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Introduction

Let us consider a moving body in a viscous incompressible fluid filling the

whole space R3. If we describe the fluid motion by using a coordinate system

attached to the body, we obtain the exterior problem for the Navier-Stokes

equations:

dujdt - Δu + (u, F)u = / - Vp in D x (0, T),

divu = 0 in D x (0, Γ),

(•) u(x, t) = u*(x9 t) on S x ( 0 , Γ ) ,

M(X, 0->H«,(0 as |x|->oo,

u(x, 0) = a(x) in D.

Here D is the exterior to the body with the boundary 5 which we assume to be

smooth; u = {uj(x, 0};=i a n d p = p(x9 t) denote, respectively, the unknown velo-

city and pressure, while / = {fj(x, t)}3

j=ί and a = {aj(x)}3

j=1 denote, respectively,

the given external force and initial velocity, u* and u^ are given boundary data.

For this problem, Hopf [16] proved the existence of a square-summable weak

solution, when u* = uoo=0, for an arbitrary square-summable initial velocity.

On the other hand, in the case of stationary flow, i.e., when du/dt = 0, u* = 0

and wo0 = const., Finn [4], [5], [6] proved the existence of a solution, called a

physically reasonable solution, which exhibits a phenomenon of wake. More-

over, in [3] he showed that if u(x) is such a solution and if the force exerted to the

body by the flow does not vanish, then u{x) — u^ is not square-summable over D.

In view of the above result, it seems reasonable to seek a solution of the

problem (*) in a class of functions u(x, t) such that u(x, fj — u^it) is not square-

summable over D. This problem was discussed by Hey wood in a series of papers

[12], [13], [14], [15]. He showed a local existence result in the class of functions

with finite Dirichlet integral by using a variant of the Faedo-Galerkin approx-

imation developed by Hopf [16], Kiselev and Ladyzhenskaya [18] and Prodi

[28]. However, he assumes that the initial function a be square-summable in

proving the existence of a global solution; see [15, Th. 6].
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The purpose of this paper is to weaken the assumptions on the initial data
imposed by Heywood by using the semigroup approach which was developed
by Kato and Fujita [7], [17] in the case of a bounded domain. In particular,
under the homogeneous boundary condition, we shall show the existence of a
non-square-summable global solution for non-square-summable initial data when
they are sufficiently small. Further, we shall give a rate of pointwise decay for
our global solutions. This decay result improves the result of Heywood [15]
since the global solutions obtained in [15] are necessarily square-summable.

In Section 1 we first prove the direct sum decomposition of the Banach space
(Lr(D))3(l<r<oo) into its solenoidal and potential parts for an arbitrary exterior
domain D in R3. In the case of a bounded domain, the corresponding result is
given in Fujiwara and Morimoto [8]. Using this decomposition, we then define
the Stokes operator in Lr spaces and discuss some of its basic properties.

Section 2 deals with fractional powers of the Stokes operator in the L2

space over a three-dimensional exterior domain. Our purpose is to establish
several imbedding theorems for spaces related to the domains of fractional powers,
which will be needed in Section 3 in estimating the nonlinear term of the Navier-
Stokes equations.

Using the results in Section 2, we discuss in Section 3 the problem (*) under
the homogeneous boundary condition. We shall prove the existence of a unique
solution, local or global in time, which is not in general square-summable. In
addition, we show that our global solutions decay uniformly in xeD like ί~1/4 as
ί->oo. This extends the decay results of Heywood [15] and Masuda [24] to the
case of non-square-summable solutions.

Section 4 is devoted to the investigation of the Oseen operator in Lr spaces
over an exterior domain in R3. Using the fact that the Oseen operator generates
a holomorphic semigroup, we give a result concerning the domains of its fractional
powers, which is needed in Section 5 in discussing the existence of the solutions
for the problem (*) under a nonhomogeneous boundary condition. In fact, in
Section 5, we discuss the problem (*) with u* = 0, M00(ί) = w00 = const. With the
aid of the usual technique of extending the boundary data to the whole of Z), we
reduce the problem to a homogeneous case. Because of the additional term of
the form: (b, V)u + (u, F)b which appears in the resulting homogeneous equations,
our result in this section is only local in time.

In [7], Fujita and Kato suggested the use of semigroup theory for the Stokes
operator in L2 to discuss the exterior nonstationary problem under the homo-
geneous boundary condition. However, it seems that one cannot prove the ex-
istence of a global solution by the method suggested there; moreover, they consider
only square-summable solutions. We can avoid this difficulty in proving the
existence of a global solution if we use function spaces defined in Section 2.

The author would like to express his sincere gratitude to Professor F-Y.
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1. The Helmholtz decomposition of vector fields

Throughout this paper we denote by D an exterior domain in R3 with smooth

boundary S. It is well known (see [32]) that the Hubert space (L2(D))3 admits

the following orthogonal decomposition, the Helmholtz decomposition:

(L2(D))3 = X2® G2.

Here X2 is the closure in (L2(D))3 of the space

(C$(D))3 = {u E (C$(D))3 div u = 0 in D},

and G2 = {Ppe(L2(D))3;peLι

2

oc(D)} with D the closure of D.

Our purpose in this section is to give a similar decomposition for the Banach

spaces (Lr(D))3 (1 < r < oo). Set

Er(D) = {we(Lr(D))3 divu eLr(D)}, 1 <r<oo.

It is easy to see that Er(D) is a Banach space with the norm: ||«|lo,r+l|divM||o,r

where || | | O r denotes the usual Lr-norm. Let (C$(D))3 be the space of all the

restrictions to D of the functions in (C$(R3))3.

LEMMA 1.1. (C$(D))3 is dense in Er(D).

For the proof of this lemma, we refer to Temam [32].

In what follows, we denote by Ws

r(D) (resp. Ws

r(S)) the usual Sobolev space

of order seR such that W?(D) = Lr(D) (resp. W?(S) = Lr(S)) with the norm

H I . , (resp. H | S f Γ f S ) ; see [21].

PROPOSITION 1.2. Let v be the unit exterior normal vector to S. Then,

there exists a unique bounded linear operator, yv: Er(D)-^W~1^r(S) such that

γvu = u-v = ΣjUJ'vj if u is smooth near S, and

<yvu, p\s>= (divu, p) + (u, Vp), pG WUD), r' = r / ( r-1) .

Here and hereafter, ( , •) (resp. < , •)) denotes the duality pairing of functions

on D (resp. S).

PROOF. Fix u e Er(D) and consider the linear form:

(1.1) Tu(p) = (άivu,q) + (u, Vq\ q e W},(D), q \ s = p.

Since CQ(D) is dense in {qeW^(D); g | s = 0}5 it follows by an integration by

parts that Tu(p) is independent of the choice of q. By the surjectivity of the trace
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operator: W^(D)-^Wir1ίr'(S) we can find for each peWlrVr'(S) an element

qeWl φ) so that

with a constant C > 0 independent of p; see [21]. Therefore, from (1.1) we have

This implies the existence of an element yxu in (W}r1fr'(S))* = W;1ίr(S) such

that

<γvu, p> = TJfr) for peWlrW\S)9

Thus we have proved the existence of an operator yv. The uniqueness of yy and

the fact that yvu = u v for smooth u follow from Lemma 1.1 and Green's formula.

This completes the proof.

Let Xr be the closure of (CQ(D))1 in (Lr(D))3. By the above proposition,

we see that

(1.2) XrczYr={ue (Lr(D)Y div u = 0 in D, yvu = 0},

and that Yr is a closed subspace of (Lr(D))3. Set GΓ = X^, the annihilator of

LEMMA 1.3. Gr={Fpe(Lr(D))3 peLJOC(D)}.

PROOF. Let / = Fpe(L£D))3, peLι™(D). By an integration by parts we

see easily that

(/, iι) = (Fp9 u) = - (p, divu) = 0, w

Therefore, by the definition of Xr, we have (/, u) = 0 for any ueXr>. This implies

Conversely, suppose that / = { / /'}j=i e(L r(D))3 satisfies

(/,u) = 0, for any M e (

By a theorem of de Rham ([30, Th. 17']), there exists a distribution p such that

/ = Γ p . Since /e(LΓ(D)) 3, we have Λp = div/e W~\D\ hence peLjo c(D).

Now, let D' be a bounded domain with smooth boundary containing the comple-

ment of D in its interior and set D" = D 0 Df. By our assumption, (/, w) = 0 for

any u e (CS>(2)"))3. So by [8, Lemma 7], / = Fq e (Lr(Z)"))3 for some q e W}(D")9
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which implies p e Lr(D"). This completes the proof.

Let us now construct a projection Pr from (Lr(D))3 onto the closed subspace

Yr which is needed in proving our decomposition theorem. We start with the

following lemma.

LEMMA 1.4. Let p satisfy

Ap = 0 in D, Fpe(Lr(D))3, dp/dv( = γvFp) = 0.

Then, Fp = 0.

PROOF. Let Bp(x) be the closed ball with radius p centered at x e R3. Since

each component of Vp is harmonic in D, the mean value theorem for harmonic

functions yields

\Vp{x)\SV~λ \Fp(y)\dy

<gF-^/''j( \Fp{y)YdyV'r > 0, as |x| > oo,

where F denotes the volume of the unit ball. In view of the expansion theorem for

harmonic functions at infinity (see [27]), this implies

(1.3) Wp{x)\=O{\x\-^\ as |x| — o o .

Let Sp be the sphere with radius p centered at the origin. Then, (1.3) implies

P~Λ \p(y)\dS(y) >0, as p > oo,
Jsp

where dS is the surface element on Sp. From this and the expansion theorem

for harmonic functions at infinity we obtain

P(x) = Po + O(\x\-1), as |x| > oo

where p0 is a constant. Since q{x) = p(x) — Po satisfies the assumptions imposed

on p and q(x)-+0 as |x|->oo, it follows from the uniqueness of solutions of the

exterior Neumann problem that p(x) = p0 and so Fp = 0. This completes the

proof.

COROLLARY. Y r n G r = 0 .

PROPOSITION 1.5. There exists a bounded operator Pr from (Lr(D))3 onto

Yr such that Pru = u for u e Yr.

PROOF. For u e (CJ(D))3 we define
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(1.4) Pru = u-V(Pί+p2)9

where pt and p2 are chosen to satisfy

ί Ap2 = 0 in D,
(1.5) (i) Ap1 = divu in R3, (ii)

[ dp2/dv = yv(u-Vpί) on 5,

(1.6) VPle(Lr(R3)y, Vp2e{Lr{D)γ,

Here w denotes a C1-extension of M to R3 such that

l|δ|loΛR3 ^ C||iι||o,Γ

with a constant C > 0 independent of u. Obviously PrusYr. Applying the

Fourier inversion formula to (1.5) (i), we see that Vpx is determined uniquely by

(1.7) δpjdxj = Rj ΣUi R k u \ l ύ ΐ ύ X

where Rj(l<Zj^3) denotes the Riesz transform; see [31]. Since Rj is a bounded

operator in Lr(R3)9 l < r < o o , we have

(1.8) IIfiller ^ l l ^ i l l o , ^ ^ C||w||o,r>R3 ^ C||tt||OiΓ.

Let us now turn to the problem (1.5) (ii). Consider the exterior Neumann

problem:

(1.9) Δq = 0 in D, dqjdv = heW-Vr(S)9 q(x) > 0(|x|->oo).

As is well known, (1.9) can be solved by means of a single-layer potential, and

Vq is determined uniquely by Lemma 1.4 if Vq e (Lr(D))3. Assuming

(1.10) <ft, 1> = 0,

we shall show that Vq e (Lr(D))3. In fact, from (1.10) and the expansion theorem

for harmonic functions at infinity we have

(1.11) q(x) = O(|x|-2), \Fq(x)\ = O(\x\'3) as \x\ —+ oo.

Since r > l , it follows from (1.11) that ΓqsLr near the infinity. On the other

hand, Vq is in Lr near the boundary S in view of the well-known elliptic theory

in a bounded domain ([22]). Thus we have proved Vqe(Lr(D))3.

We shall now show that the solution of (1.9) satisfies the estimate:

(1.12) IIΓίllo.r^C||Λ|U 1 / r.Γ^ if < A , l > = 0 .

By virtue of the closed graph theorem, we have only to show that the map: hv-±Vq

defines a closed operator. Suppose that
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(1.13) K >h in W;V'(S), Fqn >f in (Lr(Z)))3, as n > oo,

and that qn is the solution of (1.9) with h = hn. It is easy to see that (/, w) = 0

for any ue(C$(D))l and so f=ΓqeGr for some qeL\0Cφ). Since Δqn = 09

we have Δq=0. Thus, by Proposition 1.2, dq/dv = h is well defined and belongs

to ^7 1/ r(S). Since, by Proposition 1.2,

\\K - h\\-ι/r,r,s S C(\\Fqn - Fq\\0,r + \\Δqn - ΔqUJ

= C\\Fqn - Fq\\0>r > 0, as n > oo,

we see that h — h. Thus we have proved (1.12).

Let p2 be the solution of (1.5) (ii). Since obviously <7v(
w~"^Pi)5 l>=0>

it follows from (1.8), (1.12) and Proposition 1.2 that

^ C(\\u-FPί\\Ofr + \\άiy(u-FPί)\\0,r)

= C\\u-rPl\\o,ύC\\u\\Otr.

From this and (1.8) we obtain

(1.14) l|Pr"llo,r^C||iι||o,Γ for ue(Cξ(D))3

with a C > 0 independent of u. Since (Q^D)) 3 is dense in (Lr(D))3, Pr is extended

uniquely to a bounded operator from (Lr(D))3 into Yr. The fact that Pru = u

for any « e 7 r follows easily from Lemma 1.1 and the corollary to Lemma 1.4.

This completes the proof.

THEOREM 1.6. (i) (Lr(D))3 = Yr®Gr(1 < r < oo, direct sum).

(ii) X r = 7 Γ , * * = A y , r' = r/ ( r- l ) , wftm? ZΓ* is ίft

PROOF, (i) From the corollary to Lemma 1.4 it follows that Yr+Gr is a

direct sum. On the other hand, by our construction of Pr we have ( C o 5 ^ ) ) 3 ^

Yr®Grcz(Lr(D))3, in particular, Yr®Gr is dense in (Lr(Z)))3. Since Pr: (Lr(D))3->

Yr is a bounded operator and Yr, Gr are closed, Yr©Gr is closed. Hence 7 r φ G r =

(Lr(D))3. This proves (i).

(ii) By(i), 7 r = (Lr(D))3/Gr. Hence

Y* = {(Lr(D))3/Gr}* = Gf̂  = Xr.

On the other hand, Yγ> is regarded as a subset of Y*. Indeed, let vu v2 be in Yr̂

and suppose (vt — v2, w)=0 for any ue Yr. Since Xra Yr we see ϋi — v2eX^ =

Gr>. Thus we have υί — v2 = 0 because Yr»nGΓ< = 0. This implies Y^czX,,, so

that we have Xr=Yr and Z * = Zr* for any r, l < r < o o . This completes the

proof.
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COROLLARY. The dual operator P* of Pr: (Lr(D))3-+(Lr(D))3 is identical

with Pr,.

This is easily verified by using Theorem 1.6 if we note that, for each 1 < r < oo,

Pru = u if and only if u e Xr Pru = 0 if and only if u e Gr.

Using the above results, we now define the Stokes operator Ar and discuss

some of its basic properties. Let us consider the Stokes boundary value problem:

(λ~A)w + Fp = / in D,

div w = 0 in D,
(1.15)

w = 0 on S,

w -•() as |x|-»oo.

The following result is due to Giga ([9, Th. Γ]).

THEOREM 1.7. Let \<r<oo. Then, one finds a constant M > 0 such that

for each complex number λ with ReA^M and eachfeXr there exists a unique

weXrΓ\ {ve(W2

r(D))3; v\s = 0} which satisfies (1.15) with some FpeGr. More-

over, if we write w = G λ/, Gλ is a bounded injective operator on Xr such that

\\Gλ\\ ^const. \λ\~x, where \\Gλ\\ is the operator norm of Gλ.

Let us denote Gj1=λ + Ar. From Theorem 1.7 we see easily that Λr is a

closed operator in Xr independent of λ such that

D(Ar) = xrn{vG (wmy v \s = 0},
(1.16)

Arw = — PrΔw, for weD(Ar).

Since Theorem 1.7 implies I P + A,.)-1!! gconst. \λ\~x for Re/l^M, and since

(λ + A,)'1 defines a bounded operator from Xr onto D(Ar), we obtain

COROLLARY, (i) — Ar generates in Xr a holomorphic semigroup, which we

denote by {e~tΛr; ί^O}.

(ii) There exists a constant Cr>0 such that

| |o,,+ ||w||O(r) for wsD(Ar).

THEOREM 1.8. Let A* be the dual operator of Ar. Then,

The proof of this theorem is the same as that of the corresponding assertion

in Fujiwara and Morimoto [8], and so omitted.

REMARK 1.9. Theorem 1.8 means in particular that A2 is a self-adjoint

operator in the real Hubert space X2. Since (A2w, w) = (Fw, Fw), A2 is non-
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negative. Moreover, from this and the corollary to Theorem 1.7, we see that

A2 coincides with the Friedrichs extension of — P2A restricted to the smooth

elements in D(A2).

2. The Stokes operator in X2 over an exterior domain

Let us consider the Stokes boundary value problem (1.15) in the space X2

under the form:

(2.1) Λw=f.

Here and hereafter, we denote A2 simply by A. As is noted in Remark 1.9, A

is a non-negative self-adjoint operator in X2 and (Aw, υ) = (Vw, Vυ) if v, w e D(A).

So we shall define the weak form of the equation (2.1) by

(2.2) (Fw, Vυ) = (/, t>), for υe(C$(D))l

Since A is the Friedrichs extension (see Remark 1.9) attached to the bilinear form

(Fvv, Vυ), it follows immediately that

(2.3) D(Aι>2) = X2 Π (W2(D))\

w h e r e Wί

2(D) = {υeWί

2(D); υ\s = 0}.

Let {e~tA\ ί^O} be the semigroup in X2 generated by -A. Using the

spectral representation for A, we can prove the following result; see [24].

PROPOSITION 2.1. (i) {e~tA\ t^O} is a holomorphic contraction semigroup

of non-negatiυe self-adjoint operators.

(ii) \\Aae-tAw\\0>2 ^ r α | |w | | 0 > 2 for weX2, t > 0, 0 ^ α ^ 1.

(iii) | | ( /-e-^)w | | 0 , 2 ^( ί α /α) |μ α w| | 0 , 2 for weD(A«\ t > 0, 0 < α g 1.

As is noted in the introduction, our aim is to study the Navier-Stokes equations

in the spaces of non-square-summable functions. For this purpose we introduce

some function spaces.

DEFINITION 2.2. For 0 ^ α ^ l / 2 , we denote by H* the completion of D(Aa)

with respect to the norm |w|α= ||,4αw||0j2.

REMARK 2.3. (i) In view of (2.2), we see that Aw = 0 implies w = 0. Hence

I |α defines a norm on D(Aa).

(ii) When D is bounded, the norm of D(Aa), i.e., the graph-norm of AΛ,

is equivalent with | |α, because A is invertible in X2. Hence, in this case, Ha

coincides with D(Aa). However, when D is an exterior domain, the space Ha

is larger than D(AΛ).
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From (2.3), |w | 1 / 2 = | |Fw| | 0 2; hence by Lemma 7 in [20, Chap. 1], we have

(2.4) H"2 c X69 ||w||o i6 ύ (48)1/6 |w|1/2 ( w e H ^ 2 ) .

THEOREM 2.4. The space Hθί2, Orgθrgl, /s egwαJ ίo the complex inter-
polation space: [H°, HII2~\Θ. Moreover, we have

(2.5) IM|Ofr(β) ^ Cβ|w|β/2, for any weHθ>2,

with riθ)-1 =(1-6)12 + 916, CΘ = (4S)Θ'6.

PROOF. Since (2.5) follows easily from (2.4), the Riesz-Thorin theorem and
interpolation theory for linear operators, we need only to show the first assertion.
Since D(A1'2) is dense in both of H1'2 and H° = X2, it follows that D(A^2) is
dense in [H°, If 1 ' 2],, so that D(AQι2) is also dense in [#°, H1'2^; see [33,
§1.9.3]. Hence we have only to show that the norm of weD(A1/2) in
[ff°, H^2~]θ is equivalent with \\Aθf2w\\oa.

Set Aε = A + ε, ε>0. Since Aε is invertible in X2, f(z) = A^^z~θ)/2w is an
Z2-valued function which is continuous for OrgRez gl, and analytic for 0<
Re z < 1. Furthermore,

f(iy) eX2 = H°, /(I + iy) e D(A^2) c H1/2, for yeR,

and/(0) = w. Hence, if we denote the norm of [#°, # 1 / 2 ] 0 by ||| |||β, we have
([33, § 1.9])

|||wL ύ max {sup | |/(i»| | 0 i 2, sup \\A^2f(l + iy)\\oa} .

Since A\y is unitary and ||^41/2y4;:1/2|| ^ 1, we see easily that the right hand side of
the above inequality is dominated by Mf/2w||0>2. Letting ε-*0, we obtain

(2.6) l l |wL^ | |^ 2 w| | 0 > 2 .

Let us now prove the converse of (2.6). We denote by g(z) an arbitrary
function expressed as a finite linear combination of functions of the form:
exp(δz2 + γz)b, <5>0, yeR, beD(Aί/2). Since AzJ2g(z) is continuous for
OrgRezgl, and analytic for 0 < R e z < l , it follows from the three-line theorem
that

Mβ/2w||0,2 ύ M?/2w||o>2 ^ inflowmax^o.1 sup

Noting that A[y is unitary and letting ε->0, we obtain

M*/2w||0,2 = i n f ^)=wmax i = O j l sup \\A^

Since D(A1/2) is dense in both of H1/2 and ϋΓ°, it follows from the Theorem in
[33, § 1.9.1] that
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(2.7) Mθ/2w||0,2 S IIML.

By (2.6) and (2.7) the proof is completed.

Let us define the space H~«9 O ^ α ^ 1/2, by

(2.8) H~* = the dual space of Ha.

By Theorem 2.4 and interpolation theory, we have

(2.9) H~Ql2 = [#°, tf"1/2]^ O ^ ^ l .

Here we identify H° = X2 with its dual by the usual L2-inner product; see

Theorem 1.6.

Next we define the spaces Ha for 1/2 <α:g 1. Our definition is based on the

following result.

THEOREM 2.5 ([23, Th. 2]). Let w e H1'2 and fe H~^2 satisfy (2.2). Then

feH° if and only if — Aw e (L2(D))3. Moreover, in this case we have

f = - P2Aw9 \\D2w\\0>2 £

where D2w stands for an arbitrary second-order derivative of w.

Let us now define Ha, l / 2 < α g l , by

(2.10) HΛ = the completion of D(Aa) with respect to the norm:

M. = (Mαw||g,2 + \\A"2w\\l2yi2 (1/2 < α ̂  1).

THEOREM 2.6. We have

IIFa Ho.*.) ^ CM*, for ueH; 1/2 g α ^ 1,

with r (α)" 1 =(5 —4α)/6 and a constant C α > 0 independent of u.

PROOF. By the Sobolev imbedding theorem we have W\{D)ci L6(D) with

the continuous injection. On the other hand, Theorem 2.5 implies that Fu e

(Wl(D))9 for any ueH1. Thus we obtain the desired result with α = l. Since

our assertion is clear when α = l/2, it is enough to show that

To see this, we note that Ha, 1/2^α^ 1, is equal to the completion of D(Aa) with

respect to the norm: \\Λ^2(A + ί)^2u\\0t2 with α = (l + 0)/2, which is easily

verified by using the spectral representation for A. Using this, we can prove

(2.11) in just the same way as in the proof of Theorem 2.4, and so we omit the

details.
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The following result is needed in Section 3 in constructing the solutions of

the problem (*) with w* = w00 =0.

PROPOSITION 2.7. (i) {e~tA; t^O} defines uniquely a holomorphic con-

traction semigroup on each of the spaces Ha, — l / 2 ^ α ^ l .

(ii) For each α</?, --1/2 gag; 1/2, β^O, and each ί > 0 , we have the

estimate

\\Λβe-tAw\\o,2 ^ t*~β\wL for weH*.

In particular, e~tA defines a bounded operator from Ha to Hβ.

(iii) For each cc<β, —1/2 gα, β<09 and each t>0, e~tΛ defines a bounded

operator from Ha to Hβ such that

\e'tAMβ ύ t«-β\w\*, for weH*.

PROOF, (i) When α^O, the assertion is obvious since e~tAAa = Aae~tA on

D(Aa). So we have only to consider the case — l / 2 g α < 0 . First we shall show

that (C$(D))l is dense in # α , - l / 2 ^ α < 0 . Since (C$(D))* is dense in Xr and

(C$(D))l <= H~a c χr9 1/r = 1/2 + 2α/3, we see that H~" is dense in the Xr. Hence,

by duality, Xr, (r' = r/(r- l)) is dense in H", which implies that (C$(D))l is also

dense in Ha.

Now, we define e~tA: H"-+Ha as the dual of e~tA: H~a-+H~*. Since e~tA

is self-adjoint in X2, it follows that e~tA\ H«-*H« ( - l / 2 ^ α < 0 ) defined above

coincides with the original one on (CQ(D))1.

(ii) When α^O, the assertion follows easily from Proposition 2.1 since

Λβe-tA = ^β-ae-tΛAcc o n £>(^α) Therefore we assume - l / 2 ^ α < 0 . For

υ, WE(CQ(D))1, we have, again by Proposition 2.1,

\(Aβe~tAw, v)\ = |(w, Aβe~tAv)\ ^ \w

Since (C$(D))l is dense in both of Ha and H° = X2, we obtain the desired result,

(iii) follows immediately from (ii) and a duality argument. This completes

the proof.

3. The exterior nonstationary problem with the homogeneous boundary

condition

The purpose of this section is to give an existence and uniqueness result for

the problem (*) under the homogeneous boundary condition: M* = woo(ί) = 0, in

the function space H1/2 defined in the preceding section. We shall prove the ex-

istence of a unique solution, local or global in time, for an arbitrary initial function
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aeH1'4 and an arbitrary forcing term P 2 /eC((0, T ] ; H~δ\ 0^(5^1/4, such

that |P 2 /(0l-δ = o(f5~3/4) as ί->0. Moreover, we shall show that, when P2f

is defined on (0, oo), and 05^(5<l/4, our solution u(x, t) satisfies

supx e D |u(x, 01 = O(Γ^) as t > oo,

if it exists globally. This is a generalization of a result in Heywood [15], which

gives the same decay result for a solution belonging to X2 with respect to xeD.

In this section, we denote P2 simply by P and consider the problem (*) with

w* = Moo(ί) = 0 under the form:

(3.1) u(t) = e~tAa
Jo

where Fu= -P(u, V)u\ see [7], [11], [17], [25], [26]. To solve this equation

we employ the iteration argument which was developed by Kato and Fujita

([7], [17]) in the case of a bounded domain; see also [11], [25], [26]. First we

prepare estimates for the nonlinear term Fu.

LEMMA 3.1. The estimate

(3.2) \P(u9Γ)Ό\-r£M\u\β\Ό\p9 u

holds whenever 0^y^l/4, 0<0^1/2, p^l/2, Θ + p + y = 5/4. Here M>0 is a
constant depending on y, θ, p.

PROOF. By Holder's inequality we have

Γ)ϋ, w)| = |((iι, F)Ό, w)| ^ ||w||o,J|Γι;||o,r||w||OjS

for any we(Co(D))l9 where l/^ + l/r+l/s = l. Since we can choose q, r and 5

so that l/g = l/2-20/3, l/r = (5-4p)/6, l/s = l/2-2y/3, the estimate (3.2) follows

from Theorems 2.4 and 2.6. This completes the proof.

Let us now discuss the existence problem for the equation (3.1) by means of

the iteration scheme:

uo(ί) = e~tΛa
Jo

(3.3)

= «o(0 + \
Jo

In what follows, we denote the norm || | | 0 2 simply by || ||. Fix aeHί/4 and

P/eC((0,Γ] ;//- δ ) such that |P/(ί)l-* = o(ί*-3 / 4) for some (5,0^(5^1/4. By

Proposition 2.7 we have
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M««o(OII ^ We-'M + [' (t-s)-°->\Pf(s)\_sds

(3.4)

g Xa Oί1 / 4~α, 1/4 ^ α < 1 - δ,

where

-"1α|| + NB(l-δ-tx,

Here B(p, q) is the beta function. For each m^Owe set

(3.6) KJtt) = s u p 0 < s S t s
1>*\\A1>*uJ.s)\\.

Applying Proposition 2.7 and Lemma 3.1 with y = 1/4, 0=p = 1/2, we see by
induction on m that

(3.7) K^^ή^Koiή + M.B.K^ty, 0<t^T,

where 5,^=5(1/4, 1/2) and M t is the constant in (3.2) with y = l/4, θ = p = l/2.
Further we have, again by induction on m,

(3.8) M X , + 1(OII ^ {^αo + MxKm{T

for 11A g α < 3/4, 0 < t ̂  T. Now, assume that

(3.9) K0(T) < 1/4M.B,.

By an elementary calculation we obtain, from (3.7),

(3.10) KJT) < K & {l-(l-4M1B1K0(T))1/2}/2M151 <

so that, from (3.6) and (3.8),

(3.11) μ«« m + 1 ( ί ) | | ^{

ίe(0, Γ], l/4|ot<3/4.

Assuming (3.9), we shall show that {um(t)} converges. Set

wm(0 = «m + i(ί) - um(t) =

By (3.2) we have

\FuJs) - F« m _ 1 (s) |_ 1 / 4

Hence, denoting Wm = sup0<tsτ tίlA\\Aι'2wm(f)\\ and taking (3.11) into account,
we obtain, by induction on m,
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(3 12) Wm^

\\A*wm(t)\\ ^ (2M1B1K)m-12M1KB(3/4-oc9 \\2)V~\ m ^ 2,

for l/4^α<3/4. Since 2M 1£ 1K<1 (see (3.10)), we see from (3.12) that {um(ή}
converges in C([0, T];i/ 1 / 4)nC((0, T ] ; # α ) , l/4<α<3/4, to an element u(t)
such that

\\Λ^2u(t)\\ ̂  K r 1 ' 4 ,

||i4-ιι(0ll ύ {Ka0 + M ^ B ^ - α , Il2)}tv*-;

for l/4g α< 3/4. Since

\Fum(s) - Fiι(s)U1/4 £ MJiiΛs) - n(s)|1/2{|κm(s)|1/2

> 0, as m > oo,

we can apply the dominated convergence theorem to (3.3) and see that u(t) is a
solution of (3.1). This proves the existence of a solution of (3.1) under the assump-
tion (3.9). On the other hand, from [7, Lemma 2.10] we can deduce that
ίi/4||i4i/2e-Mέϊ||_>o as ί->0, if aeH1^. Since t3ί4~δ\Pf(t)\-δ->0 as ί->0,
we see from (3.5) and (3.6) that (3.9) holds if we choose T>0 small enough.
Hence we have proved the existence part of the following theorem.

THEOREM 3.2. (i) For each asH1** and each Pfe C((0, T] H~δ) such
that \Pf(t)\-δ = o(tδ-3/*) (t-+0)for some δ, 0^(5^1/4, there exist a Γ*,
T, and a solution u(t) o/(3.1) such that, for any α, l/4<α<3/4,

(a) u E C([0, T J H^) n C((0, T*] ifα),
(ft) ||4βiι(0ll = 0(ί1/4"α) «s ί > 0.

(ii) The solution is unique within the class of functions w(t)eC([0, Γ*];
if1'4) Π C((0, Γ*]; H1/2) swc/z ίftαί |w(0|1/2 = o(r1/4) as ί->0.

We note that (b) can be seen from the fact that the constants Ka0 in (3.5) and
K in (3.10) can be made arbitrarily small if we take Γ>0 small. The uniqueness
of the solution can be shown in the same way as in the proof of the corresponding
result in [7], and so we omit the details; see also [11], [25].

In view of (3.9), the following result is obvious.

THEOREM 3.3. Let aeH1** and let P/eC((0, oo); H~δ\ O^<5^1/4, satisfy
\-δ = o(tδ-3ί4) as ί->0. Then there exists a solution u(t) of (3.1) in

C([0, αO f f^nCίίO, oo); ifα), l/4<α<3/4, which satisfies (b) in Theorem
3.2, if
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(3.13) \a\1/4 + B(l/2-δ, l/4 + <5)supί>0 t^~'\Pf(t)\.δ < 1 / 4 M ^

Here Mx is the constant in (3.1) with 7 = 1/4, θ = ρ = l/2.

We shall now study the rate of decay of our global solutions in the case

0_<5<l/4. The following proposition shows that we can get more regularity

for our solutions when 0 = <5<l/4.

PROPOSITION 3.4. When 0 = <5<l/4, the solution u(t) given in Theorem 3.2

(resp. Theorem 3.3) belongs to C((0, Γ*]; # α ) , (resp. C((0, oo); H")), for any

α, 3 / 4 ^ α < l — <5. Further, we have

(3.14)
\\A«u(i)\\ gCaίf1 '4-" 4- ί1 '2"*), 3/4 < α < 1 - (5,

w/ί/i Cx anJ C 2 independent of t.

PROOF. We set u(t) = uo(t) + v(t), where

Uo(t) = e-tAa + ff e-e
Jo

υ(t) = Γ β-ί̂
Jo

By Proposition 2.7 we have

()

= ί1/4"α{l«li/4 + NB(X-δ-*9 1/4 + 5)}, 3/4 ^ α < 1 - 5.

Hence, we have only to estimate v(t). Applying Lemma 3.1 with 7 = 1/8, 0=1/2,

p = 5/8<3/4, we obtain

= MC Γ (ί-s)-7/^"1/^-1/4 +

Jo

= MC{B(l/8, l/2)r 3/ 8 + J5(l/8, 3/8)r^ 2 },

where M is the constant in (3.2) with 7 = 1/8, 0 = 1/2, p = 5/8. Note that here we

have used the fact that w(ί) satisfies (3.11)'.

Suppose now 3/4 < α < 1 — δ. Applying Lemma 3.1 with 7 = 0, θ = 1/2, p = 3/4,

we have
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\\A*υ(t)\\ ^ ^

* + £ ( l - α , 3/8)ί3/8"α+ β( l-α,

ί 1 / 2 " α ) ,

where M' is the constant in (3.2) with y = 0, 0=1/2, p = 3/4. This completes

the proof.

Using the above result, we can now prove the following

THEOREM 3.5. Suppose that (3.13) holds with 0^(5<l/4. Then the solution

u(t) given in Theorem 3.3 is continuous and bounded in (x, ί)eDx[f | , oo) for

any η>0. Further, we have

(3.15) suPjceD |ιι(x, 01 = (Kr1'*) as t > oo.

PROOF. Fix α, 3/4<α<l-<5. By Theorem 2.6 and (3.14), we see that

Pue(Lr(D))9, l/r = (5-4α)/6, and

||Pιι(0llo,r £ Qu(t)\a ^
(3.16)

= 0{Γ1!*) as t > oo.

Since u(t) satisfies (3.11)' for all ί>0, it follows from Theorem 2.4 that

(3.17) ||κ(0llo,6 ύ C\u(t)\ί/2 = O(Γ^) as t > oo.

Now, choose an open cube Qo whose sides are parallel to the coordinate

axes such that the complement of D is contained in its interior. Since 3 < r < 6,

it follows from (3.16) and (3.17) that u{t) e (W^D'))3, D' = Q0[) D, and hence by

the Sobolev imbedding theorem,

SU P ; C 6 D , \U(X, t) I ^ C( | |Pt l( ί ) | | O i r .D'

^ C(||Fiι(0llo,r +

Let us now divide R3 \ Qo into a countable number of open cubes QJ9 j^l, which

are mutually congruent so that

R3\Qo = VjQj, QjKQu^Φ if j φ k .

Since u(t)e{WKQj))3 for eachj^ί, we see as above that

X * , 01 ύ CWu(t)\\o,.Qj + II«(0IIO,Γ,Q,)
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By our choice of Qj9 the constant C and the volume \Qj\ are independent of j .
Hence, from (3.16)-(3.19), we have

™pxeD |iφc, 01 ^ C(||Λι(ί)||OiΓ + \\u(t)\\o.β) = O(Γ^)

as ί-»oo, which completes the proof.

In the following lemma, we denote by Cy((0, T] E) the set of functions which
are Holder continuous on each [ε, T](0<ε<T) with exponent γ and with values
in a Banach space E.

LEMMA 3.6. When 0^<5<l/4, the solution u(t) of (3.1) given in Theorem
3.2 belongs to Cα((0, Γ*]; tf1'2) Π C*((0, Γ*]; # 3/ 4) /or any a, β, such that
0<a<l/2~<5,0<jS<l/4-<5.

PROOF. We have only to consider

v(t) = [* e-c-*^ Fu(s)ds
Jo

because e~tAa9 aeH1^, is a smooth function of ί>0 with values in both of
and H1'2. Fix 0<ε<T s | ί. Then, for ε^t<t + h^T*, we have

Jo

Ct
\

IK
o
t+h

J 4 .

Using Propositions 2.1, 2.7, (3.11)' and Lemma 3.1 with y = 0, 0=1/2, p = 3/4, we
obtain

J 3 ^
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and

t+h Γt+h

( h ^ ^ d CΛ

Hence we have shown ueCα((0, T*]; H1'2). That weC^O, Γ*]; # 3 ' 4 ) can

be proved similarly. This completes the proof.

COROLLARY. Under the assumption in Lemma 3.6, Fu(t) is Holder con-

tinuous on each [ε, T*] (0<ε<Ts !c) with values in X2.

THEOREM 3.7. // Pfe C((0, T] X2) and is Holder continuous on each

compact subinterval of (0, Γ], then the solution u(i) given in Theorem 3.2 sat-

isfies du/dt-PAu=Pf+Fu on (0, T*]. In particular, du/dteC((0, Γ*]; X2).

PROOF. We write

u(t) = e-^-^ui") + Γ e-(ί-sM{Fu(s) + Pf(s)}ds
Jη

s w(ί) 4- t (ί), ί ^ ff > 0.

By the above corollary it is clear that v(i) satisfies

(3.20) dvjdt + Av = Fu + Pf in X2, t > η.

Hence, it is enough to show

(3.21) dw/dt - PAw = 0 for ί > ^ .

By Proposition 2.7, w(ί) is in C([rj, Γ*] H1). So by the estimate in Theorem

2.5, A w(t) is in (L2(D))3. Hence, P2J w is in C([_η, T^] X 2). On the other hand,

since w(fy)eiί1 / 2c:X6, we see that w(t) belongs to C\(η, T*]; X6) n C((η, T^];

IK^β)) and

dw/dt + A6w = 0 for t > η.

Since ^ 6 w = -PAw, dw/dteC((η, T * ] ; Z 2 ) and (3,21) holds. By (3.20) and

(3.21) the proof is completed.

REMARK 3.8. Bemelmans [1] discussed the exterior problem in Holder

spaces and proved the existence of a global solution for small data. But, he did

not give a rate of time-decay. Hey wood [15] showed a result similar to ours

under the assumption that a e D(Aί/2). This assumption implies that the global

solution obtained in [15] is necessarily in X 2 It is a l s o proved in [15] that if

Pf=0, the global solution obtained in [15] decays uniformly i n x e D like ί~1/2.
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For more discussions on the decay properties of solutions to the exterior problem,

we refer to an interesting paper [19] of Knightly. If our solutions were identical

with those discussed in [19], they would decay like t~ί/2 even when PfφO.

4. The Oseen operator

As a preparation for the study of a nonhomogeneous problem in the next

section, we consider in this section some properties of the Oseen operator in

Xr, l < r < o o :

Lr = Ar + Pr(Uoo, Γ ) ,

where u^ is a constant vector. This operator is obtained if we linearize the

Navier-Stokes equations around the velocity at infinity u^. Our main purpose

is to show that — Lr generates in Xr a holomorphic semigroup, which we denote

by {e~tLr; ί^O}. Using this fact, we then discuss fractional powers of Lr.

LEMMA 4.1. (i) There exists for each ε > 0 a constant C ε > 0 such that

\\PJίu«» P)w|lo, ^ *\\AMo,r + CJw||o,Γ, weD(Ar).

(ii) There exists a constant Cr>0 such that

IMk, ^ Cr(\\Lrw\\o,r + IMIo,). weD(Ar).

Hence, Lr defines a closed operator in Xr such that D(Lr) = D(Ar).

PROOF, (i) In what follows we denote by Cε various constants depending on

ε>0. Using the corollary to Theorem 1.7, we have

\\PXuw F)w||O j r ^ C\\w\\lr ̂  C(β|H| 2 i Γ + Cβ||w||OiΓ)

^ Cε(\\Arw\\o>r + l|w||OfΓ) + CCβ||w||0>Γ.

Since the constant C in the above estimate is independent of ε>0, this proves (i).

(ii) By (i) and the corollary to Theorem 1.7 we have

||o.r + IMIofr) = Cr(\\Lrw-Pr(u^ F)w||0, r + ||w||0,Γ)

S C r(||L rw||0?r + ||w||0.r) + ε\\Arw\\o, + Cβ||w||OiΓ

£ Cr(\\Lrw\\o,r + l|w||OiP) + βC||w||2iΓ + Cβ||w||0>r.

Choosing ε > 0 sufficiently small, we obtain (ii). This completes the proof.

By (i) in the above lemma and the discussion in [29, p. 253], we obtain the

following result.

THEOREM 4.2. {e~tLr; l*zO} is a holomorphic semigroup in Xr.
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REMARK 4.3. When r = 2, we have

(L2w, w) = (Aw, w) + (P(W o o, F)w, w) = ||Fw||gj2, w e D ( i 2 ) ,

because an integration by parts yields (P(w00, F)w, w) = ((w00, F)w, w) = 0. Hence,

— L 2 generates in X2 a contraction semigroup. For r Φ 2, we have no such bound-

edness result for the semigroup {e~tLr; ί^O} even when uoo=0. We note that

properties of the fundamental solution for the Oseen operator are discussed in

detail in Bemelmans [1] and Faxen [2].

Theorem 4.2 and the corollary to Theorem 1.7 assure the existence of frac-

tional powers of Lr-\-λ and Ar + λ if λ>0 is sufficiently large. For simplicity,

we fix such a λ and denote Lr + λ and Ar + λ by Lr and Ar respectively.

THEOREM 4.4. There exists for each β>oc9 O^α, β^l, a constant Caβ>0

such that

(4.1) \\Aϊw\\o,r^Caβ\\L?w\\o,r, weD(Lf).

The proof of this theorem is the same as that of [26, Lemma 2.6] and so

omitted.

REMARK 4.5. Actually, we can show

D(Lΐ) = D(A-\ 0 S α ύ h

by a method developed in Giga [10]. But we shall not enter into the details

here, since we do not use (4.2) in this paper.

According to [10], D(A?) is continuously imbedded into the space of Bessel

potentials (//j?α(D))3. Hence, from Theorem 4.4 we obtain the following result.

PROPOSITION 4.6. For each ε > 0 and each α, 0 ^ α < l , the space

is continuously imbedded into (H

5. A nonhomogeneous case

In this section we discuss the solvability of the problem (*) under the as-

sumption :

u* = 0, u^it) = Woo = const.

As is shown in [4, p. 369], we can choose a C2 vector field b(x), xeD, which

vanishes for large |x| and satisfies

divί> = 0 in D, b = -u^ on S.
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Substituting u = uo0 + b + w into (*) we obtain

dw/dt - Aw + (u^, V)w + (b, 7)w + (w, V)b

(*)' div

w(x,

w

w

w

0)

= 0 -

= 0

= 0

->0

= d(x)

Fp-

in

on

as

in

(w, F)w

Dx(0,

Sx(0,

|x|->oo

in

D.
T),

D x(0, T),

where g=f-(b,7)b + Δb-(uOQ,7)b\ d = a-uoΰ-b. Applying the projection

Pr formally to (*)', we obtain the following evolution equation in Xr:

dwjdt + Lrw = Fw + Gw + Pr^, t > 0,

w(0) = a,

where Fw= -PΓ(w, Γ)w; Gw= -Pr(b, F)w-Pr(w, F)b, and Lr is the Oseen

operator in Xr defined in the preceding section. We shall consider (5.1) in Xr,

r>3, under the form:

(5.2) w(t) = e~tLa + [' e~^^L{Fw + Gw} (s)ds
Jo

Here and hereafter we drop the subscript r in Lr and Pr. Since our consideration

is local in time, we may assume without loss of generality that L is invertible and

the fractional power Lα is defined; see [25, p. 527]. First we prepare estimates

for Fw and Gw.

LEMMA 5.1. Let 3<r<oo. Then the estimate

(5.3) l|P(tt,Γ)i7||oir^M||tt||ofΓ||L^||o,Γ, ueXr9 veD(Ly),

holds for each y, 3/2r+l/2<y<*l. Here M is a constant depending on r and y.

PROOF. By the Sobolev imbedding theorem, the space Hs

r(D) is continuously

imbedded into the space of bounded continuous functions on D if s>3/r. On

the other hand, we see from Proposition 4.6 that the gradient operator 7 sends

D(Ly) continuously into (H*a~l{D))9 where α is an arbitrary number smaller

than y. Since y > 3/2r +1/2, we may assume that 2α — 1 > 3/r. Hence,

Γ)ϋ||o.r ύ C\\ \u\.\7υ\ | |0 > r ̂  C||iι||0.rsup|Γf?|

^ C||iι||OfΓ||L^||o,r,

which completes the proof.
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COROLLARY. There exists a constant Mx which depends on r > 3 , 3/2r +

and b such that

(5.4) | |Gιι | |O i Γ^M 1 | |Lyιι | |o i Γ, u

PROOF. By Lemma 5.1 we need only to consider P(u, F)b. By Proposition

4.6 and the Sobolev theorem we obtain

||P(tι, F)6||ofΓ ^ C||ft | | l i Γsup|ιι | g C|!&||1>r||L«u||0>r

for any α > 3/2r. This completes the proof.

Let us now prove our main result in this section. In what follows, we denote

the norm of Xr simply by || ||.

THEOREM 5.2. Fix 3 < r < o o and 3/2r+l/2<y<l . Then, for each άeXr

and each PgeC((0, T]; Xr) such that \\Pg(t)\\ = 0 ( r ? ) as ί->0, there exist a

T*, 0 < T s | s ^ Γ , and a unique solution w(t) of (5.2) such that

(a) w e C([0, Γ*] Xr) n C((0, Γ*] Z)(L?)),

(b) \\Lvw(t)\\=o(t-v)as ί->0.

PROOF. Let £ ( Γ # ; JV1? AΓ2) be the set of all v(t) in C([0, Γ*] ; Xr) n C((0,

; D(L,y)) such that

where Nί9 N2 and T ^ ^ Γ a r e arbitrary positive numbers. It is easy to see that

E(T*; Nu N2) is a complete metric space with respect to the distance function

induced by the norm:

ill»ill = supo^r. won + supo<^Γ,ίiiLM0iι

(i) Let Cί9 C2 be constants such that

\\e-'L\\ £ Cl9 tv\\Lye-'L\\ £ C2 for all ίe(0, T] .

We shall show that the nonlinear operator K defined by

Kυ(t) = e~tLa

leaves E(T*; Nl9 N2) invariant if we choose T*, Nt and N2 appropriately. In

fact, using (5.3) and (5.4) we have

\\Kv(t)\\ g CJIαll 4- Ct \ \\L'*υ(s)\\{M1+M\\v(s)\\}ds + Cx \ ||P^(s)||ds

g CJIαll + C 1 N 2 (M 1 +JV 1 Aί)ί 1 " y /( l-v) + Cί \ \\Pg(s)\\ds9

Jo
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\\L'Kυ(t)\\

(5.6) 2\
Jo

^ \\Lye~tLa\\ + C2N2B(l-y, l -

+ {supo<s^sy\\Pg(s)\\}B(l-γ, l-y)*1"

From (5.6) we obtain

(5.7) V\\LyKυ(t)\\ ^ ty\\Lye-tLd\\ + C2N2B(l-y, l-

+ {supo<s^tsy\\Pg(s)\\}B(l-y, l-y)^"^.

Since y< 1, we see from (5.5) and (5.7) that T*, iV̂  and N2 can be chosen in such

a way that K leaves £(7V, JV̂  iV2) invariant.

(ii) Choosing T^., Nx and N2 as above, we shall show that K defines a con-

traction map on E(T*\ Nl9 N2) if we take T*>0 sufficiently small. Indeed we

have, again by (5.3) and (5.4),

\\Kv(t) - Kw(t)\\

\\Ly{v-w)(s)\\ds

Jo

^ C1(Mi + N,M + N2M)HIυ-w\\\t^Kl-y),

\\LyKυ(t) - LyKw(t)\\

^ C2Mλ [' (t-s)-y\\Ly(υ~w)(s)\\ds

+ C2M\ (ί-s)-HHΦ)|| \\V{υ-w)(s)\\ + ||(»-w)(s)|| \\LyW(s)\\}ds
Jo

^ C2(M1 + N1M + N2M)B(ί-y, i_y)|||t,_w|||ti-2i>.

Hence, from (5.8) and (5.9) we obtain

(5.10) \\\Kv-Kw\\\

Choosing T* > 0 small, we obtain the desired result.

The existence and uniqueness of the solution follows from (i), (ii) and the
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Banach fixed point theorem. Since ty\\Lγe~tLά\\->0 as t-+0 (see the proof of

[7, Lemma 2.10]), the assertion (b) follows from (5.7). This completes the proof.

REMARK 5.3. (i) By an analogous method we can show the existence of a

unique local solution for the problem (*) under general boundary condition if

we use Ar instead of Lr. This result contains the local existence result of [15]

in view of (2.4).

(ii) In [15] Hey wood established the existence of a unique global solution

for the problem (*) when deD{A\12), in our notation, is sufficiently small. In

doing so, he used in an essential way an energy inequality in X2, and so his solution

necessarily belongs to X2. We do not know any global existence result for the

problem (5.2) for rφl even when 11^=0. This is the reason why we discussed

the homogeneous case separately in Section 3.
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