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Introduction

Let us consider a moving body in a viscous incompressible fluid filling the
whole space R3. If we describe the fluid motion by using a coordinate system
attached to the body, we obtain the exterior problem for the Navier-Stokes
equations:

oufot — Au + (u, Pu=f—"VFp in Dx (0, T),

divu=0 in D x (0, T),

(*) u(x, t) = u*(x, t) on Sx(0,T),
u(x, )-u(1) as |x|—oo,
u(x, 0) = a(x) in D.

Here D is the exterior to the body with the boundary S which we assume to be
smooth; u={ui(x, 1)}3=; and p=p(x, t) denote, respectively, the unknown velo-
city and pressure, while f={f/(x, £)}3-; and a={a/(x)}3-, denote, respectively,
the given external force and initial velocity. u* and u,, are given boundary data.
For this problem, Hopf [16] proved the existence of a square-summable weak
solution, when u*=u, =0, for an arbitrary square-summable initial velocity.

On the other hand, in the case of stationary flow, i.e., when 0u/0t=0, u*=0
and u,=const., Finn [4], [5], [6] proved the existence of a solution, called a
physically reasonable solution, which exhibits a phenomenon of wake. More-
over, in [3] he showed that if u(x) is such a solution and if the force exerted to the
body by the flow does not vanish, then u(x)—u,, is not square-summable over D.

In view of the above result, it seems reasonable to seek a solution of the
problem () in a class of functions u(x, t) such that u(x, t)—u(¢) is not square-
summable over D. This problem was discussed by Heywood in a series of papers
[12], [13], [14], [15]. He showed a local existence result in the class of functions
with finite Dirichlet integral by using a variant of the Faedo-Galerkin approx-
imation developed by Hopf [16], Kiselev and Ladyzhenskaya [18] and Prodi
[28]. However, he assumes that the initial function a be square-summable in
proving the existence of a global solution; see [15, Th. 6].
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The purpose of this paper is to weaken the assumptions on the initial data
imposed by Heywood by using the semigroup approach which was developed
by Kato and Fujita [7], [17] in the case of a bounded domain. In particular,
under the homogeneous boundary condition, we shall show the existence of a
non-square-summable global solution for non-square-summable initial data when
they are sufficiently small. Further, we shall give a rate of pointwise decay for
our global solutions. This decay result improves the result of Heywood [15]
since the global solutions obtained in [15] are necessarily square-summable.

In Section 1 we first prove the direct sum decomposition of the Banach space
(L(D))3(1<r < o0) into its solenoidal and potential parts for an arbitrary exterior
domain D in R3. In the case of a bounded domain, the corresponding result is
given in Fujiwara and Morimoto [8]. Using this decomposition, we then define
the Stokes operator in L, spaces and discuss some of its basic properties.

Section 2 deals with fractional powers of the Stokes operator in the L,
space over a three-dimensional exterior domain. Our purpose is to establish
several imbedding theorems for spaces related to the domains of fractional powers,
which will be needed in Section 3 in estimating the nonlinear term of the Navier-
Stokes equations.

Using the results in Section 2, we discuss in Section 3 the problem (*) under
the homogeneous boundary condition. We shall prove the existence of a unique
solution, local or global in time, which is not in general square-summable. In
addition, we show that our global solutions decay uniformly in x € D like t~1/4 as
t—oo0. This extends the decay results of Heywood [15] and Masuda [24] to the
case of non-square-summable solutions.

Section 4 is devoted to the investigation of the Oseen operator in L, spaces
over an exterior domain in R3. Using the fact that the Oseen operator generates
a holomorphic semigroup, we give a result concerning the domains of its fractional
powers, which is needed in Section 5 in discussing the existence of the solutions
for the problem (x) under a nonhomogeneous boundary condition. In fact, in
Section 5, we discuss the problem (x) with u*=0, u(f)=u,=const. With the
aid of the usual technique of extending the boundary data to the whole of D, we
reduce the problem to a homogeneous case. Because of the additional term of
the form: (b, V)u + (u, V)b which appears in the resulting homogeneous equations,
our result in this section is only local in time.

In [7], Fujita and Kato suggested the use of semigroup theory for the Stokes
operator in L, to discuss the exterior nonstationary problem under the homo-
geneous boundary condition. However, it seems that one cannot prove the ex-
istence of a global solution by the method suggested there; moreover, they consider
only square-summable solutions. We can avoid this difficulty in proving the
existence of a global solution if we use function spaces defined in Section 2.

The author would like to express his sincere gratitude to Professor F-Y.
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1. The Helmholtz decomposition of vector fields

Throughout this paper we denote by D an exterior domain in R3 with smooth
boundary S. It is well known (see [32]) that the Hilbert space (L,(D))® admits
the following orthogonal decomposition, the Helmholtz decomposition:

(L,(D))* = X, ® G,.
Here X, is the closure in (L,(D))? of the space
(CE((D)); = {ue(CF(D))*; divu = 0in D},

and G,={Fpe(L,(D))?; pe Ll(D)} with D the closure of D.
Our purpose in this section is to give a similar decomposition for the Banach
spaces (L (D))} (1<r<wo). Set

E (D) = {ue(L/(D))?; divue L(D)}, 1<r<oo.

It is easy to see that E,(D) is a Banach space with the norm: |ull, .+ ||div ullo,
where || ||o, denotes the usual L,-norm. Let (C5(D))? be the space of all the
restrictions to D of the functions in (C$(R?))3.

LemMA 1.1. (C®(D))? is dense in E(D).

For the proof of this lemma, we refer to Temam [32].

In what follows, we denote by Ws(D) (resp. W3(S)) the usual Sobolev space
of order seR such that Wo(D)=L.D) (resp. W2(S)=L«S)) with the norm
I lls,r (xesp. || - lls,r,s); see [21].

PROPOSITION 1.2. Let v be the unit exterior normal vector to S. Then,
there exists a unique bounded linear operator, y,: E(D)—>W;1/"(S) such that
yu=u-v=723 ;uivi if u is smooth near S, and

<')’vu’ plS> = (le u, p) + (us Vp)a pPE er"(D), r = r/(r-—l)

Here and hereafter, (-, -) (resp. {-, - ) denotes the duality pairing of functions
on D (resp. S).

Proor. Fix u € E/(D) and consider the linear form:
(1.1 T.(p) =(divu, 9 + (u, Fq), qeW.(D), qls=p.

Since CZ(D) is dense in {ge WL(D); q|s=0}, it follows by an integration by
parts that T,(p) is independent of the choice of g. By the surjectivity of the trace
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operator: WL(D)->WL 1/ (S) we can find for each pe WL 1/"(S) an element
q € WL(D) so that

als=p N4l = Clpli-1prs

with a constant C>0 independent of p; see [21]. Therefore, from (1.1) we have

ITD)| = (lullo, + Idivulo gl
= Cllullo,r + lldivullo el -1/ m,s-
This implies the existence of an element yu in (WL 1/r(S))y*=W;1/7(S) such
that
v, py =T(p)  for pe WLl (S),
vyl = 1/rrs = Cllullo, + Idivulo,) -

Thus we have proved the existence of an operator y,. The uniqueness of y, and
the fact that y,u=u-v for smooth u follow from Lemma 1.1 and Green’s formula.
This completes the proof.

Let X, be the closure of (C¥(D))3 in (L(D))}. By the above proposition,
we see that

(1.2) X, <Y, ={ue(L(D))?;divu =0in D, y,u = 0},
and that Y, is a closed subspace of (L(D))3. Set G,=Xj}, the annihilator of
X,.
LemMa 1.3. G,={FPpe(L/(D))3; p e Ll**(D)}.
ProOF. Let f=/Ppe(L(D))*, peLl(D). By an integration by parts we
see easily that
(f,w)=(Fp,u) = — (p,divu) =0, ue(CHD))y.

Therefore, by the definition of X,. we have (f, u)=0 for any u € X,.. This implies
feaq,.
Conversely, suppose that f={f/}3_, e (L(D))? satisfies

(f,u) =0, for any ue(CZ(D)):.

By a theorem of de Rham ([30, Th. 17’]), there exists a distribution p such that
f=Pp. Since fe(L(D))?}, we have Adp=divfe W;1(D), hence pe Ll(D).
Now, let D’ be a bounded domain with smooth boundary containing the comple-
ment of D in its interior and set D”"=D N D’. By our assumption, (f, u)=0 for
any u e (C3(D")3. Soby[8, Lemma 7], f=Fqe(L(D"))® for some qe W}D"),
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which implies pe L(D"). This completes the proof.

Let us now construct a projection P, from (L,(D))? onto the closed subspace
Y, which is needed in proving our decomposition theorem. We start with the
following lemma.

LemMA 1.4. Let p satisfy
Ap=0 in D, Ppe(L(D), dp/ov(=y,Fp) =0.
Then, V p=0.

PrOOF. Let B,(x) be the closed ball with radius p centered at x € R3. Since
each component of Fp is harmonic in D, the mean value theorem for harmonic
functions yields

IPp(x)l

IIA

v 1mpldy
Bi(x)

IIA

1/r
vl pprdy} T — 0, as fxl— e,
By(x

where V denotes the volume of the unit ball. In view of the expansion theorem for
harmonic functions at infinity (see [27]), this implies

(1.3) I7p(x)] = O(Ix|™1), as |x| — oo.

Let S, be the sphere with radius p centered at the origin. Then, (1.3) implies

{10 1dse) — 0, as p— oo,

where dS is the surface element on S,. From this and the expansion theorem
for harmonic functions at infinity we obtain

p(x) = po + O(|x|™!), as [x]|— ©

where p, is a constant. Since g(x)= p(x)— p, satisfies the assumptions imposed
on p and g(x)—0 as |x|— o0, it follows from the uniqueness of solutions of the
exterior Neumann problem that p(x)=p, and so Fp=0. This completes the
proof.

CoROLLARY. Y,NG,=0.

PROPOSITION 1.5. There exists a bounded operator P, from (L,D))® onto
Y, such that Pu=u for ue,.

Proor. For ue(C¥(D))* we define
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(1.4) Pu=u—F(p+ps),

where p, and p, are chosen to satisfy

Apz = 0 in D,
(1.5) (i) 4p, =divi in R3, (ii)

0p,/0v =y, (u—"Fp,) on S,
(1.6) Pp, €(L(R?)3, Pp,e(L(D))>.

Here # denotes a C!-extension of u to R3 such that
”ﬁ”o,r,RS = C”u”o,r

with a constant C>0 independent of u. Obviously P,ueY, Applying the
Fourier inversion formula to (1.5) (i), we see that Pp, is determined uniquely by

(1‘7) apl/an = Rj 22=1 Rkak’ 1 é] é 33

where R; (1< j<3) denotes the Riesz transform; see [31]. Since R; is a bounded
operator in L(R3), 1 <r<oo, we have

(1.8) 17pillo, = 17P1llo,r,rs = Clldllo,rrs = Cllullo,

Let us now turn to the problem (1.5) (ii). Consider the exterior Neumann
problem:

(1.9) A4q =0 in D, 0q/ov=heW;1Ur(S), q(x)— 0(jx|]>0).

As is well known, (1.9) can be solved by means of a single-layer potential, and
Pq is determined uniquely by Lemma 1.4 if Fq e (L,(D))3. Assuming

(1.10) <h, 1> =0,

we shall show that Pq e (L(D))3. In fact, from (1.10) and the expansion theorem
for harmonic functions at infinity we have

(1.11) 4(x) = O(|x|72), |Pg(x)} = O(1x|™®) as |x| —> co.

Since r>1, it follows from (1.11) that Pg e L, near the infinity. On the other
hand, Pgq is in L, near the boundary S in view of the well-known elliptic theory
in a bounded domain ([22]). Thus we have proved Pq € (L/(D))>.

We shall now show that the solution of (1.9) satisfies the estimate:

(1.12) I7qllo,r = Cllkll-1rrs if <h, 1> =0.

By virtue of the closed graph theorem, we have only to show that the map: h~ Pgq
defines a closed operator. Suppose that
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(1.13) h,— h in W;Ur(S), Pq,— f in (L(D))}, as n— 0,

and that g, is the solution of (1.9) with h=h,. It is easy to see that (f, u)=0
for any ue(Cg(D))? and so f=PgeG, for some gqeLl(D). Since A4q,=0,
we have 4g=0. Thus, by Proposition 1.2, dg/dv=h is well defined and belongs
to W;1/7(S). Since, by Proposition 1.2,

“hn - E“—]/r,r,s é C(Han - Vq“O,r + HAqn - Aq”o,r)

= C”an— Vq”o,r_>0a as n-—— oo,

we see that h=h. Thus we have proved (1.12).
Let p, be the solution of (1.5) (ii). Since obviously {(y,(u—Fp,), 1>=0,
it follows from (1.8), (1.12) and Proposition 1.2 that

17 pallo,r = C”Yv(u"VPO”—l/r,r,s
< C(llu—Ppyllo, + div(u—=Fpy)llo,.)
= Clu—="rpllo, = Clullo,-

From this and (1.8) we obtain

(1.14) IPulo, < Clullo,  for ue(C§(D))?

with a C>0 independent of u. Since (CP(D))3 is dense in (L,(D))3, P, is extended
uniquely to a bounded operator from (L.D))? into Y,. The fact that P,u=u
for any u €Y, follows easily from Lemma 1.1 and the corollary to Lemma 1.4.
This completes the proof.

THEOREM 1.6. (i) (L/(D))}=Y,®G,(1<r< o0, direct sum).
(i) X,=Y, X}=X,,r'=r/(r—1), where X* is the dual space of X,.

PrOOF. (i) From the corollary to Lemma 1.4 it follows that Y,+G, is a
direct sum. On the other hand, by our construction of P, we have (C®(D))}c
Y,®G,<=(L,(D))3, in particular, Y,®G, is dense in (L(D))?. Since P,: (L(D))*—
Y, is a bounded operator and Y,, G, are closed, Y,®G, is closed. Hence Y,®G,=
(L(D))3. This proves (i).

(i) By (i), ¥,=(L(D))*/G,. Hence

Y:‘ = {(Lr(D))s/Gr}* = Gll-' = Xr"

On the other hand, Y, is regarded as a subset of Y¥*. Indeed, let v,, v, be in ¥,
and suppose (v; —v,, u)=0 for any ueY, Since X,cY, we see v;—v,e X}t=
G,. Thus we have v; —v,=0 because Y, NG, =0. This implies Y, <X, so
that we have X,=Y, and X}=X, for any r, 1<r<oo. This completes the
proof.
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COROLLARY. The dual operator P¥ of P,:(L/(D))}*—(L/D))? is identical
with P,..

This is easily verified by using Theorem 1.6 if we note that, for each 1 <r< oo,
Pu=u if and only if u € X,; P,u=0 if and only if u € G,.
Using the above results, we now define the Stokes operator A4, and discuss
some of its basic properties. Let us consider the Stokes boundary value problem:
A=dw+Pp=f in D,
divw =0 in D,
(1.15)
w =0 on S,

w—0 as [x]|—o0.
The following result is due to Giga ([9, Th. 1']).

THEOREM 1.7. Let 1<r<oo. Then, one finds a constant M>0 such that
for each complex number A with Re A=M and each fe X, there exists a unique
we X, N {ve(W%D))3; v|s=0} which satisfies (1.15) with some Fpe G,. More-
over, if we write w=G, f, G, is a bounded injective operator on X, such that
|G, || Econst. |A|™1, where ||G,]| is the operator norm of G;.

Let us denote G;!=A4+A4,. From Theorem 1.7 we see easily that 4, is a
closed operator in X, independent of 1 such that

D(A) = X, n {ve(WXD))*; v|s = 0},

(1.16)
Aw = — P, 4w, for weD(4,).

Since Theorem 1.7 implies [|(A+A4,)"!| <const. |[A|"! for ReA=M, and since
(A+ A,)! defines a bounded operator from X, onto D(4,), we obtain

COROLLARY. (i) —A, generates in X, a holomorphic semigroup, which we
denote by {e~t4r; t20}.
(i) There exists a constant C,>0 such that

"WHZ,r é Cr("ArWHO,r + ”W“O,r) for wEe D(Ar) .
THEOREM 1.8. Let AF be the dual operator of A,. Then,
A¥ = A, ¥ =r/(r—1).

The proof of this theorem is the same as that of the corresponding assertion
in Fujiwara and Morimoto [8], and so omitted.

REMARK 1.9. Theorem 1.8 means in particular that 4, is a self-adjoint
operator in the real Hilbert space X,. Since (4,w, w)=(Fw, Fw), A, is non-
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negative. Moreover, from this and the corollary to Theorem 1.7, we see that
A, coincides with the Friedrichs extension of —P,4 restricted to the smooth
elements in D(4,).

2. The Stokes operator in X, over an exterior domain

Let us consider the Stokes boundary value problem (1.15) in the space X,
under the form:

2.1) Aw = T,

Here and hereafter, we denote 4, simply by A. As is noted in Remark 1.9, A
is a non-negative self-adjoint operator in X, and (4w, v)=(Fw, Pv) if v, we D(A).
So we shall define the weak form of the equation (2.1) by

2.2) (Pw, o) = (f,v),  for ve(CH(D));.

Since A is the Friedrichs extension (see Remark 1.9) attached to the bilinear form
(Pw, Pv), it follows immediately that

(2.3) D(AY2) = X, n (WYD), | A2w|3, = [Pw]3 .,

where W 1(D)={ve W4D); v|s=0}.
Let {e7*4;t=0} be the semigroup in X, generated by —A. Using the
spectral representation for A, we can prove the following result; see [24].

PROPOSITION 2.1. (i) {e~*4; t=0} is a holomorphic contraction semigroup
of non-negative self-adjoint operators.

(i) A% W], < C5Wlo, for WeX, t>0,0Sas 1.

(i) T —ewlo,2 = (/)| A*Wllo,, for weD(4*),t>0,0<a=1.

As is noted in the introduction, our aim is to study the Navier-Stokes equations
in the spaces of non-square-summable functions. For this purpose we introduce
some function spaces.

DEerINITION 2.2. For 0<a=<1/2, we denote by H* the completion of D(A%)
with respect to the norm |w|,=[|A*w]|y ;.

REMARK 2.3. (i) In view of (2.2), we see that Aw=0 implies w=0. Hence
||, defines a norm on D(A%).

(ii) When D is bounded, the norm of D(A%), i.e., the graph-norm of A%,
is equivalent with |-|,, because A is invertible in X,. Hence, in this case, H*
coincides with D(A%). However, when D is an exterior domain, the space H*
is larger than D(4%).
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From (2.3), |w|y;2=Fwllo,2; hence by Lemma 7 in [20, Chap. 1], we have
(2.4) H'2c Xq,  |wloe < 48)5Iw],,  (weHY).

THEOREM 2.4. The space H%?,0<60<1, is equal to the complex inter-
polation space: [H®, HY?],. Moreover, we have

(2.5) Wllo,r@) = ColWlg)2s forany weH®?2,
with r(0)~1=(1-0)/2+6/6, Cy=(48)%/°.

Proor. Since (2.5) follows easily from (2.4), the Riesz-Thorin theorem and
interpolation theory for linear operators, we need only to show the first assertion.
Since D(A!/?) is dense in both of H!/2 and H°=X,, it follows that D(A'/2) is
dense in [H°, H!/2],, so that D(A%?) is also dense in [H°, H!/2],; see [33,
§ 1.9.3]. Hence we have only to show that the norm of weD(AY2) in
[H®, H/?], is equivalent with || A%/2w]|, ,.

Set A,=A+¢,£>0. Since A, is invertible in X,, f(z)=A;"9/2w is an
X ,-valued function which is continuous for 0<Rez<=1, and analytic for 0<
Rez<1. Furthermore,

f@iy)e X, = H°, f(1+iy)e D(AY/?) < H1/2, for yeR,

and f(6)=w. Hence, if we denote the norm of [H®, H'/?], by || - [l We have
([33,§1.9])

liwlle < max {sup [ f(iy)lo,2, sup [|4*2f(1+ip)llo,2} -

Since A4}” is unitary and ||4/24;1/2| <1, we see easily that the right hand side of
the above inequality is dominated by || A%/2w]|y ,. Letting e—0, we obtain

(2.6) liwlle = 1142w,

Let us now prove the converse of (2.6). We denote by g(z) an arbitrary
function expressed as a finite linear combination of functions of the form:
exp (6z2+yz)b, 6>0, yeR, beD(AY?). Since Az/2g(z) is continuous for
0<RezZ1, and analytic for 0<Re z<1, it follows from the three-line theorem
that

1492wl , < 422wy, < infyg)-,, Max;_q ; SUp ']A£j+iy)/zg(j+ iyllo,z-
Noting that A% is unitary and letting ¢—0, we obtain
| A%2wo, , < infyq) =, max;_q ; sup [|A//2g(j+iy)lo,2-

Since D(A!/?) is dense in both of H!/2 and H°, it follows from the Theorem in
[33, § 1.9.1] that
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2.7 14°72wllo,2 < liwlllo.
By (2.6) and (2.7) the proof is completed.
Let us define the space H™%, 0<a<1/2, by
(2.8) H~* = the dual space of H*.
By Theorem 2.4 and interpolation theory, we have
2.9 H-%2 =[H°, H~1/?],, 0<6<1.

Here we identify H®=X, with its dual by the usual L,-inner product; see
Theorem 1.6.

Next we define the spaces H* for 1/2<a<1. Our definition is based on the
following result.

THEOREM 2.5 ([23, Th. 2]). Let we HY2 and fe H-1/2 satisfy (2.2). Then
fe H® if and only if —Aw e (L,(D))3. Moreover, in this case we have

f=—=Pydw,  |D?*wlo, = Cflo + IWl1/2),

where D?w stands for an arbitrary second-order derivative of w.

Let us now define H%, 1/2<a =<1, by
(2.10) H©* = the completion of D(A4%) with respect to the norm:

wle = (I4°wl3 2 + 142w]§ )2 (12 <a=s1).
THEOREM 2.6. We have
IPullorwy = Colttls  for ueH®, 12=<a=1,

with r(a)~1=(5—4a)/6 and a constant C,>0 independent of u.

ProOF. By the Sobolev imbedding theorem we have Wi(D)< Lg(D) with
the continuous injection. On the other hand, Theorem 2.5 implies that Fue
(W(D))® for any ue H'. Thus we obtain the desired result with a=1. Since
our assertion is clear when a=1/2, it is enough to show that

H* =[H'2,H'],,_, (12<a<1).

To see this, we note that H*, 1/2<a <1, is equal to the completion of D(A*) with
respect to the norm: ||AY%(A+1)%2ul,, with a=(1+6)/2, which is easily
verified by using the spectral representation for 4. Using this, we can prove
(2.11) in just the same way as in the proof of Theorem 2.4, and so we omit the
details.
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The following result is needed in Section 3 in constructing the solutions of
the problem () with u*=u_=0.

PROPOSITION 2.7. (i) {e™'4; t=0} defines uniquely a holomorphic con-
traction semigroup on each of the spaces H*, —1[2<a<1.

(ii) For each a<f, —12<ax1/2, =0, and each t>0, we have the
estimate

4Pe~ 4wlo,, < t*~Flwl,,  for weH®=

In particular, e 4 defines a bounded operator from H* to HP.
(iii) For each a<p, —1/2=Za, <0, and each t>0, e~*4 defines a bounded
operator from H?* to HP such that

le"t 4w, < 1= Plwl|,,  for weH®

PrROOF. (i) When «=0, the assertion is obvious since e~ '44*= A%¢~*4 on
D(A%). So we have only to consider the case —1/2<a<0. First we shall show
that (CP(D))3 is dense in H*, —1/2<a<0. Since (CF(D))3 is dense in X, and
(C¥D)3cH*cX,, 1/r=1/2+2a/3, we see that H™* is dense in the X,. Hence,
by duality, X,  (r'=r/(r—1)) is dense in H*, which implies that (C¥(D))3 is also
dense in H®.

Now, we define e *4: H*— H* as the dual of e~*4: H-*—-H~*, Since e~'4
is self-adjoint in X,, it follows that e~*4: H*—»H* (—1/2<a<0) defined above
coincides with the original one on (C¥(D))3.

(i) When «=0, the assertion follows easily from Proposition 2.1 since
Afemt4=Ab~2¢7t44* on D(A%). Therefore we assume —1/2<a<0. For
v, we (CP(D))3, we have, again by Proposition 2.1,

[(APe~4w, v)| = |(w, APe™4v)| < |wl,|4Pe 40|,
= W[ 4#7%e 4vllo 5 = t*7Plwl,[0llo,2-

Since (CZ(D))3 is dense in both of H* and H°=X,, we obtain the desired result.
(iii) follows immediately from (ii) and a duality argument. This completes
the proof.

3. The exterior nonstationary problem with the homogeneous boundary
condition

The purpose of this section is to give an existence and uniqueness result for
the problem (*) under the homogeneous boundary condition: u*=u_(¢)=0, in
the function space H!/2 defined in the preceding section. We shall prove the ex-
istence of a unique solution, local or global in time, for an arbitrary initial function
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ae HY4 and an arbitrary forcing term P,fe C((0, T]; H~%), 0<5<1/4, such
that |P,f(8)|_;=0(t°"3/%) as t—0. Moreover, we shall show that, when P,f
is defined on (0, o), and 0= < 1/4, our solution u(x, t) satisfies

SUPxeD |u(x7 t)l = O(t—1/4) as t— 0,

if it exists globally. This is a generalization of a result in Heywood [15], which
gives the same decay result for a solution belonging to X, with respect to x e D.

In this section, we denote P, simply by P and consider the problem (x) with
u*=u_(t)=0 under the form:

3.1 u(t) = e *4a + g e~ (t=91Fy(s)ds + St e~ (t=9)4Pf(s)ds,
0

where Fu= —P(u, F)u; see [7], [11], [17], [25], [26]. To solve this equation
we employ the iteration argument which was developed by Kato and Fujita
([7], [17]) in the case of a bounded domain; see also [11], [25] [26]. First we
prepare estimates for the nonlinear term Fu.

LeEmMMA 3.1. The estimate
3.2) |P(u, P)v|-, < Mlulglv|,, ueH® veH?,

holds whenever 0<y=<1/4, 0<6Z1/2, p=1/2, 0+p+y=5/4. Here M>0 is a
constant depending on y, 0, p.

Proor. By Holder’s inequality we have
|(PCu, 7)o, w)| = [((u, 7o, w)| < llullo,gllPvllo, IWllo,s

for any w e (CZ(D))3, where 1/g+1/r+1/s=1. Since we can choose ¢, r and s
so that 1/g=1/2—-20/3, 1/r=(5—4p)/6, 1/s=1/2—2y/3, the estimate (3.2) follows
from Theorems 2.4 and 2.6. This completes the proof.

Let us now discuss the existence problem for the equation (3.1) by means of
the iteration scheme:

ug(t) = e *4a + St e ~(=)4Pf(s)ds,
0
(3.3)
t
Uy s 1() = uo(t) + S e =94Fy (s)ds, m = 0.
0

In what follows, we denote the norm ||- o, simply by |-||. Fix ae H'/* and
Pfe C((0, T]; H?) such that |Pf(t)|_s;=o0(t°"3/%) for some 6,0=<6=<1/4. By
Proposition 2.7 we have
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t
[A*uo()l = A% *4all + So(t-S)‘““’IPf(S)i-ads
3.4)
S Kt/ 1/4a<1 -6,
where
3.5 Ko =sup,, o t*"1/4| A% t4a| + NB(1—6—a, 6+1/4),

N = supo<, <1 P/*7?|Pf(D)] -5
Here B(p, q) is the beta function. For each m>=0 we set
(3.6) Kn(t) = supg<s<, 14| AV 2u,(s)] -

Applying Proposition 2.7 and Lemma 3.1 with y=1/4, 0=p=1/2, we see by
induction on m that

(3.7 Kn+1(t) < Ko(H) + M(BK,(1)?, 0<t=T,

where B;=B(1/4, 1/2) and M, is the constant in (3.2) with y=1/4, 0=p=1/2.
Further we have, again by induction on m,

(3.3 4%y 4 (DIl £ {Kyo + M, K,(T)*B(3/4—a, 1/2)}1/472,
for 1/4<a<3/4,0<t<T. Now, assume that
3.9) Ko(T) < 1/4M,B;.
By an elementary calculation we obtain, from (3.7),
(3.10) K. (T)<K={1-(1-4M,B,Ky(T))"/?}/2M B, < 1/2M,B;,
so that, from (3.6) and (3.8),
A 2u, (Dl = Kt~1/4,

(.11 4%+ (D] < {Kuo + M{K2B(3/4—a, 1/2)}t1/4~2,
te(0, T), 1/4 < a < 3/4.

Assuming (3.9), we shall show that {u,(f)} converges. Set

Wo(®) = Uy 1(2) — u,(t) = S; e~ (=94 Fy (s) — Fu,_,(s)}ds, m=1.
By (3.2) we have

|Ftt(8) = Ftty—1(8)] = 174 = M |Wpo s (D] 1 j2{[tm(SN 12 + |th—1()l 12} -

Hence, denoting W,,=supo<,<rt'/*|| 42w, ()| and taking (3.11) into account,
we obtain, by induction on m,
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W, < Q2M,B,K)"W,, mz1,
4w, (D] = @M B,K)""2M KB(3/4—a, 1/2)11/47%, m = 2,

(3.12

for 1/4<«<3/4. Since 2M,B,K <1 (see (3.10)), we see from (3.12) that {u, (1)}
converges in C([0, T]; HY*)n C((0, T]; H*), 1/4<a<3/4, to an element u(r)
such that

14 2u(n)| = Ke=1/4,
lA*u(@®l = {Keo + M,K2B(3/4~a, 1/2)}11/47%,

.11y

for 1/4<a<3/4. Since

|[Fu(s) — Fu(s)| - 1,4 £ Mylu,(s) — u(s)l 1 2{lum(s)l1,2 + [u(s)l1,2}
— 0, as m— o0,

|Ft($)|—1/4a S M K2571/2,

we can apply the dominated convergence theorem to (3.3) and see that u(t) is a
solution of (3.1). This proves the existence of a solution of (3.1) under the assump-
tion (3.9). On the other hand, from [7, Lemma 2.10] we can deduce that
t1/4)| A1 2e~t4q|| -0 as t—0, if aeHY* Since 347 3|Pf()|_s—0 as -0,
we see from (3.5) and (3.6) that (3.9) holds if we choose T>0 small enough.
Hence we have proved the existence part of the following theorem.

THEOREM 3.2. (i) For each ae HY* and each PfeC((0, T]; H™%) such
that |Pf(1)| - s=0(t°=3/%) (t—0) for some 6, 0£6<1/4, there exist a Ty, 0<T, <
T, and a solution u(t) of (3.1) such that, for any a, 1/4<a<3/4,

(@) ueC([0, Ty); HY*) n C((0, Ty]; HY),
(b) [A4%u()] = o(t/*) as t—s 0.

(ii) The solution is unique within the class of functions w(t) e C([0, T,];
HY%)n C((0, Ty]; H/2) such that |w(t)l;,,=o0(t"/*) as t—0.

We note that (b) can be seen from the fact that the constants K, in (3.5) and
K in (3.10) can be made arbitrarily small if we take T>0 small. The uniqueness
of the solution can be shown in the same way as in the proof of the corresponding
result in [7], and so we omit the details; see also [11], [25].

In view of (3.9), the following result is obvious.

THEOREM 3.3. Let ae H'/* and let Pfe C((0, c0); H™%), 0<6=<1/4, satisfy
|Pf()|_5=0(t>"34%) as t—0. Then there exists a solution u(t) of (3.1) in
C([0, 0); H*)n C((0, o0); H*), 1/4<a<3/4, which satisfies (b) in Theorem
3.2, if
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(3.13) laly/s + B(1/2—6, 1/4+6) sup,, o t3/4°|Pf(t)| _; < 1/4M | B,.
Here M, is the constant in (3.1) with y=1/4, 0=p=1/2.

We shall now study the rate of decay of our global solutions in the case
0<6<1/4. The following proposition shows that we can get more regularity
for our solutions when 0<6<1/4.

PROPOSITION 3.4. When 0=<6<1/4, the solution u(t) given in Theorem 3.2
(resp. Theorem 3.3) belongs to C((0, Ty]; H*), (resp. C((0, o0); H®)), for any
o, 3/4<a<1—40. Further, we have

143 u(@)| = C,(71/% + 173/8),

(3.14)
[A%u(@)| SC, (/4= + t1/2-%), 34 <a<1 -,

with C, and C, independent of t.

Proor. We set u(t)=uy(t) + v(t), where
uo(H=e*a + S; e~ (t=)4Pf(s)ds,
o(t) = So (=) AFu(s)ds.
By Proposition 2.7 we have
[ %ug] S 11lalyyq + N ] (1=9)-2s0-314ds

= t1/4=%{|a|, 4, + NB(1—-6—a, 1/4+8)}, 3/4d<a<1—23.

Hence, we have only to estimate v(¢). Applying Lemma 3.1 with y=1/8, 0=1/2,
p=5/8<3/4, we obtain

[44)] < | (6= M) 2lu®)] 50

é MC St (t_s)—7/8S—1/4(s—1/4 + s—3/8)ds
0
= MC{B(1/8, 1/2)r"3/8 + B(1/8, 3/8)r"1/2},

where M is the constant in (3.2) with y=1/8, 8=1/2, p=5/8. Note that here we
have used the fact that u(¢) satisfies (3.11)".

Suppose now 3/4<a<1—0. Applying Lemma 3.1 withy=0, 8=1/2, p=3/4,
we have
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t
Ao = SO (t=9)7*M'"|u(s)y/2|u(s)]3/4ds
t
< M’Cg (t—s)"as™14(s~ 14 4 57318 4 5~1/2)(s
0

= M'C{B(1—a, 1/2)11/2~% 4+ B(1—a, 3/8)t3/8=2 + B(1—a, 1/4)t1/+=s}
é M’C(t1/4'—¢ + tl/Z—a)’

where M’ is the constant in (3.2) with y=0, 0=1/2, p=3/4. This completes
the proof.

Using the above result, we can now prove the following

THEOREM 3.5. Suppose that (3.13) holds with 0<6<1/4. Then the solution
u(t) given in Theorem 3.3 is continuous and bounded in (x, t)e D x[n, o) for
any n>0. Further, we have

(3.15) SUp,cp lu(x, t)] = O(t™1*) as t— .

Proor. Fix «, 3/4<a<1—6. By Theorem 2.6 and (3.14), we see that
Pue(LAD))°, 1/r=(5—4u)/6, and

(3.16) IPu@llo,r = Clu(®)l, = C(£1747* + 117275 + ¢71/%)
' =04 as t—> oo.

Since u(t) satisfies (3.11)’ for all >0, it follows from Theorem 2.4 that
(3.17) [u(@®llo,6 = Clu(®)ly, = O@™"*) as t— co.

Now, choose an open cube Q, whose sides are parallel to the coordinate
axes such that the complement of D is contained in its interior. Since 3<r<®6,
it follows from (3.16) and (3.17) that u(r) e (WL(D"))3, D'=Q, n D, and hence by
the Sobolev imbedding theorem,

supsep [u(x, )| = C(I1Pu(®)llor,pr + u®llo,r,07)
= C(IPu@®llo,r + 1Qol" ¢ lu(D)]lo,6) -

Let us now divide R3 \ Q, into a countable number of open cubes Q;, j= 1, which
are mutually congruent so that

(3.18)

Rs\Q0=Uij, QjﬂQk=¢ if j#k.
Since u(t) e (W1(Q;))? for each j =1, we see as above that

Supxeg, [u(x, DI = C'(IPu(®llo,r,0, + lu(Dllo,r0,)
= C'(IPu@llo,r + 12516 u(®lo,6) -

(3.19)
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By our choice of Q;, the constant C’ and the volume |Q;| are independent of j.
Hence, from (3.16)—(3.19), we have

SUPyep [U(x, | < C(|Pu(Dllo,, + lu(®)]o,6) = O
as t— o0, which completes the proof.

In the following lemma, we denote by C?((0, T7]; E) the set of functions which
are Holder continuous on each [¢, T](0<e< T) with exponent y and with values
in a Banach space E.

LEMMA 3.6. When 0=<06<1/4, the solution u(t) of (3.1) given in Theorem
3.2 belongs to C*((0, T,]; HV?)n CE((O, T4]; H3*) for any o, B, such that
O<a<1/2-96,0<f<1/4—6.

PrOOF. We have only to consider
v(t) = St e~ (=94 Fy(s)ds + St e~ (t=)4Pf(5)ds,
o 4]

because e~'4a, ae H'/4, is a smooth function of >0 with values in both of
H34 and H'/2, Fix 0<e<T,. Then, for e<t<t+h<T,, we have

4% 20+ h) — A2 = S l(e=44 — 1) A1 /2= (=9 4Fu(s) | ds
0
t+h
+S | AL/2¢=+h=9)4Fy(s) | ds
t
+ [\ lemrt=Darrze-ca4pr(o)ds
0
t+h
+§ | 41/2¢=+h=9)4Pf (s)| ds

t

=1, +1, + 1, + I,

Using Propositions 2.1, 2.7, (3.11)" and Lemma 3.1 with y=0, 6=1/2, p=3/4, we
obtain

I, + I; < (h*/a) S; |A2+1/2e==)4Fy(s) | ds
+(h¢/oc) S; ||Au+1lze~—(t—s)APf(s)”ds
= (ha/oc)C gt (t__s)—l/Z—as—I/4(s—1/4+s-llz)ds
0

+ja)C (| (1= 9)112-s-2g0-214ds
(1]

= Cph?,
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and

t+h t+h
L +1, gceg (t+h—s)12ds + CES (t+ h—s)~1/2-3ds
t t
é Cs(hl/Z + hl/Z—é).

Hence we have shown ueC*(0, T,]; H'/?). That ue C#(0, Ty]; H¥4) can
be proved similarly. This completes the proof.

CoOROLLARY. Under the assumption in Lemma 3.6, Fu(t) is Hélder con-
tinuous on each [&, Ty] (0<e<T,) with values in X,.

THEOREM 3.7. If Pfe C((0, T]; X,) and is Hélder continuous on each
compact subinterval of (0, T], then the solution u(t) given in Theorem 3.2 sat-
isfies dujdt— PAu=Pf+Fu on (0, T,]. In particular, du/dte C((0, T4]; X,).

PrOOF. We write

u(t) = e=EmAy(y) + 3' e~ =ALFy(s) + Pf(s)}ds

w(t) + v(®), t=n>0.

By the above corollary it is clear that v(f) satisfies

(3.20) dv/dt + Av=Fu + Pf in X,, t>n.
Hence, it is enough to show

(3.21) dw/dt — PAw =0 for t> .

By Proposition 2.7, w(t) is in C([n, T,]; H!). So by the estimate in Theorem
2.5, Aw(t) is in (L,(D))®. Hence, PAw is in C([5, Tx]; X,). On the other hand,
since u(n7) e H/2< X, we see that w(t) belongs to C((n, Tyl; Xe) N C((n, Tyl;
D(A¢)) and

dwldt + Agw =0 for t>n.

Since Agw= —PAw, dw/dte C((n, T*]; X,) and (3,21) holds. By (3.20) and
(3.21) the proof is completed.

REMARK 3.8. Bemelmans [1] discussed the exterior problem in Hélder
spaces and proved the existence of a global solution for small data. But, he did
not give a rate of time-decay. Heywood [15] showed a result similar to ours
under the assumption that a e D(4!/2). This assumption implies that the global
solution obtained in [15] is necessarily in X,. It is also proved in [15] that if
Pf=0, the global solution obtained in [15] decays uniformly in xe D like t~1/2,
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For more discussions on the decay properties of solutions to the exterior problem,
we refer to an interesting paper [19] of Knightly. If our solutions were identical
with those discussed in [19], they would decay like ~1/2 even when Pf#0.

4. The Oseen operator

As a preparation for the study of a nonhomogeneous problem in the next
section, we consider in this section some properties of the Oseen operator in
X,, 1<r<oo:

L =A4,+P(u,, V),

where u,, is a constant vector. This operator is obtained if we linearize the
Navier-Stokes equations around the velocity at infinity u,. Our main purpose
is to show that — L, generates in X, a holomorphic semigroup, which we denote
by {e~*L; t=0}. Using this fact, we then discuss fractional powers of L,.

LEMMA 4.1. (i) There exists for each e>0 a constant C,>0 such that
1P tt, PIWllo,r < ellAwllo,r + Cellwllo,, weD(A4,).
(ii) There exists a constant C,>0 such that
Iwllz,r = CAILwlo, + [Wlo,), weD(A,).
Hence, L, defines a closed operator in X, such that D(L,)=D(A,).

Proor. (i) In what follows we denote by C, various constants depending on
e>0. Using the corollary to Theorem 1.7, we have

1P, PIWllo,r = Cliwly» = Cle[Wll2, + Celwllo,)

é CE(”ArWHO,r + ”w”O,r) + CCSHWHO,r'

Since the constant C in the above estimate is independent of ¢>0, this proves (i).
(ii) By (i) and the corollary to Theorem 1.7 we have

Iwllz,r £ CAWlo,r + IWlo,) = CULW—Plu, F)wlo, + [Wlo,)

= GULwlo,r + wlo,”) + el Awlo, + Celwllo,
é Cr(”LrW“O,r + ”w”O,r) + SC“WHZ,r + Ce||w”0,r'

Choosing &> 0 sufficiently small, we obtain (ii). This completes the proof.

By (i) in the above lemma and the discussion in [29, p. 253], we obtain the
following result.

THEOREM 4.2. {e~*Lr; 120} is a holomorphic semigroup in X,.
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REMARK 4.3. When r=2, we have
(Lyw, w) = (Aw, w) + (P(uy, 7w, w) = [[Pw]|3 ., weD(4,),

because an integration by parts yields (P(u,, 7)w, w)=((u, 7)w, w)=0. Hence,
— L, generates in X, a contraction semigroup. For r#2, we have no such bound-
edness result for the semigroup {e7*Ir; t=0} even when u,=0. We note that
properties of the fundamental solution for the Oseen operator are discussed in
detail in Bemelmans [1] and Faxén [2].

Theorem 4.2 and the corollary to Theorem 1.7 assure the existence of frac-
tional powers of L.+1 and A4,+1 if 1>0 is sufficiently large. For simplicity,
we fix such a A and denote L,+ A and A4,+ 2 by L, and A, respectively.

THEOREM 4.4. There exists for each B>a, 0=a, B<1, a constant C,;>0
such that

4.0 lAzwllo, < CogllLiwllo,, weD(LE).

The proof of this theorem is the same as that of [26, Lemma 2.6] and so
omitted.

REMARK 4.5. Actually, we can show
D(L}) =D(4y), 0=sas1,

by a method developed in Giga [10]. But we shall not enter into the details
here, since we do not use (4.2) in this paper.

According to [10], D(AY) is continuously imbedded into the space of Bessel
potentials (H2%(D))3. Hence, from Theorem 4.4 we obtain the following result.

PROPOSITION 4.6. For each ¢>0 and each o,0=Za<1, the space D(LZ*%)
is continuously imbedded into (H2%(D))3.

5. A nonhomogeneous case

In this section we discuss the solvability of the problem (*) under the as-
sumption:

u* =0, u,(t) =u, = const.

As is shown in [4, p. 369], we can choose a C? vector field b(x), x € D, which
vanishes for large |x| and satisfies

divb=0 in D, b=-u, on S.
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Substituting u=u_ + b+ w into (%) we obtain
owlot — Aw + (uy, V)w + (b, P)w + (w, F)b
=g—Pp—WwFP)w in Dx(0,T)),
(%)’ divw =0 in Dx(0,7)),
w=0 on Sx(0,7)),
w—o0 as [x|— o0,
w(x, 0) = d(x) in D,
where g=f—(b,V)b+4b—(u,, V)b; G=a—u,—b. Applying the projection
P, formally to (x)’, we obtain the following evolution equation in X, :
dw/dt +- Lw = Fw + Gw + P,g, t> 0,
(5.1)
w(0) = 4,

where Fw=—P/(w, V)w; Gw= —P(b, V)w—P (w, V)b, and L, is the Oseen
operator in X, defined in the preceding section. We shall consider (5.1) in X,
r>3, under the form:

(52)  w(t)= et + S; e~ =9L{Fw+ Gw} (s)ds + S' e~ (=)L Pg(s)ds.
0

Here and hereafter we drop the subscript r in L, and P,. Since our consideration
is local in time, we may assume without loss of generality that L is invertible and
the fractional power L¢ is defined; see [25, p. 527]. First we prepare estimates
for Fw and Gw.

LEMMA 5.1. Let 3<r<oo. Then the estimate
(5.3) I1P(u, P)llo, = Mllullo, Lo, ueX, veDL),
holds for each y, 3/2r+1/2<y=<1. Here M is a constant depending on r and y.

ProoF. By the Sobolev imbedding theorem, the space H$(D) is continuously
imbedded into the space of bounded continuous functions on D if s>3/r. On
the other hand, we see from Proposition 4.6 that the gradient operator 7 sends
D(L") continuously into (H2*"1(D))® where « is an arbitrary number smaller
than y. Since y>3/2r+1/2, we may assume that 2«a—1>3/r. Hence,

I1P(u, P)ollo, = Cl lul- 170l llo,r = Cllullo,, sup |Fo|

= Cllullo, I L7v]o,

which completes the proof.
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COROLLARY. There exists a constant M, which depends on r>3, 3/2r+
1/2<y=<1 and b such that

(5.4) IGullo,r = M, ||L7ullo,, ueD(LY).

Proor. By Lemma 5.1 we need only to consider P(u, F)b. By Proposition
4.6 and the Sobolev theorem we obtain

I1P(u, 7)bllo,r = Clibll;,.sup [ul = ClIbll .l L*ullo,r

for any «>3/2r. This completes the proof.

Let us now prove our main result in this section. In what follows, we denote
the norm of X, simply by || - |.

THEOREM 5.2. Fix 3<r<oo and 3/2r+1/2<y<]1. Then, for each de X,
and each Pge C((0, T]; X,) such that ||Pg(t)||=0(t"?) as t—0, there exist a
Ty, 0<T,<T, and a unique solution w(t) of (5.2) such that

(@ weC([0, T4]; X,)nC(O, T4]; D(LY)),
(b) JL*w(D)| =o(t"?) as t—0.

ProoF. Let E(T,; N;, N,) be the set of all v(f) in C([0, T,]; X,)n C((O,
T,]; D(L?)) such that
SUPosrst. 1V £ Ny, Supp< <1, V| L70(t)]| £ N,

where N,, N, and T, =T are arbitrary positive numbers. It is easy to see that
E(Ty; N,, N,) is a complete metric space with respect to the distance function
induced by the norm:

lloll = supo<e<r, (DI + supo<;<r, I LY0(D)] .
(i) Let C,, C, be constants such that

etk = C,, t|Lve*E| £ C, forall te(0, T].
We shall show that the nonlinear operator K defined by
Ku(t) = e7'Ld@ + St e"=IL{Fp+ G} (s)ds + gt e~ (=)L Pg(s)ds
0 0

leaves E(Ty; N;, N,) invariant if we choose Ty, N, and N, appropriately. In
fact, using (5.3) and (5.4) we have

1Ko < Clal + €, §] 1L, +MIo©Ids + 4 | 1Pas)1ds
(5.5)
S Cillal + €Ny (M, + N M)E[(1=9) + €, | [Pg@)lds,
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|L*Ku(D)

< ILretta) + G, | (=)L) 1M, + M) ds

(56) + G [ a=91Pg)1ds
< ILre*td| + C,N,B(1—y, 1 —=y)(M |+ N M)t =27
+ {5UPo<ys, 7 PGB —7, 1 =ei=2.
From (5.6) we obtain
(5.7)  |LYKo(t)| < t7|Lre 'Ld|| + CoN,B(1—y, 1—y) (M, + N, M)t~
+ {5UPo<uz, 7 IPIOIB =7, 1=~

Since y< 1, we see from (5.5) and (5.7) that T,, N, and N, can be chosen in such
a way that K leaves E(Ty; N,, N,) invariant.

(ii) Choosing Ty, N, and N, as above, we shall show that K defines a con-
traction map on E(Ty; N,, N,) if we take T, >0 sufficiently small. Indeed we
have, again by (5.3) and (5.4),

IKu(t) — Kw(®)|

<C\ M, Xo 1LY w—w)(s)lds

¢ + M (O IL70=w O]+ [0=w ] ILwE]ds
< Cu(M+N, M+ N M) o= wll=2/(1 =),
IL7Ko(®) — LKw(0)|

= &M, [ =9 1Le=w s

(5.9) ,
+ CM[ =97 O 1L WG + [E=W O] - ILwE]}ds

< Co(My+N,M+N;M)B( —7, 1=7)llo=wlle*=27.

Hence, from (5.8) and (5.9) we obtain

(5.10)  [IKv—Kwl|
S M +NM+N,MT7{C;/(1-y) + CB(1=y, 1=p)}lo—wl|.

Choosing T, >0 small, we obtain the desired result.
The existence and uniqueness of the solution follows from (i), (ii) and the
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Banach fixed point theorem. Since t||L7¢~*Ld||—0 as t—0 (see the proof of
[7, Lemma 2.10]), the assertion (b) follows from (5.7). This completes the proof.

REMARK 5.3. (i) By an analogous method we can show the existence of a
unique local solution for the problem (%) under general boundary condition if
we use A, instead of L,. This result contains the local existence result of [15]
in view of (2.4).

(i) In [15] Heywood established the existence of a unique global solution
for the problem (*) when 4 € D(A3/2), in our notation, is sufficiently small. In
doing so, he used in an essential way an energy inequality in X ,, and so his solution
necessarily belongs to X,. We do not know any global existence result for the
problem (5.2) for r#2 even when u,=0. This is the reason why we discussed
the homogeneous case separately in Section 3.
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