An analogue of Peter-Weyl theorem for the infinite dimensional unitary group

Kiyosato Окаmoto and Takatoshi Sakurai
(Received April 15, 1982)

Introduction

In the previous paper [6] we proved an analogue of the Peter-Weyl theorem for the infinite dimensional rotation group $O(\boldsymbol{E})$ (for the definition see [6]). In this paper we shall prove the analogue of Peter-Weyl theorem for $U(\boldsymbol{E})$ (for the definition see $\S 1$). In the paper [6], for a proof of the irreducibility of the representation $\pi_{n, \rho}$ we used the results of A. M. Vershik, I. M. Gel'fand and M. I. Graev [9] in which they used the results of A. A. Kirillov [4]. In this paper we shall prove the irreducibility of the representation $\pi_{p, q, \rho, \delta}$, where the method of proof also works for $\pi_{n, \rho}$. Thus the arguments in our previous papers [5] and [6] are complete in our framework. It is plausible that the representations $U_{p, q, \rho, \delta}$ of the group of diffeomorphisms on a compact riemannian manifold would be able to be constructed in such a way that they should correspond to the representations $U_{n, \rho}$ (for the definition see [6]) given by A. M. Vershik, I. M. Gel'fand and M. I. Graev.

§ 1. Irreducibility of representations $\pi_{p, q, \rho, \delta}$

Let M be a compact riemannian manifold. We denote by $C^{\infty}(M, \boldsymbol{R})$ the space of all real valued C^{∞}-functions on M and $L^{2}(M, \boldsymbol{R})$ the Hilbert space of all square integrable real valued functions on M. We denote by $C^{\infty}(M, \boldsymbol{R})^{*}$ the dual space of $C^{\infty}(M, \boldsymbol{R})$. Let $C^{\infty}(M)$ be the space of all complex valued C^{∞} functions on M. We denote by $L^{2}(M)$ the Hilbert space of all square integrable complex valued functions on M. We write $\boldsymbol{E}, \boldsymbol{H}$ and \boldsymbol{E}^{*} instead of $C^{\infty}(M)$, $L^{2}(M)$ and $C^{\infty}(M)^{*}$ respectively, where $C^{\infty}(M)^{*}$ denotes the dual space of $C^{\infty}(M)$. We denote by $U(\boldsymbol{E})$ the group of all linear homeomorphisms of \boldsymbol{E} which are isometries of \boldsymbol{H}. Let $L^{2}(M \times \cdots \times M)$ be the Hilbert space of all square integrable complex valued functions on $M \times \cdots \times M$ (r-times). We write simply $L^{2}(M: r)$ instead of $L^{2}(M \times \cdots \times M)$. Let V be a finite dimensional vector space with an inner product and $L^{2}(M \times \cdots \times M, V)$ the Hilbert space of all V-valued functions f on $M \times \cdots \times M$ (r-times) such that

$$
\|f\|^{2}=\int_{M \times \cdots \times M}\left\|f\left(u_{1}, \ldots, u_{r}\right)\right\|_{V}^{2} d u_{1} \cdots d u_{r}<+\infty
$$

We also write simply $L^{2}(M: r, V)$ instead of $L^{2}(M \times \cdots \times M, V)$.
As in the previous paper [6], we shall consider a Gel'fand triple

$$
C^{\infty}(M \times M) \subset L^{2}(M \times M) \subset C^{\infty}(M \times M)^{*} .
$$

We can identify $C^{\infty}(M \times M), L^{2}(M \times M)$ and $C^{\infty}(M \times M)^{*}$ with $\boldsymbol{E} \hat{\otimes} \boldsymbol{E}, \boldsymbol{H} \bar{\otimes} \boldsymbol{H}$ and $(\boldsymbol{E} \hat{\otimes} \boldsymbol{E})^{*}$ respectively, where $\boldsymbol{E} \hat{\otimes} \boldsymbol{E}$ and $\boldsymbol{H} \bar{\otimes} \boldsymbol{H}$ denote the completion of $\boldsymbol{E} \otimes \boldsymbol{E}$ and $\boldsymbol{H} \otimes \boldsymbol{H}$ respectively. Then we get a complex Gaussian measure v on $(\boldsymbol{E} \widehat{\otimes} \boldsymbol{E})^{*}$ such that for any ζ in $\boldsymbol{E} \hat{\otimes} \boldsymbol{E}$

$$
e^{-\|\zeta\|^{2}}=\int_{\Omega} K(z ; \zeta) d v(z), \quad K(z ; \zeta)=e^{i\langle\langle z, \zeta\rangle+(\langle z, \zeta\rangle)-\}}
$$

where $\Omega=(\boldsymbol{E} \hat{\otimes} \boldsymbol{E})^{*}$, (for a function f on Ω we often use the notation $(f(z))^{-}$ instead of the complex conjugation of $f(z)$). Let \boldsymbol{N} be the set of all positive integers. For any p and q in $\boldsymbol{N} \cup\{0\}$, we consider the complex Hermite polynomial;

$$
H_{p, q}(t, \bar{t})=(-1)^{p+q} e^{t \bar{t}} \frac{\partial^{p+q}}{\partial \bar{t}^{p} \partial t^{q}} e^{-t \bar{t}} \quad(t \in \boldsymbol{C}) .
$$

In the following we fix, once for all, an orthonormal basis $\left\{\xi_{j} ; j \in \boldsymbol{N}\right\}$ of $L^{2}(M)$ such that $\xi_{j} \in C^{\infty}(M, \boldsymbol{R})$ for any $j \in \boldsymbol{N}$. Then $\left\{\xi_{i} \otimes \xi_{j} ; i, j \in \boldsymbol{N}\right\}$ is an orthonormal basis contained in $C^{\infty}(M, \boldsymbol{R}) \widehat{\otimes} C^{\infty}(M, \boldsymbol{R})$. We put

$$
\begin{gathered}
\mathfrak{B}_{p, q}=\left\{\prod_{i, j=1}^{\infty}\left(p_{i j}!q_{i j}!\right)^{-1 / 2} H_{p_{i, j}, q_{i, j}}\left(\left\langle z, \xi_{i} \otimes \xi_{j}\right\rangle,\left(\left\langle z, \xi_{i} \otimes \xi_{j}\right\rangle\right)^{-}\right) ;\right. \\
\left.\sum_{i, j=1}^{\infty} p_{i j}=p, \sum_{i, j=1}^{\infty} q_{i j}=q\right\} .
\end{gathered}
$$

Then it is known that $\cup_{n=0}^{\infty}\left(\cup_{p+q=n} \mathfrak{B}_{p, q}\right)$ is an orthonormal basis of $L^{2}(\Omega, v)$. We denote by $\mathfrak{H}_{p, q}$ the closed subspace spanned by $\mathfrak{B}_{p, q}$. Then we have

$$
L^{2}(\Omega, v)=\sum_{n=0}^{\infty} \oplus \sum_{p+q=n} \oplus \mathfrak{S}_{p, q} \quad \text { (Wiener-Itô decomposition). }
$$

We denote by $P_{p, q}$ the orthogonal projection of $L^{2}(\Omega, v)$ onto $\mathfrak{S}_{p, q}$. We consider the transformation \mathscr{T} defined by

$$
(\mathscr{T} f)(\zeta)=\int_{\Omega} K(z ; \zeta)(f(z))^{-} d v(z) \quad\left(f \in L^{2}(\Omega, v), \zeta \in \boldsymbol{E} \otimes \boldsymbol{E}\right),
$$

(see [2]). And we define a transformation \mathscr{T}_{*} by

$$
\left(\mathscr{T}_{*} f\right)(\zeta)=e^{\|\zeta\|^{2}} \sum_{n=0}^{\infty} i^{-n} \sum_{p+q=n} \mathscr{T}\left(P_{p, q} f\right)(\zeta) .
$$

Then \mathscr{T}_{*} is injective. In case $\mathscr{T}_{*} f=\phi$, we write $f=\phi^{\sharp}$.
For any g in $U(\boldsymbol{E})$ we can define linear mappings L_{g} and R_{g} of $\boldsymbol{E} \hat{\otimes} \boldsymbol{E}$ into itself by

$$
L_{g}(\xi \otimes \eta)=(g \xi) \otimes \eta, \quad R_{g}(\xi \otimes \eta)=\xi \otimes(g \eta) .
$$

We denote by $g z$ and $z g$ the dual actions of $U(\boldsymbol{E})$ on Ω defined by

$$
\langle g z, \zeta\rangle=\left\langle z, L_{g^{-1}} \zeta\right\rangle, \quad\langle z g, \zeta\rangle=\left\langle z, R_{g} \zeta\right\rangle \quad(\zeta \in \boldsymbol{E} \hat{\otimes} \boldsymbol{E}) .
$$

For each g in $U(\boldsymbol{E})$ we shall identify g with the linear form on $\boldsymbol{E} \hat{\otimes} \boldsymbol{E}$ defined by

$$
\xi_{i} \otimes \xi_{j} \longmapsto\left(\xi_{i}, g \xi_{j}\right) \quad(i, j \in \mathbf{N}) .
$$

Thus we regard the group $U(\boldsymbol{E})$ as a subset of Ω. Let $C\left[X_{i j}, \bar{X}_{k l} ; i, j, k, l \in \boldsymbol{N}\right]$ be the polynomial ring of infinite variables $X_{i j}, \bar{X}_{k l}$ over \boldsymbol{C}. Let $C(\Omega)$ be the set of all continuous functions on Ω. We denote by $C(U(\boldsymbol{E}))$ the set of functions given by the restriction of functions in $C(\Omega)$ to $U(\boldsymbol{E})$. We consider the mapping from $C\left[X_{i j}, \bar{X}_{k l} ; i, j, k, l \in N\right]$ to $C(\Omega)$ defined by the map: $F \mapsto f$, where $F\left(\left(X_{i j}\right.\right.$, $\left.\left.\bar{X}_{k l}\right)\right) \in C\left[X_{i j}, \bar{X}_{k l} ; i, j, k, l \in N\right]$ and $f(z)=F\left(\left(\left\langle z, \xi_{i} \otimes \xi_{j}\right\rangle,\left(\left\langle z, \xi_{k} \otimes \xi_{l}\right\rangle\right)^{-}\right)\right)$. We shall denote by $F(\Omega)$ the image of this mapping. We call functions in $F(\Omega)$ polynomials on Ω. We put $F(U(\boldsymbol{E}))=\left.F(\Omega)\right|_{U(\boldsymbol{E})}$. We also call functions in $F(U(\boldsymbol{E}))$ polynomials on $U(\boldsymbol{E})$. It is easy to see that the restriction mapping is injective. Hence for each polynomial f on $U(\boldsymbol{E})$ there exists a unique polynomial \tilde{f} on Ω such that $f=\left.\tilde{f}\right|_{U(\boldsymbol{E})}$. In the following we use the same notation f instead of \tilde{f}. Since

$$
g_{i j}=\left(g \xi_{j}, \xi_{i}\right)=\left(\left\langle g, \xi_{i} \otimes \xi_{j}\right\rangle\right)^{-}
$$

$g_{i j}$ can be regarded as a function on $U(\boldsymbol{E})$ which is clearly a restriction to $U(\boldsymbol{E})$) of the function $g_{i j}(z)=\left(\left\langle z, \xi_{i} \otimes \xi_{j}\right\rangle\right)^{-}$on Ω. As

$$
\begin{aligned}
& \mathscr{T}_{*}\left(\prod_{i, j} H_{p_{i j}, q_{i j}}\left(\left\langle\cdot, \xi_{i} \otimes \xi_{j}\right\rangle,\left(\left\langle\cdot, \xi_{i} \otimes \xi_{j}\right\rangle\right)^{-}\right)\right)(\zeta)=\prod_{i, j}\left(\xi_{i} \otimes \xi_{j}, \zeta\right)^{p_{i j}}\left(\zeta, \xi_{i} \otimes \xi_{j}\right)^{q_{i j}} \\
& \quad=\prod_{i, j}\left(\left(g_{i j}(\zeta)\right)^{-}\right)^{p_{i j}}\left(g_{i j}(\zeta)\right)^{q_{i j}}=\left(\prod_{i, j}\left(\bar{g}_{i j}\right)^{p_{i j}}\left(g_{i j}\right)^{q_{i j}}\right)(\zeta),
\end{aligned}
$$

we have

$$
\left(\Pi_{i, j}\left(\bar{g}_{i j}\right)^{p_{i j}}\left(g_{i j}\right)^{q_{i j}}\right)^{\sharp}(z)=\prod_{i, j} H_{p_{i j}, q_{i j}}\left(\left\langle z, \xi_{i} \otimes \xi_{j}\right\rangle,\left(\left\langle z, \xi_{i} \otimes \xi_{j}\right\rangle\right)^{-}\right) .
$$

Let \mathbb{S}_{r} be the group of all permutations of $\{1, \ldots, r\}$. Let $\left(\rho, V_{\rho}\right)$ and $\left(\delta, V_{\delta}\right)$ be irreducible unitary finite dimensional representations of Ξ_{p} and $\mathcal{\Xi}_{q}$ respectively. We denote by $\hat{\mathcal{S}}_{r}$ the set of all equivalence classes of irreducible unitary representations of \mathfrak{S}_{r}. The group $\mathfrak{S}_{p} \times \mathfrak{S}_{q}$ acts on $M \times \cdots \times M((p+q)$-times $)$ on the right by

$$
\left(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{q}\right) \cdot(\sigma, \tau)=\left(u_{\sigma(1)}, \ldots, u_{\sigma(p)}, v_{\tau(1)}, \ldots, v_{\tau(q)}\right) .
$$

We write simply $u \cdot \sigma$ and $v \cdot \tau$ instead of $\left(u_{\sigma(1)}, \ldots, u_{\sigma(p)}\right)$ and $\left(v_{\tau(1)}, \ldots, v_{\tau(q)}\right)$ respectively. The right action of $\Theta_{p} \times \Theta_{q}$ induces an action $\tilde{\lambda}(\sigma, \tau)$ on $L^{2}(M: p+$ q) defined by

$$
(\tilde{\lambda}(\sigma, \tau) f)(u, v)=f(u \cdot \sigma, v \cdot \tau) \quad\left(f \in L^{2}(M: p+q)\right)
$$

For any irreducible unitary representations $\left(\rho, V_{\rho}\right)$ of \Im_{p} and $\left(\delta, V_{\delta}\right)$ of Θ_{q}, we denote by $\operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)$ the space of all linear mappings of V_{δ} to V_{ρ}. We give the space $\operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)$ the natural inner product induced by those of V_{ρ} and V_{δ}. We put

$$
\begin{aligned}
& \mathscr{H}_{p, q, \rho, \delta}=\left\{f \in L^{2}\left(M: p+q, \operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)\right)\right. \\
& \left.\quad f(u \cdot \sigma, v \cdot \tau)=\rho(\sigma)^{-1} f(u, v) \delta(\tau), \sigma \in \mathbb{S}_{p}, \tau \in \mathbb{S}_{q}\right\}
\end{aligned}
$$

By the canonical isomorphism \subset we have

$$
L^{2}(M: p+q) \cong L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M) \quad((p+q) \text {-times })
$$

For any g in $U(\boldsymbol{E})$ we define a unitary operator $\hat{\pi}_{p, q}(g)$ on $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M)$ by

$$
\hat{\pi}_{p, q}(g)\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{p}} \otimes \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{q}}\right)=\left(g \xi_{i_{1}}\right) \otimes \cdots \otimes\left(g \xi_{i_{p}}\right) \otimes\left(g^{*} \xi_{k_{1}}\right) \otimes \cdots \otimes\left(g^{*} \xi_{k_{q}}\right),
$$

where g^{*} denotes the adjoint operator of g. We denote by $\tilde{\pi}_{p, q}(g)$ the unitary operator on $L^{2}(M: p+q)$ which corresponds to $\hat{\pi}_{p, q}(g)$. For any σ in Θ_{p} and τ in \mathbb{S}_{q} we define the action $\lambda(\sigma) \otimes \lambda(\tau)$ on $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M)$ by

$$
(\lambda(\sigma) \otimes \lambda(\tau))\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{p}} \otimes \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{q}}\right)=\xi_{i_{\sigma(1)}} \otimes \cdots \otimes \xi_{i_{\sigma(p)}} \otimes \xi_{k_{\tau(1)}} \otimes \cdots \otimes \xi_{k_{\tau(q)}} .
$$

We denote by $\tilde{\pi}_{p, q} \otimes I$ the unitary representation of $U(\boldsymbol{E})$ on $L^{2}(M: p+q) \otimes$ $\operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)$, where I denotes the identity operator on $\operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)$. Using the canonical isomorphism we have

$$
L^{2}\left(M: p+q, \operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)\right) \cong L^{2}(M: p+q) \otimes \operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)
$$

Hence we obtain the unitary representation $\tilde{\pi}_{p, q, \rho, \delta}$ of $U(\boldsymbol{E})$ on $L^{2}(M: p+q$, $\left.\operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)\right)$ which corresponds to the representation $\tilde{\pi}_{p, q} \otimes I$. Since $\tilde{\pi}_{p, q}(g) \otimes I$ commutes with $\tilde{\lambda}(\sigma, \tau) \otimes I, \mathscr{H}_{p, q, \rho, \delta}$ is $\tilde{\pi}_{p, q, \rho, \delta}(U(\boldsymbol{E}))$-invariant. So that we get the subrepresentation $\pi_{p, q, \rho, \delta}$ of $U(\boldsymbol{E})$ on $\mathscr{H}_{p, q, \rho, \delta}$. We put $(M \times \cdots \times M)^{\prime}=$ $\left\{\left(u_{1}, \ldots, u_{r}\right) \in M \times \cdots \times M ; u_{m} \neq u_{n}(m \neq n)\right\}$, and write simply $(M: r)^{\prime}$ instead of $(M \times \cdots \times M)^{\prime}(r$-times $)$. It is easy to see that there exist open subsets F_{p} in $M \times$ $\cdots \times M$ (p-times) and F_{q} in $M \times \cdots \times M$ (q-times) which satisfy the following conditions. The mapping ϕ :

$$
F_{p} \times F_{q} \times \mathfrak{S}_{p} \times \mathfrak{G}_{q} \ni(u, v, \sigma, \tau) \longmapsto(u \cdot \sigma, v \cdot \tau) \in(M: p)^{\prime} \times(M: q)^{\prime}
$$

is injective and

$$
\phi\left(F_{p} \times F_{q} \times \mathfrak{S}_{p} \times \mathfrak{S}_{q}\right)=(M: p)^{\prime} \times(M: q)^{\prime} .
$$

Let $L^{2}\left(\mathfrak{S}_{r}\right)$ be the space of all functions on \mathfrak{S}_{r}. We introduce an inner product defined by the normalized Haar measure on $\mathfrak{\Im}_{r}$. Then by the Peter-Weyl theorem for \mathfrak{S}_{r}, we have

$$
L^{2}\left(\Xi_{r}\right)=\Sigma_{\rho} V_{\rho} \otimes V_{\rho}^{*}
$$

where \sum_{ρ} is taken over all ρ in $\hat{\mathrm{E}}_{r}$. We note that

$$
r!=\operatorname{dim}\left(L^{2}\left(\Im_{r}\right)\right)=\sum_{\rho}\left(\operatorname{dim} V_{\rho}\right)^{2}
$$

which we need in the proof of Theorem 1. Now we obtain the following

$$
\begin{aligned}
L^{2}(M: p+q) & \cong L^{2}\left(F_{p} \times F_{q} \times \Im_{p} \times \Im_{q}\right) \cong\left(L^{2}\left(F_{p}\right) \otimes L^{2}\left(\Theta_{p}\right)\right) \bar{\otimes}\left(L^{2}\left(F_{q}\right) \otimes L^{2}\left(\Im_{q}\right)\right) \\
& \cong\left(\sum_{\rho} L^{2}\left(F_{p}\right) \otimes V_{\rho} \otimes V_{\rho}^{*}\right) \bar{\otimes}\left(\sum_{\delta} L^{2}\left(F_{q}\right) \otimes V_{\delta} \otimes V_{\delta}^{*}\right) \\
& \cong \sum_{\rho} \sum_{\delta}\left(L^{2}\left(F_{p}\right) \bar{\otimes} L^{2}\left(F_{q}\right) \otimes V_{\rho} \otimes V_{\delta}^{*}\right) \otimes V_{\rho}^{*} \otimes V_{\delta} \\
& \cong \sum_{\rho} \sum_{\delta} L^{2}\left(F_{p} \times F_{q}, \operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)\right) \otimes V_{\rho}^{*} \otimes V_{\delta}
\end{aligned}
$$

Hence we get

$$
L^{2}(M: p+q) \cong \sum_{\rho} \sum_{\delta} \mathscr{H}_{p, q, \rho, \delta} \otimes V_{\rho}^{*} \otimes V_{\delta} .
$$

For any d in \boldsymbol{N} we put $\boldsymbol{N}_{d}=\{1, \ldots, d\},\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right)^{r}=\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right) \times \cdots \times\left(\boldsymbol{N}_{d} \times\right.$ $\left.\boldsymbol{N}_{d}\right)(r$-times $)$. As for elements in $\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right)^{p} \times\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right)^{q}$ we often use the symbolical expression $((i, j),(k, l))$ instead of $\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right),\left(k_{1}, l_{1}\right), \ldots,\left(k_{q}, l_{q}\right)\right)$. \mathfrak{S}_{p} and \mathfrak{S}_{q} act on $\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right)^{p} \times\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right)^{q}$ on the right by

$$
((i \cdot \sigma, j \cdot \sigma),(k \cdot \tau, l \cdot \tau))=\left(\left(i_{\sigma(1)}, j_{\sigma(1)}\right), \ldots,\left(i_{\sigma(p)}, j_{\sigma(p)}\right),\left(k_{\tau(1)}, l_{\tau(1)}\right), \ldots,\left(k_{\tau(q)}, l_{\tau(q)}\right),\right.
$$

where $\sigma \in \mathfrak{S}_{p}$ and $\tau \in \mathfrak{S}_{q}$. We denote by $Z_{d}(r)$ the set of all $d \times d$ matrices $\alpha=$ $\left(\alpha_{m n}\right)$ which satisfy the following conditions;

$$
\alpha_{m n} \in \boldsymbol{N} \cup\{0\} \quad\left(m, n \in \boldsymbol{N}_{d}\right), \quad \sum_{m, n=1}^{d} \alpha_{m n}=r .
$$

For each $(i, j)=\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{r}, j_{r}\right)\right) \in\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right)^{r}$ we assign an element $\alpha=\left(\alpha_{m n}\right) \in$ $Z_{d}(r)$ by the following rule and we put $T_{r}(i, j)=\alpha . \quad \alpha_{m n}$ is the number of the components $\left(i_{s}, j_{s}\right)(s=1, \ldots, r)$ such that $i_{s}=m$ and $j_{s}=n$. And we define the mapping $T_{p} \times T_{q}$ from $\left(N_{d} \times N_{d}\right)^{p} \times\left(N_{d} \times N_{d}\right)^{q}$ to $Z_{d}(p) \times Z_{d}(q)$ by $\left(T_{p} \times T_{q}\right)((i, j),(k, l))=$ $\left(T_{p}(i, j), T_{q}(k, l)\right.$). In case $T_{r}(i, j)=T_{r}\left(i^{\prime}, j^{\prime}\right)$ we write $(i, j) \sim\left(i^{\prime}, j^{\prime}\right)$. It is easy to show the following lemma.

Lemma 1. ($i, j) \sim\left(i^{\prime}, j^{\prime}\right)$ holds if and only if there exists $a \sigma$ in \mathbb{S}_{r} such that $\left(i^{\prime}, j^{\prime}\right)=(i \cdot \sigma, j \cdot \sigma)$, where $(i, j),\left(i^{\prime}, j^{\prime}\right) \in\left(\boldsymbol{N}_{d} \times \boldsymbol{N}_{d}\right)^{r}$.

From this lemma we see that the number of elements of $T_{r}^{-1}(\alpha)$ is equal to $r!\left(\prod_{m, n=1}^{d} \alpha_{m n}!\right)^{-1}$. We put $\boldsymbol{N}^{r}=\boldsymbol{N} \times \cdots \times \boldsymbol{N}$ (r-times). For any i in \boldsymbol{N}^{p} and k in \boldsymbol{N}^{q} we write simply $\xi_{i} \otimes \xi_{k}$ instead of $\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{p}} \otimes \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{q}}$ in $L^{2}(M) \bar{\otimes} \cdots$ $\bar{\otimes} L^{2}(M)$. Then for any g in $U(\boldsymbol{E})$. and for any j in \boldsymbol{N}^{p} and l in \boldsymbol{N}^{q}, we have

$$
\begin{aligned}
\hat{\pi}_{p, q}(g)\left(\xi_{j} \otimes \xi_{l}\right) & =\left(g \xi_{j}\right) \otimes\left(g^{*} \xi_{l}\right)=g \xi_{j_{1}} \otimes \cdots \otimes g \xi_{j_{p}} \otimes g^{*} \xi_{l_{1}} \otimes \cdots \otimes g^{*} \xi_{l_{q}} \\
& =\sum_{i, k}\left(g_{i_{1} j_{1}} \cdots g_{i_{p} j_{p}} \bar{g}_{k_{1} l_{1}} \cdots \bar{g}_{k_{q} l_{q}}\right) \xi_{i} \otimes \xi_{k},
\end{aligned}
$$

where $\sum_{i, k}$ means $\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} \sum_{k_{1}=1}^{\infty} \cdots \sum_{k_{q}=1}^{\infty}$. In the following we write symbolically $g_{i j} \bar{g}_{k l}$ instead of $g_{i_{1} j_{1}} \cdots g_{i_{p} j_{p}} \bar{g}_{k_{1} l_{1}} \cdots \bar{g}_{k_{q} l_{q}}$. For any i, j in \boldsymbol{N}^{p} and k, l in \boldsymbol{N}^{q}, we denote by max $\{i, j, k, l\}$ a maximum number included in the set $\left\{i_{1}, \ldots\right.$, $\left.i_{p}, j_{1}, \ldots, j_{p}, k_{1}, \ldots, k_{q}, l_{1}, \ldots, l_{q}\right\}$. We put $d=\max \{i, j, k, l\}, T_{p}(i, j)=\alpha$ and $T_{q}(k, l)=\beta$, where $\alpha \in Z_{d}(p)$ and $\beta \in Z_{d}(q)$. Since $\left(g_{i j} \bar{g}_{k l}\right)^{\sharp}(z)=\prod_{m, n=1}^{d} H_{\alpha_{m n}, \beta_{m}:}$ $\left(\left\langle z, \xi_{m} \otimes \xi_{n}\right\rangle,\left(\left\langle z, \xi_{m} \otimes \xi_{n}\right\rangle\right)^{-}\right)$, the following lemma is obvious.

Lemma 2. For any $i, j, i^{\prime}, j^{\prime}$ in \mathbf{N}^{p} and for any $k, l, k^{\prime}, l^{\prime}$ in \boldsymbol{N}^{q} let $d=$ $\max \left\{i, j, k, l, i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right\},(\alpha, \beta)=\left(T_{p}(i, j), T_{q}(k, l)\right)$ and $\quad\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(T_{p}\left(i^{\prime}, j^{\prime}\right)\right.$, $\left.T_{q}\left(k^{\prime}, l^{\prime}\right)\right)$. Then it follows that

$$
\begin{aligned}
& \int_{\Omega}\left(g_{i j} \bar{g}_{k l}\right)^{\sharp}(z)\left(\left(g_{i^{\prime} j^{\prime}} \bar{g}_{k^{\prime}}\right)^{\sharp}(z)\right)^{-} d v(z) \\
& \quad= \begin{cases}\prod_{m, n=1}^{d}\left(\alpha_{m!}!\beta_{m n}!\alpha_{m n}^{\prime}!\beta_{m n}^{\prime}!\right) & \left((i, j) \sim\left(i^{\prime}, j^{\prime}\right) \text { and }(k, l) \sim\left(k^{\prime}, l^{\prime}\right)\right), \\
0 & \left((i, j) \sim\left(i^{\prime}, j^{\prime}\right) \text { or }(k, l) \sim\left(k^{\prime}, l^{\prime}\right)\right) .\end{cases}
\end{aligned}
$$

Theorem 1. 1) If ρ and δ are both irreducible, then ($\left.\pi_{p, q, \rho, \delta}, \mathscr{H}_{p, q, \rho, \delta}\right)$ is irreducible.
2) Two representations ($\left.\pi_{p, q, \rho, \delta,}, \mathscr{H}_{p, q, \rho, \delta}\right)$ and $\left(\pi_{p^{\prime}, q^{\prime}, \rho^{\prime}, \delta^{\prime}}, \mathscr{H}_{p^{\prime}, q^{\prime}, \rho^{\prime}, \delta^{\prime}}\right)$ are equivalent if and only if $p=p^{\prime}, q=q^{\prime}, \rho \simeq \rho^{\prime}, \delta \simeq \delta^{\prime}$.

Proof. We denote by $\operatorname{Hom}_{U(\boldsymbol{E})}\left(L^{2}(M: p+q), L^{2}(M: p+q)\right)$ the space of all intertwining operators on $L^{2}(M: p+q)$. Using the isometry $\iota: L^{2}(M: p+q) \rightarrow$ $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M)((p+q)$-times $)$, for any \tilde{A} in $\operatorname{Hom}_{U(\boldsymbol{E})}\left(L^{2}(M: p+q), L^{2}(M:\right.$ $p+q)$) there exists an operator A on $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M)$ such that $A \cdot \iota=\iota \cdot \tilde{A}$. We put

$$
A\left(\xi_{i} \otimes \xi_{k}\right)=\sum_{j, l} a_{j l}^{i k} \xi_{j} \otimes \xi_{l}
$$

where $i, j \in \boldsymbol{N}^{p}$ and $k, l \in \boldsymbol{N}^{q}$. For any g in $U(\boldsymbol{E})$ by definition of $\hat{\pi}_{p, q}(g)$ we have $A \cdot \hat{\pi}_{p, q}(g)=\hat{\pi}_{p, q}(g) \cdot A$. Then we have

$$
\begin{aligned}
& \hat{\pi}_{p, q}(g) A\left(\xi_{i} \otimes \xi_{k}\right)=\hat{\pi}_{p, q}(g)\left(\sum_{j, l} a_{j l}^{i k} \xi_{j} \otimes \xi_{l}\right) \\
& \quad=\sum_{j, l} a_{j l}^{i k}\left(g \xi_{j} \otimes g^{*} \xi_{l}\right)=\sum_{s, t} \sum_{j, l} a_{j l}^{i k} g_{s j} \bar{g}_{t l} \xi_{s} \otimes \xi_{t}
\end{aligned}
$$

where $s \in \boldsymbol{N}^{p}$ and $t \in \boldsymbol{N}^{q}$. On the other hand we have

$$
\begin{aligned}
A \hat{\pi}_{p, q}(g)\left(\xi_{i} \otimes \xi_{k}\right) & =A\left(g \xi_{i} \otimes g^{*} \xi_{k}\right)=A\left(\sum_{m, n} g_{m i} \bar{g}_{n k} \xi_{m} \otimes \xi_{n}\right) \\
& =\sum_{s, t} \sum_{m, n} a_{s t}^{m n} g_{m i} \bar{g}_{n k} \xi_{s} \otimes \xi_{t}
\end{aligned}
$$

where $m \in N^{p}$ and $n \in N^{q}$. Since $A \cdot \hat{\pi}_{p, q}(g)=\hat{\pi}_{p, q}(g) \cdot A$, we conclude that for any s and t

$$
\sum_{j, l} a_{j l}^{i k} g_{s j} \bar{g}_{t l}=\sum_{m, n} a_{s t}^{m n} g_{m i} \bar{g}_{n k} .
$$

Fix any j^{\prime} in \boldsymbol{N}^{p} and l^{\prime} in \boldsymbol{N}^{q} then we have

$$
\begin{aligned}
& \int_{\Omega}\left(\sum_{j, l} a_{j l}^{i k} g_{s j} \bar{g}_{t l}\right)^{\sharp}(z)\left(\left(g_{s j^{\prime}} \bar{g}_{t l^{\prime}}\right)^{\ddagger}(z)\right)^{-} d v(z) \\
& \quad=\int_{\Omega}\left(\sum_{m, n} a_{s t}^{m n} g_{m i} \bar{g}_{n k}\right)^{\sharp}(z)\left(\left(g_{s j^{\prime}} \bar{g}_{t l^{\prime}}\right)^{\sharp}(z)\right)^{-} d v(z) .
\end{aligned}
$$

For any $s=\left(s_{1}, \ldots, s_{p}\right)$ and $t=\left(t_{1}, \ldots, t_{q}\right)$ such that $s_{h} \neq s_{h^{\prime}}\left(h \neq h^{\prime}\right)$ and $t_{h} \neq t_{h^{\prime}}\left(h \neq h^{\prime}\right)$, from Lemma 2, we get

$$
\begin{aligned}
a_{j^{i} l}^{i k} & =\int_{\Omega}\left(\sum_{j, l} a_{j l}^{i k} g_{s j} \bar{g}_{t l}\right)^{\sharp}(z)\left(\left(g_{s j^{\prime}} \bar{g}_{t l^{\prime}}\right)^{\sharp}(z)\right)^{-} d v(z) \\
& =\int_{\Omega}\left(\sum_{m, n} a_{s t}^{m n} g_{m i} \bar{g}_{n k}\right)^{\sharp}(z)\left(\left(g_{s j^{\prime}} \bar{g}_{t l^{\prime}}\right)^{\sharp}(z)\right)^{-} d v(z)=\sum_{m, n}^{1} a_{s t}^{m n},
\end{aligned}
$$

where $\sum_{m, n}^{1}$ means the summation which is taken over m and n such that (m, i) \sim $\left(s, j^{\prime}\right)$ and $(n, k) \sim\left(t, l^{\prime}\right)$. From Lemma 1 this implies that $a_{j^{\prime} l^{\prime}}^{i k}=0$ unless there exist σ and τ such that $j^{\prime}=i \cdot \sigma$ and $l^{\prime}=k \cdot \tau$. Thus we obtain

$$
a_{j^{\prime} l^{\prime}}^{i k}=\sum_{\sigma, \tau}^{2} a_{s t}^{\left(s \cdot \sigma^{-1}\right)\left(t \cdot \tau^{-1}\right)}=\sum_{\sigma, \tau}^{2} a_{(s \cdot \sigma)(t \cdot \tau)}^{s t},
$$

where $\sum_{\sigma, \tau}^{2}$ means the summation which is taken over σ and τ such that $j^{\prime}=i \cdot \sigma$ and $l^{\prime}=k \cdot \tau$. Now we assume that $i=\left(i_{1}, \ldots, i_{p}\right)$ and $k=\left(k_{1}, \ldots, k_{q}\right)$ satisfy the following conditions;

$$
i_{h} \neq i_{h^{\prime}} \quad\left(h \neq h^{\prime}\right) \quad \text { and } \quad k_{h} \neq k_{h^{\prime}} \quad\left(h \neq h^{\prime}\right)
$$

Then we have

$$
a_{(i \cdot \sigma)(k \cdot \tau)}^{i k}=a_{(s \cdot \sigma)(t \cdot \tau)}^{s t},
$$

so that we can write

$$
a_{i(i \cdot \sigma)(k \cdot \tau)}^{i k}=a_{\sigma, \tau}
$$

Thus for any i and k we get

$$
a_{j l}^{i k}=\sum_{\sigma, \tau}^{3} a_{\sigma, \tau},
$$

where $\sum_{\sigma, \tau}^{3}$ means the summation which is taken over σ and τ such that $j=i \cdot \sigma$ and $l=k \cdot \tau$. It follows that

$$
A\left(\xi_{i} \otimes \xi_{k}\right)=\sum_{j, l} a_{j l}^{i k} \xi_{j} \otimes \xi_{l}=\sum_{\sigma, \tau} a_{\sigma, \tau} \xi_{i \cdot \sigma} \otimes \xi_{k \cdot \tau}
$$

Hence we conclude that

$$
A=\sum_{\sigma, \tau} a_{\sigma, \tau} \lambda(\sigma) \otimes \lambda(\tau),
$$

where $\sum_{\sigma, \tau}$ is taken over all σ in \mathcal{S}_{p} and τ in \mathcal{S}_{q}. We denote by $\mathscr{I}_{p, q}$ the space of all operators on $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M)((p+q)$-times) spanned by the set $\{\lambda(\sigma) \otimes$
$\left.\lambda(\tau) ; \sigma \in \mathfrak{S}_{p}, \tau \in \mathfrak{S}_{q}\right\}$ over \boldsymbol{C}. Then for any g in $U(\boldsymbol{E})$ it is clear that $A \cdot \hat{\pi}_{p, q}(g)=$ $\hat{\pi}_{p, q}(g) \cdot A$. Thus we obtain

$$
\operatorname{Hom}_{U(\boldsymbol{E})}\left(L^{2}(M: p+q), L^{2}(M: p+q)\right) \cong \mathscr{I}_{p, q} .
$$

This implies that

$$
\operatorname{dim} \operatorname{Hom}_{U(\boldsymbol{E})}\left(L^{2}(M: p+q), L^{2}(M: p+q)\right)=p!q!.
$$

We remark that $L^{2}(M: p+q)=\Sigma_{\rho} \Sigma_{\delta} \mathscr{H}_{p, q, \rho, \delta} \otimes V_{\rho}^{*} \otimes V_{\delta}$, and that $\sum_{\rho} \Sigma_{\delta}\left(\operatorname{dim} V_{\rho}^{*}\right.$ $\left.\otimes V_{\delta}\right)^{2}=\left(\sum_{\rho}\left(\operatorname{dim} V_{\rho}\right)^{2}\right)\left(\sum_{\delta}\left(\operatorname{dim} V_{\delta}\right)^{2}\right)=p!q!$. Now the assertion of the theorem follows immediately from the following lemma.

Lemma 3. Let (π, \mathscr{H}) be a unitary representation (of a group G) such that \mathscr{H} is a direct sum of closed invariant irreducible subspaces. Suppose that $\mathscr{H}=\sum_{k=1}^{s} m_{k} W_{k}$ (orthogonal decomposition) where $m_{k} W_{k}=W_{k}+\cdots+W_{k}$ ($m_{k}-$ times) and $W_{k}(k=1, \ldots, s)$ are closed invariant subspaces. Further assume that $\operatorname{dim} \operatorname{Hom}_{G}(\mathscr{H}, \mathscr{H})=\sum_{k=1}^{s}\left(m_{k}\right)^{2}$. Then $W_{k}(k=1, \ldots, s)$ are irreducible and W_{k} is equivalent to $W_{k^{\prime}}$ if and only if k is equal to k^{\prime}.

Proof. Let V_{1}, \ldots, V_{l} be the representatives of irreducible subspaces which occur in \mathscr{H}. We put

$$
W_{k}=\sum_{i=1}^{l} n_{i}^{k} V_{i}
$$

where $n_{i}^{k} \in \boldsymbol{N} \cup\{0\}$. Then we have

$$
\mathscr{H}=\sum_{i=1}^{l}\left(\sum_{k=1}^{s} m_{k} n_{i}^{k}\right) V_{i} .
$$

Thus we get

$$
\begin{aligned}
& \sum_{i=1}^{l}\left(\sum_{k=1}^{s} m_{k} n_{i}^{k}\right)^{2}=\sum_{i=1}^{l} \sum_{k_{1}=1}^{s} \sum_{k_{2}=1}^{s} m_{k_{1}} m_{k_{2}}\left(n_{i}^{k_{1}}\right)\left(n_{i}^{k_{2}}\right) \\
& \quad=\operatorname{dim} \operatorname{Hom}_{G}(\mathscr{H}, \mathscr{H})=\sum_{k=1}^{s}\left(m_{k}\right)^{2} .
\end{aligned}
$$

Since $m_{k}(k=1, \ldots, s)$ are positive integers, we have the following

$$
\sum_{i=1}^{l}\left(n_{i}^{k_{1}}\right)^{2}=1 \quad\left(k_{1}=k_{2}\right), \quad \sum_{i=1}^{l}\left(n_{i}^{k_{1}}\right)\left(n_{i}^{k_{2}}\right)=0 \quad\left(k_{1} \neq k_{2}\right) .
$$

Hence l is equal to s and $W_{k}(k=1, \ldots, s)$ are irreducible and W_{k} is not equivalent to $W_{k^{\prime}}\left(k \neq k^{\prime}\right)$.

§ 2. Peter-Weyl theorem for $U(\boldsymbol{E})$

We denote by $L^{2}(M \times M: p+q)^{\wedge}$ the Hilbert space of all square integrable functions F on $(M \times M) \times \cdots \times(M \times M)\left((p+q)\right.$-times) such that for any σ in \mathfrak{S}_{p} and τ in \mathfrak{S}_{q}

$$
\begin{aligned}
& F\left(\left(u_{\sigma(1)}^{1}, u_{\sigma(1)}^{2}\right), \ldots,\left(u_{\sigma(p)}^{1}, u_{\sigma(p)}^{2}\right),\left(v_{\tau(1)}^{1}, v_{\tau(1)}^{2}\right), \ldots,\left(v_{\tau(q)}^{1}, v_{\tau(q)}^{2}\right)\right) \\
& \quad=F\left(\left(u_{1}^{1}, u_{1}^{2}\right), \ldots,\left(u_{p}^{1}, u_{p}^{2}\right),\left(v_{1}^{1}, v_{1}^{2}\right), \ldots,\left(v_{q}^{1}, v_{q}^{2}\right)\right) .
\end{aligned}
$$

For any f in $\mathfrak{H}_{p, q}$ there exists a unique F in $L^{2}(M \times M: p+q)^{\wedge}$ such that

$$
\begin{aligned}
& \left(\mathscr{T}_{*} f\right)(\zeta)=\int_{(M \times M) \times \cdots \times(M \times M)} F\left(\left(u_{1}^{1}, u_{1}^{2}\right), \ldots,\left(u_{p}^{1}, u_{p}^{2}\right),\left(v_{1}^{1}, v_{1}^{2}\right), \ldots,\left(v_{q}^{1}, v_{q}^{2}\right)\right) \\
& \quad \times\left(\zeta\left(u_{1}^{1}, u_{1}^{2}\right)\right)^{-\cdots\left(\zeta\left(u_{p}^{1}, u_{p}^{2}\right)\right)^{-} \zeta\left(v_{1}^{1}, v_{1}^{2}\right) \cdots \zeta\left(v_{q}^{1}, v_{q}^{2}\right) d u_{1}^{1} d u_{1}^{2} \cdots d v_{q}^{1} d v_{q}^{2},(\text { see }[2]) .}
\end{aligned}
$$

As is easily seen the measure v is $U(\boldsymbol{E})$-invariant. For any g in $U(\boldsymbol{E})$ we define

$$
\left(\pi_{L}(g) f\right)(z)=f\left(g^{-1} z\right), \quad\left(\pi_{R}(g) f\right)(z)=f(z g)
$$

where $f \in L^{2}(\Omega, v)$. Then π_{L} and π_{R} are unitary representations of $U(\boldsymbol{E})$. For any $\left(g_{1}, g_{2}\right)$ in $U(\boldsymbol{E}) \times U(\boldsymbol{E})$ we put

$$
\left(\omega_{*}\left(g_{1}, g_{2}\right) f\right)(z)=f\left(g_{1}^{-1} z g_{2}\right)
$$

Then ω_{*} is a unitary representation of $U(\boldsymbol{E}) \times U(\boldsymbol{E})$. Clearly $\mathfrak{Y}_{p, q}$ is $\omega_{*}(U(\boldsymbol{E}) \times$ $U(\boldsymbol{E})$)-invariant. We obtain a unitary subrepresentation $\left(\omega_{p, q}, \mathfrak{H}_{p, q}\right)$ of $U(\boldsymbol{E}) \times$ $U(\boldsymbol{E})$.

Theorem 2 (Peter-Weyl theorem for $U(\boldsymbol{E})$). The unitary representation ω_{*} of $U(\boldsymbol{E}) \times U(\boldsymbol{E})$ is decomposed as follows:

$$
L^{2}(\Omega, v)=\sum_{n=0}^{\infty} \oplus \sum_{p+q=n} \oplus \sum_{\rho} \sum_{\delta} \mathscr{H}_{p, q, \rho, \delta} \bar{\oplus}_{\mathscr{H}_{p, q, \rho, \delta}^{*}}^{*}
$$

where $\omega_{p, q}\left(g_{1}, g_{2}\right)$ corresponds to $\pi_{p, q,, \rho \delta}\left(g_{1}\right) \otimes \pi_{p, q, \rho, \delta}^{*}\left(g_{2}\right)$ for each $\left(g_{1}, g_{2}\right)$ in $U(\boldsymbol{E})$ $\times U(\boldsymbol{E})$.

Proof. We put $\mathfrak{H}_{p, q}=\left\{f \in L^{2}(M: p+q) \bar{\otimes} L^{2}(M: p+q) ;(\tilde{\lambda}(\sigma, \tau) \otimes \tilde{\lambda}(\sigma, \tau)) f=\right.$ $\left.f,(\sigma, \tau) \in \mathfrak{S}_{p} \times \mathfrak{S}_{q}\right\}$. Then we have the canonical isomorphism $\iota_{p, q}: L^{2}(M \times M$: $p+q)^{\wedge} \rightarrow \mathfrak{H}_{\hat{p}, q}$. As we saw in the previous section, we have

$$
L^{2}(M: p+q) \cong \sum_{\rho} \sum_{\delta} \mathscr{H}_{p, q, \rho, \delta} \otimes V_{\rho}^{*} \otimes V_{\delta}
$$

We remark that the unitary operator $\tilde{\lambda}(\sigma, \tau)$ corresponds to $I \otimes \rho^{*}(\sigma) \otimes \delta(\tau)$ where I denotes the identiry operator on $\mathscr{H}_{p, q, \rho, \delta}$. Thus we have

$$
\begin{aligned}
\mathfrak{S}_{p, q} & \cong \mathfrak{S}_{p, q} \cong\left\{\gamma \in \sum_{\rho_{1}} \sum_{\delta_{1}} \sum_{\rho_{2}} \sum_{\delta_{2}}\left(\mathscr{H}_{p, q, \rho_{1}, \delta_{1}} \otimes V_{\rho_{1}}^{*} \otimes V_{\delta_{1}}\right) \bar{\otimes}\left(\mathscr{H}_{p, q, \rho_{2}, \delta_{2}} \otimes V_{\rho_{2}}^{*} \otimes V_{\delta_{2}}\right) ;\right. \\
& \left.\left(I \otimes \rho_{1}^{*}(\sigma) \otimes \delta_{1}(\tau) \otimes I \otimes \rho_{2}^{*}(\sigma) \otimes \delta_{2}(\tau)\right) \gamma=\gamma, \sigma \in \mathfrak{S}_{p}, \tau_{q} \in \mathbb{G}_{q}\right\} .
\end{aligned}
$$

Using the Schur's lemma we obtain the following

$$
\begin{aligned}
\operatorname{dim} & \left\{w \in V_{\rho_{1}}^{*} \otimes V_{\delta_{1}} \otimes V_{\rho_{2}}^{*} \otimes V_{\delta_{2}} ;\left(\rho_{1}^{*}(\sigma) \otimes \delta_{1}(\tau) \otimes \rho_{2}^{*}(\sigma) \otimes \delta_{2}(\tau)\right) w=w, \sigma \in \mathbb{S}_{p}, \tau \in \mathbb{S}_{q}\right\} \\
& =\left\{\begin{array}{llll}
0 & \left(\rho_{1} \nsim \rho_{2}^{*}\right. & \text { or } & \left.\delta_{1}^{*} \nsim \delta_{2}\right), \\
1 & \left(\rho_{1} \simeq \rho_{2}^{*}\right. & \text { and } & \left.\delta_{1}^{*} \simeq \delta_{2}\right) .
\end{array}\right.
\end{aligned}
$$

Hence we get

$$
\mathfrak{H}_{p, q}=\sum_{\rho} \sum_{\delta} \mathscr{H}_{p, q, \rho, \delta} \bar{\otimes} \mathscr{H}_{p, q, \rho^{*}, \delta^{*}}=\sum_{\rho} \sum_{\delta} \mathscr{H}_{p, q, \rho, \delta} \bar{\otimes}_{\mathscr{H}_{p, q, p, \delta}}^{*} .
$$

§3 Polynomial representations of discrete class

Let (π, \mathfrak{H}) be a unitary representation of $U(\boldsymbol{E})$. For v and w in \mathfrak{H} we define a function $\phi_{v, w}^{\pi}(g)$ on $U(\boldsymbol{E})$ by

$$
\phi_{v, w}^{\pi}(g)=(v, \pi(g) w) .
$$

We call (π, \mathfrak{H}) a polynomial representation of $U(\boldsymbol{E})$ if there exists an orthonormal basis $\left\{v_{i} ; i \in \boldsymbol{N}\right\}$ of \mathfrak{G} such that $\phi_{i, j}^{\pi}(g)=\left(v_{i}, \pi(g) v_{j}\right)(i, j \in \boldsymbol{N})$ are polynomials. We denote by \mathfrak{S}_{f} the space of all finite linear combinations of $v_{i}(i \in \boldsymbol{N})$. We call (π, \mathfrak{Y}) of discrete class if the multilinear functional B :

$$
\mathfrak{G}_{f} \times \mathfrak{G}_{f} \times \mathfrak{S}_{f} \times \mathfrak{G}_{f} \ni\left(v, w, v^{\prime}, w^{\prime}\right) \longmapsto \int_{\Omega} \phi_{v, w}^{\pi \sharp}(z)\left(\phi_{v^{\prime}, w^{\prime}}^{\pi \sharp}(z)\right)^{-} d v(z) \in \boldsymbol{C}
$$

is continuous. The following proposition can be proved similarly to the case of $O(\boldsymbol{E})$, (see [6], Proposition 3).

Proposition 1. 1) Let (π, \mathfrak{H}) be an irreducible unitary polynomial representation of discrete class. Then there exists a positive constant c such that

$$
\int_{\Omega} \phi_{v, w}^{\pi \nRightarrow}(z)\left(\phi_{v^{\prime}, w^{\prime}}^{\pi^{\sharp}}(z)\right)^{-} d v(z)=c\left(v, v^{\prime}\right)\left(w, w^{\prime}\right) \quad\left(v, w, v^{\prime}, w^{\prime} \in \mathfrak{G}_{f}\right) .
$$

2) Let (π, \mathfrak{H}) and $\left(\pi^{\prime}, \mathfrak{G ^ { \prime }}\right)$ be irreducible unitary polynomial representations of discrete class. If π and π^{\prime} are non-equivalent, then

$$
\int_{\Omega} \phi_{v, w}^{\pi \sharp}(z)\left(\phi_{v^{\prime}, w^{\prime}}^{\pi^{\prime}}(z)\right)^{-} d v(z)=0 \quad\left(v, w \in \mathfrak{H}_{f}, v^{\prime}, w^{\prime} \in \mathfrak{H}_{f}^{\prime}\right) .
$$

Theorem 3. For any p and q in $\boldsymbol{N} \cup\{0\}$ and for any irreducible unitary representations $\left(\rho, V_{\rho}\right)$ of \mathfrak{S}_{p} and $\left(\delta, V_{\delta}\right)$ of $\mathfrak{S}_{q},\left(\pi_{p, q, \rho, \delta}, \mathscr{H}_{p, q, \rho, \delta}\right)$ is an irreducible unitary polynomial representation of discrete class. Conversely for any irreducible unitary polynomial representation of discrete class (π, \mathfrak{F}), there exist p and q in $N \cup\{0\}$ and irreducible unitary representations $\left(\rho, V_{\rho}\right)$ of \mathbb{S}_{p} and $\left(\delta, V_{\delta}\right)$ of \mathfrak{G}_{q} such that (π, \mathfrak{H}) is equivalent to $\left(\pi_{p, q, \rho, \delta}, \mathscr{H}_{p, q, \rho, \delta \delta}\right)$.

Proof. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{s}\right\}$ be an orthonormal basis of V_{ρ} and $\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{t}\right\}$ an orthonormal basis of V_{δ}^{*}. Then we have an orthonomal basis $\mathfrak{B}_{p q, p, \delta}=$ $\left\{\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{p}} \otimes \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{q}} \otimes \boldsymbol{e}_{i_{0}} \otimes \boldsymbol{f}_{k_{0}} ; i_{0}, \ldots, i_{p}, k_{0}, \ldots, k_{q} \in \boldsymbol{N}\right\} \quad$ of $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes}$ $L^{2}(M) \otimes V_{\rho} \otimes V_{\delta}^{*}$. It is easy to see that $\sum_{\sigma, \tau} \lambda(\sigma) \otimes \lambda(\tau) \otimes \rho(\sigma)^{-1} \otimes \delta(\tau)$ defines the orthogonal projection of $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M) \otimes V_{\rho} \otimes V_{\delta}^{*}$ onto the subspace which is equivalent to $\mathscr{H}_{p, q, \rho, \delta}$. Hence for the proof of "only if" part of the theorem it is sufficient to prove that $\hat{\pi}_{p, q} \otimes I \otimes I$ is a polynomial representation of discrete class. We put

$$
\begin{aligned}
& v_{i k}=\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{p}} \otimes \xi_{k_{1}} \otimes \cdots \otimes \xi_{k_{q}} \otimes \boldsymbol{e}_{i_{0}} \otimes \boldsymbol{f}_{k_{0}}, \\
& v_{j l}=\xi_{j_{1}} \otimes \cdots \otimes \xi_{j_{p}} \otimes \xi_{l_{1}} \otimes \cdots \otimes \xi_{l_{q}} \otimes \boldsymbol{e}_{j_{0}} \otimes \boldsymbol{f}_{l_{0}} \\
& g \xi_{j_{h}}=\sum_{m_{h}} g_{m_{h} j_{h}} \xi_{m_{h}}, \quad g^{*} \xi_{l_{h}}=\sum_{n_{h}} \bar{g}_{n_{h} l_{h}} \xi_{n_{h}} .
\end{aligned}
$$

And we put

$$
\phi_{i k ; j l}(g)=\left(v_{i k},\left(\pi_{p, q}(g) \otimes I \otimes I\right) v_{j l}\right)
$$

Then we have

$$
\phi_{i k ; j l}(g)=\delta_{i_{0} j_{0}} \delta_{k_{0} l_{0}} g_{i_{1} j_{1}} \cdots g_{i_{p} j_{q}} \bar{g}_{k_{1} l_{1}} \cdots \bar{g}_{k_{q} l_{q}},
$$

where $\delta_{i_{0} j_{0}}$ and $\delta_{k_{0} l_{0}}$ are Kronecker's δ. Thus $\phi_{i k ; j l}$ is a polynomial on $U(\boldsymbol{E})$. Next we shall prove that the functional B is continuous. For any $v, w, v^{\prime}, w^{\prime}$ in $L^{2}(M) \bar{\otimes} \cdots \bar{\otimes} L^{2}(M) \otimes V_{\rho} \otimes V_{\bar{\delta}}^{*}$ we put

$$
v=\sum_{i, k} a_{i k} v_{i k}, \quad w=\sum_{j, l} b_{j l} v_{j l}, \quad v^{\prime}=\sum_{i^{\prime}, j^{\prime}} c_{i^{\prime} j^{\prime}} v_{i^{\prime} j^{\prime}}, \quad w^{\prime}=\sum_{j^{\prime}, l^{\prime}} d_{j^{\prime} l^{\prime},} v_{j^{\prime} l^{\prime}}
$$

Then we have

$$
\begin{aligned}
\phi_{v, w}(g) & =\left(v,\left(\hat{\pi}_{p, q}(g) \otimes I \otimes I\right) w\right)=\sum_{i, k} \sum_{j, l} \delta_{i_{0} j_{0}} \delta_{k_{0} l_{0}} a_{i k} b_{j l} g_{i_{1} j_{1}} \cdots g_{i_{p} j_{p}} \bar{g}_{k_{1} l_{1}} \cdots \bar{g}_{k_{q} l_{q}} \\
& =\sum_{i, k} \sum_{j, l} \delta_{i_{0} j_{0}} \delta_{k_{0} o_{0}} a_{i k} b_{j l} g_{i j} \bar{g}_{k l} .
\end{aligned}
$$

It follows that

$$
\int_{\Omega}\left(g_{i j} \bar{g}_{k l}\right)^{\sharp}(z)\left(\left(g_{i^{\prime} j^{\prime}} \bar{g}_{k^{\prime} l}\right)^{\sharp}(z)\right)^{-} d v(z)=0
$$

unless $(i, j) \sim\left(i^{\prime}, j^{\prime}\right)$ and $(k, l) \sim\left(k^{\prime}, l^{\prime}\right)$.
We put

$$
d=\max \left\{i, j, k, l, i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime} ; a_{i k}, b_{j l}, c_{i^{\prime} k^{\prime}}, d_{j^{\prime} l^{\prime}} \neq 0\right\}
$$

Using the Schwarz inequality we have

$$
\begin{aligned}
& \left|B\left(v, w, v^{\prime}, w^{\prime}\right)\right|=\left|\int_{\Omega} \phi_{v, w}^{*}(z)\left(\phi_{v, w^{\prime}}^{*}(z)\right)^{-} d v(z)\right| \\
& \quad \leqq \sum_{i, k} \sum_{j, l} \sum_{i^{\prime}, k^{\prime}} \sum_{j^{\prime}, l^{\prime}} \delta_{i_{0} j_{0}} \delta_{k_{0} l_{0}} \delta_{i_{0}^{\prime} j_{0}^{\prime}} \delta_{k_{0}^{\prime} l_{0}^{\prime}}\left|a_{i k}\left\|b_{j l}\right\| c_{i^{\prime} k^{\prime}} \| d_{j^{\prime} l^{\prime}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \times\left|\int_{\Omega}\left(g_{i j} \bar{g}_{k l}\right)^{\sharp}(z)\left(\left(g_{i^{\prime} j^{\prime}} \bar{g}_{k^{\prime} l}\right)^{\ddagger}(z)\right)^{-} d v(z)\right| \\
\leqq & \sum_{\alpha} \sum_{\beta} \sum_{i, k}^{\alpha} \sum_{j, l}^{\beta}\left|a_{i k}\left\|c_{i k}\right\| b_{j l} \| d_{j l}\right|\left(\prod_{i, k} \alpha_{i k}!\right)\left(\prod_{j, l} \beta_{j l}!\right)
\end{aligned}
$$

(where Σ_{α} and Σ_{β} mean the summations which are taken over all α in $Z_{d}(p)$ and β in $Z_{d}(q)$ respectively, $\sum_{i, k}^{\alpha}$ and $\sum_{j, l}^{\beta}$ mean the summations which are taken over (i, k) in $T_{p}^{-1}(\alpha)$ and ($\left.j, l\right)$ in $T_{q}^{-1}(\beta)$ respectively,

$$
\begin{aligned}
= & \sum_{\alpha} \sum_{\beta}\left\{p!\left(\Pi_{i, k} \alpha_{i k}!\right)^{-1}\left(\sum_{i, k}^{\alpha} a_{i k}^{2}\right)^{1 / 2}\left(\sum_{i, k}^{\alpha} c_{i k}^{2}\right)^{1 / 2}\right\} \\
& \times\left\{q!\left(\prod_{j, l} \beta_{j l}!\right)^{-1}\left(\sum_{j, l}^{\beta} b_{j l}^{2}\right)^{1 / 2}\left(\sum_{j, l}^{\beta} d_{j l}^{2}\right)^{1 / 2}\right\}\left(\Pi_{i, k} \alpha_{i k}!\right)\left(\Pi_{j, l} \beta_{j l}!\right) \\
\leqq & p!q!\left\{\left(\sum_{i, k} a_{i k}^{2}\right)\left(\sum_{i, k} c_{i k}^{2}\right)\right\}^{1 / 2}\left\{\left(\sum_{j, l} b_{j l}^{2}\right)\left(\sum_{j, l} d_{j l}^{2}\right)\right\}^{1 / 2} \\
= & p!q!\|v\|\|w\|\left\|v^{\prime}\right\|\left\|w^{\prime}\right\| .
\end{aligned}
$$

Thus we have

$$
\left|B\left(v, w, v^{\prime}, w^{\prime}\right)\right| \leqq p!q!\|v\|\|w\|\left\|v^{\prime}\right\|\left\|w^{\prime}\right\| .
$$

Conversely let (π, \mathfrak{S}) be an irreducible unitary polynomial representation of discrete class. Then by definition, there exists an orthonormal basis $\left\{v_{i} ; i \in \boldsymbol{N}\right\}$ of \mathfrak{G} which satisfies the following conditions; $\phi_{i, j}^{\pi}(g)=\left(v_{i}, \pi(g) v_{j}\right)(i, j \in \boldsymbol{N})$ are polynomials and B :

$$
\mathfrak{H}_{f} \times \mathfrak{G}_{f} \times \mathfrak{H}_{f} \times \mathfrak{H}_{f} \ni\left(v, w, v^{\prime}, w^{\prime}\right) \longmapsto \int_{\Omega} \phi_{v, w}^{\pi \nRightarrow}(z)\left(\phi_{v^{\prime}, w^{\prime}}^{\pi^{\sharp}}(z)\right)^{-} d v(z) \in \boldsymbol{C}
$$

is continuous. From Proposition 1 there exists a positive constant c such that

$$
B\left(v, w, v^{\prime}, w^{\prime}\right)=c\left(v, v^{\prime}\right)\left(w, w^{\prime}\right)
$$

where $v, w, v^{\prime}, w^{\prime} \in \mathfrak{G}_{f}$. Now we fix v_{0}, and for any v in \mathfrak{G}_{f} we define a linear operator A by

$$
(A v)(z)=\phi_{v, v_{0}}^{\pi \nRightarrow}(z)
$$

Since B is continuous, A defines a bounded linear operator of \mathfrak{G} into $L^{2}(\Omega, v)$. As is easily seen we get the following

$$
(A \pi(g) v)(z)=\phi_{\pi(g) v, v_{0}}^{\pi \#}(z)=\phi_{v, v_{0}}^{\pi \sharp}\left(g^{-1} z\right)=\left(\pi_{L}(g) A v\right)(z) .
$$

This implies that A is an intertwining operator of \mathfrak{G} into $L^{2}(\Omega, v)$. Thus (π, \mathfrak{G}) is equivalent to a subrepresentation of ($\left.\pi_{L}, L^{2}(\Omega, v)\right)$. On the other hand, from Theorem 2, we can prove that any subrepresentation of ($\pi_{L}, L^{2}(\Omega, v)$) is equivalent to ($\pi_{p, q, \rho, \delta}, \mathscr{H}_{p, q, \rho, \delta}$) for some p and q in $N \cup\{0\}$ and ρ in $\hat{\mathfrak{G}}_{p}, \delta$ in $\hat{\mathfrak{G}}_{q}$. This completes the proof of the theorem.

Remark. Using the similar argument we improve on the inequality:

$$
\left|B\left(v, w, v^{\prime}, w^{\prime}\right)\right| \leqq(n!)^{2}\|v\|\|w\|\left\|v^{\prime}\right\|\left\|w^{\prime}\right\|
$$

in the proof of Theorem 2 in [6] as follows:

$$
\left|B\left(v, w, v^{\prime}, w^{\prime}\right)\right| \leqq n!\|v\|\|w\|\left\|v^{\prime}\right\|\left\|w^{\prime}\right\|
$$

References

[1] R. P. Boyer, Representation theory of the Hilbert-Lie group $U\left(\mathfrak{F}_{2}\right)_{2}$, Duke Math. J. 47 (1980), 325-344.
[2] T. Hida, Brownian motion, Springer-Verlag, (1980).
[3] A. A. Kirillov, Representations of an infinite dimensional unitary group, Soviet Math. Dokl. 14 (1973), 1355-1358.
[4] A. A. Kirillov, Unitary representations of the group diffeomorphisms and some of its subgroup, Preprint IPM, No. 82 (1974).
[5] H. Matsushima, K. Okamoto and T. Sakurai, On a certain class of irreducible unitary representations of the infinite dimensional rotation group I, Hiroshima Math. J. 11 (1981), 181-193.
[6] K. Okamoto and T. Sakurai, On a certain class of irreducible unitary representations of the infinite dimensional rotation group II, Hiroshima Math. J. 12 (1982), 385-397.
[7] G. I. Ol'shanskii, Unitary representations of the infinite-dimensional classical groups $U(p, \infty), S O_{0}(p, \infty), S p(p, \infty)$ and the corresponding motion groups, Functional Anal. and Appl. 12 (1978), 185-195.
[8] S. Strătilă and D. Voiculescu, Representations of AF-algebras and of the group $U(\infty)$, Lecture Notes in Math. 486, Springer-Verlag (1975).
[9] A. M. Vershik, I. M. Gel'fand and M. I. Graev, Representations of the group of diffeomorphisms, Russian Math. Surveys 30 (1975), 1-50.
[10] B. ørsted, A model for an interaction quantum field, J. Functional Anal. 36 (1980), 53-71.

> Department of Mathematics,
> Faculty of Science, Hiroshima University
> and
> Department of Mathematics, Fukuoka University of Education

