &, HNnFwsiF. By using Corollary 2.4 we have
H wser L.

Under the assumption of Proposition 2.6, {H,: A€ A) is not necessarily a
weakly serial subalgebra of L (see Example 5.1).
Now we set about showing the main results of this section.

THEOREM 2.7. Let LeL(EUNF) and let H be a subalgebra of L. Then
H wser L if and only if H ser L.

PROOF. One implication is trivial. Suppose H wser L and let F be any
finite-dimensional solvable subalgebra of L. Then Hn Fwsi F. By making use
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of [8, Theorem 1], we have Hn Fsi F. Note that the statement of Corollary 2.3
remains true, when we replace wser by ser. Therefore H ser L and the theorem
is proved.

As a special case of [9, Theorem 2.2] we have the following fact: Let H be
a subalgebra of a finite-dimensional Lie algebra L. Then the following con-
ditions are equivalent:

(1) HwsiL.

(2) Hwsi<H, X) for any finite subset X of L.

(3) Hwsi{H, x> for any xe L.

(4 Hwsi{H, [x,,H]) forany xeL (neN).

(5) For any x € L there exists an n=n(x) e N such that H wsi (H, [x,, H]).

We generalize this fact in the following

THEOREM 2.8. Let H be a subalgebra of a locally finite Lie algebra L.
Then the following conditions are equivalent:

(1) HwserL.

(2) Hwser{H, X) for any finite subset X of L.

(3) Hwser<{H, x) for any xe L.

(4) H wser (H, [x,,H]) for any xe L (neN).

(5) Forany x €L there exists an n=n(x) € N such that H wser {H, [x,, H]).

PrOOF. (1)=(2)=>(3)=>(4)=>(5) is trivial. We have to show that (5) implies
(1). Let F be any finite-dimensional subalgebra of L and let xe F. By the
condition (5) we can find an n=n(x)eN such that H wser (H, [x,, H])>. By
Lemma 1.2(1) and (3) we have

Hn F wsi (H,[x,,H])> n F.
Clearly (HN F, [x,, HNF])<{H, [x,, H]> N F. Hence
HnF wsi <HnF,I[x,HnF].

Using the previous fact we have H n F wsi F. Therefore by Corollary 2.4 we have
H wser L.

As a direct consequence of Theorems 2.7 and 2.8 we obtain the following
result, in which the equivalence of (1) and (3) was shown by Stewart [6].

COROLLARY 2.9. Let LeL(EUN §) and let H be a subalgebra of L. Then
the following conditions are equivalent:

(1) HserL.

(2) Hser{(H, X) for any finite subset X of L.

(3) Hser<{H, x) for any x€ L.
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(4) Hser<{H, [x,,H]) for any xe L (neN).
(5) For any xe L there exists an n=n(x) €N such that H ser (H, [x,,H]).

Let X be a class of Lie algebras. The X-residual A4(L) of L is the inter-
section of the ideals I of L such that L/l € X. It is clear that

Ag(L) < L and  Aye(L) < L,

where L* =N\, ., L**! and L=\, ., L™. We shall show a generalization of
[6, Theorem 5]. To do this we need the following

Lemma 2.10. If H<® L then H°<a L and H®<1 L.,

Proor. By [3, Lemma 1(b)] we have H®<tL. Another one is shown as
in the proof of [3, Lemma 1(b)].

ProrosiTION 2.11. If H is a weakly serial subalgebra of a locally finite
Lie algebra L, then /. q(H)<1L and 2, zo(H) <1 L.

Proor. Here we prove only A,q(H)<1L by modifying the proof of [6,
Theorem 5]. Another one is similarly proved. Let §(L) denote the set of all
finite-dimensional subalgebras of L. Put K=3% pqq,(HNF)*. Let xeL and
let Fe@(L). Since LelL{, (F, x>e FL). Therefore H n {(F, x> wsi{F, x).
By Lemma 2.10 (HnF)*<(Hn<{F, x))*<a{F,x)». Hence [(HNF)® x]s
(Hn<{F, x))*<K. Therefore K<aL. On the other hand, we can show K=
Ag(H) as in the proof of [6, Theorem 5]. Thus A, o(H)=K<1L.

The following result, corresponding to [6, Corollary 6], characterizes weakly
serial subalgebras of a locally finite Lie algebra.

THEOREM 2.12. Let H be a subalgebra of a locally finite Lie algebra L.
Then H wser L if and only if A,g(H) <L and H[A,q(H)< (L[ o(H)).

PrROOF. Suppose Hwser L. By Proposition 2.11 we have A g4(H)<aL.
We denote images under the natural map L— L/, 4(H) by bars. Let he H and
let xeL. Then <h,X)eF. Since Hwser L, Hn <h, x) wsi<h, X>. Clearly
HeL9 and therefore Hn <h, x> eN. Hence (hd>si Hn<h, x>. Therefore we
have <(h) wsidh, x). It follows that [X,, h]=0 for some neN. Thus Hc
e(L).

Conversely, suppose that A q(H) <L and H/Aq(H)<e(L{Ag(H)). Let F
be any finite-dimensional subalgebra of L. Since H<e(L), (HnF, F) is an E-
pair. By making use of [9, Theorem 2.1] we have Hn F<®F. Since Fe§,
Hn FwsiF. Using Corollary 2.4 we have Hwser L. Therefore by Lemma
1.2(2) H wser L.
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3.

In this section we shall develop the results analogous to those of [9, §§2 and
3] by using the concept of weakly serial subalgebras.
We have the following result generalizing [9, Theorems 2.1 and 2.2].

THEOREM 3.1. Let H be a subalgebra of a Lie algebra L. Assume that
LevL(H-perm)§. Then the following conditions are equivalent:

(1) HwserL.

(2) HwascL.

(3) H<~L.

(4 (H, L) is an E-pair.

(5) (H, L)is an E_-pair.

(6) Hwser (H, X) for any finite subset X of L.

(7) Hwser{H, x) for any x€e L.

(8) H wser {H, [x,,H]) for any xe L (neN).

(9) For any xeL there exists an n=n(x)eN such that H wser (H,

Lxon HID-

Proor. First we show (2)<>(3) by modifying the proof of [9, Theorem
2.1]. One implication is trivial. Suppose H wasc L and let (H,),<, be a weakly
ascending series from H to L. By the assumption we have L=\U,., A(), where
each A(A) is a finite-dimensional subalgebra of L permuting with H. We con-
sider L/H as an H-module by the adjoint action. Let AeA. Then for any
neN, [A1),, H1+H/H is a finite-dimensional H-submodule of L/H. Each
H,/H is also an H-submodule of L/H. Let u(n) be the first ordinal such that
[A(A),,Hl+H/H=H,,/H. Since [A(A),, H]+H/H is finite-dimensional, u(n)
is not a limit ordinal. Therefore u(n+1)<p(n) unless u(n)=0. Since the
ordinals <o are well-ordered, there exists an ne N such that u(n)=0. Then we
have [A(1),, Hl=H. Put

M, = {xeL:[x,,H] < H} for each neN,
M, = \Up<o M,.

Then M,=\U;.4 A(Q)=L and therefore (M,),<, is an w-step weakly ascending
series from H to L. Thus we have H<® L.

(3)=(5)=>(4) is clear and (4)=>(3) is shown as in the proof of [9, Theorem
2.1]. Therefore the conditions (2), (3), (4) and (5) are equivalent. On the other
hand, the equivalence of (1), (6), (7), (8) and (9) is proved in Theorem 2.8. Fur-
thermore, it follows from Theorem 2.12 that (1) implies (4). Therefore all the
conditions (1)~(9) are equivalent.
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ReMARK 1. [9, Theorem 2.1] showed that if L e L(H), that is, there exists
a local system on L consisting of finite-dimensional H-invariant subalgebras of
L, then the conditions (2), (3), (4), (5) and another one are equivalent.

2. For a subalgebra H of L, if Le L(H)§ then L e L(H-perm)§. However,
the converse is not necessarily true. In fact, let 4 be an abelian Lie algebra with
basis {a,, a,---} and let x be the derivation of A defined by a,x=a; for each i> 1.
Form L=A4 {x), the split extension of A by (x)>. Then it is easy to see that
LeL(H-perm)& for any subalgebra H of L. But {x4>=L and therefore L&
L(A)E. In particular, L&L(<)J.

3. Theorem 3.1 states indirectly the fact that if L eL(H-perm)& then for
any ordinals o; > (1 <i<5) the following conditions are equivalent:

(1) H<+«L.

(2) H <=2 (H, X) for any finite subset X of L.

(3) H <*3(H, x)y forany xeL.

4) H<e*(H,[x,,H]) forany xeL (neN).

(5) For any x € L there exists an n=n(x) e N such that H<*s{(H, [x,, H]).
This fact is a generalization of [9, Theorem 2.2].

The following result is an immediate consequence of Lemma 2.10 and
Theorem 3.1.

COROLLARY 3.2. Under the assumption of Theorem 3.1, if H wser L then
H®<1L and H®)< L.

By Corollary 3.2 we see that if L e L(H-perm) then for any ordinal «
(H-*)»< L and (HL*)@ < L.

In particular, (lim; H)®=(H%-*)*<a L and (lim; H)®) =(HL*) (@< L.
In [9, Theorem 3.1] several conditions for a subalgebra to be w-step ascend-
ant were given. We can add two weaker equivalent conditions in the following

THEOREM 3.3. Let LeL(<)(EUNF) and let H be a subalgebra of L.
Then the following conditions are equivalent:

(1) H<“L.

(2) Hser L.

(3) HwserL.

ProoF. By Theorem 2.7 the conditions (2) and (3) are equivalent. By
Theorem 3.1 and [9, Theorem 3.1] the conditions (1) and (3) are equivalent.
Therefore the equivalence of (1), (2) and (3) is shown.

Under the assumption of Theorem 3.3, we see that HX-* <@ L for any ordinal
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Finally we show the following result which sharpens [9, Proposition 3.5].

ProOPOSITION 3.4. Let LeL(si)(EUN ) and let H be a finitely generated
subalgebra of L. Then the following conditions are equivalent:

(1) HserlL.

(2) HdescL.

(3) HsiL.

(4) HwserL.

(5) H wdescL.

(6) HwsilL.

Proor. It is sufficient to show that (4) implies (3). Suppose H wser L.
Since L eL(si) (EU N &), there exists a finite-dimensional solvable subideal K of L
containing H. Then Hwsi K. By using [8, Theorem 1] we have HsiK.
Therefore H si L.

REMARK. Let H be a finitely generated subalgebra of L. If LeL(si)§ then
the above conditions (1), (2) and (3) are equivalent. If Lei(wsi)§ then the
above conditions (4), (5) and (6) are equivalent. The proofs are similar to the
above one.

4.

In this section we shall investigate properties of weakly descendant sub-
algebras.
We begin with the following lemma corresponding to [8, Lemma 3].

LEMMA 4.1. Let H be a subalgebra of L and let K be an H-invariant sub-
algebra of L such that K*<H. For an ordinal o, if H<,L then H<,H+K.

Proor. We may assume that L=H+K. First we show that Hl-*=H, ,
for any ordinal «. To do this we use transfinite induction on «. It is trivial for
a=0. Let a>0 and suppose that HL:A=H, ; for any f<a. If «is a limit ordi-
nal, then clearly H:-*=H;,. Suppose that « is not a limit ordinal. Then by
induction hypothesis we have HL:.*"!=H,, ,. Since L=H+K, H; ;=H+
(Hp 4N K) for any ordinal . Hence

[HL,a’ HL"I_I] = [HL,m HL,a-l] = [H + (HL,a n K)5 H + (HL,a—l n K)]
= H2 + [HL,as H] + [H, HL,a— 1] + K2 = HL,az'

Therefore HL-*=HH™*"'cH;, By Lemma 1.3(3) we have H:-*=H,;, In
particular, HL-e=H; ,. Using Lemma 1.4 we obtain H<, L.
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In general, a weakly descendant subalgebra is not necessarily a descendant
subalgebra (see Example 5.2). However, we have the following result.

THEOREM 4.2. Let Le AN, with neN and let H be a subalgebra of L.
For an ordinal o, if H< L then H<,,,, L.

ProoF. There exists an abelian ideal A of L such that L/4AeN,. Then by
Lemma 4.1 we have H<,H+ A. On the other hand, H+A/A<L/Ae %, and
hence H+AJ/A<"L|/A. It follows that H+A<t"L. Therefore we have
H<,,,L.

If ¢ is an infinite ordinal, then n+o=0¢ for any ne N. Thus we obtain

COROLLARY 4.3. Let L& UN and let H be a subalgebra of L. Then for an
infinite ordinal o, H<,L if and only if H< L.

ReEMARK. The above result remains true, when L e D, where D is the
class of Lie algebras in which every subalgebra is a subideal.

Next we present some conditions for a subalgebra to be a weakly descendant
subalgebra in an ideally finite Lie algebra. To do this we need the following
lemma due to Stewart.

LemMA 4.4 ([5, Proposition 3.5]). If L is an ideally finite Lie algebra such
that L[{,(L) is countable-dimensional, then L|{,(L) is embedded in a direct
sum of countably many finite-dimensional Lie algebras.

Proor. Put L=L/{,(L). Then there exists an ascending chain (L;);<,, of
finite-dimensional ideals of L such that Ly=0 and L=\U;., L. For each i>1,
we can find an ideal K; of L such that L;n K;=0 and L/K;e . Define I;=
L,_,+K;. Then I,aL and L/I;e§. Furthermore, L,nI;=L;_,. Hence
Ni=1 I;=0. Let 0 denote the natural homomorphism of L into the Cartesian
sum Cr;», (L/I,). Then 6 is injective and the image of L under 6 is contained in
the direct sum Dr;., (L/I)).

THEOREM 4.5. Let L be an ideally finite Lie algebra such that L|{ (L) is
countable-dimensional. Assume that H is a subalgebra of L such that H+{,(L)/
{(L)eR, withneN. If Hwser L then H< ;4 L.

Proor. Put L=L/{,(L) and H=H+{,(L)/{{(L). By the proof of Lemma
4.4, L has a collection {I; : i <w} of ideals of finite codimension such that N; ., I;
=0 and the image of L under the natural monomorphism 0: L—Cr; ., (L/I)) is
contained in Dr;.,, (L/I,). Let n; denote the projection map Dr;., (L/I})—L/I;
and put L,=n,0(L), H;=m=,0(H). By Proposition 2.5 H;wser L;. Since L;€ &,
there exists a k=k(i) e N such that [L; ,, H;]J< H;. Hence
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Nik<o([Zi<o Lik Zi<o H] + Zico Hy)
= Ni<o 2i<o ([Lix H] + H)
= Yi<o Ni<o([Lix H] + H) = ¥;<, H;.

By Lemma 1.4(2) we have X ;. , H;<, Y ;<o L. Put K=0"30(L)N X<, Hy)-
Then K<, L. On the other hand, it is easy to see that K=\;.,(H+I).
Hence

[K,n H] (= mi<w(ﬁn+1 -+ Ii) = mi<w1i = 0.

It follows that H<,K. Therefore H<,,,, L, whence H+{,(L)<,,,L. Thus
we have H< ), .+ L.

By Theorems 3.1 and 4.5 we obtain

COROLLARY 4.6. Let L be an ideally finite Lie algebra such that L[{{(L)
is countable-dimensional and let H be a nilpotent subalgebra of L. Then the
following conditions are equivalent:

(1) HwserL.

(2) HwdescL.

(3) H<,,L.

(49) H<°L.

In the above statement we cannot replace the condition (3) by the condition
H <, L (see Example 5.4).

CoROLLARY 4.7. Let Ler(<)Fn (AN) such that L[{,(L) is countable-
dimensional and let H be a nilpotent subalgebra of L. Then the following con-
ditions are equivalent:

(1) HserlL.

(2) HdescL.

3) H<,,L.

(49) H<“lL.

(5) HwserlL.

(6) H wdescL.

(7) H<,,L.

Proor. By Theorem 3.3 and Corollary 4.6 all the conditions except (2)
and (3) are equivalent. By Corollary 4.3 the conditions (3) and (7) are equivalent.
On the other hand, (3)=(2)=>(1) is trivial. Therefore all the conditions (1)~(7)
are equivalent.
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5.

It is well known that the set of all serial subgroups of a locally finite group G
is a complete sublattice of the lattice of all subgroups of G (cf. [2, Theorem A]).
However, the following example shows that the set of all weakly serial subalgebras
of a locally finite Lie algebra L is not necessarily a sublattice of the lattice of all
subalgebras of L, even if L is finite-dimensional.

ExAMPLE 5.1. Let t be a field of characteristic zero. Then there exists a
finite-dimensional Lie algebra L over t containing x, y such that

(1) <x>wsiL and <(y)wsiL,

(2) <x, y) is not a weak subideal of L.

In fact, let L be a split simple Lie algebra over f of type 4,. Then itis a
well-known fact that L has linearly independent generators {e,, e,, fi, f2, b, s}
satisfying the following relations, where i, j € {1, 2}:

[e;, f,] = 5ijhi s

[ h] e,- lf i=],

e;, ] =

b —e  if ixj,
-2f; if i=}j,

[fi hj1 = L
fi if ixj,

[enze]] =[foa fi1=0 if ix.

Clearly ey, f;€e(L). Therefore <e;>wsiL and {f,>wsiL. If <eq, fiy wsiL,
then we can find an neN such that [L,, h,]1<<{ey, f;>. But [f,, hil=fo &
(e +{f1>+<{hy=Xey, f1), a contradiction. Thus <ey, f;) is not a weak sub-
ideal of L.

The following example shows that a weakly descendant subalgebra is not
necessarily a descendant subalgebra.

EXAMPLE 5.2. Let T be a field of characteristic zero. Then there exists a
countable-dimensional abelian-by-simple Lie algebra L over ¥ containing x
such that

1) x> <,L

(2) <(x) is not a descendant subalgebra of L.

In fact, let A be an abelian Lie algebra over f with basis {a,, a,,...} and let
X, ¥, z be respectively the derivations of A defined by



Weakly serial subalgebras of Lie algebras 199

ax =a;, (i21),
a;y=0 and a;y=i(i—1a;_, (i=2),
a;z = 2ia, (i=1).

Put S={(x, y, z) <Der(4). Then S is a 3-dimensional split simple Lie algebra
with multiplication

[x’ Z] = 2X, [,V, Z] = -2y9 [xs y] = Zz.

We construct the split extension L=A4+ S, which is the example described in
[8,§3]. Then L is abelian-by-simple. It is easy to see that

<x>L,1 = <a2’ (13,"'> + <x9 Z>’
<x>L,n = <an+1’ an+2:"°> + <x> (n = 2)’

Hence {xD, ,=MNp<o{XDL,=<x)>. By Lemma 1.4(2) we have {(x)<,L. On
the other hand, clearly <{x)L'={(xL>=L and therefore {(x)L:*=L for any
ordinal «. Using Lemma 1.4(1) we have (2).

The following example shows that in Theorem 4.5, Corollaries 4.6 and 4.7
we cannot remove the assumption that L is ideally finite.

EXAMPLE 5.3. There exists a countable-dimensional Lie algebra L con-
taining x such that

(1) Lern A2 and L&U(<)G,

(2 x>=tlL,

(3) <x) is not a weakly descendant subalgebra of L.

In fact, let A be an abelian Lie algebra with basis {a,, a,,...} and let x be the
derivation of A4 defined by

dox =0 and ax =a;_, i=1.

We construct the split extension L=A44 (x>, which is the example described in
[1, p.119]. Then Le3,,, N W2<LLF N A2 Therefore {x) <®*L. On the
other hand, {x>p;=[L, x]+<{x)=A+<x>=L and hence {x);,=L for any
ordinal «. By using Lemma 1.4(2) we have (3). Since {x) =L, {xL)={x)L:1
=L and therefore L&EL(<).

Finally we present an example showing that an w-step weakly ascendant
subalgebra of an ideally finite Lie algebra is not necessarily an w-step weakly
descendant subalgebra.

EXAMPLE 5.4. There exist a countable-dimensional Lie algebra L and an
abelian subalgebra H of L such that
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(1) Leu=)F n Az,
(@ H<°L,
() Hx,L.

In fact, let A be an abelian Lie algebra with basis {a,, a4,...}. For each
n>1, put A,=<a;: 0<i<n) <A and let x, be the derivation of 4, defined by

apx, =0 and ax,=a;_, (1<i<n).

Form the split extension L,= A, 4 <{x,» of 4, by {x,>. Then it is easy to see that
for any n>1
{xpp <"HL, and  {4(L,) = <ao -

First we show that there exist a Lie algebra L containing a and monomorphisms
0,: L,~L, n>1, such that

(@) L= 3%, 0,L),

(b) [0n(Ln), 0(L)] =0 if m = n,

(c¢) a=20,a, forall n > 1.
Put D=Dr,, L, and let ¢, denote the inclusion map of L, into D. Put I=
{—tap)+¢,+1(ag): n=1><D. Since I<{,(D),[<D. Define L=DJI. Let
p denote the natural homomorphism of D onto L and let 8,=p-¢, for each neN.
We can easily see that ¢,(L,) N I=0. Hence each 0, is injective. Clearly we have
(a) and (b). Furthermore, for any n>1

tar1(@0) = ¢(ag) + (—¢,(ag) + ¢,41(ap)) €¢,(ao) + 1

and therefore 6,(ap)=0,.(ap). (c) is also proved.

Each 0,(L,) is a finite-dimensional metabelian ideal of L. Hence L is an
ideally finite metabelian Lie algebra. Also L is countable-dimensional. Define
H=3Y,.,<0,(x,)><L. Then H is abelian. Since {0,(x,)) <"*10,(L,) for any
n>1, we have H<® L. On the other hand, for any n>1

a= On(ao) = [en(an)m On(xn)] € [Lm H] .

Hence ae N,<,([L,, H]+H)=H,,. But clearly a&H. Therefore H&H, ,.
Using Lemma 1.4(2) we have Hx, L. (It is actually shown that H< ., L.)
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