Modified Rosenbrock methods with approximate Jacobian matrices

Hisayoshi Shintani
(Received April 23, 1982)

1. Introduction

Consider the initial value problem for a stiff system

$$
\begin{equation*}
y^{\prime}=f(y), \quad y\left(x_{0}\right)=y_{0} \tag{1.1}
\end{equation*}
$$

where y is an m-vector and the vector function $f(y)$ is assumed to be sufficiently smooth. Let $y(x)$ be the solution of this problem,

$$
\begin{equation*}
x_{n}=x_{0}+n h \quad(n=1,2, \ldots, h>0) \tag{1.2}
\end{equation*}
$$

and let $J(y)$ be the Jacobian matrix of $f(y)$. We are concerned with the case where the approximations $y_{j}(j=1,2, \ldots)$ of $y\left(x_{j}\right)$ are obtained by the modified Rosenbrock methods of the form

$$
\begin{equation*}
y_{n+1}=y_{n}+\sum_{i=1}^{q} p_{i} k_{i} \quad(n=0,1, \ldots) \tag{1.3}
\end{equation*}
$$

which require per step one evaluation of J, k evaluations of f and the solution of a system of m linear equations for q different right hand sides, where

$$
\begin{equation*}
M k_{i}=h f\left(y_{n}+\sum_{j=1}^{i-1} a_{i j} k_{j}\right)+h J \sum_{j=1}^{i=1} d_{i j} k_{j} \quad(i=1,2, \ldots, q) \tag{1.4}
\end{equation*}
$$

the matrix $M=I-a h J$ is nonsingular, $J=J\left(y_{n}\right)$ and $a_{i j}, d_{i j}(j=1,2, \ldots, i-1$; $i=1,2, \ldots, q)$ and $a(a>0)$ are constants.

Nørsett and Wolfbrandt [3] obtained an A-stable method of order $k+1$ for $k=q=2,3$. For inexact Jacobian matrices, however, these methods are reduced to methods of lower orders. Steihaug and Wolfbrandt [4] tried to avoid the use of exact Jacobian matrix and considered methods of the form (1.3), called the W-methods, where

$$
\begin{equation*}
W k_{i}=h f\left(y_{n}+\sum_{j=1}^{i-1} a_{i j} k_{j}\right)+h A \sum_{j=1}^{i-1} d_{i j} k_{j} \quad(i=1,2, \ldots, q), \tag{1.5}
\end{equation*}
$$

$W=I-a h A$ is nonsingular and A is a matrix approximating J. They have shown that for $q=2^{k-1}(k=2,3)$ there exists a W-method of order k and that the method of order 2 is $A(0)$-stable under certain conditions.

The first object of this paper is to show that each A-stable modified Rosenbrock method remains A-stable if the Jacobian matrix is approximated with
sufficient accuracy. The second object of this paper is to prove that for $q=2^{k-1}(k=1,2,3)$ there exists a W-method of order k which is A-stable if A is a sufficiently close approximation to J and that the method of order $p(p=2,3)$ embeds a method or order $p-1$. Methods of order 4 are also studied.

2. Preliminaries

Let
(2.2) $\quad \Phi\left(x_{n}, y_{n} ; h\right)=\sum_{i=1}^{k} p_{i} k_{i}+\sum_{j=1}^{k=1} q_{j} l_{j}+r_{1} m_{1} \quad(k=1,2,3)$,
$y_{n+1}=y_{n}+\Phi\left(x_{n}, y_{n} ; h\right) \quad(n=0,1, \ldots)$,
$t_{n+1}=t\left(x_{n}, y_{n} ; h\right)=\sum_{i=1}^{k} p_{i}^{*} k_{i}+\sum_{j=1}^{k-1} q_{j}^{*} l_{j}+r_{1}^{*} m_{1}$,
$T(x ; h)=y(x)+\Phi(x, y(x) ; h)-y(x+h)$,
$t(x ; h)=t(x, y(x) ; h)$,
where
(2.8) $\quad C=h W^{-1}, \quad W=I-a h A$.

Then in Butcher's notation [1] $T\left(x_{n} ; h\right)$ can be expanded into power series in h as follows:

$$
\begin{align*}
& T\left(x_{n} ; h\right)=h A_{1} f+h^{2}\left(B_{1}[f]+B_{2} A f\right)+h^{3}\left(C_{1}[2 f]_{2}+C_{2}[A f]+C_{3} A[f]\right. \tag{2.9}\\
& \left.\quad+C_{4} A^{2} f+C_{5}\left[f^{2}\right]\right)+h^{4}\left(D_{1}\left[{ }_{3} f\right]_{3}+D_{2}[A[f]]+D_{3}\left[{ }_{2} A f\right]_{2}+D_{4}\left[A^{2} f\right]\right. \\
& \quad+D_{5} A\left[{ }_{2} f\right]_{2}+D_{6} A[A f]+D_{7} A^{2}[f]+D_{8} A^{3} f+D_{9}\left[{ }_{2} f^{2}\right]_{2}+D_{10} A\left[f^{2}\right] \\
& \left.\quad+D_{11}[f[f]]+D_{12}[f A f]+D_{13}\left[f^{3}\right]\right)+O\left(h^{5}\right),
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=\sum_{i=1}^{k} p_{i}-1, \quad B_{1}=\sum_{j=2}^{k} c_{j} p_{j}-1 / 2, \quad B_{2}=a+a A_{1}+\sum_{i=1}^{k-1} q_{i}, \tag{2.10}\\
& C_{1}=c_{32} c_{2} p_{3}-1 / 6, \quad C_{2}=a / 2+a B_{1}+d_{3} p_{3}, \quad C_{3}=a / 2+a B_{1}+c_{2} q_{2}, \tag{2.11}\\
& C_{4}=2 a B_{2}-a^{2} A_{1}-a^{2}+r_{1}, \quad 2 C_{5}=\sum_{j=2}^{k} c_{j}^{2}-1 / 3, \quad c_{3}=c_{31}+c_{32}, \\
& D_{1}=-1 / 24, \quad D_{2}=D_{3}=D_{5}=a C_{1}+a / 6, \quad D_{4}=a C_{2}+a d_{3} p_{3}, \tag{2.12}\\
& D_{6}=a C_{2}+a c_{2} q_{2}, \quad D_{7}=a C_{3}+a c_{2} q_{2}, \quad 2 D_{9}=c_{2} C_{1}+c_{2} / 6-1 / 12, \\
& D_{8}=3 a^{2} B_{2}-2 a^{3} A_{1}+3 a r_{1}-2 a^{3}, \quad 2 D_{10}=a / 3+2 a C_{5}+c_{2}^{2} q_{2}, \\
& D_{11}=c_{3} / 6-1 / 8+c_{3} C_{1}, \quad D_{12}=a / 3+2 a C_{5}+c_{3} d_{3} p_{3}, \\
& 6 D_{13}=\sum_{j=2}^{k} c_{j}^{3} p_{j}-1 / 4 .
\end{align*}
$$

Similarly $t\left(x_{n} ; h\right)$ is expanded as follows:

$$
\begin{equation*}
t\left(x_{n} ; h\right)=A_{1}^{*} h f+h^{2}\left(B_{1}^{*}[f]+B_{2}^{*} A f\right)+\cdots \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}^{*}=\sum_{i=1}^{k} p_{i}^{*}, \quad B_{1}^{*}=\sum_{j=2}^{k} c_{j} p_{j}^{*}, \quad B_{2}^{*}=\sum_{i=1}^{k} a p_{i}^{*}+\sum_{j=1}^{k=1} q_{j}^{*}, \cdots . \tag{2.14}
\end{equation*}
$$

To study the stability of (2.1), we apply (2.1) to the scalar test equation $y^{\prime}=$ λy, where λ is a complex number with negative real part. Then $h A$ and (2.1) are reduced to a scalar w and

$$
\begin{equation*}
y_{n+1}=R(z, w) y_{n} \quad(n=0,1, \cdots) \tag{2.15}
\end{equation*}
$$

respectively, where $z=\lambda h$,

$$
\begin{gather*}
R(z, w)=1+\left(p_{1}+p_{2}+p_{3}\right) z Y+\left(c_{2} p_{2}+c_{3} p_{3}\right) z^{2} Y^{2}+\left(q_{1}+q_{2}\right) w z Y^{2} \tag{2.16}\\
+c_{2} c_{32} p_{3} z^{3} Y^{3}+\left(d_{3} p_{3}+c_{2} q_{2}\right) w z^{2} Y^{3}+r_{1} w^{2} z Y^{3} \\
Y=1 /(1-a w) . \tag{2.17}
\end{gather*}
$$

Let

$$
\begin{equation*}
R(z, w)=P(z, w) / Q(w) \tag{2.18}
\end{equation*}
$$

where $P(z, w)$ is a polynomial in z and $w, Q(w)$ is a power of $1-a w$, and $P(z, w)$ and $Q(w)$ have no factor in common. Put

$$
\begin{equation*}
z=x+i y \quad(x<0), y=t x, r=|z| \tag{2.19}
\end{equation*}
$$

where x and y are real numbers and i is the imaginary unit. Let α and β be the z - and $i z$ - component of the vector $w-z$ respectively, that is,

$$
\begin{equation*}
w-z=(\alpha+i \beta) z \tag{2.20}
\end{equation*}
$$

where α and β are real numbers. Let

$$
\arg (-z)=\theta, \quad \arg (-w)=\phi \quad(-\pi / 2<\theta, \phi<\pi / 2)
$$

Then $\beta t>0$ if and only if $\theta \phi>0$ and $|\theta|<|\phi|$.
Let

$$
\begin{equation*}
a w=(u+i v) z, \quad E(x, y, \alpha, \beta)=|Q(w)|^{2}-|P(z, w)|^{2} . \tag{2.21}
\end{equation*}
$$

Then $|R(z, w)|<1$ if and only if $E(x, y, \alpha, \beta)>0$. In the sequel $E(x, y, \alpha, \beta)$ is written simply as E. Since E is a polynomial in x, y, α and β, by continuity $E(x, y, \alpha, \beta)>0$ for sufficiently small $|\alpha|$ and $|\beta|$ if $E(x, y, 0,0)>0$. On the other hand $E(x, y, 0,0)>0$ for all y and all $x<0$ if and only if the method (2.1) with
$A=J$ is A-stable. Thus we have the following
Theorem 1. The A-stable modified Rosenbrock method remains A-stable if the Jacobian matrix is approximated with sufficient accuracy. The Wmethod which is A-stable for $A=J$ is A-stable if A is a sufficiently close approximation to J.

3. Construction of the methods

We shall show the following
Theorem 2. For $q=2^{k-1}(k=1,2,3)$ there exists a W-method of order k which is A-stable if A is a sufficiently close approximation to J. For $k=2,3$ there exists also a formula (2.3) such that $t(x ; h)=O\left(h^{k}\right)$.

3.1. \quad Case $k=1$

The condition $r_{1}=A_{1}=0$ yields

$$
\begin{align*}
& y_{n+1}=y_{n}+k_{1} \tag{3.1}\\
& T\left(x_{n} ; h\right)=h^{2}(-[f] / 2+a A f)+O\left(h^{3}\right) \\
& R(z, w)=1+z Y, \quad E=-2 x+(2 u-1) r^{2} .
\end{align*}
$$

Hence the method (3.1) is A-stable if and only if $u \geqq 1 / 2$, that is,

$$
\begin{equation*}
\alpha \geqq-1+1 / 2 a . \tag{3.4}
\end{equation*}
$$

For instance, when $a=2 / 3$, it is A-stable if and only if $\alpha \geqq-1 / 4$.

3.2. Case $\mathbf{k}=\mathbf{2}$

The condition $r_{1}=A_{1}=B_{1}=B_{2}=0$ yields

$$
\begin{align*}
& p_{1}=1-p_{2}, \quad 2 c_{2} p_{2}=1, \quad q_{1}=-a, \tag{3.5}\\
& C_{1}=-1 / 6, \quad C_{2}=C_{3}=a / 2, \quad C_{4}=-a^{2}, \quad C_{5}=\left(3 c_{2}-2\right) / 12, \tag{3.6}\\
& R(z, w)=1+z Y+z^{2} Y^{2} / 2-a w z Y^{2}, \\
& E=-2 x+b_{2} x^{2}-b_{3} r^{2} x+b_{4} r^{4},
\end{align*}
$$

where

$$
\begin{align*}
& b_{2}=2(4 u-1-4 v t), \quad b_{3}=10 u^{2}-6 u+1+6 v^{2}-2(2 u-1) v t, \tag{3.9}\\
& b_{4}=(4 u-3) v^{2}+(4 u-1)(2 u-1)^{2} / 4 .
\end{align*}
$$

Hence, for instance, if

$$
\begin{equation*}
u \geqq 61 / 100, \quad|v| \leqq 33 \sqrt{ } 14 / 700, \quad v t \leqq 9 / 25, \tag{3.10}
\end{equation*}
$$

the method (2.1) is A-stable because $b_{2} \geqq 0, b_{3} \geqq 4513 / 5000, b_{4} \geqq 0$. When $w=z$, that is, $u=a$ and $v=0$, it is A-stable if and only if

$$
\begin{equation*}
a \geqq 1 / 4 . \tag{3.11}
\end{equation*}
$$

Choosing $r_{1}^{*}=A_{1}^{*}=0$ and $q_{1}^{*}=\left(q_{1} / p_{2}\right) p_{2}^{*}$, we have
(3.12) $p_{1}^{*}=-p_{2}^{*}, \quad q_{1}^{*}=-2 a c_{2} p_{2}^{*}$,

$$
\begin{align*}
& B_{1}^{*}=c_{2} p_{2}^{*}, \quad B_{2}^{*}=q_{1}^{*}, \quad C_{1}^{*}=0, \quad C_{2}^{*}=C_{3}^{*}=a B_{1}^{*}, \quad C_{4}^{*}=2 a q_{1}^{*} \tag{3.13}\\
& C_{5}^{*}=c_{2} B_{1}^{*} / 2
\end{align*}
$$

The choice $C_{5}=0$ yields $c_{2}=2 / 3$ and

$$
\begin{equation*}
y_{n+1}=y_{n}+\left(k_{1}+3 k_{2}\right) / 4-a l_{1} . \tag{3.14}
\end{equation*}
$$

When $A=J, T\left(x_{n}, h\right)$ is reduced to $-\left(6 a^{2}-6 a+1\right) h^{3}\left[{ }_{3} f\right]_{3} / 6+O\left(h^{4}\right)$, so that in view of (3.11) we choose

$$
\begin{equation*}
a=(3+\sqrt{ } 3) / 6 \tag{3.15}
\end{equation*}
$$

Then the method (3.12) is A-stable if

$$
\begin{align*}
& \alpha \geqq(83-61 \sqrt{ } 3) / 100=-0.2265,|\beta| \leqq 33 \sqrt{ } 14(3-\sqrt{ } 3) / 700=0.2236, \tag{3.16}\\
& \beta t \leqq 9(3-\sqrt{ } 3) / 25=0.4564
\end{align*}
$$

and it becomes a method of order 3 when $A=J$.
The choice

$$
\begin{equation*}
p_{2}^{*}=-3 d / 4, \quad d=2-\sqrt{ } 3 \tag{3.17}
\end{equation*}
$$

yields

$$
\begin{equation*}
t_{n+1}=3 d\left(k_{1}-k_{2}\right) / 4+a d l_{1} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{1}^{*}=-d / 2, \quad B_{2}^{*}=a d, \quad C_{2}^{*}=C_{3}^{*}=-a d / 2, \quad C_{4}^{*}=2 a^{2} d, \quad C_{5}^{*}=-d / 6 . \tag{3.19}
\end{equation*}
$$

Put

$$
\begin{equation*}
g_{2}=3 k_{2} / 4-a l_{1} . \tag{3.20}
\end{equation*}
$$

Then (3.13) and (3.14) can be rewritten as follows:

$$
\begin{equation*}
y_{n+1}=y_{n}+3 k_{1} / 4+g_{2}, t_{n+1}=d\left(3 k_{1} / 4-g_{2}\right), \tag{3.21}
\end{equation*}
$$

where k_{1} and g_{2} are obtained from the formulas

$$
\begin{equation*}
W k_{1}=h f_{1}, W\left(g_{2}-k_{1}\right)=3 h f_{2} / 4-k_{1} . \tag{3.22}
\end{equation*}
$$

Thus we have $q=2$.

3.3. Case $k=3$

The conditions $A_{1}=B_{1}=B_{2}=0$ and $C_{i}=0(i=1,2,3,4,5)$ yield

$$
\begin{equation*}
R(z, w)=1+z Y+z^{2} Y^{2} / 2-a w z Y^{2}+z^{3} Y^{3} / 6-a w z^{2} Y^{3}+a^{2} w^{2} z Y^{3}, \tag{3.25}
\end{equation*}
$$

$$
\begin{align*}
& p_{1}+p_{2}+p_{3}=1, \quad q_{1}+q_{2}=-a, \quad r_{1}=a^{2}, \quad d_{3} p_{3}=c_{2} q_{2}=-a / 2, \tag{3.23}\\
& c_{2} p_{2}+c_{3} p_{3}=1 / 2, \quad c_{3}\left(c_{3}-c_{2}\right) p_{3}=\left(2-3 c_{2}\right) / 6, \quad c_{32} c_{2} p_{3}=1 / 6, \\
& D_{1}=-1 / 24, \quad D_{2}=D_{3}=D_{5}=a / 6, \quad D_{4}=D_{6}=D_{7}=-a^{2} / 2, D_{8}=a^{3}, \tag{3.24}\\
& D_{9}=\left(2 c_{2}-1\right) / 24, \quad D_{10}=a\left(2-3 c_{2}\right) / 12, \quad D_{11}=\left(4 c_{3}-3\right) / 24, \\
& D_{12}=a\left(2-3 c_{3}\right) / 6, \quad D_{13}=\left[-3+4\left(c_{2}+c_{3}\right)-6 c_{2} c_{3}\right] / 72,
\end{align*}
$$

$$
\begin{equation*}
E=-2 x+b_{2} x^{2}-b_{3} x^{3}+b_{4} r^{2} x^{2}-b_{5} r^{4} x+b_{6} r^{6} \tag{3.26}
\end{equation*}
$$

where

$$
\begin{align*}
b_{2}= & 2(6 u-1-6 v t), \quad b_{3}=6(4 u-1-5 v t)^{2} / 5+2(9 u-1)^{2} / 15+6\left(v^{2}+u^{2} t^{2}\right), \tag{3.27}\\
b_{4}= & 3(2 u-1) v^{2} t^{2}-4\left(12 u^{2}-6 u+1\right) v t+38 u^{3}-27 u^{2}+7 u-7 / 12 \\
& -t^{2}\left(2 u^{3}-3 u^{2}+u-1 / 12\right)+v^{2}[3(10 u-3)-32 v t], \\
b_{5}= & 12 v^{4}+\left(36 u^{2}-24 u+5\right) v^{2}+24 u^{4}-28 u^{3}+13 u^{2}-5 u / 2+1 / 6 \\
& -\left[12 u^{3}-12 u^{2}+4 u-1 / 2+4(3 u-2) v^{2}\right] v t, \\
b_{6}= & 6(u-1) v^{4}+\left(12 u^{3}-18 u^{2}+8 u-5 / 4\right) v^{2}+(3 u-1)(6 u-1)\left(12 u^{3}-18 u^{2}\right. \\
& +9 u-1) / 36 .
\end{align*}
$$

Hence, for instance, if
(3.28) $3 / 8 \leqq u \leqq 1, \quad|v| \leqq \sqrt{5 g} / 120=v_{0},-17 / 56 \leqq v t \leqq 9 / 128, g=4 \sqrt{ } 489-57$,
then the method (2.1) is A-stable because

$$
b_{2} \geqq 53 / 32, \quad b_{3} \geqq 0, \quad b_{4} \geqq 23975 / 199608, \quad b_{5} \geqq 119 / 3072, \quad b_{6} \geqq 0 .
$$

For $w=z$ it is A-stable if and only if

$$
\begin{equation*}
1 / 3 \leqq a \leqq a_{1}, \quad a_{1}=1.0686 \cdots, \tag{3.29}
\end{equation*}
$$

where a_{1} is the largest root of the equation $2 a^{3}-3 a^{2}+a-1 / 12=0$.
The conditions $A_{1}^{*}=B_{1}^{*}=B_{2}^{*}=0, q_{2}^{*}=\left(q_{2} / p_{3}\right) p_{3}^{*}$ and $r_{1}^{*}=\left(r_{1} / p_{3}\right) p_{3}^{*}$ lead to

$$
\begin{align*}
& p_{1}^{*}+p_{2}^{*}+p_{3}^{*}=0, \quad c_{2} p_{2}^{*}+c_{3} p_{3}^{*}=0, \quad q_{1}^{*}=-q_{2}^{*}, q_{2}^{*}=d_{3} p_{3}^{*} / c_{2}, \tag{3.30}\\
& r_{1}^{*}=-2 a d_{3} p_{3}^{*},
\end{align*}
$$

$$
\begin{align*}
& C_{1}^{*}=c_{32} c_{2} p_{3}^{*}, \quad C_{2}^{*}=C_{3}^{*}=d_{3} p_{3}^{*}, \quad C_{4}^{*}=-2 a d_{3} p_{3}^{*}, \quad 2 C_{5}^{*}=c_{3}\left(c_{3}-c_{2}\right) p_{3}^{*}, \tag{3.31}\\
& D_{1}^{*}=0, \quad D_{2}^{*}=D_{3}^{*}=D_{5}^{*}=a C_{1}^{*}, \quad D_{4}^{*}=D_{6}^{*}=D_{7}^{*}=2 a d_{3} p_{3}^{*}, \quad D_{8}^{*}=3 a r_{1}^{*}, \\
& D_{9}^{*}=c_{2} C_{1}^{*} / 2, \quad D_{10}^{*}=a C_{5}^{*}+c_{2} d_{3} p_{3}^{*} / 2, \quad D_{11}^{*}=c_{3} C_{1}^{*}, \\
& D_{12}^{*}=2 a C_{5}^{*}+c_{3} d_{3} p_{3}^{*}, \quad 3 D_{13}^{*}=\left(c_{2}+c_{2}\right) C_{5}^{*} .
\end{align*}
$$

The choice $D_{13}=D_{11}+D_{12}=D_{9}+D_{10}=0$ yields
(3.33) $\quad a=1 / 2, c_{2}=1, \quad c_{31}=c_{32}=1 / 4, \quad d_{3}=-3 / 8$,
(3.34) $y_{n+1}=y_{n}+\left(k_{1}+k_{2}+4 k_{3}\right) / 6-\left(l_{1}+l_{2}\right) / 4+m_{1} / 4$,

$$
\begin{align*}
& D_{2}=D_{3}=D_{5}=1 / 12, \quad D_{4}=D_{6}=D_{7}=-1 / 8, \quad D_{8}=1 / 8, \tag{3.35}\\
& D_{9}=-D_{10}=-D_{11}=D_{12}=1 / 24 .
\end{align*}
$$

The method (3.34) is A-stable if
(3.36) $-1 / 4 \leqq \alpha \leqq 1, \quad|\beta| \leqq 2 v_{0}=0.2090,-17 / 28 \leqq \beta t \leqq 9 / 64$.

In the case $A=J, T\left(x_{n} ; h\right)$ becomes $-h^{4}\left[{ }_{3} f\right]_{3} / 24+O\left(h^{5}\right)$.
For the choice $p_{3}^{*}=-1 / 6$ we have

$$
\begin{align*}
& t_{n+1}=\left(k_{1}+k_{2}-2 k_{3}\right) / 12-\left(l_{1}-l_{2}\right) / 16-m_{1} / 16, \tag{3.37}\\
& C_{1}^{*}=-1 / 24, \quad C_{2}^{*}=C_{3}^{*}=-C_{4}^{*}=1 / 16, \quad C_{5}^{*}=1 / 48, \\
& D_{1}^{*}=0, \quad D_{i}^{*}=-1 / 48(i=2,3,5,9,11), \quad D_{4}^{*}=D_{6}^{*}=D_{7}^{*}=1 / 16, \\
& D_{8}^{*}=-3 / 32, \quad D_{10}^{*}=1 / 24, \quad D_{12}^{*}=5 / 96, \quad D_{13}^{*}=1 / 96 .
\end{align*}
$$

Let

$$
\begin{equation*}
g_{3}=4 k_{3} / 3-\left(l_{2}-m_{1}\right) / 2 . \tag{3.40}
\end{equation*}
$$

Then (3.34) and (3.37) can be rewritten as follows:

$$
\begin{align*}
& y_{n+1}=y_{n}+\left(k_{1}+k_{2}\right) / 6-l_{1} / 4+g_{3} / 2, \tag{3.41}\\
& t_{n+1}=\left(k_{1}+k_{2}\right) / 12-l_{1} / 16-g_{3} / 8, \tag{3.42}
\end{align*}
$$

where k_{1}, k_{2}, l_{1} and g_{3} are obtained from the formulas
(3.43) $W k_{1}=h f_{1}, \quad W k_{2}=h f_{2}, \quad W\left(l_{1}+2 k_{1}\right)=2 k_{1}$,

$$
W\left(g_{3}-k_{2}+l_{1}\right)=4 h f_{3} / 3-k_{2}+l_{1},
$$

$$
\begin{equation*}
f_{3}=f(\hat{y}), \quad \hat{y}=y_{n}+\left(k_{1}+k_{2}\right) / 4-3 l_{1} / 8 . \tag{3.44}
\end{equation*}
$$

Thus we have $q=4$.

4. Methods of order $\mathbf{4}$

Let

$$
\begin{align*}
& y_{n+1}=y_{n}+\sum_{i=1}^{4}\left(p_{i} k_{i}+q_{i} l_{i}\right)+r_{1} m_{1}+r_{2} m_{2}+s_{1} n_{1} \tag{4.1}\\
& t_{n+1}=\sum_{i=1}^{4} p_{i}^{*} k_{i}+p^{*} h f^{*}+q_{1}^{*} l_{1}+q_{2}^{*} l_{2}+r_{1}^{*} m_{1}
\end{align*}
$$

where

$$
\begin{equation*}
k_{4}=C f_{4}, \quad l_{4}=C A k_{4}, \quad m_{2}=C A l_{2}, \quad n_{1}=C A m_{1}, \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
f_{4}=f\left(y_{n}+\sum_{i=1}^{3} c_{4 i} k_{i}+\sum_{j=1}^{2} d_{4 j} l_{j}+e_{4} m_{1}\right), \quad f^{*}=f\left(y_{n+1}\right) . \tag{4.4}
\end{equation*}
$$

The conditions $A_{1}=B_{1}=B_{2}=0, C_{j}=0(j=1,2,3,4,5)$ and $D_{k}=0 \quad(k=$ $1,2, \ldots, 13$) yield

$$
\begin{align*}
& \sum_{i=1}^{4} p_{i}=1, \quad \sum_{j=2}^{4} c_{j} p_{j}=1 / 2, \quad \sum_{k=3}^{4} g_{k} p_{k}=1 / 6, \quad 24 u p_{4}=1, \tag{4.5}\\
& q_{i}=-a p_{i}(i=1,2,3,4), \quad r_{1}+r_{2}=a^{2}, \quad 2 c_{2} r_{2}=a^{2}, \quad s_{1}=-a^{3}, \\
& c_{4}=1, \quad d_{3}=-4 a g_{3}, \quad c_{2} d_{43}=c_{43} d_{3}, \quad e_{4} p_{4}=a^{2} / 2, \tag{4.6}\\
& c_{3}\left(c_{3}-c_{2}\right)=2\left(1-2 c_{2}\right) g_{3}, \quad\left(1-c_{3}\right) g_{4}=\left(3-4 c_{3}\right) u,\left(1-c_{3}\right) d_{4}=4 a\left(3 c_{3}-2\right) u, \\
& \left(1-c_{2}\right)\left(1-c_{3}\right)=2\left[3-4\left(c_{2}+c_{3}\right)+6 c_{2} c_{3}\right] u,
\end{align*}
$$

$$
\begin{equation*}
E(0, y, 0,0)=y^{6}\left(a^{2} b_{3} b_{2} y^{4}+b_{1} y^{2}+b_{0}\right) \tag{4.7}
\end{equation*}
$$

where

$$
\begin{align*}
& u=c_{43} g_{3}, \quad c_{4}=\sum_{j=1}^{3} c_{4 j}, \quad d_{4}=\sum_{i=1}^{2} d_{4 i}, \quad g_{i}=\sum_{j=2}^{i=1} c_{i j} c_{j} \quad(i=3,4), \tag{4.8}\\
& b_{0}=-8 a^{5}+12 a^{4}-19 a^{3} / 3+7 a^{2} / 4-a / 4+1 / 72, \\
& b_{1}=5 a^{6}-2 a^{5}-19 a^{4} / 12+4 a^{3} / 3-13 a^{2} / 36+a / 24-1 / 576 \\
& b_{2}=2 a^{4}-4 a^{3}+7 a^{2} / 2-a+1 / 12, \quad b_{3}=4 a^{3}-7 a^{2} / 2+a-1 / 12
\end{align*}
$$

The method (4.1) with $A=J$ is A-stable if and only if $E(0, y, 0,0) \geqq 0$ for all y [2], that is,

$$
\begin{equation*}
a_{2} \leqq a \leqq a_{3}, \quad a_{2}=0.267766, \quad a_{3}=0.788675 \tag{4.10}
\end{equation*}
$$

where a_{2} and a_{3} are zeros of b_{2} and b_{0} respectively.
Choosing $A_{1}^{*}=B_{1}^{*}=B_{2}^{*}=0$ and $C_{i}^{*}=0(i=1,2,3,4,5)$, we have

$$
\begin{align*}
& \sum_{i=1}^{4} p_{i}^{*}+p^{*}=0, \quad \sum_{j=2}^{4} c_{j} p_{j}^{*}+p^{*}=0, \quad \sum_{i=3}^{4} g_{i} p_{i}^{*}=-p^{*} / 2, \tag{4.11}\\
& 4 u p_{4}^{*}=-p^{*}, \quad q_{1}^{*}+q_{2}^{*}=a p^{*}, \quad c_{2} q_{2}^{*}=a p^{*}, \quad r_{1}^{*}=-a^{2} p^{*},
\end{align*}
$$

(4.12) $\quad D_{1}^{*}=-p^{*} / 12, \quad D_{2}^{*}=D_{3}^{*}=-D_{5}^{*}=a p^{*} / 2, \quad D_{4}^{*}=-2 a^{2} p^{*}, \quad D_{6}^{*}=D_{7}^{*}=a^{2} p^{*}$,

$$
\begin{aligned}
& D_{8}^{*}=-a^{3} p^{*}, \quad D_{9}^{*}=\left(3 c_{2}-1\right) p^{*} / 12, \quad D_{10}^{*}=a\left(c_{2}-1\right) p^{*} / 2 \\
& D_{11}^{*}=\left(2 c_{3}-1\right) p^{*} / 4, \quad D_{12}^{*}=a\left(1-2 c_{3}\right) p^{*}, \quad D_{13}^{*}=\left(2 c_{2}-1\right)\left(1-2 c_{3}\right) p^{*} / 2
\end{aligned}
$$

The choice $c_{2}=2 / 5$ and $c_{3}=3 / 5$ yields

$$
\begin{align*}
& p_{1}=p_{4}=11 / 72, \quad p_{2}=p_{3}=25 / 72, \quad r_{1}=-a^{2} / 4, \quad r_{2}=5 a^{2} / 4, \tag{4.13}\\
& c_{31}=-3 / 20, \quad c_{32}=3 / 4, \quad d_{3}=-6 a / 11, \quad c_{41}=19 / 44, \quad c_{42}=-15 / 44, \tag{4.14}\\
& c_{43}=10 / 11, \quad d_{41}=24 a / 11, \quad d_{42}=-30 a / 11, \quad e_{4}=36 a^{2} / 11, \\
& p_{1}^{*}=p_{2}^{*}=p^{*} / 6, \quad p_{3}^{*}=-5 p^{*} / 12, \quad p_{4}^{*}=-11 p^{*} / 12, \quad q_{1}^{*}=-3 a p^{*} / 2, \tag{4.15}\\
& q_{2}^{*}=5 a p^{*} / 2, \quad r_{1}^{*}=-a^{2} p^{*} .
\end{align*}
$$

When $A=J, T\left(x_{n} ; h\right)$ becomes

$$
\begin{aligned}
& \left(h^{5} / 5!\right)\left\{\left(-120 a^{4}+180 a^{3}-80 a^{2}+15 a-1\right)\left[{ }_{4} f\right]_{4}+a\left[{ }_{3} f^{2}\right]_{3}-2 a[2[f] f]_{2}\right. \\
& \quad-2\left[{ }_{2} f^{3}\right]_{2} / 15+\left(20 a^{2}-5 a+1\right)\left[\left[_{2} f\right]_{2} f\right]+\left(2800 a^{2}+200 a+9\right)\left[\left[f^{2}\right]\right] / 220 \\
& \left.\quad+a\left[[f] f^{2}\right]+\left[f^{4}\right] / 30\right\}+O\left(h^{6}\right)
\end{aligned}
$$

and $t(x ; h)$ is reduced to

$$
\begin{aligned}
& \left(h^{4} / 4!\right)\left\{\left(-24 a^{2}+12 a-2\right)\left[{ }_{3} f\right]_{3}+2(1-18 a)\left[{ }_{2} f^{2}\right]_{2} / 5+6(1-4 a)[[f] f] / 5\right. \\
& \left.\quad+12\left[f^{3}\right] / 25\right\} p^{*}+O\left(h^{5}\right) .
\end{aligned}
$$

Let

$$
\begin{align*}
& v_{3}=C\left(f_{3}-3 a k_{2}+18 a^{2} l_{1} / 5\right), v_{4}=C\left(f_{4}-15 a k_{2} / 11-18 a^{2} l_{1} / 11\right), \tag{4.16}\\
& v=C A\left(q_{3} v_{3}+q_{4} v_{4}+65 a k_{2} / 72-5 a^{2} l_{1} / 4\right) .
\end{align*}
$$

Then (4.1), (4.2) and (4.4) can be rewritten as follows:

$$
\begin{align*}
& y_{n+1}=y_{n}+p_{1} k_{1}+p_{2} k_{2}+p_{3} v_{3}+p_{4} v_{4}+q_{1} l_{1} \tag{4.17}\\
& t_{n+1}=p_{1}^{*} k_{1}+p_{2}^{*} k_{2}+p_{3}^{*} v_{3}+p_{4}^{*} v_{4}+p^{*} h f^{*}+q_{1}^{*} l_{1}-a^{2} p^{*} m_{1} \\
& f_{4}=f\left(y_{n}+c_{41} k_{1}+c_{42} k_{2}+c_{43} v_{3}+d_{41} l_{1}\right) .
\end{align*}
$$

Hence we have $q=7$ and we have shown the following
Theorem 3. For $k=4$ and $q=7$ there exist a formula (4.2) such that $t_{n+1}=$ $O\left(h^{4}\right)$ and a W-method (4.1) of order 4 which is A-stable if A is a sufficiently close approximation to J.

References

[1] J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. 3 (1963), 185-201.
[2] S. P. Nørsett, C-polynomials for rational approximation to the exponential function, Numer. Math. 25 (1975), 39-56.
[3] S. P. Nørsett and A. Wolfbrandt, Order conditions for Rosenbrock-type methods, Numer. Math. 32 (1979), 1-16.
[4] T. Seihaug and A. Wolfbrandt, An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations, Math. Comp. 33 (1979), 521-534.

> Department of Mathematics, Faculty of School Education, Hiroshima University

