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§1. Introduction

This paper is dedicated to Professor Tatsuji Kudo on the occasion of his
sixtieth birthday.

The first part of this paper is concerned with a detailed account of Hopf
algebra structure of class functions on the symmetric groups and shows how the
study incorporates many results in the classical theory of symmetric groups.
The second part deals with the operation called inner plethysm. Few calculations
have been made for the operation. An attempt is made in this paper to illustrate
all necessary procedures for evaluating any inner plethysm, although they may
be extremely involved in practice.

In §2 it is shown that the ring C, of integer-valued class functions on the
symmetric groups is a divided polynomial Hopf ring in infinite generators, while
the algebra Cp over the complex field forms a Hopf polynomial algebra. In
§3 the self-duality of Cy is established and Newton’s formula is obtained in Cg.
A short proof of Frobenius’ fundamental theorem is given in §4, by taking
advantage of Newton’s polynomial established in §3. In §5 a Cg-version of
Liulevicius’ self-duality is studied. The structure of the representation ring R,
of symmetric groups is studied in §6. In §7 Atiyah’s 4, ; is discussed to recover
Doubilet’s forgotten symmetric functions. The general theory of inner plethysms
is given in the final section §8.

§2. Hopf algebra of class functions

Let R be a commutative ring with unity and let G be a finite group. By a
R-valued class function on G we mean { : G—R satisfying {(y~1xy)={(x) for any
x, yeG. Cgr(G) denotes the R-module of R-valued class functions on G. In
the sequel R will be the complex field F or the ring of integers Z. For a subgroup
H in G, the inclusion map i: H—G induces the restriction map i‘'=Res§ :
Cr(G)»Cx(H) and the induction map i,=Ind§ : Cx(H)—»Cg(G). For fe
Cr(H) and for any se G,
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(Ind§ f)(s) = (1/|H]) Zteg,e-151en S (17150).

Consider a graded connected R-module Cr={Cg(S,)|n=0,1,2,...} for the
symmetric group S, of degree n. We are going to define a multiplication m:
Cr®Cr—Cg so that Cy forms a graded algebra. Let

Ipat SpX Sg—Sp4,

be an embedding defined by

ip 40, ©)(J) = o(j) if 1<j<p,
=p+t(j—p) if p+1<j<p+q,

for (o, 1)eS,xS,. If f,eC(S,)" and g,e C(S,) are characterstic functions of
the conjugacy class # in S, and the class § in S, respectively, then the characteristic
function h of the conjugacy class (t, s) in S, x S, is obtained by

h(a’ T) = ft(a) ‘ gs(‘r) .
Thus there exists the isomorphism
Vpa: C(S,) ® C(S,) — C(S,x8S,).

Define m,, : C(S,)®C(S,)—C(S,+,) by the composite map ip,q,oxpp,q=lnd§i;gqo
wl’s‘l'

Given a partition # of n. (In notation, nkn.) An element ¢ in S, is said
to have the shape = if the disjoint cycle decomposition of ¢ produces the partition
n. A conjugacy class in S, is said to have the shape = if its representative has
the shape n. Let K, be the characteristic function of a conjugacy class of the
shape n. Then {K,|ntn} forms a base for Cg(S,).

For any partition n of n, let m; be the number of i’s in n(i=1,..., n), i.e.,
a={1m7, 272 .. n"™}, and set w!=[]%,n! and |r|=n!]]i,i®. Then the
number of the elements in a conjugacy class of the shape = is n!/|n|.

For any partitions n of p and ¢ of g, let v ¢ denote the partition of p+¢q
given by the union of = and g, i.e., (nvo),=m+0;(i=1, 2,...).

PROPOSITION 2.1. For any ntp and atq, we obtain
K, K, (= m, (K,®K,)) = (n v 0)!/nlc))K,v,.
Proor. For each se S, ., consider
(Ko K)(5) =(Ind$ess, ¥, (K. ®K,)()
=(1/p'qY) Zres, s t-15tes,x5, V.l K@ K,) (t71s1) .

1) If no confusion arises, C(S,) stands for C(S}).
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It is obvious that if the shape of s is not nv g, then (K,.-K,)(s)=0. When s is
of the shape nv o, the number of ¢t with the property ¥, (K,QK,)(t 'st)=1
is (p!/In])q!/lo])ln v o|=plq!(n v 6)!/nla!. This completes the proof.

By virtue of Proposition 2.1, it is immediate to see that K -K,=K,-K, and
(K.K,)K,=K,(K,-K,) for any partitions o, = and v. It follows that Cy
forms a graded commutative algebra with unit.

PROPOSITION 2.2. Let C; denote Ky, € Cx(S;) where {i} is the shape of the
i-cycle, and let C, denote C}C%:---CTne Cg(S,) for ntn. Then we obtain

C,=nlK,.
Proor. It is evident from Proposition 2.1.

PROPOSITION 2.3. Cg is a polynomial algebra over the complex field F
in an infinite number of variables C,, C,,..., C,,..., where the degree of C, is
2n. In notation,

CF = PF[Cl’ CZ""’ Cn,..-]-
Proor. It is immediate from Proposition 2.2.

We are going to see that unlike Cy, the algebra C, is a divided polynomial
ring with generators Cy, C,,..., C,,.... By a divided polynomial ring D[x] with
one generator x of an even degree, we mean a graded abelian group {Zx,|n=0,
1, 2,...} with a base xo=1, x;=x, Xj,..., Xp,-.., Such that the multiplication is
given by x,-x,=(";%)x,+,. Then x"=n!x,. By abuse of language x is called a
generator of the ring D[x].

PROPOSITION 2.4. The ring C, is a divided polynomial ring D[C,, C,,...,
Cp-r 1= ®2, DIC,].

Proor. It is evident from Propositions 2.1. and 2.2.
Let us consider the elements
a, = an—n (Sgn n)Km ﬁn = an—n Kn and Yo = ncn

of Cg(S,), where Sgn denotes + 1 according as the shape of = is even or odd.
Then it is obvious that Cp=Pg[y,, 725.--» Vm--.]- In a later section we shall
show that Cp=Pg[ay,..., %,...]=Pg[B1;--.s Bpus-.-] is also true.

Defining 4, ,: Cg(S,)—=>Cr(S,)®Cg(S,) for each p, g with p+g=n, by the

composition w,,,‘,,oResg;x s, and setting

An: CR(Sn) - Zp+q=n CR(Sp)®CR(Sq)
by
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An(f) = Zp+q=n Ap,q(f)

for any fe Cg(S,), we obtain a map 4: Cx—>Cr®Cg. Define a map ¢: Cx—R
by the projection.

PROPOSITION 2.5. A4,(Kp)=3 ,v,=x K,®K, for each ntn.

PRrOOF. Resg"_jxsq K, takes value 1 on conjugacy classes with the shape =
in the canonically embedded subgroup S,x S, of S, and O elsewhere. A pair
(s, t)in S,x S, with the property that shapes of s, t are g, v is embedded by i, ,
to an element with shape o v v, and conversely. Hence the proof is complete.

The coassociativity and the counit conditions for a coalgebra are immediate
from Proposition 2.5, because

(1®A)A(K1:) = vap'vp"=1r Kp®Kp:®Kp" = (A®1)A(Kn)’
(1@9A(K,) = K,®1, and (s®@1A(K,) = 1®K,.

It follows that Cy forms a coalgebra with respect to the comultiplication 4 and
the counit e. Then it is straightforward to see that 4(K,-K,)=4(K,)4(K,) holds
true. Thus we have proved

PROPOSITION 2.6. Cpg is a Hopf algebra.
This fact is known. For example, see Geissinger [3].

THEOREM 2.7. Cp is a polynomial Hopf algebra in variables Cy, C,,...,
C,..., or in variables v, y45..., Vp,... . Cz is a divided polynomial Hopf ring
D[C,, C,,..., C,,...].

As a matter of fact, Cr is a polynomial Hopf algebra if F is a field of charac-
teristic 0.

LEMMA 2.8, A() =2 i+ j=n 0 ®0;, A(B,) = Xi4 j=n Bi®B;, and
A7) =1@7,+7,®1.
PROOF.  A(a,) =2 -n (Sgn MA(K,) = 2 o-n (SN ) (X v =z K, BK))
=it j=npoi,pr; (58D (P VP)) K,RK,,
=it j=n (i (S80 PK)B®(Z 1 (Sgn p)K,)
=2 i+ j=n 6O

Similarly, we obtain the last two equalities.
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§3. Self-duality

By the usual inner product

fi 9> = (/) Les, f(D9()  for f, geCx(S,),

the vector space Cg(S,) becomes an inner product space over F. Then the
Frobenius reciprocity theorem states that for any subgroup H in S, and for fe
CF(Sn) and gECF(H)a

Resjr f, g> = <[, Indjy g

holds true. If a bilinear form f is defined on Cy by the orthogonal sum such
that for fe C¢(S,) and g € Cx(S,)

0 if p+#gq,
(f, 9) =
P00 [(f,g> if p=gq,

then the graded vector space of finite type Cp becomes an inner product space.
It is obvious that B induces a vector space isomorphism A: Cr—C¥ by the
map A(f)=p(f, ) for fe Cp. Since Cp is a Hopf algebra, its dual C¥ is also a
Hopf algebra with multiplication 4* and comultiplication m* if CEQCE is
identified with (Cr® Cr)*. It is easy to see that A is a Hopf algebra isomorphism.
By definition,
0 ifn #n',
(Kp Kp> = (1/n) ies, Ko(DK (1) = {

Yn| ifn=n.

For a base {y(=IT4, y™)|ntn} for Cx(S,), we obtain

0 ifrn#n,
s Vud = _
|| ifn=n'.
It follows that {y,} is an orthogonal base. Since
0 if n# {n},
) (K) = vy Ko = ) (3.1
1 ifn={n},

(y,) =V, denoted by Atiyah, maps K,, of the n-cycle into 1 and the other charac-
teristic functions into 0. Thus, we have

PROPOSITION 3.2. The isomorphism A. Cr—C¥ maps v, into ,. Hence

Cr=PelY1, ¥2ses ¥ ]
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THEOREM 3.3. Let a,=3 ,,(SgnmK, and let y,=nK,, Then we
obtain Newton’s formula,
Yn— % Yn—1 AP — " +(_ ])n_lan— 1”1 +(_ l)nnan =0. (34)

ProOOF. Denote by N(y, o) the left-hand side of the equation (3.4). If
AMN(y, ))(K,)=<{N(y, a), K,>=0 for any =mtn, then we get N(y, a)=0. For
i=1,..., n, consider

<(—1)"_ian—iYE1 Kn> = (— l)n—i<an—i®Yia A(Kn)>
= (— l)n-—i vap:n <an—-i®Yi1 Kp®Kﬂ'>
= (_ l)n—i va,p:n <an—b Kp> <Yi$ Kp'>‘

If = does not contain i as a member, i.e., 7;=0, then the last summation is 0
because (y;, K, »=0 for any p’ with pv p’=mn by (3.1). Assume m;#0. Then
by removing i from 7, we obtain a partition w A {i} of n—i with (A {i}) v {i} =m,
and we get

(=D a9, K = (= 1) 0ty _jy Kpagiy) (by (3.1)
=(=1)""(Z prn-1(8gn 1)K, Kenyyd = (—1)""¥(Sgn (n A {i})/|m A {i}].
Since Sgn (n A {i})=(Sgn n)(—1)i*! and |r A {i}|=|=|/n;i, we obtain
(=D, Kop = (= 1)"*1(Sgn m)m,if|n] .
Hence for any =ntn,
{N(, y), Ko =21=, (= 1)"*!(Sgn m)m;if|n| + (—1)"n<et,, Ko
=(—1)""1(Sgn m)n/|n| + (—1)"n(Sgn m)/|n| = 0.
This completes the proof.

Solving the system of linear equations in Theorem 3.3 with respect to
P1se-e» Yu» W€ oObtain y,=Q,(a,, %,,..., ®,), Which is the well-known n-th Newton
polynomial with coefficients in Z. Solving the system with respect to ay,..., a,,
we also have a,=Q(y,, 2,-.., 7») With coefficients in the rationals.

COROLLARY 3.5 (Girard’s formula). Set a,=aft---a% for ntn. Then
T = (=10 Dy (= Rty ooty = DYy Lo Dot

Proor. It is an immediate consequence of the fact that y,=Q,(ay,..., &,).
(See, for example, p. 195 in [9].)

Similarly we can prove
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PROPOSITION 3.6. 9,4+ B1Vp—1+ - +Bu-171—nf,=0 holds true. Hence
(—1)"—1yn=Qn(ﬂls"'5 ﬂn)’ ﬂn=g(’yh V25005 (—l)n_lyn)’ and

Yn=—"n an—n (- 1)n1+-'-+u,.((n-l + e +TL',,—' ])!/Tcl!"'nn!)ﬁm where ﬂn=ﬂ1fl'"ﬁ:"'

§4. Frobenius’ fundamental theorem

Let H,,=Sym,[x;, X,,..., X,] be the R-module of symmetric functions of
degree k in n variables x,, x,,..., x, and let n%: H,,—»H, , for non-negative
integers n, m with n>m be defined by

TE(f(X15eees X)) = F(Xg5eees Xps 0y..., 0).

Then {H,,; n7,} forms an inverse system of R-modules. Consider H ;=lim H,,.

Then the n-th projection n, ,: H ,—H,, is an isomorphism if n>k. Let a,;, A, 1,
and s,, be the k-th elementary, homogeneous, and power symmetric functions
in n variables, whose inverse images under =, , are denoted by gy, h,, and s,
respectively. They are called the k-th elementary, homogeneous, and power
symmetric functions in infinite variables x,, x,,..., X,,... . It is obvious that
a,=(0,...,0, @ s, Gy o)y M=y goeves Mips Mg poeees)s ANA S =(8 poeves Sppo
Sg+1,6+++). The graded R-module Hg={H ;|k=0, 1, 2,...} forms an R-algebra
by defining

nn,p+q(f'g) = nn,p(f) ° 7tn,q(g)

for feH , and geH ,. It is well known ([3], [4]) that Hg is a polynomial
Hopf algebra Pgla,,..., a,,...]=Pg[h,,..., h,,...] if we define a comultiplication
Aa) =34 ,=na;®a;, A(h,)=3;;;=, ;®h;, and the obvious counit. When
R=F, then Hg is known to form Pg[s,,..., s,,...] with 4(s,)=1®s,+s,®1.

In this section we shall study the fundamental theorem due to Frobenius by
bridging between Cp and Hjy rather than between the representation algebras
Ry and Hg. By this way our approach will hardly employ representation theoretic
arguments.

THEOREM 4.1. A map T: Cr—Hy defined by T(y,)=Ss, is a Hopf algebra
isomorphism such that T(x,)=a,(=a¥---a%*) and T(B,)=h,(=h%---h™) for
nkn.

PrROOF. From Theorem 2.7, Ce=Pg[y(5.--» Vps-.-] With 4(y,)=1®7,+7,®1.
Hence T is a Hopf algebra isomorphism. Thus T(x,)=T(Q(V1---» Vu))=
oT(yy),..., T())=0(sy5-.., S,)=a, and T(«,)=a,, by Corollary 3.5. Similarly,
T(B,)=h, and T(B,)=h, by Proposition 3.6. This completes the proof.

COROLLARY 4.2. Cp=Pglay, ay,...; dp...]=Pp[B1, B2s---s Bus---1-
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Proor. It is evident from Theorem 4.1.

Let Rg(S,) be the Grothendieck F-vector space of isomorphism classes of
complex representations of S,. Then it is well known (for example, see [10])
that the character map y,: Rg(S,)— Cg(S,) is an isomorphism.

As in the case of Cg, we define m, ,: Re(S,)®RE(S,) > Rx(S,:,) and 4,:
Re(S)= S prqen Re(S)®RE(S,) by IndSesg o, and 3, e ¥yheRess,s .
respectively. Since y commutes with ¢,, » Inds xS, and Resspxsq, deﬁnes
a Hopf algebra isomorphism from Ry={Rg(S,)} to C P

For each ntn, let S, stand for S; x -+ XS; X -+ X §,x -+ xS, =8F X +-+ X ST,
Then a trivial representation and a sign representation of S, are denoted by 1_
and Alt S, respectively. Let 15_and AltS, represent elements p, and 75, in Rp
respectively. If p, and », denote p,, and 7, then by definition x(p,)=p, and
A1) =ty

PROPOSITION 4.3.  y: Rp—Cy is a Hopf algebra isomorphism such that
x(pr) =B and x(n;)=0,.

ProoF. It is easy to check that p,=p7i---p*» and n,=n7'---n%» for any par-
tition ntn. This completes the proof.

Defining F: Rp—Hy by the composite Toy, we obtain the fundamental
theorem:

PROPOSITION 4.4. The Frobenius isomorphism F: Rp—Hp maps F-basis
elements p,=[Ind§ 15 ] into h, and n,=[Ind§~ Alt S,] into a,

§5. Liulevicius’ self-duality and Atiyah’s 4’

Let {V,} be the base consisting of irreducible representations of S, and let
(Vys Vo) =0, . It is well known that the character isomorphism yx: Rp—Cpg
preserves inner products. Then an isomorphism p: Rp—R¥ with a commutative
diagram

RF x)CF

bl

*
R} £ C¥

is evidently obtained by u([M]1)[N])={M, N) for any representations M and N
of symmetric groups. This comes from the verification that (y* Ay (LM D)X[N])=
OO = otms AN = (M N) Atiyah [1] denotes by o, and 4, elements in
R} satisfying
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LV, =1, I if V, = AltS,,

ol[Vz)) = and  Z2,([V:]) = {

0 otherwise, 0 otherwise.

PROPOSITION 5.1. u: Rp—R¥ is a Hopf algebra isomorphism such that
u(p,) =0, and u(n,)=4+, Hence R¥=Pg[o,,...,04...1=Pp[l,..cs 2ps...].

1 ifV, =1,
PROOF‘ tu(pn)([Vn]) = <IS,.~ Vfr> = .

0 otherwise.
Thus u(p,)=o0, Similarly, u(n,)=7/,. This completes the proof.

Consider a diagram

Ry —Ls Cy

" \\1: l‘l’

R: A H,

where 4’ is Atiyah’s isomorphism (Proposition 1.2 and Corollary 1.3 in [1]).
Then the diagram commutes, because 4’u(n,)=4'(2,)=a, from Proposition 5.1,
(see §7).

COROLLARY 5.2. The Frobenius map F is equal to Ty=4"u.

Consider an element («f)* in C¥ which maps of into | and a, into O if
n#{1"}. Then we obtain

PROPOSITION 5.3. A: Cr—C§ maps B, into (a)*.

PrOOF. Observe that n!{B,, a,>=, .+, n!(Sgn ' )K,, K> =2 n-nn!
(Sgn m)/|n| =3 s, Sgnt. Then we obtain

</jm d,,>=0 lfnzz» <ﬁl’al>= I
For ntn, let i be a member of 7. Then n=(nA {i}) v {i} and
<ﬂn’ an> = <ﬂn’ du'\‘.i)ai> = <A(ﬁn)’ an’\{i)®ai>

<,Bn-i, anMi)) lf i =
0 if i > 2,

—
-

= (220 Bu-j®B; tpn 1y @ = {

by Lemma 2.8 and the above equalities. Therefore we see that
1 if = {1},
<:Bm Up) = {

0 otherwise,

by induction on n. This proves the proposition.
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PROPOSITION 5.4. The map ¢: Cr—C¥ defined by 4(a,)=(a})* is a Cp-
version of the Liulevicius Hopf algebra isomorphism ([7]).

Proor. By Corollary 4.2, y: Cx—Cp defined by y(a,)=p, is an isomor-
phism. Then ¢=/cy is an isomorphism. If ¢ is translated via T: Cp—Hp,
the Liulevicius isomorphism maps a, into (a?)*. This completes the proof.

§6. Comment on R,

In accordance with Professor Sugawara’s suggestion, this section is added
to the original draft of the present paper.

By a lattice L in a k dimensional complex vector space V we mean an additive
group in ¥V which is generated over Z by a base {b,, b,,..., b,} for V. Since
{pLImtn} and {n.|ntn} are bases for Rg(S,) and since h,=T(p,) is an integral
linear combination of the basis elements a,=T(n,) and vice versa, they generate
a lattice L, in Rg(S,). Then the graded lattice L={L,} forms a polynomial
Hopf ring Py[py, p2seees Pus---J=PzlN1, N2ye-s Nys-..] under operations in Rg.
It is also evident that L is a Hopf subring in R,={R,(S,)}, where R,(S,) is a
free abelian group generated by the isomorphism classes of irreducible complex
representations of S,. We are going to show that the inclusion map

i:L—> R,

is, in fact, an isomorphism. A bilinear form on R defined by (V,, V,.> =6,
for a base {V,|ntn} consisting of the irreducible representations of S, is an inner
product on R,. Since the group isomorphism u,: R,—R% defined by u,([M])
={M, ) for any representation M, preserves multiplication and comultiplication
by virtue of the Frobenius reciprocity theorem, u, is a Hopf ring isomorphism.
Consider a commutative diagram

0—» L, R,

Jﬂfz lﬂz

* X Ry o,
where u, =puz|L. Since the ranks of free groups R,(S,) and L, are both the number
of the partitions of n for each n, Cokeri is a torsion group and hence i* is a

monomorphism. Note that uz(p,)=(n?)* maps 5} into 1 and 5, into 0 if n#
{17}. To see it, we observe that

1 ifn={1",

I‘z(/’n) (’17:) = <ﬂm an:> = 0 otherwise.
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If u is proved to be epic, i as well as u7 are isomorphisms because of the com-
mutativity of the diagram shown above.

Let 2(L) be the cokernel of I(m): I(LY®I(L)—I(L), where I(m) is the restric-
tion of the multiplication m in L to the augmentation ideal I(L)={L,|n>1}.
It is well known ([8]) that u} is epic iff 2(uy): 2(L)—2(L*) is epic. It is evident
that 2(L,) is a free group whose generator is represented by an indecomposable
element p, for each n. If v,=Q(n,, n,,..., n,) which is the n-th Newton polynomial
in Ny, N,..., N, then v, is primitive in L, because y(v,)=v, and 4(y,)=1®y,+7.,®1.
Since any primitive element in Cg(S,) is a scalar multiple of K,,, and since nK,,=
ya=(—1"al +--- by Girard’s formula, the subgroup £(L,), consisting of primitive
elements in L,, is a free group generated by v, and is a direct summand of L,.
Consider an exact sequence

0— 2(L,) L2s L, -4, $r1 L®L,,
where A(x)=4(x)—1®x—x®1 for any xe L,. Since j={j,} is split, we obtain
an exact sequence

KLHRI(L*) &%, 1(L*) 2%, 2(L)* — 0.
It follows that 2(L*)=2(L)* where #(L)* = {2(L,)*}.
Consider a commutative diagram
L, P~ 92L,) —0
e Jeteen
L, 2Ly — 0,
where p,(p,) is the generator of 2(L,) and uz (p,)=(n})*. However, j¥(n7)*)(v,)

=(—1)". Hence 2(uz): 2(L)—-2(L¥) is epic.
This proves the following

THEOREM 6.1. Ry = P[Py, P2seevs Puse--] = PzlM1s Naseees Nuyee] -

It should be mentioned that the proof employed for Theorem 6.1 is a re-
presentation theoretic version of Liulevicius’ argument in [7], although the entire
content in the preceding five sections does not depend upon his paper.

§7. Atiyah’s A’ and Doubilet’s forgotten symmetric functions

Let E be an n dimensional complex vector space with a base {e,,::, e,} and
let E®* be the k-th tensor product of E. By letting S, act on E®* in an obvious
way, E®* becomes an S,-module. Then there exists the well known decomposi-
tion isomorphism
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{2k homg, (V;, E®)®V, — E®*

defined by {(f®x)=f(x) for f €homg, (V,, E®*) and x e V,, where {V,|ntk} is
the complete set of irreducible S,-modules. Let T: E~E be a linear map defined
by T(e;)=x;e; for each i. Then T®*: E® - E®k is an S,-map and hence induces
a linear map n(T): homg, (V,, E®¥)>homg, (V,, E®¥). It is easy to see that
Trace (n(T)) is symmetric in x,,..., x, with integer coefficients. Define
4y = 2 [Vo1®z Trace (n(T)) € RASH®H, 1,
and define a homomorphism
ni: RE(Sy) = homy (Ry(Sy), Z) — H,,
by 4, (&)= i &V,) Trace (n(T))e H,, for £eR¥(S,). Then we have 4’ ,:
R¥(S,)—H ;, and hence Atiyah’s homomorphism
AR} — H

is defined. By the definition of 4, , it is immediate to see that 4'(c,)=h, and
4'(4)=a,, because homg, (15, E®*) is the k-th symmetric power o*(E) and
homg, (AltS,, E®*) is the k-th exterior power A¥(E). Atiyah (Proposition 1.2
in [1]) shows that 4’ is a ring isomorphism.

Atiyah (Corollary 1.4 in [1]) shows that when 4, ,=3; a;®b, for n >k, then

{a;} and {b;} are “dual bases’’ to each other. The following proposition states
how the a; determines the b; and vice-versa.

PROPOSITION 7.1.  Given bases {a;} for R4(S,) and {b;} for H , Then
4 y=2%:a,@b; if and only if {a;,, F~1(b;)) =6;;, where F is the Frobenius map
and d;; denotes the Kronecker delta.

PrROOF. Let F(c;))=b;and 4 ;=3 ;a;®b;. Then we obtain
F(c;) = 4"pu(c;) from Corollary 5.2
= 2 ; u(c;)(ay)b; by definition of 4’
= 2i{c;, apb; = 3;<a;, F7'(b))>b;.
Thus, b;=b, if and only if {a;, F~!(b;)>=0;;. This completes the proof.

Corresponding to a base {a,|ntk} for H , there exists a base {d,|ntk} for
RZ(S;) such that 4 , =3 d,®a,. Then, by proposition 7.1

<dm F_l(am)> = <dm Nup = 5mtr'
Since {n,|nkk} is a base for R,(S,), we obtain

4= 2n.®F(d,)
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by repeated use of the proposition.

DEFINITION 7.2. A base {F(d,)|rntk} for H , is called the Doubilet forgotten
symmetric functions ([2]).

In the rest of the section we shall determine the d, so that the Doubilet
functions will be recovered. Note that d,,, is determined by Atiyah (Proposition
1.9 in [1]).

THEOREM 7.3. Let 4 ;=3 ,d,®a,=3 . n,®F(d,), where a, is a monomial
of elementary symmetric functions. Then for nkk, we have

dy = (1/mY) Xori (4,/10DQ1(n)7* - QulN15-.0, M),
where Q{a,,..., a;) is the i-th Newton polynomial for s; and
4, = (0/oay)™i---(0/0ay)™ s, (s,=s71--57 = Qy(ay)™-Qua,..., a)"*).
PrOOF. y,=|0|K, by Proposition 2.1, and we get
UK, FTU(T(v,))) = (K, V5.0 = 04, (by Corollary 5.2 and (3.1)).
Therefore by Proposition 7.1 and Theorem 4.1,
4= 2ok I K)RT(g) = Zori X (K,) B,

Since s, is a polynomial of degree k in variables a,,..., a,, the coefficient of the
monomial a,=af---af* in s, is equal to g,/n!, where q, is the one given in the
theorem. Therefore, by rewriting 4 , in terms of a,, we obtain

dn’ = (1/71'!) Zal—k qax_l(Ka)

where ¥~ U(K,)=(1/l6])Q:(n)°'+--Qx(n1,..., 1, )°* by Proposition 4.3. This proves
the theorem.

For example, in the case when k=3 ">t us calculate the Doubilet functions
w,=F(d,):

w3y, = ai—2a,a,+a;.
w3y = a}—3a,a,+ 3a;, and ;- 5, = 5a,a,—2a3—3a;.
Hence the projection of w(, 5y € H ; into H; 3 is the symmetric function
—{2(x3 +x3 +x3) + xIx5 + x3x3 + x3x, +xFx3+ x3x; +x3x,} .

If we denote by M(2:1) the Specht irreducible representation of S; (for definition,
see §8), then dys) =ni—2nm+n; = [1ss], dzy = n}—3nm,+3n3 = [1s:]—
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{dgs Ng> =0, as we should have.

§8. Inner plethysms

In this section, R denotes R,. Let M be a representation of S, and let
{e,, €5,..., e,} be a base for M. The k-th tensor product M®* is considered as
a representation of S, X S, when a linear operation is defined by

(0, ) (e;,®e;,® - ®e;,) = Ueicm®aeiz(z)®'“®aeit(k>’

for any (o, t)e S, xS, and for any basis element ¢; ® --®e; with 1<i, i,...,
ir<w. Since R(S,x S,) is isomorphic to R(S,)®R(S,), the map ®k: R(S,)—
R(S,)®R(S,) is defined by

QK([M]) = [M®¥].

It is shown by Atiyah (Proposition 2.2 in [1]) that ® k is well defined.
We notice that @k([M]—[N]) for a general element [M]—[N] e R(S,) is
given by the following

PROPOSITION 8.1.  @K([M]—[N])=3*_o (—1)/[Ind§k_ s, ME*-NDQN®/],
Proor. It is sufficient to show that
(M, N)* = (Zh=o,jicven IndS_ x5, MBE= DR NS/,
Z’}=1,j:odd Indg'z-jxs, M®(k—j)®N®i)_
This can be proved by the induction on k.

DErFINITION 8.2. By an inner plethysm T()) associated with an element
A€ R%(S,) we mean an operation

T(2): R(S,) — R(S,)®Z = R(S,)
defined by (1@ ®K).

In the sequel, we denote T(L)([M]) simply by A([M]) for any S,-representation
M, if no confusion arises.

PROPOSITION 8.3.  For any 2,€ R*(S,) with t+k and for any S,-represent-
ation M, we have ‘

J{([M7) = [homg, (Ind§ Alt S,, M®*)].

Proor. It is well known that if {V,|otk} is a complete set of irreducible
S,-representations, then there exists a (S, x S;)-representation decomposition

M®k x~ 20!—1: homSk (Va’ M®k)® Vd’
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where we consider homg, (V,, M®*) as an S,-module with S,-operations defined
by of =o®*of for fehoms, (V,, M®*) and o€S,. Then by definition

T(}‘t) ([M]) = Zdl—k }‘r([Va]) [homsk (Va" M®k)]
= [homsk (Zab—k ;"r([Vc])Va’ M®k)] .

However,

Zal—-k )'t([Va])Vo' = ZGP—k #("t) ([ Va’])Vtr = ZGI-'k <[ndsf Alt St’ Vo‘> Vtr
= Indgx Alt S..

Hence we obtain the proposition.

PROPOSITION 8.4. For any partition ttk and for any S,-representation
M we have

2{[M]) = A,(IMD)" 2, ([M]) 2 - 2 ([M )%
ProoOF. By the Frobenius reciprocity law we have
homg, (Ind$x Alt S,, M®¥) ~ homg_(Alt S,, Res§x M®*).

Since Alt S, ~(Alt S,)®"®---®(Alt S,)®* and Res§x M®k zM®‘l®---®(M®")®'k,
we obtain

homg_(Alt S,, Res§k M®) ~ ®%_; (homyg, (Alt S;, M®))®r:,
Therefore we have the proposition by using Proposition 8.3.

Note that this proposition is stated by Atiyah as R* is a subring of Op(R).
(See the first line on p. 178 in [1].)

Using the same methods as in the proofs of Propositions 8.3 and 8.4 we may
prove the following

PROPOSITION 8.5. For any o.€ R*(S,) with ttk and for any S,-representa-
tion M, we have

o([M]) = [hom, (Ind§* 15, M®¥)] = o, ([M])"'o,([M])>+ 0, ([M])™.
PROPOSITION 8.6. For any S,-representations M and N, we have
A(IM]I+[ND) = Xk A-d[MDA(ND),
o([M]+[N]) = ko 0x-[MDo([ND),
A(IM]—-[ND = o (= D'A-[MDo([N]),
o(IM]—[N]) = Zlo (= Doy ([MDAIN]D).
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PrOOF. These formulae can be proved by using Propositions 8.3-8.5 and
8.1, (cf. p. 178 in [1]).

Let H be a subgroup of a finite group G and let G/H be a G-set with the usual
G action on the set of left cosets. Then it is easy to see that the permutation
representation associated with the G-set G/H is isomorphic to a G-representation
Ind§ 1,; of the trivial H-representation 1. Suppose that H contains no normal
subgroup of G except {e}. Then the action of G on G/H is effective in the sense
that if gx=X for any Xe G/H, then g=e. In this case G can be embedded in
the permutation group Aut(G/H). Hence the G-set G/H is the G-restriction of
the Aut(G/H)-set G/H. 1t follows that the G-representation Ind§ 1 is isomorphic
to the G-restriction of an Sy-representation F'V with the natural Sy-action, where
N is the index of H in G and FN denotes the N dimensional complex vector
space. Summarizing what we stated above, we obtain

PROPOSITION 8.7. Let H be a subgroup of a finite group G with the property
that H does not contain any normal subgroup of G except {e}. Then G can be
embedded in the permutation group Aut G/H=S,, where N is the index of H
in G. Considering G as a subgroup of Sy, the induced representation Ind§ 1
of the trivial H-representation 1y is isomorphic to the G-restriction of the Sy-
permutation representation FN.

LEMMA 8.8. Let nkn and let ST x --- x ST be a subgroup of S,. If n#{n},
then S, has no normal subgroup of S, except the trivial group consisting of the
identity.

PRrROOF. Since n#{n}, there exists k (1 <k<n) such that S,<S,_, xS,. If
n=5, the only non-trivial normal subgroup of S, is the alternating group A4,.
Suppose that S,>A,. Then (n—k)!k!>n!/2, which is a contradiction. When
n=1, 2, 3 and 4, it is easy to check the validity of the lemma. This completes
the proof.

Combining Proposition 8.7 and Lemma 8.8, we obtain

PROPOSITION 8.9. Any basis element p,=[Ind$" 15 ] in R(S,) is [Res§~ F¥],
where N is the index of S, in S,

By the Specht irreducible representation M(¥~1:1) we mean the subrepresenta-
tion of FV consisting of (zy,..., zy) with z;+---+2zy=0 in FV. Since we have
the decomposition FN = M®*-1.D@lg , we have Ind3n 1, ~ Res§y FN =
Ress"MN-1. D .

THEOREM 8.10. For any basis element p,€ R(S,) (nkn) and for any basis
/. € R¥(S,) (ttk), 2(p,) can be computed effectively provided the character of
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i-th exterior powers of Specht irreducible representations MN=1:1 for any i
and N, can be computed.

Proor. From Propositions 8.6 and 8.9 we obtain
3pe) = M[Res§y MO-10]4[15]) = Fho 4o (Resy MO-1D]1([15,])
= J([Resgy MOV D)+ 2, ([Resfy MOY=1.D])
= Resgy L(IMO~1D])+ Resgy 4, ,([MY-11]).

Proposition 8.4 allows us to proceed A(p,)=4,(p)"A(p)*. Hence
the proof is complete.

Now we calculate the character of A([M®~1.D])=[homg, (AltS,
(M(N=1.1®H)] for all N and i.

ProPOSITION 8.11.  Suppose that o € Sy has the shape t+N with 7,=0(I<k)
and 1,>0. Then

A(AMN1-D]) (o)

3 T-1 T—1 T+t Ti-o
- 15 z,k..-w<-1>wsgnn( )( )( )( )( )
Ty Tg—1 Ty T+ Ti-w

PrROOF. M®™-1.1 js the Sy submodule of the permutation representation
FN spanned by e,=(1,0,0,...,0, —1), e,=(0, 1, 0,...,0, —1),...,and ey_;=
0, 0,...,0, 1, —1). The action of Sy on M ~1.1 js given by

ge; =€, — ey (L<j<N-—=1)

for any o € Sy, where ey is considered as 0 whenever ey occurs in the formula.

Since two elements in Sy are conjugate if and only if they have the same shape
and since characters are constant on conjugacy classes, we may assume without
loss of generality that the disjoint cycle decomposition of ¢ is arranged such that
the cycles appear in descending order with respect to cycle lengths and the
integers occur in ascending order. For example, if the shape of ¢ is {22, 3, 4},
then ¢ is assumed to be

(1,2, 3,4)(5, 6, 7)(8, 9)(10, 11).

Since A([M®"-1.1]) is represented by the i-th exterior power A®(M®-1.1)
of MN-11) with a base B={e, A+ Ag,|l<a;<-<a;<N-—1}, the action of
Sy is given by

o(eau AR ecu) = 6811 A A aem = (en‘(a|)_ea(N)) A A (ea'(at)_ed(N))

= Coan N N @) — Lh=1€o@) N A Cagasm ) N Ca) N Caiare ) N A Cagay -
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By our hypothesis on ¢ whose shape is 7+ N with t,=0(/<k) and t,>0, we have
o(N)=N—-k+1.

If {ay,..., 0;}={o(ay),..., ()}, then {oy,...,o}={l,2,..., N—k} and o
restricted to {«,,..., a;} gives rise to a “subpermutation’’ of ¢. If the shape of
the subpermutation is denoted by =, then n+i and o(e,, A -+ A e, )=(Sgn 7 )e, A -+
Ae,—---. If nki, then the total number of subpermutations of the shape = is

31 Tk-1 T—1\ [ Tres Ti
o= U HE)
Ty Tr—1 Ty T+t T

If {ay,..., 0} ={o(ay),..., o(etj_y), N=k+1, 6(a;41),..., 6(x;)}, then there
exists an integer @ with k>w>0 such that {«,..., 0} ={0,..., 4_, N—k+1,
vy N—k+ow} and {o,,..., 4;_,}={0(ay),..., 6(0;_,)} = {1, 2,..., N—k}. Denot-
ing by nti—w the shape of the subpermutation of o restricted to {a,..., &;_,},

we obtain a(eal A A e,,,,)=a(e¢l Ao ANy o Nen—g g Ne A eN—k-Ho): ©t T Co(ay)
ANy Nen—k+2 N Al _groANey e =" +(=1)?(Sgnm)e, A - Aey,
Aey_pr1 A Aey_pip="+(—1)(Sgn ) (e, A - Ae,). Again the total num-

ber of subpermutations of ¢ with the shape nti—w is n(n).

By the above arguments, the diagonal entries of the matrix representation
of ¢ with respect to B={e, A - Ag,} contain n(r) numbers of (—1)*Sgn = for
each nti—w with 0<w<k. This completes the proof.

For any integer N and any sequence pu={u,,..., u;} of positive integers with
N>p, > >p;, we define a partition u(N) as

W(N) = {N—py, py—paees Hj—1— 1y #i3 FN.
We now evaluate
o([F"]) = [homg, (15, (FM)®)].

ProposITION 8.12. o([FN]))=%, [Ind S3~ , 15, ,,], where the summation
is taken over all sequences u={p,,..., u;} of positive integers with N>p,>---
>pjand py+ -+ pi=i,and S, (ny=Sn_,, XSy, -y, XS XS,

Hj-1—Hj

Proor. Let {e,,..., ey} be a base for F¥. It is known that homg, (5,
(FM®%) is isomorphic to the i-th symmetric product of F¥, A base for the i-th
symmetric product of F¥ consists of canonical elements eM®:--®ery with
{ot15.-0 an}={1,..., N} and 0<m,<:--<my such that m,+---+my=i and if
m,=m, and a<b, then a,<a,. The action of Sy is given by o(el'® --Qery)=
€ty ® el which is considered as a canonical element by exchanging
factors if necessary. Then two basis elements ef!®---®@ery and ej!®---@epy
are in the same orbit under the action of Sy if and only if m,=n, for all k.

Now, for a basis element v=e®---®en¥, let y; be the number of k’s with
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m,>1(1=0, 1, 2,...). Then uo=N and we obtain a sequence u(=pu(v))={u,,...,
u;} with N>p,>-->p;>1 and p+--+p;=m;+---+my=i. For oeSy,
o(v)=v if and only if m,,,=m, for all k. Thus we seec that the stabilizer of v
is S, ) It follows that the orbit of v under Sy is Ind§~ . 15, ,, and that two
basis elements v and v’ are in the same orbit if and only if u(v)=p(v'). This
completes the proof.

Littlewood has done these calculations in Propositions 8.11 and 8.12. (See
Theorems I and 11 in [6] and p. 139 in [5].)

PROPOSITION 8.13.  For any basis element p, € R(S,) with ntn,
olp)=2,Res$¥ p,(ny (N is the index of S, in S,)

where the summation is taken over all sequences p={u,,..., u;} with N>p,>---
;>0 and py+ -+ p=i, a"d HIN)={N—py, py—paseees Pj— 1 —pj, pi}EN.

PROOF. It is immediate from Propositions 8.9 and 8.12.

TEHOREM 8.14.  Any inner plethysm T(1): R,— R, can be evaluated by the
procedures established in this section.

PrOOF. For any element ¢{eR(Sy) and for any AeR*(S,) with A=
Y kA (a,eZ), we have

ME) = Tk a2 &) = Xk a:A1(E) 1 A(E) 2+ 4O
by Proposition 8.4. If é=[M]—[N], then Proposition 8.6 shows that
&) = Lo (=1)/ 2 (IMDa ([N]).

Since the S,-representations M and N are direct sums of basis elements of p,’s,
4i-([M]) and ¢ ([ N]) are calculated by Propositions 8.6, 8.11, 8.13, and Theorem
8.10. This completes the proof.

Finally, we would like to comment about the character of o,(p,). Since

PuNy=PN—=puPuy—ps""Puj-y—u,Pip
XPuw) = XON=u APy =) 2Py
can be effectively calculated by the facts that y(p)=3,-; K, and
K, -K,=((nvo)nle)K,v, (Proposition 2.1).

This, in turn, enables us to evaluate the character of ¢,(p,) by Proposition 8.13.
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