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Let w be in the class A^ of Muckenhoupt and 0<p, q<co. Our aim is to

give a study of weighted Besov and Triebel spaces Bs

p>™ and Fs

p^q with an emphasis
on interpolation properties of these spaces. This study is partially motivated by

the recent interest shown in the theory of weighted Hardy spaces where many
results for Hp are seen to be true also for H^. Though the investigation of Besov

and Triebel spaces in the case w = 1 is rather extensive, and, as far as general

theory is concerned, exhaustive (see e.g., [19], [20], [24], [25], [26]), there is no
comprehensive treatment for the case w^l ; there is a note of Kokilasvili [15]
where maximal inequalities and Fourier multipliers are observed for weighted

homogeneous Triebel spaces. As for other types of weight functions, there are
results of Lofstrom [16] and Triebel [24] for weighted Besov spaces in the case

1<P, q<co. While their methods are based on some Fourier multipliers for
weighted Lp-sρaces, our study relies heavily on the technique of maximal functions
developed by Fefferman-Stein [9], and Peetre [19] other main sources of reference
are [20], [25] and [26].

The plan of the paper is as follows. §1 is used to fix notation and to recall

results on weight functions needed later we also give in this section a summary of

results on weighted vector-valued Hardy spaces. §2 is devoted to the study of

fundamental properties of weighted Besov and Triebel spaces, and these include
maximal inequalities, Fourier multipliers, embedding theorems, etc. §3 can be

considered as the main part σf our paper where we give interpolation formulas

for weighted vector-valued Hardy spaces, and then use these to duduce inter-

polation theorems for weighted Besov and Triebel spaces. Finally, in the Appen-

dix (§4), a reproduction of [5], we prove results on weighted Hardy spaces used
in previous sections. In particular, we show that weighted Hardy spaces in the

present context are special cases of weighted Triebel spaces (Littlewood-Paley
characterization); thus, this section, besides being of self-interest, also serves as

one of the bases for our study.
The author is grateful to Professor H. Triebel for a helpful comment.
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§ 1. Notation and preliminaries

All functions and distributions are assumed to be defined on the π-dimensional
Euclidean space Rn Sf is the Schwartz class of rapidly decreasing functions and
£*', its dual, is the space of tempered distributions. The Fourier transform is
defined by

& is extended to &" by duality.
Hereafter, we shall always assume that w is in the class A^ of Muckenhoupt,

i.e., w is a locally integrable function, w(x)>0 for almost every x and

G4J |E| < A|/| implies w(£) < C^M/)

for any cube / (with sides parallel to axes) and any (Lebesgue) measurable subset
E of/, with constants C>0, r>l, independent of I and E. Here |£| denotes the

Lebesgue measure of E and w(E) = \ w(x) dx. In the rest of this paper, unimpor-
JE

tant constants are denoted by C, Cl9 c,...; they might be different from one

occurrence to the next. It is known that if weA^, then \w(x)dx = co, and we

Ap for some p, l<p<oo, i.e.,

(A,) ιW(X)dxιW(x)-1^'-»dx < C

for all cubes /, where 1/p + l/pf = 1 . The (ylp)-condition then implies the following
(£p)-condition :

(Bp) ((t+\x-y\)-"pw(y)dy <
J

For these properties of weight functions and related facts, we refer to the paper
of Coifman and Feίferman [7] and references given there. We also let

14 = /; 11/llp.w = l/(χ)l^w(xχx < o o , o

and

where Lp,Q<p<ao, are the Lebesgue spaces. For a locally integrable function
let Mg denote the Hardy maximal function of g, i.e.,

Mg(x) =sup r>0 . * Ή ( \g(y)\dy,
\β(X, r)\ )B(x,r)
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B(x,r) = {yι \x-y\ < r} .

The following weighted version of an inequality of Fefferman and Stein is useful
for our purpose.

LEMMA 1.1 ([1; Theorem 3.1], [15; Theorem 1]). // l<p, q<ao, wεAp

and {fj} is a sequence in L£, then

\\(Σj \Mfj\9)l/q\\p,* < c\\(Σj \fj\q)1/q\\P^

Let ψ be a non-negative function in ̂  such that supp^ = {l/2<|x|<2},
ι/φc)>0 for l/2<|x |<2 and Σ?=-°o tK2~JX) = l for |x|^0. The existence of such
a function ψ is well-known see, e.g., [2; Lemma 6. 1.7]. Let ι/^ ,7 = 0, +1, +2,...,
and Ψ be functions in £f given by

φj(x) = φ(2-Jχ), Φ(x) = 1 - Σy-i Φ{x)

We define weighted Besov and Triebel spaces as follows.

where - oo < s < oo and 0 < p, q<co. Here ( Σ y (2J' s || ψ}* f \\ Pιw)«) ' ' 9 is interpreted

as supy(2^||^*/||p>J if 9 = 00.

= \\ψ*f\\P,w

Fs

p « = {/e^'; \\f\\f(s,w;t,,q} = l l { /'J */}?)=-oolla;S;P,w< oo,

where — oo<s<oo,0<p<oo and 0 < q < oo . We notice that when dealing with
homogeneous spaces (spaces denoted with a dot) we shall make calculus modulo
polynomials. It is useful in our study to introduce vector-valued Hardy spaces.
Let 0<p<oo and l<q<<x>. Define

= I|sup0<(<0

where φe^ with \^(x)dx = l, and φt(x) = Γnφ(xlt). Similarly, we can define

and Λ^(/|), — oo<s<oo; we consider here the case s=0 for the sake of
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simplicity and observe that all results stated for lq- valued spaces are also valid for

/^-valued spaces. We write H^ and /z£ for scalar- valued Hardy spaces (cf. [3],

[10]). An important fact in the real variable theory of Hardy spaces is that the

definitions of H^>q and h^>q are independent of the particular function φe&*

entering in their definitions, and this is given by the following theorem :

THEOREM 1.2 (cf. [3], [9], [11]). Let 0</ι<oo, 0<p<oo and l<q<ao.

Then the following statements (A), (B) and (C) and equivalent for anf—

(A) N+f(x) = sup0<t<h(Σj \Φt*fj(x)\qY/q eL^for someφe^ m

= 1.

(B) Nf(x) = suplx-y{<pt<ph(Σj \φt*fj(yW«eL* for some β>0 and some
φ as above.

(C) JV*/(x) = sup|,_y|<ίr<ΛΦ.^(Σ^ IΦ/'/XjOl')1" 6L*/or some β>0 and
a sufficiently large N, where

A?N={Φ = {ΦJ} cz <?; sup,.,.,.,^ (1 + \X\)»\D ΦJ(X)\ < I } .

Furthermore, the L^-quasi-norms of the functions N+f, Nf and N*f are

equivalent to each other.

PROOF. The proof of the equivalence between (B) and (C) can be done by

an argument similar to that in the scalar-valued case ([9]), [11], [3]); note that it

is not a corollary of the result in the latter case.

To prove the implication (A)=>(B), it suffices, on account of monotone

convergence theorem, to show

(1) \\Nf\\P,w <C\\N+f\\p,w

for some constant C (depending on φ, n, p, q, h and /?) and for all / such that

fj = 0 except for a finite number of j's. This last assumption on/implies that Nfe

L£ since Nf < Σ j Nfj (finite sum), and each Nfj e L£ by the corresponding result

in the scalar-valued case. Observing that u(x, 0 = (Σj \Φt*fj(χ)\qY/q is con"
tinuous on R$+1, we see that

(2)

where

Nλu(x) = supy>0<f<Λw(j;, t){t/(t + |x - y\)}λ,

λ > nr0/p, r0 = inf {r; we,4r}(< oo)

(cf. [3; Lemma 4.1]). Letting φ^dφ/dx—Diφ, f = l,..., n, and

NμUi(x) = supΓμ(;c)(Σ; \
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where Γμ(x) = {(y, t)\ \y — x\<μt<μh}, we derive from the equivalence between

(B) and (C) ({cφΦ >} e J*N, φJ = φt for all j), and (2) that

(3) lltyΛllp.w < Cφ | |N/||pfW.

(Note that φi)t = (Dlφ\ = tDi(φt).) Let (j, ί) be an arbitrary point in Γ/x), fixed
for a moment. Then, there exists δ>Q (depending on β and μ) such that {(z, f)\
\z — y\ < δt} c /\(.x). The mean- value theorem of calculus (for mappings between

normed vector spaces) implies for such y and z,

u(y, tγ< {u(z, ί) + <5sup |2,_y|<δί(Σ?=ι (Σ, l0,.r*/Xz')le)1/e)}r

where 0<r<l and p/r>r0. Integrating both sides of the above inequality over
|z — y\<δt with respect to the z- variable, and then taking the supremumover all

(y, f) e Γβ(x), we obtain

Nf(xY < (l + l/δ)»M((N+fγ)(x) + δ' Σ?=ι ίNμutxj]'.

Next, taking the L£/r-norm of both sides of the above, and using (3) and the

weighted estimate for the Hardy maximal function (cf. Lemma 1.1), we see that

Since ||N/||psW<oo, we obtain (1) by choosing δ so small that c'φδ
r<l/2. Since

the implication (B)=>(A) is trivial, the proof of the theorem is complete.

REMARK 1.3. (i) We note that the equivalence between (B) and (C) is also
true for 0 < q < 1 . The difficulty with the implication (A)=>(B) is that we have used
a mean-value theorem for mappings between normed vector spaces, and

(Σ;=ι \Xj\q)ί/q is not a norm on Rk if 0<g<l.
(ii) The spaces H^>q and h^>q are non-decreasing in q.

(iii) Notice that we take h = i (resp. /ι = oo) when we deal with hζ,>q (resp.
Hp }±λw,q)

We summarize properties of Hardy spaces, which will be needed later, in the
Λ

next theorem. Let 00 denote the subset of functions in &> whose Fourier trans-

forms have compact supports not containing the origin. Let ^^ be the space

of f={fj}cz&» equipped with the following topology :/^ = {/^}-»0 in ̂  if

/5(φ)-»0 for any φe^ and any 7; <5̂  is then a Hausdorίf topological vector
space.

THEOREM 1.4. (i) H^tq and h^>q are quasi-Banach spaces with quasi-

norms \\ ||fl(pfW;β) and \\ - IU(pfW;e), respectively. Moreover, we have the following
continuous embedding s:
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(The symbol "c" will denote continuous embedding hereafter).

(ii) Let ΨG^ be such that (ψ(x)dx = l and (x«Ψ(x)dx = Q for 0<|α|</c,

and /= {fj} e h^>q. If k is sufficiently large, then g = {/,- - Ψ*fj} e H^>q and

(iii) The set of all f={fj}ehp

yv>q (resp. H^) such that {fj}^^ (resp.

ΘO) is dense in h^>q (resp. H^>q).

(vi) f%2=Hw (modulo polynomials),

pO,γ=LP
1 p,2 — πw

PROOF. The assertion (i) follows easily from Theorem 1.2, while (ii) can be
proved as in the scalar- valued case (cf. [11], [3]). The assertion (iii) is derived
from the corresponding result in the scalar- valued case; the proofs of the latter
fact and (iv) are given in [5] and will be reproduced in Appendix §4 for reader's

convenience.

Before going to the main part of our paper, we make the following conventions

on the range of the parameters: — oo<s, s0, s1<oo, 0<p, p0, pί9 q, q0, ^!<oo.

When considering Hardy and Triebel spaces, we also assume 0<p, p0, pί<co.

We also let r0 = inf {r; weAr} (<oo). Furthermore, since we shall explicitly

deal only with non-homogeneous spaces, we let \j/0 denote the function Ψ used in
the definitions of Besov and Triebel spaces; ψj9 j = 1, 2,..., are the same as before.

Thus, we now have Σ^=o ^X:x) = l f°r a^ x- We shall retain these conventions
and notation in the rest of this paper.

§ 2. Fundamental properties

Hereafter, we shall state results for non-homogeneous spaces and make
remarks in the homogeneous case only if there are differences either in the results

or proofs thus, without remarks, it will mean that the results, after appropriately

rephrasing, are valid also for homogeneous spaces. Since the proofs of the results
in §2 are modelled after those given by Peetre ([19]), [20]) and Triebel ([25],
[26]) in the case w = l, we shall not go into details but only indicate when there

are simplifications or some technical difficulties.

2.1. Maximal inequalities

The following simple lemma is useful in proving maximal inequalities for
Besov and Triebel spaces.
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LEMMA 2.1. If g e&" is a function in L£ and supp $ is compact, then

where

λ > nr0/p and gf(x) = sup, \g(x - y)\(ί + \y\)~λ,

and C is a constant that might depend on the diameter of the support of §.
Consequently, for all such g, g J(x) < oo for almost every x.

PROOF. Let Φ be a function in £f such that Φ = 1 on a neighbourhood of
supp g. Then, by using the relation g = Φ*g and an argument similar to the one

given by Peetre [19; pp. 125-127], we obtain

(4) gϊ(x) < cδ-»/'(M(|0|')(x))1/r + cδgϊ(x) ,

where 0<r<l satisfies p/r>r0, and 0<<5<1 will be chosen later. Since the
lemma is obvious if p=oo, we consider only the case p<ao. Assume first that
gf eL£, so that #*(X)<oo for almost every x. Choose δ so small that cδ<l/2.

Then, the desired result in this case follows from (4) and the weighted estimate
for the Hardy maximal function (note that we^4p/r). To prove the lemma for
arbitrary g, let φ e y be such that φ(0) = 1 and supp $ a {\χ\ < 1}. It is obvious

that for any x and z,

Since g is a C°°-function of polynomial growth, φ(t )g e &* for each t >0 and thus,

(φ(t •)#)* e LP,. Hence, the lemma follows from Fatou's lemma and the result
just proved in the case g J e L£. The proof of the lemma is now complete.

Let φj9 j = 0, 1, 2,..., be functions in &* satisfying the following assumptions:
a{\χ\<2k}9 supp0,.cz{2^<|x|<2^k}, j = l,2,..., and

9 j = 0, 1, 2,..., where k is a positive integer. Define

φJJ(x) = supy |^*/(x-Λ|(l + 2^|y|)-A,/e^, λ > 0.

THEOREM 2.2. The following inequalities hold:

s^p^ λ > nr o/p,

βiW;M), λ > max(nr0/p, n/q),

where C(φ) = m3,x^^N Cα, N being sufficiently large, and c might depend on n,

p, q, s and k.
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PROOF. The arguments of Peetre [19; pp. 126-127] and Triebel [25; 2.3.1]

give

and also

ΦJJ(x) < cδ-""(M(\ψj*f\')(x)γ/' + cδφJJ(x}

for all j and x, where r = n/λ and 0 < δ < 1 . Now, Lemma 2. 1 implies that ψ*λf(x)
<oo for almost every x, and thus, by choosing δ so small that cδ<i/2 in the
above, we obtain

(5) ψ*J(χ) < C(M(|̂ */|0 (*))'>'

for all j and for almost every x. IfQ<p,q<ao, then, by noting that r < min(p, q)

and w e Ap/r, we derive the result for the F-space case by using (5) and Lemma 1.1.

The case q = oo for F-space and the B-space case can be similarly deduced from (5)

and the weighted estimate for the maximal function (we need not use the vector-
valued version in the last two cases). We note that the point wise estimate (5)

helps us to simplify a limit argument used by both Peetre [19] and Triebel [25].

COROLLARY 2.3. // p<oo, then we can replace the ls

q(Lζ)-quasi-norm
(resp. L^(ls

q)-quasi-norm, l<g<oo) by the ls

q(hfy-quasi-norm (resp.

quasi-norm) in the definition of Bs

p>™ (resp. Fs

p'™).

PROOF. Let φe^ be such that \φ(x)dx = l and supp φ<=.{\x\< 1}. We

observe that for each 7* = !, 2,..., φt*ψj*f=Q unless ί<21~ /. Thus,

\φt*ψj*f(x)\ < CψjJ(x)\φ(y)\(l + \y\)λdy < CψjJ(x), j = 1, 2,... .

Since the above inequality obviously holds for 0<f < 1 and 7 = 0, we see that

sup0<ί<1 \φt*ψj*f(x)\ < Cψjλf(x)J = 0, 1, 2,...,

and hence the corollary follows from Theorem 2.2.

We are now ready to list elementary properties of weighted Besov and
Triebel spaces. They are consequences of either obvious computations or

Theorem 2.2.

THEOREM 2.4. (i) Bs

p^q (resp. Fs

p^ is a quasi-Banach space with quasi-norm

II * \\B(s,w;P,q) (resp- II HF(S,W;P,</)) Furthermore, we have the following continuous
embedding s:
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c= BS

P>™ d&", se c FΪZ a y.

(ii) se is dense in both Bs

p ™ and Fj * ifp,q«n.

(iii) If σ is a tempered distribution such that

Cσ = mpj\ψj*σ(y)\(l + 2J\y\Ydy < oo,

then

\\σ*f\\B(SMpΛ) < cCJ/ll*<s,W;iMz)» λ > nr0/p,

(It is well-known that Cσ < C(maxα Cα) if |Dασ(x)|<Cα(l +|x|)-lαl for all |α|<
λ + n/2+l (Bernstein's theorem).)

Before going to the next subsection, let us remark that Theorem 2.2 gives us

much flexibility in choosing the sequence {ι/^ } entering in the definitions of Besov

and Triebel spaces. We refer to Peetre ([19], [20]) for many choices of {ι/^ }
satisfying rather weak conditions (cf. also [25], [26]).

2.2. Embedding theorems

First, we give a weighted version of Plancherel-Polya's inequality for entire

functions of exponential type.

LEMMA 2.5. LetfeL^ {}&" (0<jp<oo) be such that supp/c{|χ|<ί}, ί>0.

Assume that w(B(x, l/t))>cΓd for some d>0 and all x. Then

| |/||pl iW < α^/P-i/POji/ii^ o < p < Pί < oo.

PROOF. It suffices to prove the lemma only in the case pl = co. Assume
first that /eL^ = L°°. Let 0<g<l be such that r = p/q>r0 (thus, we^r).

Take φe^ such that φ = \ on {|x|<l}. Then φ s=l on { |x |<f}> s = l/ί. This

property of φs, (BrO and (Ar) imply

ί,wt"(\w(yΓrΊr(sl(s+\χ-y\}rr'dy^""

G \-«/P
w(y)dy) <

|Λ-^|<S /

Since we know a priori that ||/||QO<oo, we obtain the desired result in this case.

For arbitrary /, use a limit argument similar to the proof of Lemma 2.1. We
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note that if vv = 1, then we can take d — n, and the lemma is just the already known
Plancherel-Polya's inequality (cf. [20], [25]).

We say that the weight function w is in the class Jtd (d>G) if w(B(x, ί))>
ctd for all x a n d O < f < l .

THEOREM 2.6. (i) // - oo < sί < s0 < oo, then

βyg c β£.w9 /ΓJO.W c F«.wβ

(ii) ££? c F' " c 5J.J, /7 < oo, r = min (/>, q), t = max (/?, q).

(iii) IfQ<q0<qi<co, then

(iv) // W6^d, d>0, -oo<51<50<oo, 0< jp0< jp1<oo
d/pί9 then

(v) // w e Λ^, d>0, — oo<51<s0<oo,
d/pl9 then

PROOF. The proofs of (i), (ii) and (iii) are obvious by the monotone character
of /^-spaces and Minkowski's inequality. The assertion (iv) follows immediately
from Lemma 2.5, while the first assertion of (v) is derived from Lemma 2.5 and
an argument similar to the one given in the case w = l [26; pp. 101-103]. As
for the second assertion of (v), we observe from the first and (ii) that Fs

p°0'^ <=
BS

P\'^O. The result then follows from Theorem 3.3(i) and Theorem 3.5(i)

(cf. [13] for the case w = 1) .

REMARK 2.7. We note that (i) is not true for homogeneous spaces. As for

(iv) and (v), we must assume w eΛd, i.e., w(B(x, t))>ctd for all x and ί>0.

2.3. Lifting properties, potential spaces, and dual spaces

In the rest of this section, we shall list some other properties of Besov and

Triebel spaces; again, their proof are quite similar to those for the case w = l
by using results from previous subsections, and we do not go into details here

(cf. [26]). We let P; w=F t?. Since jFJ;y = ΛJ (see §4), we see that P°'w=/ι£.

THEOREM 2.8. (i) Let Jσ(x) = (l+4π2|x|2)-σ/2, -oo<σ<oo. Then Jσ is

an isomorphism of B^ (resp. Fj j) onto JBJ+J W (resp. Fj+£ w) .
(ii) //0<p<oo and m = l, 2,..., then
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We just note that the proof of the above theorem is done by considering
certain Fourier multipliers and using Theorem 2.4 (iii).

REMARK 2.9. For homogeneous spaces one should replace Jσ by Jσ, where

In order to describe dual spaces, we need some terminologies. We let <%
denote the set of all sequences {φj}a^ satisfying the following properties:

supp<£0c:{|x|<2}, supple: {2'-V<|x|<2' +1},j = l, 2,..., and Σj#X*) = l for
all x. In the rest of this section (only), we use the following notation : q' = p' = ao
if p, g<l, w'(x) = w(x)1~p/ if p'<co, w'(x) = w(x) if p' = oo,

We denote by ̂ ^ (resp. ^p^'q) the space of those tempered distributions

/for which there exist {φj}e<&9 {fJ}el*q>(L*'>') (resp. !#(/;,)) such that /=

Σj Φj*fj in y". We define

where the infimum is taken over all possible representations of/; similarly, we de-

fine ||/||jr(Sχ;p'ϊg'). If 1 <p<oo and we^p (hence w' e^), then it follows from
a weighted estimate for singlular integrals [7] that &p'"'q' = Bp™f

q '9 as for the
J^-space, we see that ^rp^q'=Fjf^qf if in addition, !<^'<oo (in this later
case we must use a weighted estimate for vector-valued singluar integrals in [1]).

THEOREM 2.10. // 1 <p< oo, then

(£••$' = ^P'S;?'' 0 < g < oo,

ClΓs.wy _ JJΓ-s.w' 1 < ί7 < OOV2 p,g/ * * p ,q J A us c/ ^ '-"-'j

where E' is the space of continuous linear functionals on the quasi-nomed vector
space E.

In concluding this section, we should remark that there are important prop-
erties such as traces, dual spaces for p< 1, etc., that we are not able yet to establish
in the weighted case. This is mainly due to our inability in finding a good sub-

stitute for Lemma 8 in [20; Chap. 11].
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§ 3. Interpolation theorems

3.1. Retracts and coretracts

We first give a quick review of interpolation theory for the sake of easy

reference. Let A0 and A± be two quasi-Banach spaces which are linear subspaces
of a HausdorfT topological vector space E, and such that the corresponding in-

clusions are continuous; we call (A0, A±) a compatible couple. We denote by
AQ + AI the vector sum of A0 and A1. For aeA0 + Ai and f>0, we let

K(t, a; A0, X j ) = infβ=βo+βlfβί^ l i/ss0fι (Kllo + Φil l i ) ,

where || ||0 and || - \\ι are the quasi-norm on A0 and Al9 respectively. By (A0,

A1)θtq = Aθtq9 where 0<0<1, 0<g<oo (or 0 = 0, q = co or 0 = 1, g = oo), we mean
the space of all a eA0-\-A1 for which

Goo l/q

< oo.

We notice that Aθ>q is then a quasi-Banach space with respect to the quasi-norm
|| \\θ>q. The following theorem is useful in computing interpolation spaces.

REITERATION THEOREM. // Θ = (l-λ)θ0 + λθi9 0<;t<l and

then

for any q0, qi and q.

For these results and related facts, we refer to [2] and [21]. Another fact

on interpolation theory that we shall use is the following :

Let A = (A0, AI) and B = (B0, B^ be two compatible couples of quasi-
Banach spaces. Assume that there exist linear mappings R and 5, R: A0 +

A^BO + B!, S Bo + B^Ao + A ί , such that Rt = R\A. (resp. St = S\B) is a
continuous linear map from A t (resp. Bt) into Bt (resp. At\ and R^Si is an identity

map, ί = 0, 1. Then

W\Be,q * \\Sb\\Aβtq.

Here "«" means the equivalence. When the above assumptions hold, we say
that (B09 BI) is a retract of (X0, A±)9 and (A0, A^ is a coretract of (50, Bx)
(we also say that Bt is a retract of Ai9 and At is a coretract of Bj).

In the rest, let Φ be a function in y such that supp Φcι{l/3<|x|<3}, Φ = l
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on {l/2<|x|<2}. Let Φ0, Φ l 9 Φ2,. . be functions in &> satisfying the following
properties: Φ0 = l on supp$0, supp 3>0c:{|χ|<4}, and $j(x) = Φ(2~Jχ), j = l,

2,.... We let Sf={\l/j*f}γ=0 and R({fj})=Σ?=oΦj*fj whenever the latter
has a meaning in Sf'.

LEMMA 3.1. R is a bounded linear operator from /*(/?£) (resp.
l<g<oo) into Bs

p'™ (resp. Fs

p'™)9 and S is a bounded linear operator from

BpΓq (resp.Fs

p>™, l<q<oo) into /|(A*) (resp. A£(/|)). Furthermore, R°S is the
identity map.

PROOF. The conclusion on S is just Corollary 2.3. As for the proof of the
assertion on R, we assume s = 0 for the sake of simplicity. It can be seen from
maximal inequality for weighted Hardy spaces that Σ; Φj*fj exists in &" for
{//} e JooW) (which contains lq(h%) and h^(lq)for any q). Now, a consideration
of the supports of φk and Φy implies that

Ψk*R((fj )) = Σ|,-k|*3 Ψk*Φj*fj, k = 0, 1, 2,...

Hence the result for the 5-space case follows easily from multiplier criterion for
Hardy spaces (see §4). As for the F-space case, we see that for any m,

The last term is dominated by a constant multiple of a finite sum of A£>g-quasi-

norms of elements of the form {ψk*Φk-j*fk-j}> lj'1^3, j<k. Since for such

Λ

(6) ll{^*Φ fc-^Λ-j} fcL(p fw; f l) < c||{Λ}||Λ(ΛW;q)

by an /^-valued analogue of multiplier results in §4, we obtain the desired result
by letting m-»oo (monotone convergence theorem). Here, we must assume
1 < q < oo since in the proof of (6) we use the inequality

IKΣ* l^**Φ f c-j*Λ-jlβ) 1 / βllr.w < c||(Σk IΛI9)1 / < ZL,.
for w eAr9 1 <r< oo. To prove this last inequality, we observe that

(Σ* llMΦi-y'Λ-yl*)1'* < C(Σk(Mfk_jW

and then appeal to Lemma l . l i f l < g < o o ; f o r g = oo, just note that

supfcAfj fk-j < M(supfc fk_j).

The proof of Lemma 3.1 is thus complete.

3.2. Interpolation of weighted vector-valued Hardy spaces

Our aim in this subsection is to prove the following theorem:
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THEOREM 3.2. // 0<£0<oo, 0<0<1, l/p = (l-θ)/p0

 and !<4<oo, then

(7)

(8)

Consequently, ϊ/0<p0, jp1<oo, 0<Θ<1, l/p = (l — 0)/jpo + 0/jPι> then

(9) (##(/;), #{X/ϊ))βfJ, = #£(/ϊ),

(10) (**>(/•), *{?(/•)),., = A5(/J)

fey Reiteration theorem.

PROOF. As before, we assume 5 = 0 for the sake of simplicity. The proof of

the //£ίβ-case can be done by adopting the arguments in the scalar-valued case

given in [8] for w = l . We just note that the assumption l<#<oo is used in
an essential way to interchange the order of summation and integration

(Minkowski's inequality); in the course of the proof, we also use Theorem 1.4
(iii) and the (£r)-condition, r>r0.

Next, we turn to the proof of the /ι£fβ-case. Fix a non-negative function

φe&* with \ φ(x)dx = 1 and supp φ is contained in the unit cube with center at

the origin. One direction is easy. Consider the map: /={//}"-> N+f=
suPo<ί<ι (Σ\Φt*fj(')\q)1/q Then N+ is a sublinear operator and maps Λ£°β

into LPo(μ), dμ = wdx. On the other hand, since

by Holder's inequality (^>1), N+ maps L°°(/β) into L^(μ) = Lco. Thus, we con-
clude from a general version of Marcinkiewicz interpolation theorem that

N+ maps (AJWβ), !"(/,)),., into (L"°(^ L*>(μ))$tp = L'(μ) = LZ9 i.e., (Λ£°(g,
Lco(lq))θipcιh^iq = h^(lq). We note that even in this easy direction, we have used

the assumption q>l. To prove the converse, let /={./}} e f t Jfβ, and Ψ be as
in Theorem 1.4 (ii). Then, it follows from this theorem and (7) that /- Ψ*f

eHZtqc:(hp

w°q,L"(lqy)θip. Thus, it suffices to show that Ψ*fe(h%q9 L"(lqy)βtp.
For any y>0, we assert that there exists a decomposition Ψ*f=g + b into "good
part" and "bad part" satisfying the following:

(11) H0llL-(i.) < 7,

(12) ll*IIRpo.w;β ) < C (
J{N*{N*f>cγ}

For this purpose, let {/J be a decomposition of #" into half-closed (disjoint)

unit cubes, and let/* = {/}},/5 = (ϊ/*/})χ/k, %ιk being the characteristic function
of Ik . Then, for each 7,
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f j = Σ k f k j in &' (in fact in h>).

We define g = ΣkeElf
k, where £1 = {fc; ||(Σy l/5 l β ) 1 / β l lco^y} Since {/,} is a

disjoint family, we see that

and obtain the estimate on the good part. Denote by /*. the closed cube with
the same center as Ik and with length of sides 2, and let E2 = {k:> k^E1}9 i.e.,

keE2 if and only if ||{/j}J ||L~αβ)>7 By writing y*/} as η l / 2 * f j , and noting
that cηe^N and / k x {l/2}c=Γ/x) = {(y, ί); |x-)>|<j8f<jS} for some β>0
and for any x e/J, we see that

(13) JV*/> c||{/5},|L-(lς) > cy on /ϊ, ^e£2.

The estimate (12) on the /z£%-quasi-norm of b would follow from (13) if we can

show that

(14) ll*IIS?ι*,w;β) < C Σ*e

We observe that

for x £ U fce£2 /f = Ω* and 0 < t < 1 . Thus, we obtain

,
Ik

Here, we let £ 2 f k={me£ 2; /* n/f ^0}; note that w(/*)<Cw(/fc) for meE2ik,
and #(£2,fc)^ynCy« depending only on the dimension n). We have thus obtained
(14), and completed the proofs of (11) and (12). The proof of (8) is then finished

in the same way as in [8] we only write it down here for the sake of easy reference.

Let y=/*(ίpo) in the above decomposition, where/* denotes the non-increasing
rearrangement of N*f with respect to the measure wdx. Putting u = tpo, we obtain

{N*f2:cf*(u)}
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Since

X(ί, !P*/; Λ#β> !/*>(/,)) < \\bt\\h(P

we see that

«oo / f i i \P/Po

o ''

dt + (/'"/^ω'r'rff < C||/||ί(l,iW;β)

by Hardy's inequality. The proof of the theorem is thus complete.

3.3. Interpolation of weighted Besov and Triebel spaces

Before proceeding on, we recall that by our definition Bs^q = Bs^tq. We
note also that B'p % (resp.Fj j, !<4<oo) is a retract of ls

q(hζ) (resp. ftJ(/J))
for 0< jp<oo (Lemma 3.1), while it is known that Bί>tq is a retract of /J(L°°)

(see e.g., [2]). We let PSW = PS> = {/; J~sfeL^ .

THEOREM 3.3. If 0<Θ<1, s = (l-

ί9 then the following interpolation formulas hold:

sι,w\ — A?s'w

p,qι)θ,r ~ np,r

(iii) (B%,wBSp\',Ve,p = Bs

P',
wp, P = q

(iv) (/"•.», P f "),,, = ΛJ », P < oo.

/ v \ ( ps,W P*'W\ _ PS.W 77 < OO
V V 7 V^PO ' ^Pi 'Θ>P ΓP 9 P ^ uυ

PROOF. We first notice the following well-known result: Let Abe a quasi-
Banach space and (AQ, A^) be a couple of compatible quasί-Banach spaces.
Then, we have

/i£ parameters are the same as in Theorem 3.3 (cf. [2], [20]). The as-
sertions (i), (ii) and (iii) then follow from this, the result on retracts given in 3.1, the
observation before Theorem 3.3 and interpolation formulas for weighted Hardy
spaces proved in 3.2 (cf. also [2], [20] for the case w = l).
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The proofs of (iv) and (v), which are also routine, are given here for the sake
of easy reference. We need the following result in interpolation theory: //

0 = Σj?=-oo aj in AQ + Al9 ajeA0 n A1for each j, l^λ>Q and

aj = ?=-oo max fl;|0, ^ ι r < oo,

then ae(A0, A^\r and MI^^CIIaH., (cf. [2], [21]). Let {Φk} be the sequence
given in 3.1. Since for each /c = 0, 1, 2,... and/e^', we have

we see that

ιw**/)iιΛ(p,>v) < c2-*'iι^*/L(,iW)

by a multiplier result on weighted Hardy spaces (see §4). Hence, it follows that

(||ιAfc*/||p(So;,,w), 2^°-^\\ψk*f\\P(Si;p>^

max (||/-»(^fc*/)||Λ^

Thus, it follows from Corollary 2.3 that if feBs

p'y, then /e(P£°'w, P*1>w)0,r,

provided we can show that /= Σ* Ψk*f in Pj° w + Pj l f W. This latter fact can be
easily seen by observing from maximal inequality that /=Σfc^*/ in ££,?•
For the other direction of (iv), let fε(Ps°>w, PJ1'")^. For / i6Pj l w such that
/=/0+/! (as elements of &'\ we see that, for fc = 0, 1, 2,...,

Thus,

and the converse inclusion follows. The proof of (v) can be done in the same
spirit by using J~s to lift Ps

p

>w to h^ and then applying the results on weighted
Hardy spaces obtained in 3.2.

REMARK 3.4. (i) We note that (iii) and (v) give interpolation relations
between some weighted and non- weighted spaces.

(ii) If one introduces Besov and Hardy spaces based on Lorentz spaces with

respect to the measure wdx, then interpolation formulas can be derived also for
other values of q and r.

THEOREM 3.5. //0<p0, p^oo, 0<0<1, l/p = (l-0)/p0 + 0/Pι» s = (l-θ)s0

then the following interpolation formulas hold:
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(\ ^ (FS>™ Fs'w Ί — Fs>w /7>1
V 1 / V^po.β' Γpi,q'θ,p — r p,q> <ί ** L '

(ΊΠ ( f f s o t - w FSI.W Λ =FS,W(— Rs,w\
v1 1/ v 'po.βo' ΓPι,qι)θ,p r p,p V -°P,P^ »

PROOF. The assertion (i) follows from results on retracts and Theorem 3.2.

For the proof of (ii), let fe(F%»0, Fji'.ϊX For any A>0 (fixed for a

moment), there exist decompositions f=fk+fk>fkεFs

P

iii%i=Aί, fc = 0, ±1, ±2,...,
such that

Since for each x, j and fc,

^*/W = ^*/2W + ̂ */ίW,

and ls

p = (ls

q°0, ls

q\)o,p, we derive from a result of Holmstedt [12; p. 193] that

for almost every x. Hence, it follows from Holder's inequality and the simple

inequality aηbl~η<a + b (a, b>0 and 0<η<l) that

(ΣΓ~~«

^

Since A is arbitrary, we obtain one direction of (ii); note that we do not use the
assumption Pi<qt in the proof of this direction. For the other direction, we ob-

serve from the assumption Pi<qt that By^cFy^ by Theorem 2.6 (ii). Thus,
the converse inclusion follows from Theorem 3.3 (iii). The last assertion (iii)
is derived again from Theorem 3.3 (i) by observing that

where u~mίn(p9 qt) and ί;f =
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3.4. Remarks

In concluding this section, we make a number of remarks.

(a) We note that if ΐ<pi<co9 Q<qi<ao (resp. l<έ?i<oo), I<min(p0, pj,

and w0, w t eAλ, then B%% (resp. F*<^j)is a retract of /-{(Lft) (resp. L£< (/;<)).
Thus, one can extend many interpolation formulas given in [24] to (Bs

p°Q ™°,
BP\'?q\)θ,r and (Fj° *°, Fj^j)^. It remains, however, the problem of describing
interpolation spaces when either pi9 qt or wt does not satisfy the above

assumptions.
(b) While real interpolation results for weighted Besov spaces are parallel

to the case w = l, those for Triebel spaces are still incomplete; we note that some
parts of Theorem 3.5 (i) and (ii) seem new even for the case w = l. Further, we
have not given any results on interpolation by the complex method. For the case

w = 1, there are results of Triebel [27] for both Besov and Triebel spaces (cf. also
[17]), and of Calderόn-Torchinsky [6; II] for parabolic Hp-spaces; moreover,
in the announcement of Strδmberg-Torchinsky [23], they indicated that complex
interpolation for H% (p > 1) can be carried out by using atoms. We hope to return
to these subjects as well as others, such as traces,..., at a later occasion.

(c) Lastly, we state a result on pseudo-differential operators which is of

interest.

Let σ(x, ξ) be a continuous and bounded function defined on Rn x Rn which
is infinitely differentiable with respect to ξ. Let σ(D) = σ(x, D) be the pseudo-

differential operator whose symbol is σ. Then, the following two propositions

hold:

(i) // p>pβ = max(s, nr0/p-s) and \\Dβ

ξσ( , ξ)\\B(p.
then σ(D) is bounded on B'p %.

(ii) 7/p>pF = max(s, max(nr0/p, nlq)-s)and\\Dβ

ξσ( 9 ξ

Iξl)"1*1, then σ(D) is bounded on Fs^q.
In particular, if σ is a classical symbol in the class S?j0, then σ(D) is

bounded on Bs^q and F8

P'%.

The proof of the above result can be done in a way similar to the case w = 1

given in the proof of Theorem 3 in [4]. In contrast to the case w = 1 where we can

also prove (i) without using interpolation theorem, our proof of the weighted

case relies on Theorem 3.3 in an essential way. We notice that the above result

immediately implies a regularity theorem for elliptic partial differential equations
in terms of weighted spaces; we refer to [20; Appendix D] fora discussion in the

case w=l .
In connection with (ii), we notice that in the announcement [23] there is a

result which states that pseudo-differential operators map H? boundedly into
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L£, p>l. We can see from (ii) and the relation A£=FJ;2 (see §4) that if σ

satisfies the assumptions of (ii) with s = 0 and q = 2 (in particular, if σeSJ f0),
then σ(D) can be interpreted as a bounded operator from h%(=>H£) into L£.

§ 4. Appendix

Our aim is to prove the following identities :

(15) F°p>fy = H% (mod. polynomials) ,

(16) F°;J = Λ*.

The proof is a reproduction of [5] which we give here for reader's convenience.

LEMMA 4.1. The Schwartz class & is dense in ft*.

PROOF. Let/e/z£ and ίPe^ be such that Ψ = l on a neighbourhood of
the origin. Then g=f-Ψ*feH% (cf. Theorem 1.4 (ii)). Since # = 0 on a

neighbourhood of the origin, the Poisson integral u = Kt*g is well-defined on ΛJ+1,

and it can be proved that \\g\\H(p>w^ l|sup,x_y |<f \u(y, t)\ ||ΛW« || sup0<ί<00

!«(*, O l l l j M v (Here Kl(x) = X(jc, t) = Γ((n + l)/2)π^n+^2t(t2 + \x\2)-(n+^/2^ The
desired result then follows by an argument similar to the case w = l ([11; pp.
35-36], [9; Corollary to Theorem 10]) by observing that

uδ = u( 9δ) - >g in H*, as δ - > 0.

This last assertion is derived from the following two facts :

\u(x9 01 < Cr%||H(Λly)(l + |x|)*, xeΛ", t > 0

for some jβ>0, y>0, by a "sub-mean-value" property of \u\?9 and

lim^o u(x> 0 exists for almost every x

by a well-known result of Calderόn.

REMARK 4.2. It can be seen from the above lemma and the embedding & c h^

that the space of functions in & whose Fourier transforms have compact supports
is dense in /z£.

LEMMA 4.3. Letfε H^9 and η be a function in £f such that supp ή is compact.
Then

Άt*f - *0 ϊw HW as ^ - > °°

PROOF. Take another function ψ in & with \ Ψ(x)dx = 1. Then



Weighted Besov and Triebel Spaces 601

(*-^

Similarly, we see that

for s>t.

Thus,

), AT* /(*)).

Since N^f and JVj}/ are in LJ for λ>nr0/p, to complete the proof of the lemma,
we need only show that

(17) supo<s<00|
<Fs*^*/(x)| - > 0 as t - » oo

for almost every x. For this purpose, take a function φe^ such that φ(0) =
and supp $ c {|y| < 1}. Then

Let x e .R" be fixed. The observation on the support just given and Plancherel-
Polya's inequality for entire functions of exponential type [20; Chapter 11,
Lemma 1] (cf. also Lemma 2.5) imply that

^^
where 0 < q < p be such that r = p/q > r0. Hence, it follows that

«™(y)-r>

Ϊ C ) ι/β» ' (C
r»'\ w(y)-''/'dy[ < C||/||H(P,W)J|y|<ί J U

The last two inequalities are consequences of the (£r/)-condition and (ylr)-condition,
respectively. Noting that the last term, being independent of s, tends to 0 as t

tends to oo (since w(Rn) = oo), and |φ(x/ί)l > 1/2 for large ί, we obtain (17). The
proof of the lemma is hence complete.

LEMMA 4.4. The space ΘQ is dense in H^.

PROOF, Let /eίf£. Then, it follows from Lemma 4.1 (Remark 4.2) that
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there exists a sequence {/Jciy such that each/,- has compact support and/,— >/

in /ι£ as j-»oo. Consequently, fj—Ψ*fj^>f—Ψ*f in H^ by Theorem 1.4(ii),
where Ψ e & be such that Ψ = 1 in a neighbourhood of the origin and supp Ψ

is compact. The desired result is then deduced from Lemma 4.3.

REMARK 4.5. (i) If l<p<oo and \veAp, then #£ = /ι£ = L£. In fact,

the inclusion /z£cιL£ follows easily from Lemma 4.1. For the inclusion

we note that for fe L£ and

sup0<ί<oo \Φt*f(x)\ ^

and then use the weighted estimate for the Hardy maximal function.
(ii) It can be seen from Lemma 4.2 (resp. Lemma 4.4) that if /e/ί£ (resp.

Hζ), and Ψe 2> with (ψ(x)dx = l, then ¥>/->/ in A£ (resp. #£) as f-»0.

LEMMA 4.6. Lei K be a tempered distribution such that K is a bounded

function, K is of class CN outside the origin and

\D«K(x)\ < Cα |x|-lαl-", |α| < N

for a sufficiently large N. Then

-Λ.

And thus, the operator Tf=K*f, initially defined on ΘQ, can be extended to a
bounded operator on H^,.

PROOF. The proof is similar to that given for the case w = l in [9], so that
we only sketch necessary modifications. Notation in [9] is retained. The
first modification we need is the estimate for /.

|| supε>0 K*^M*/III<U

\f(y)\*v>(y)dy + Cw(Ω),
R n \Ω

where max(p, r0)<^f<oo. Note here that we have used the identity H(l = Ll?

(Remark 4.5 (i)) and the boundedness of the operator g*-*KM*g on LJ, ([7]).

Secondly, the weighted estimate for the Marcinkiewicz integral ([!]), [14]) gives

Remaining detailed arguments are similar to [9].

REMARK 4.7. By using the technique in [9], one can see that 7/=limε_>0jM^(
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LEMMA 4.8. Let m be an infinitely differentiate function such that

\D*m(x)\ < Cα(l + M)-'α| for any multi-index α,

and K = m. Then f*-*K*f defines a bounded operator on h%.

PROOF. We need only show that

l|κ*/L(Λw) < cn/||Λ(J, iW), /G^.

Let Ψ e Sf such that Ψ = 1 in a neighbourhood of the origin. Then g =/— Ψ*fe
HP,. Since K satisfies the assumptions of Lemma 4.6 by the well-known technique
of estimating a kernel from its symbol (Bernstein's theorem), we see that

Thus, it remains only to show that

which is obvious since K*Ψe&* (see the proof of Lemma 4.3). Note that
the various constants C appearing in the proof depend on {CJ, p, w and Ψ.

PROOFS OF (15) AND (16) (cf. [18], [26]). With all the hard preparations
having been done, we are now ready to prove our results. We only give a proof
for (16) since the other assertion can be similarly verified. By Theorem 2.4 (ii)
and Remark 4.2, it suffices to show that

(18) II/LOMV) ~ ll/llF<o,W;ι>.2)

for any/e^ such that supp/ is compact. Let r,-, j = 0, 1, 2,..., beRademacher
functions ([22)]. Noting that for any such/, ι/^ */=0 except for a finite number
of j's, and using an inequality in [22; Appendix D], we see that

The last inequality follows from the fact that Σ*=o rj(f)Ψj satisfies the assumptions
of Lemma 4.8 with constants {Cα} independent of k and t. Thus, we obtain one
direction of (18). For the other direction, let {Φj} be the sequence given in 3.1.

Then, by an /2-valued analogue of Lemma 4.8 (or 4.7), we obtain

II/H*(P>W) = \\ΣjΦj*Ψj*fL(l,,V) < c\\{ψj*f}\\h(p,w.,2)

< C||(Σ, supo<t<1 l</>t*«/o*
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where φe&*, \φ(x)dx = 1 and supp φ a {\χ\ < 1}. The last term is then dominated

by C||/||F(0fW;p,2) by an argument similar to the proof of Corollary 2.3. We
note that in the proof of the first inequality in the above, we have used the in-

equality

for we^4 r, l<r<oo, and for a suitable sequence of kernels {Kj}. This last in-
equality is well-known for w = l (cf. e.g., [24]). For the case weAr, just modify

the arguments given by Coifman-Feίferman [7] in the scalar-valued case (cf.
also [1]). The proof of (16) is thus complete.
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