An analogue of Peter-Weyl theorem for the infinite dimensional unitary group

Kiyosato OKAMOTO and Takatoshi SAKURAI (Received April 15, 1982)

Introduction

In the previous paper [6] we proved an analogue of the Peter-Weyl theorem for the infinite dimensional rotation group $O(\mathbf{E})$ (for the definition see [6]). In this paper we shall prove the analogue of Peter-Weyl theorem for $U(\mathbf{E})$ (for the definition see §1). In the paper [6], for a proof of the irreducibility of the representation $\pi_{n,\rho}$ we used the results of A. M. Vershik, I. M. Gel'fand and M. I. Graev [9] in which they used the results of A. A. Kirillov [4]. In this paper we shall prove the irreducibility of the representation $\pi_{p,q,\rho,\delta}$, where the method of proof also works for $\pi_{n,\rho}$. Thus the arguments in our previous papers [5] and [6] are complete in our framework. It is plausible that the representations $U_{p,q,\rho,\delta}$ of the group of diffeomorphisms on a compact riemannian manifold would be able to be constructed in such a way that they should correspond to the representations $U_{n,\rho}$ (for the definition see [6]) given by A. M. Vershik, I. M. Gel'fand and M. I. Graev.

§1. Irreducibility of representations $\pi_{p,q,\rho,\delta}$

Let M be a compact riemannian manifold. We denote by $C^{\infty}(M, \mathbf{R})$ the space of all real valued C^{∞} -functions on M and $L^2(M, \mathbf{R})$ the Hilbert space of all square integrable real valued functions on M. We denote by $C^{\infty}(M, \mathbf{R})^*$ the dual space of $C^{\infty}(M, \mathbf{R})$. Let $C^{\infty}(M)$ be the space of all complex valued C^{∞} functions on M. We denote by $L^2(M)$ the Hilbert space of all square integrable complex valued functions on M. We write \mathbf{E} , \mathbf{H} and \mathbf{E}^* instead of $C^{\infty}(M)$, $L^2(M)$ and $C^{\infty}(M)^*$ respectively, where $C^{\infty}(M)^*$ denotes the dual space of $C^{\infty}(M)$. We denote by $U(\mathbf{E})$ the group of all linear homeomorphisms of \mathbf{E} which are isometries of \mathbf{H} . Let $L^2(M \times \cdots \times M)$ be the Hilbert space of all square integrable complex valued functions on $M \times \cdots \times M$ (*r*-times). We write simply $L^2(M: r)$ instead of $L^2(M \times \cdots \times M)$. Let V be a finite dimensional vector space with an inner product and $L^2(M \times \cdots \times M, V)$ the Hilbert space of all V-valued functions f on $M \times \cdots \times M$ (*r*-times) such that

$$||f||^2 = \int_{M \times \cdots \times M} ||f(u_1, \dots, u_r)||_V^2 du_1 \cdots du_r < +\infty.$$

We also write simply $L^2(M: r, V)$ instead of $L^2(M \times \cdots \times M, V)$.

As in the previous paper [6], we shall consider a Gel'fand triple

$$C^{\infty}(M \times M) \subset L^{2}(M \times M) \subset C^{\infty}(M \times M)^{*}.$$

We can identify $C^{\infty}(M \times M)$, $L^2(M \times M)$ and $C^{\infty}(M \times M)^*$ with $E \otimes E$, $H \otimes H$ and $(E \otimes E)^*$ respectively, where $E \otimes E$ and $H \otimes H$ denote the completion of $E \otimes E$ and $H \otimes H$ respectively. Then we get a complex Gaussian measure v on $(E \otimes E)^*$ such that for any ζ in $E \otimes E$

$$e^{-\|\zeta\|^2} = \int_{\Omega} K(z;\zeta) dv(z), \quad K(z;\zeta) = e^{i\{\langle z,\zeta\rangle + (\langle z,\zeta\rangle)^{-}\}},$$

where $\Omega = (E \otimes E)^*$, (for a function f on Ω we often use the notation $(f(z))^$ instead of the complex conjugation of f(z)). Let N be the set of all positive integers. For any p and q in $N \cup \{0\}$, we consider the complex Hermite polynomial;

$$H_{p,q}(t,\,\bar{t}) = (-1)^{p+q} e^{t\bar{t}} \frac{\partial^{p+q}}{\partial \bar{t}^p \partial t^q} e^{-t\bar{t}} \qquad (t \in \mathbb{C}).$$

In the following we fix, once for all, an orthonormal basis $\{\xi_j; j \in \mathbb{N}\}$ of $L^2(M)$ such that $\xi_j \in C^{\infty}(M, \mathbb{R})$ for any $j \in \mathbb{N}$. Then $\{\xi_i \otimes \xi_j; i, j \in \mathbb{N}\}$ is an orthonormal basis contained in $C^{\infty}(M, \mathbb{R}) \otimes C^{\infty}(M, \mathbb{R})$. We put

$$\mathfrak{B}_{p,q} = \{\prod_{i,j=1}^{\infty} (p_{ij}!q_{ij}!)^{-1/2} H_{p_{i,j},q_{i,j}}(\langle z, \xi_i \otimes \xi_j \rangle, (\langle z, \xi_i \otimes \xi_j \rangle)^-); \\ \sum_{i,j=1}^{\infty} p_{ij} = p, \sum_{i,j=1}^{\infty} q_{ij} = q\}.$$

Then it is known that $\bigcup_{n=0}^{\infty} (\bigcup_{p+q=n} \mathfrak{B}_{p,q})$ is an orthonormal basis of $L^2(\Omega, \nu)$. We denote by $\mathfrak{H}_{p,q}$ the closed subspace spanned by $\mathfrak{B}_{p,q}$. Then we have

$$L^{2}(\Omega, v) = \sum_{n=0}^{\infty} \bigoplus \sum_{p+q=n} \bigoplus \mathfrak{H}_{p,q} \qquad \text{(Wiener-Itô decomposition)}.$$

We denote by $P_{p,q}$ the orthogonal projection of $L^2(\Omega, \nu)$ onto $\mathfrak{H}_{p,q}$. We consider the transformation \mathscr{T} defined by

$$(\mathcal{T}f)(\zeta) = \int_{\Omega} K(z; \zeta)(f(z))^{-} dv(z) \qquad (f \in L^{2}(\Omega, v), \zeta \in \mathbf{E} \otimes \mathbf{E}),$$

(see [2]). And we define a transformation \mathcal{T}_* by

$$(\mathcal{T}_*f)(\zeta) = e^{\|\zeta\|^2} \sum_{n=0}^{\infty} i^{-n} \sum_{p+q=n} \mathcal{T}(P_{p,q}f)(\zeta).$$

Then \mathscr{T}_* is injective. In case $\mathscr{T}_*f = \phi$, we write $f = \phi^*$.

For any g in $U(\mathbf{E})$ we can define linear mappings L_g and R_g of $\mathbf{E} \otimes \mathbf{E}$ into itself by

$$L_g(\xi \otimes \eta) = (g\xi) \otimes \eta, \quad R_g(\xi \otimes \eta) = \xi \otimes (g\eta).$$

530

We denote by gz and zg the dual actions of U(E) on Ω defined by

$$\langle gz, \zeta \rangle = \langle z, L_{g^{-1}}\zeta \rangle, \quad \langle zg, \zeta \rangle = \langle z, R_g\zeta \rangle \qquad (\zeta \in \mathbf{E} \widehat{\otimes} \mathbf{E}).$$

For each g in $U(\mathbf{E})$ we shall identify g with the linear form on $\mathbf{E} \otimes \mathbf{E}$ defined by

$$\xi_i \otimes \xi_i \longmapsto (\xi_i, g\xi_i) \qquad (i, j \in \mathbf{N}).$$

Thus we regard the group $U(\mathbf{E})$ as a subset of Ω . Let $C[X_{ij}, \overline{X}_{kl}; i, j, k, l \in \mathbf{N}]$ be the polynomial ring of infinite variables $X_{ij}, \overline{X}_{kl}$ over \mathbf{C} . Let $C(\Omega)$ be the set of all continuous functions on Ω . We denote by $C(U(\mathbf{E}))$ the set of functions given by the restriction of functions in $C(\Omega)$ to $U(\mathbf{E})$. We consider the mapping from $C[X_{ij}, \overline{X}_{kl}; i, j, k, l \in \mathbf{N}]$ to $C(\Omega)$ defined by the map: $F \mapsto f$, where $F((X_{ij}, \overline{X}_{kl})) \in C[X_{ij}, \overline{X}_{kl}; i, j, k, l \in \mathbf{N}]$ and $f(z) = F((\langle z, \xi_i \otimes \xi_j \rangle, (\langle z, \xi_k \otimes \xi_l \rangle)^{-}))$. We shall denote by $F(\Omega)$ the image of this mapping. We call functions in $F(\Omega)$ polynomials on Ω . We put $F(U(\mathbf{E})) = F(\Omega)|_{U(\mathbf{E})}$. We also call functions in $F(U(\mathbf{E}))$ polynomials on $U(\mathbf{E})$. It is easy to see that the restriction mapping is injective. Hence for each polynomial f on $U(\mathbf{E})$ there exists a unique polynomial \tilde{f} on Ω such that $f = \tilde{f}|_{U(\mathbf{E})}$. In the following we use the same notation f instead of \tilde{f} . Since

$$g_{ij} = (g\xi_j, \xi_i) = (\langle g, \xi_i \otimes \xi_j \rangle)^{-},$$

 g_{ij} can be regarded as a function on $U(\mathbf{E})$ which is clearly a restriction to $U(\mathbf{E})$) of the function $g_{ij}(z) = (\langle z, \xi_i \otimes \xi_j \rangle)^-$ on Ω . As

$$\begin{aligned} \mathscr{T}_*(\prod_{i,j} H_{p_{ij},q_{ij}}(\langle \cdot, \xi_i \otimes \xi_j \rangle, (\langle \cdot, \xi_i \otimes \xi_j \rangle)^{-}))(\zeta) &= \prod_{i,j} (\xi_i \otimes \xi_j, \zeta)^{p_{ij}}(\zeta, \xi_i \otimes \xi_j)^{q_{ij}} \\ &= \prod_{i,j} ((g_{ij}(\zeta))^{-})^{p_{ij}} (g_{ij}(\zeta))^{q_{ij}} = (\prod_{i,j} (\bar{g}_{ij})^{p_{ij}} (g_{ij})^{q_{ij}})(\zeta), \end{aligned}$$

we have

$$(\prod_{i,j} (\bar{g}_{ij})^{p_{ij}} (g_{ij})^{q_{ij}})^* (z) = \prod_{i,j} H_{p_{ij},q_{ij}} (\langle z, \xi_i \otimes \xi_j \rangle, (\langle z, \xi_i \otimes \xi_j \rangle)^-).$$

Let \mathfrak{S}_r be the group of all permutations of $\{1, \ldots, r\}$. Let (ρ, V_{ρ}) and (δ, V_{δ}) be irreducible unitary finite dimensional representations of \mathfrak{S}_p and \mathfrak{S}_q respectively. We denote by $\hat{\mathfrak{S}}_r$ the set of all equivalence classes of irreducible unitary representations of \mathfrak{S}_r . The group $\mathfrak{S}_p \times \mathfrak{S}_q$ acts on $M \times \cdots \times M$ ((p+q)-times) on the right by

$$(u_1,..., u_p, v_1,..., v_q) \cdot (\sigma, \tau) = (u_{\sigma(1)},..., u_{\sigma(p)}, v_{\tau(1)},..., v_{\tau(q)}).$$

We write simply $u \cdot \sigma$ and $v \cdot \tau$ instead of $(u_{\sigma(1)}, ..., u_{\sigma(p)})$ and $(v_{\tau(1)}, ..., v_{\tau(q)})$ respectively. The right action of $\mathfrak{S}_p \times \mathfrak{S}_q$ induces an action $\tilde{\lambda}(\sigma, \tau)$ on $L^2(M: p+q)$ defined by

$$(\tilde{\lambda}(\sigma, \tau)f)(u, v) = f(u \cdot \sigma, v \cdot \tau) \qquad (f \in L^2(M \colon p+q)).$$

For any irreducible unitary representations (ρ, V_{ρ}) of \mathfrak{S}_{p} and (δ, V_{δ}) of \mathfrak{S}_{q} , we denote by Hom (V_{δ}, V_{ρ}) the space of all linear mappings of V_{δ} to V_{ρ} . We give the space Hom (V_{δ}, V_{ρ}) the natural inner product induced by those of V_{ρ} and V_{δ} . We put

$$\begin{aligned} \mathscr{H}_{p,q,\rho,\delta} &= \{ f \in L^2(M \colon p + q, \operatorname{Hom}\left(V_{\delta}, V_{\rho}\right)); \\ f(u \cdot \sigma, v \cdot \tau) &= \rho(\sigma)^{-1} f(u, v) \delta(\tau), \, \sigma \in \mathfrak{S}_p, \, \tau \in \mathfrak{S}_q \}. \end{aligned}$$

By the canonical isomorphism ι we have

$$L^2(M: p+q) \cong L^2(M) \overline{\otimes} \cdots \overline{\otimes} L^2(M)$$
 ((p+q)-times).

For any g in $U(\mathbf{E})$ we define a unitary operator $\hat{\pi}_{p,q}(g)$ on $L^2(M) \otimes \cdots \otimes L^2(M)$ by

$$\hat{\pi}_{p,q}(g)(\xi_{i_1}\otimes\cdots\otimes\xi_{i_p}\otimes\xi_{k_1}\otimes\cdots\otimes\xi_{k_q})=(g\xi_{i_1})\otimes\cdots\otimes(g\xi_{i_p})\otimes(g^*\xi_{k_1})\otimes\cdots\otimes(g^*\xi_{k_q}),$$

where g^* denotes the adjoint operator of g. We denote by $\tilde{\pi}_{p,q}(g)$ the unitary operator on $L^2(M: p+q)$ which corresponds to $\hat{\pi}_{p,q}(g)$. For any σ in \mathfrak{S}_p and τ in \mathfrak{S}_q we define the action $\lambda(\sigma) \otimes \lambda(\tau)$ on $L^2(M) \bar{\otimes} \cdots \bar{\otimes} L^2(M)$ by

$$(\lambda(\sigma)\otimes\lambda(\tau))(\xi_{i_1}\otimes\cdots\otimes\xi_{i_p}\otimes\xi_{k_1}\otimes\cdots\otimes\xi_{k_q})=\xi_{i_{\sigma(1)}}\otimes\cdots\otimes\xi_{i_{\sigma(p)}}\otimes\xi_{k_{\tau(1)}}\otimes\cdots\otimes\xi_{k_{\tau(q)}}.$$

We denote by $\tilde{\pi}_{p,q} \otimes I$ the unitary representation of $U(\mathbf{E})$ on $L^2(M: p+q) \otimes$ Hom (V_{δ}, V_{ρ}) , where I denotes the identity operator on Hom (V_{δ}, V_{ρ}) . Using the canonical isomorphism we have

$$L^2(M: p+q, \operatorname{Hom}(V_{\delta}, V_{\rho})) \cong L^2(M: p+q) \otimes \operatorname{Hom}(V_{\delta}, V_{\rho}).$$

Hence we obtain the unitary representation $\tilde{\pi}_{p,q,\rho,\delta}$ of $U(\mathbf{E})$ on $L^2(M: p+q, Hom(V_{\delta}, V_{\rho}))$ which corresponds to the representation $\tilde{\pi}_{p,q} \otimes I$. Since $\tilde{\pi}_{p,q}(g) \otimes I$ commutes with $\tilde{\lambda}(\sigma, \tau) \otimes I$, $\mathscr{H}_{p,q,\rho,\delta}$ is $\tilde{\pi}_{p,q,\rho,\delta}(U(\mathbf{E}))$ -invariant. So that we get the subrepresentation $\pi_{p,q,\rho,\delta}$ of $U(\mathbf{E})$ on $\mathscr{H}_{p,q,\rho,\delta}$. We put $(M \times \cdots \times M)' = \{(u_1, \ldots, u_r) \in M \times \cdots \times M; u_m \neq u_n \ (m \neq n)\}$, and write simply (M: r)' instead of $(M \times \cdots \times M)'$ (r-times). It is easy to see that there exist open subsets F_p in $M \times \cdots \times M$ (p-times) and F_q in $M \times \cdots \times M$ (q-times) which satisfy the following conditions. The mapping ϕ :

$$F_p \times F_q \times \mathfrak{S}_p \times \mathfrak{S}_q \ni (u, v, \sigma, \tau) \longmapsto (u \cdot \sigma, v \cdot \tau) \in (M \colon p)' \times (M \colon q)'$$

is injective and

$$\phi(F_p \times F_q \times \mathfrak{S}_p \times \mathfrak{S}_q) = (M \colon p)' \times (M \colon q)'.$$

Let $L^2(\mathfrak{S}_r)$ be the space of all functions on \mathfrak{S}_r . We introduce an inner product defined by the normalized Haar measure on \mathfrak{S}_r . Then by the Peter-Weyl theorem for \mathfrak{S}_r , we have

An Analogue of Peter-Weyl Theorem

$$L^{2}(\mathfrak{S}_{r}) = \sum_{\rho} V_{\rho} \otimes V_{\rho}^{*},$$

where \sum_{ρ} is taken over all ρ in $\widehat{\mathfrak{S}}_r$. We note that

$$r! = \dim (L^2(\mathfrak{S}_r)) = \sum_{\rho} (\dim V_{\rho})^2$$

which we need in the proof of Theorem 1. Now we obtain the following

$$\begin{split} L^2(M\colon p+q) &\cong L^2(F_p \times F_q \times \mathfrak{S}_p \times \mathfrak{S}_q) \cong (L^2(F_p) \otimes L^2(\mathfrak{S}_p)) \otimes (L^2(F_q) \otimes L^2(\mathfrak{S}_q)) \\ &\cong (\sum_{\rho} L^2(F_p) \otimes V_{\rho} \otimes V_{\rho}^*) \overline{\otimes} (\sum_{\delta} L^2(F_q) \otimes V_{\delta} \otimes V_{\delta}^*) \\ &\cong \sum_{\rho} \sum_{\delta} (L^2(F_p) \overline{\otimes} L^2(F_q) \otimes V_{\rho} \otimes V_{\delta}^*) \otimes V_{\rho}^* \otimes V_{\delta} \\ &\cong \sum_{\rho} \sum_{\delta} L^2(F_p \times F_q, \operatorname{Hom}(V_{\delta}, V_{\rho})) \otimes V_{\rho}^* \otimes V_{\delta}. \end{split}$$

Hence we get

$$L^{2}(M \colon p+q) \cong \sum_{\rho} \sum_{\delta} \mathscr{H}_{p,q,\rho,\delta} \otimes V_{\rho}^{*} \otimes V_{\delta}.$$

For any d in N we put $N_d = \{1, ..., d\}$, $(N_d \times N_d)^r = (N_d \times N_d) \times \cdots \times (N_d \times N_d)$ (r-times). As for elements in $(N_d \times N_d)^p \times (N_d \times N_d)^q$ we often use the symbolical expression ((i, j), (k, l)) instead of $((i_1, j_1), ..., (i_p, j_p), (k_1, l_1), ..., (k_q, l_q))$. \mathfrak{S}_p and \mathfrak{S}_q act on $(N_d \times N_d)^p \times (N_d \times N_d)^q$ on the right by

$$((i \cdot \sigma, j \cdot \sigma), (k \cdot \tau, l \cdot \tau)) = ((i_{\sigma(1)}, j_{\sigma(1)}), \dots, (i_{\sigma(p)}, j_{\sigma(p)}), (k_{\tau(1)}, l_{\tau(1)}), \dots, (k_{\tau(q)}, l_{\tau(q)}), \dots, (k_{\tau(q)}, k_{\tau(q)}), \dots, (k_{\tau(q)},$$

where $\sigma \in \mathfrak{S}_p$ and $\tau \in \mathfrak{S}_q$. We denote by $Z_d(r)$ the set of all $d \times d$ matrices $\alpha = (\alpha_{mn})$ which satisfy the following conditions;

$$\alpha_{mn} \in \mathbf{N} \cup \{0\} \quad (m, n \in \mathbf{N}_d), \qquad \sum_{m,n=1}^d \alpha_{mn} = r.$$

For each $(i, j) = ((i_1, j_1), ..., (i_r, j_r)) \in (N_d \times N_d)^r$ we assign an element $\alpha = (\alpha_{mn}) \in Z_d(r)$ by the following rule and we put $T_r(i, j) = \alpha$. α_{mn} is the number of the components $(i_s, j_s)(s=1, ..., r)$ such that $i_s = m$ and $j_s = n$. And we define the mapping $T_p \times T_q$ from $(N_d \times N_d)^p \times (N_d \times N_d)^q$ to $Z_d(p) \times Z_d(q)$ by $(T_p \times T_q)((i, j), (k, l)) = (T_p(i, j), T_q(k, l))$. In case $T_r(i, j) = T_r(i', j')$ we write $(i, j) \sim (i', j')$. It is easy to show the following lemma.

LEMMA 1. $(i, j) \sim (i', j')$ holds if and only if there exists a σ in \mathfrak{S}_r such that $(i', j') = (i \cdot \sigma, j \cdot \sigma)$, where $(i, j), (i', j') \in (N_d \times N_d)^r$.

From this lemma we see that the number of elements of $T_r^{-1}(\alpha)$ is equal to $r!(\prod_{m,n=1}^d \alpha_{mn}!)^{-1}$. We put $N^r = N \times \cdots \times N$ (*r*-times). For any *i* in N^p and *k* in N^q we write simply $\xi_i \otimes \xi_k$ instead of $\xi_{i_1} \otimes \cdots \otimes \xi_{i_p} \otimes \xi_{k_1} \otimes \cdots \otimes \xi_{k_q}$ in $L^2(M) \otimes \cdots \otimes \overline{\Sigma} L^2(M)$. Then for any *g* in U(E). and for any *j* in N^p and *l* in N^q , we have

$$\begin{aligned} \hat{\pi}_{p,q}(g)(\xi_j \otimes \xi_l) &= (g\xi_j) \otimes (g^*\xi_l) = g\xi_{j_1} \otimes \cdots \otimes g\xi_{j_p} \otimes g^*\xi_{l_1} \otimes \cdots \otimes g^*\xi_{l_q} \\ &= \sum_{i,k} (g_{i_1j_1} \cdots g_{i_pj_p} \bar{g}_{k_ll_1} \cdots \bar{g}_{k_ql_q}) \xi_i \otimes \xi_k, \end{aligned}$$

533

where $\sum_{i,k}$ means $\sum_{i_1=1}^{\infty} \cdots \sum_{i_p=1}^{\infty} \sum_{k_1=1}^{m} \cdots \sum_{k_q=1}^{\infty} \sum_{k_q=1}^{m}$. In the following we write symbolically $g_{ij}\overline{g}_{kl}$ instead of $g_{i_1j_1}\cdots g_{i_pj_p}\overline{g}_{k_1l_1}\cdots \overline{g}_{k_ql_q}$. For any *i*, *j* in N^p and *k*, *l* in N^q , we denote by max $\{i, j, k, l\}$ a maximum number included in the set $\{i_1, \ldots, i_p, j_1, \ldots, j_p, k_1, \ldots, k_q, l_1, \ldots, l_q\}$. We put $d = \max\{i, j, k, l\}$, $T_p(i, j) = \alpha$ and $T_q(k, l) = \beta$, where $\alpha \in Z_d(p)$ and $\beta \in Z_d(q)$. Since $(g_{ij}\overline{g}_{kl})^*(z) = \prod_{m,n=1}^d H_{\alpha_{mn},\beta_{mn}}$ $(\langle z, \xi_m \otimes \xi_n \rangle, (\langle z, \xi_m \otimes \xi_n \rangle)^-)$, the following lemma is obvious.

LEMMA 2. For any *i*, *j*, *i'*, *j'* in N^p and for any *k*, *l*, *k'*, *l'* in N^q let $d = \max\{i, j, k, l, i', j', k', l'\}, (\alpha, \beta) = (T_p(i, j), T_q(k, l))$ and $(\alpha', \beta') = (T_p(i', j'), T_q(k', l'))$. Then it follows that

$$\begin{split} &\int_{\Omega} (g_{ij} \bar{g}_{kl})^{*}(z) ((g_{i'j'} \bar{g}_{k'l'})^{*}(z))^{-} d\nu(z) \\ &= \begin{cases} \prod_{m,n=1}^{d} (\alpha_{mn}! \beta_{mn}! \alpha'_{mn}! \beta'_{mn}!) & ((i,j) \sim (i',j') \text{ and } (k,l) \sim (k',l')), \\ 0 & ((i,j) \sim (i',j') \text{ or } (k,l) \sim (k',l')). \end{cases} \end{split}$$

THEOREM 1. 1) If ρ and δ are both irreducible, then $(\pi_{p,q,\rho,\delta}, \mathcal{H}_{p,q,\rho,\delta})$ is irreducible.

2) Two representations $(\pi_{p,q,\rho,\delta}, \mathcal{H}_{p,q,\rho,\delta})$ and $(\pi_{p',q',\rho',\delta'}, \mathcal{H}_{p',q',\rho',\delta'})$ are equivalent if and only if $p = p', q = q', \rho \simeq \rho', \delta \simeq \delta'$.

PROOF. We denote by $\operatorname{Hom}_{U(E)}(L^2(M:p+q), L^2(M:p+q))$ the space of all intertwining operators on $L^2(M:p+q)$. Using the isometry $\iota: L^2(M:p+q) \rightarrow L^2(M) \bar{\otimes} \cdots \bar{\otimes} L^2(M)((p+q))$, for any \tilde{A} in $\operatorname{Hom}_{U(E)}(L^2(M:p+q), L^2(M:p+q))$ there exists an operator A on $L^2(M) \bar{\otimes} \cdots \bar{\otimes} L^2(M)$ such that $A \cdot \iota = \iota \cdot \tilde{A}$. We put

$$A(\xi_i \otimes \xi_k) = \sum_{j,l} a_{jl}^{ik} \xi_j \otimes \xi_l,$$

where $i, j \in \mathbb{N}^p$ and $k, l \in \mathbb{N}^q$. For any g in $U(\mathbf{E})$ by definition of $\hat{\pi}_{p,q}(g)$ we have $A \cdot \hat{\pi}_{p,q}(g) = \hat{\pi}_{p,q}(g) \cdot A$. Then we have

$$\begin{aligned} \hat{\pi}_{p,q}(g)A(\xi_i \otimes \xi_k) &= \hat{\pi}_{p,q}(g)(\sum_{j,l} a_{jl}^{ik}\xi_j \otimes \xi_l) \\ &= \sum_{j,l} a_{jl}^{ik}(g\xi_j \otimes g^*\xi_l) = \sum_{s,t} \sum_{j,l} a_{jl}^{ik}g_{sj}\overline{g}_{tl}\xi_s \otimes \xi_t, \end{aligned}$$

where $s \in N^p$ and $t \in N^q$. On the other hand we have

$$\begin{aligned} A\hat{\pi}_{p,q}(g)(\xi_i \otimes \xi_k) &= A(g\xi_i \otimes g^*\xi_k) = A(\sum_{m,n} g_{mi}\overline{g}_{nk}\xi_m \otimes \xi_n) \\ &= \sum_{s,t} \sum_{m,n} a_{st}^{mn} g_{mi}\overline{g}_{nk}\xi_s \otimes \xi_t, \end{aligned}$$

where $m \in \mathbb{N}^p$ and $n \in \mathbb{N}^q$. Since $A \cdot \hat{\pi}_{p,q}(g) = \hat{\pi}_{p,q}(g) \cdot A$, we conclude that for any s and t

$$\sum_{j,l} a_{jl}^{ik} g_{sj} \overline{g}_{tl} = \sum_{m,n} a_{st}^{mn} g_{ml} \overline{g}_{nk}.$$

Fix any j' in N^p and l' in N^q then we have

$$\begin{split} &\int_{\Omega} \left(\sum_{j,l} a_{jl}^{ik} g_{sj} \bar{g}_{tl} \right)^{\sharp} (z) \left((g_{sj'} \bar{g}_{tl'})^{\sharp} (z) \right)^{-} d\nu(z) \\ &= \int_{\Omega} \left(\sum_{m,n} a_{st}^{mn} g_{mi} \bar{g}_{nk} \right)^{\sharp} (z) \left((g_{sj'} \bar{g}_{tl'})^{\sharp} (z) \right)^{-} d\nu(z) \end{split}$$

For any $s = (s_1, ..., s_p)$ and $t = (t_1, ..., t_q)$ such that $s_h \neq s_{h'}$ $(h \neq h')$ and $t_h \neq t_{h'}$ $(h \neq h')$, from Lemma 2, we get

$$\begin{aligned} a_{j'l'}^{ik} &= \int_{\Omega} \left(\sum_{j,l} a_{jl}^{ik} g_{sj} \bar{g}_{tl} \right)^{\sharp} (z) \left((g_{sj'} \bar{g}_{tl'})^{\sharp} (z) \right)^{-} d\nu(z) \\ &= \int_{\Omega} \left(\sum_{m,n} a_{st}^{mn} g_{mi} \bar{g}_{nk} \right)^{\sharp} (z) \left((g_{sj'} \bar{g}_{tl'})^{\sharp} (z) \right)^{-} d\nu(z) = \sum_{m,n}^{1} a_{st}^{mn}, \end{aligned}$$

where $\sum_{m,n}^{1}$ means the summation which is taken over *m* and *n* such that $(m, i) \sim (s, j')$ and $(n, k) \sim (t, l')$. From Lemma 1 this implies that $a_{j'l'}^{ik} = 0$ unless there exist σ and τ such that $j' = i \cdot \sigma$ and $l' = k \cdot \tau$. Thus we obtain

$$a_{j'l'}^{ik} = \sum_{\sigma,\tau}^2 a_{st}^{(s\cdot\sigma^{-1})(t\cdot\tau^{-1})} = \sum_{\sigma,\tau}^2 a_{(s\cdot\sigma)(t\cdot\tau)}^{st},$$

where $\sum_{\sigma,\tau}^{2}$ means the summation which is taken over σ and τ such that $j' = i \cdot \sigma$ and $l' = k \cdot \tau$. Now we assume that $i = (i_1, ..., i_p)$ and $k = (k_1, ..., k_q)$ satisfy the following conditions;

$$i_h \neq i_{h'}$$
 $(h \neq h')$ and $k_h \neq k_{h'}$ $(h \neq h')$.

Then we have

$$a_{(i\cdot\sigma)(k\cdot\tau)}^{ik} = a_{(s\cdot\sigma)(t\cdot\tau)}^{st},$$

so that we can write

 $a_{(i\cdot\sigma)(k\cdot\tau)}^{ik} = a_{\sigma,\tau}.$

Thus for any i and k we get

$$a_{jl}^{ik} = \sum_{\sigma,\tau}^{3} a_{\sigma,\tau},$$

where $\sum_{\sigma,\tau}^{3}$ means the summation which is taken over σ and τ such that $j = i \cdot \sigma$ and $l = k \cdot \tau$. It follows that

$$A(\xi_i \otimes \xi_k) = \sum_{j,l} a_{jl}^{ik} \xi_j \otimes \xi_l = \sum_{\sigma,\tau} a_{\sigma,\tau} \xi_{i \cdot \sigma} \otimes \xi_{k \cdot \tau}.$$

Hence we conclude that

$$A = \sum_{\sigma,\tau} a_{\sigma,\tau} \lambda(\sigma) \otimes \lambda(\tau),$$

where $\sum_{\sigma,\tau}$ is taken over all σ in \mathfrak{S}_p and τ in \mathfrak{S}_q . We denote by $\mathscr{I}_{p,q}$ the space of all operators on $L^2(M) \overline{\otimes} \cdots \overline{\otimes} L^2(M)$ ((p+q)-times) spanned by the set $\{\lambda(\sigma)\otimes$

 $\lambda(\tau); \sigma \in \mathfrak{S}_p, \tau \in \mathfrak{S}_q$ over C. Then for any g in U(E) it is clear that $A \cdot \hat{\pi}_{p,q}(g) = \hat{\pi}_{p,q}(g) \cdot A$. Thus we obtain

$$\operatorname{Hom}_{U(E)}(L^2(M:p+q), L^2(M:p+q)) \cong \mathscr{I}_{p,q}.$$

This implies that

dim Hom_{$$U(E) (L2(M: p+q), L2(M: p+q)) = p!q!.$$}

We remark that $L^2(M: p+q) = \sum_{\rho} \sum_{\delta} \mathscr{H}_{p,q,\rho,\delta} \otimes V_{\rho}^* \otimes V_{\delta}$, and that $\sum_{\rho} \sum_{\delta} (\dim V_{\rho}^* \otimes V_{\delta})^2 = (\sum_{\rho} (\dim V_{\rho})^2) (\sum_{\delta} (\dim V_{\delta})^2) = p! q!$. Now the assertion of the theorem follows immediately from the following lemma.

LEMMA 3. Let (π, \mathcal{H}) be a unitary representation (of a group G) such that \mathcal{H} is a direct sum of closed invariant irreducible subspaces. Suppose that $\mathcal{H} = \sum_{k=1}^{s} m_k W_k$ (orthogonal decomposition) where $m_k W_k = W_k + \dots + W_k$ (m_k times) and W_k (k=1,...,s) are closed invariant subspaces. Further assume that dim Hom_G (\mathcal{H}, \mathcal{H}) = $\sum_{k=1}^{s} (m_k)^2$. Then W_k (k=1,...,s) are irreducible and W_k is equivalent to $W_{k'}$ if and only if k is equal to k'.

PROOF. Let $V_1, ..., V_l$ be the representatives of irreducible subspaces which occur in \mathcal{H} . We put

$$W_k = \sum_{i=1}^l n_i^k V_i,$$

where $n_i^k \in \mathbb{N} \cup \{0\}$. Then we have

$$\mathscr{H} = \sum_{i=1}^{l} \left(\sum_{k=1}^{s} m_k n_i^k \right) V_i.$$

Thus we get

$$\sum_{i=1}^{l} \left(\sum_{k=1}^{s} m_k n_i^k \right)^2 = \sum_{i=1}^{l} \sum_{k_1=1}^{s} \sum_{k_2=1}^{s} m_{k_1} m_{k_2} (n_i^{k_1}) (n_i^{k_2})$$

= dim Hom_G (*H*, *H*) = $\sum_{k=1}^{s} (m_k)^2$.

Since m_k (k=1,..., s) are positive integers, we have the following

$$\sum_{i=1}^{l} (n_i^{k_1})^2 = 1 \qquad (k_1 = k_2), \quad \sum_{i=1}^{l} (n_i^{k_1}) (n_i^{k_2}) = 0 \qquad (k_1 \neq k_2).$$

Hence *l* is equal to *s* and W_k (k=1,...,s) are irreducible and W_k is not equivalent to $W_{k'}$ ($k \neq k'$).

§ 2. Peter-Weyl theorem for U(E)

We denote by $L^2(M \times M : p+q)^{\wedge}$ the Hilbert space of all square integrable functions F on $(M \times M) \times \cdots \times (M \times M)$ ((p+q)-times) such that for any σ in \mathfrak{S}_p and τ in \mathfrak{S}_q

An Analogue of Peter-Weyl Theorem

$$F((u_{\sigma(1)}^{1}, u_{\sigma(1)}^{2}), \dots, (u_{\sigma(p)}^{1}, u_{\sigma(p)}^{2}), (v_{\tau(1)}^{1}, v_{\tau(1)}^{2}), \dots, (v_{\tau(q)}^{1}, v_{\tau(q)}^{2})))$$

= $F((u_{1}^{1}, u_{1}^{2}), \dots, (u_{p}^{1}, u_{p}^{2}), (v_{1}^{1}, v_{1}^{2}), \dots, (v_{q}^{1}, v_{q}^{2})).$

For any f in $\mathfrak{H}_{p,q}$ there exists a unique F in $L^2(M \times M: p+q)^{\wedge}$ such that

$$(\mathscr{T}_*f)(\zeta) = \int_{(M \times M) \times \dots \times (M \times M)} F((u_1^1, u_1^2), \dots, (u_p^1, u_p^2), (v_1^1, v_1^2), \dots, (v_q^1, v_q^2)) \times (\zeta(u_1^1, u_1^2))^{-} \dots (\zeta(u_p^1, u_p^2))^{-} \zeta(v_1^1, v_1^2) \dots \zeta(v_q^1, v_q^2) du_1^1 du_1^2 \dots dv_q^1 dv_q^2, (\text{see } [2]).$$

As is easily seen the measure v is $U(\mathbf{E})$ -invariant. For any g in $U(\mathbf{E})$ we define

$$(\pi_L(g)f)(z) = f(g^{-1}z), \quad (\pi_R(g)f)(z) = f(zg),$$

where $f \in L^2(\Omega, v)$. Then π_L and π_R are unitary representations of U(E). For any (g_1, g_2) in $U(E) \times U(E)$ we put

$$(\omega_*(g_1, g_2)f)(z) = f(g_1^{-1}zg_2).$$

Then ω_* is a unitary representation of $U(\mathbf{E}) \times U(\mathbf{E})$. Clearly $\mathfrak{H}_{p,q}$ is $\omega_*(U(\mathbf{E}) \times U(\mathbf{E}))$ -invariant. We obtain a unitary subrepresentation $(\omega_{p,q}, \mathfrak{H}_{p,q})$ of $U(\mathbf{E}) \times U(\mathbf{E})$.

THEOREM 2 (Peter-Weyl theorem for U(E)). The unitary representation ω_* of $U(E) \times U(E)$ is decomposed as follows:

$$L^{2}(\Omega, v) = \sum_{n=0}^{\infty} \bigoplus \sum_{p+q=n} \bigoplus \sum_{\rho} \sum_{\delta} \mathscr{H}_{p,q,\rho,\delta} \overline{\bigoplus} \mathscr{H}_{p,q,\rho,\delta}^{*},$$

where $\omega_{p,q}(g_1, g_2)$ corresponds to $\pi_{p,q,\rho,\delta}(g_1) \otimes \pi^*_{p,q,\rho,\delta}(g_2)$ for each (g_1, g_2) in $U(\mathbf{E}) \times U(\mathbf{E})$.

PROOF. We put $\mathfrak{H}_{p,q}^{\circ} = \{f \in L^2(M: p+q) \otimes L^2(M: p+q); (\tilde{\lambda}(\sigma, \tau) \otimes \tilde{\lambda}(\sigma, \tau))f = f, (\sigma, \tau) \in \mathfrak{S}_p \times \mathfrak{S}_q\}$. Then we have the canonical isomorphism $\mathfrak{c}_{p,q}: L^2(M \times M: p+q)^{\circ} \to \mathfrak{H}_{p,q}^{\circ}$. As we saw in the previous section, we have

$$L^{2}(M: p+q) \cong \sum_{\rho} \sum_{\delta} \mathscr{H}_{p,q,\rho,\delta} \otimes V_{\rho}^{*} \otimes V_{\delta}.$$

We remark that the unitary operator $\tilde{\lambda}(\sigma, \tau)$ corresponds to $I \otimes \rho^*(\sigma) \otimes \delta(\tau)$ where *I* denotes the identity operator on $\mathscr{H}_{p,q,\rho,\delta}$. Thus we have

$$\begin{split} \mathfrak{H}_{p,q} &\cong \mathfrak{H}_{p,q}^{*} \cong \{ \gamma \in \sum_{\rho_{1}} \sum_{\delta_{1}} \sum_{\rho_{2}} \sum_{\delta_{2}} (\mathscr{H}_{p,q,\rho_{1},\delta_{1}} \otimes V_{\rho_{1}}^{*} \otimes V_{\delta_{1}}) \overline{\otimes} (\mathscr{H}_{p,q,\rho_{2},\delta_{2}} \otimes V_{\rho_{2}}^{*} \otimes V_{\delta_{2}}); \\ (I \otimes \rho_{1}^{*}(\sigma) \otimes \delta_{1}(\tau) \otimes I \otimes \rho_{2}^{*}(\sigma) \otimes \delta_{2}(\tau)) \gamma = \gamma, \ \sigma \in \mathfrak{S}_{p}, \ \tau_{q} \in \mathfrak{S}_{q} \}. \end{split}$$

Using the Schur's lemma we obtain the following

 $\dim \{ w \in V_{\rho_1}^* \otimes V_{\delta_1} \otimes V_{\rho_2}^* \otimes V_{\delta_2}; (\rho_1^*(\sigma) \otimes \delta_1(\tau) \otimes \rho_2^*(\sigma) \otimes \delta_2(\tau)) w = w, \ \sigma \in \mathfrak{S}_p, \ \tau \in \mathfrak{S}_q \}$

$$= \begin{cases} 0 & (\rho_1 \neq \rho_2^* \text{ or } \delta_1^* \neq \delta_2), \\ 1 & (\rho_1 \simeq \rho_2^* \text{ and } \delta_1^* \simeq \delta_2). \end{cases}$$

Hence we get

$$\mathfrak{H}_{p,q} = \sum_{\rho} \sum_{\delta} \mathscr{H}_{p,q,\rho,\delta} \bar{\otimes} \mathscr{H}_{p,q,\rho^*,\delta^*} = \sum_{\rho} \sum_{\delta} \mathscr{H}_{p,q,\rho,\delta} \bar{\otimes} \mathscr{H}_{p,q,\rho,\delta}^*.$$

§3 Polynomial representations of discrete class

Let (π, \mathfrak{H}) be a unitary representation of $U(\mathbf{E})$. For v and w in \mathfrak{H} we define a function $\phi_{v,w}^{\pi}(g)$ on $U(\mathbf{E})$ by

$$\phi_{v,w}^{\pi}(g) = (v, \pi(g)w).$$

We call (π, \mathfrak{H}) a polynomial representation of $U(\mathbf{E})$ if there exists an orthonormal basis $\{v_i; i \in \mathbf{N}\}$ of \mathfrak{H} such that $\phi_{i,j}^{\pi}(g) = (v_i, \pi(g)v_j)(i, j \in \mathbf{N})$ are polynomials. We denote by \mathfrak{H}_f the space of all finite linear combinations of $v_i (i \in \mathbf{N})$. We call (π, \mathfrak{H}) of discrete class if the multilinear functional B:

$$\mathfrak{H}_{f} \times \mathfrak{H}_{f} \times \mathfrak{H}_{f} \times \mathfrak{H}_{f} \ni (v, w, v', w') \longmapsto \int_{\Omega} \phi_{v, w}^{\pi *}(z) (\phi_{v', w'}^{\pi *}(z))^{-} dv(z) \in C$$

is continuous. The following proposition can be proved similarly to the case of O(E), (see [6], Proposition 3).

PROPOSITION 1. 1) Let (π, \mathfrak{H}) be an irreducible unitary polynomial representation of discrete class. Then there exists a positive constant c such that

$$\int_{\Omega} \phi_{v,w}^{\pi*}(z) (\phi_{v',w'}^{\pi*}(z))^{-} dv(z) = c(v, v')(w, w') \qquad (v, w, v', w' \in \mathfrak{H}_{f}).$$

2) Let (π, \mathfrak{H}) and (π', \mathfrak{H}') be irreducible unitary polynomial representations of discrete class. If π and π' are non-equivalent, then

$$\int_{\Omega} \phi_{v,w}^{\pi *}(z) (\phi_{v',w'}^{\pi' *}(z))^{-} dv(z) = 0 \qquad (v, w \in \mathfrak{H}_{f}, v', w' \in \mathfrak{H}_{f}').$$

THEOREM 3. For any p and q in $\mathbb{N} \cup \{0\}$ and for any irreducible unitary representations (ρ, V_{ρ}) of \mathfrak{S}_p and (δ, V_{δ}) of \mathfrak{S}_q , $(\pi_{p,q,\rho,\delta}, \mathscr{H}_{p,q,\rho,\delta})$ is an irreducible unitary polynomial representation of discrete class. Conversely for any irreducible unitary polynomial representation of discrete class (π, \mathfrak{H}) , there exist p and q in $\mathbb{N} \cup \{0\}$ and irreducible unitary representations (ρ, V_{ρ}) of \mathfrak{S}_p and (δ, V_{δ}) of \mathfrak{S}_q such that (π, \mathfrak{H}) is equivalent to $(\pi_{p,q,\rho,\delta}, \mathscr{H}_{p,q,\rho,\delta})$. **PROOF.** Let $\{e_1,..., e_s\}$ be an orthonormal basis of V_ρ and $\{f_1,..., f_t\}$ an orthonormal basis of V_{δ}^* . Then we have an orthonomal basis $\mathfrak{B}_{p\,q,\rho,\delta} = \{\xi_{i_1} \otimes \cdots \otimes \xi_{i_p} \otimes \xi_{k_1} \otimes \cdots \otimes \xi_{k_q} \otimes e_{i_0} \otimes f_{k_0}; i_0,..., i_p, k_0,..., k_q \in \mathbb{N}\}$ of $L^2(M) \otimes \cdots \otimes L^2(M) \otimes V_\rho \otimes V_{\delta}^*$. It is easy to see that $\sum_{\sigma,\tau} \lambda(\sigma) \otimes \lambda(\tau) \otimes \rho(\sigma)^{-1} \otimes \delta(\tau)$ defines the orthogonal projection of $L^2(M) \otimes \cdots \otimes L^2(M) \otimes V_\rho \otimes V_{\delta}^*$ onto the subspace which is equivalent to $\mathscr{H}_{p,q,\rho,\delta}$. Hence for the proof of "only if" part of the theorem it is sufficient to prove that $\hat{\pi}_{p,q} \otimes I \otimes I$ is a polynomial representation of discrete class. We put

$$v_{ik} = \xi_{i_1} \otimes \cdots \otimes \xi_{i_p} \otimes \xi_{k_1} \otimes \cdots \otimes \xi_{k_q} \otimes \boldsymbol{e}_{i_0} \otimes \boldsymbol{f}_{k_0},$$

$$v_{jl} = \xi_{j_1} \otimes \cdots \otimes \xi_{j_p} \otimes \xi_{l_1} \otimes \cdots \otimes \xi_{l_q} \otimes \boldsymbol{e}_{j_0} \otimes \boldsymbol{f}_{l_0},$$

$$g\xi_{j_h} = \sum_{m_h} g_{m_h j_h} \xi_{m_h}, \quad g^* \xi_{l_h} = \sum_{n_h} \bar{g}_{n_h l_h} \xi_{n_h}$$

And we put

$$\phi_{ik;\,il}(g) = (v_{ik}, (\pi_{p,q}(g) \otimes I \otimes I) v_{jl}).$$

Then we have

$$\phi_{ik;jl}(g) = \delta_{i_0j_0} \delta_{k_0l_0} g_{i_1j_1} \cdots g_{i_pj_q} \overline{g}_{k_1l_1} \cdots \overline{g}_{k_ql_q},$$

where $\delta_{i_0j_0}$ and $\delta_{k_0l_0}$ are Kronecker's δ . Thus $\phi_{ik;jl}$ is a polynomial on U(E). Next we shall prove that the functional B is continuous. For any v, w, v', w'in $L^2(M) \overline{\otimes} \cdots \overline{\otimes} L^2(M) \otimes V_{\rho} \otimes V_{\delta}^*$ we put

$$v = \sum_{i,k} a_{ik} v_{ik}, \quad w = \sum_{j,l} b_{jl} v_{jl}, \quad v' = \sum_{i',j'} c_{i'j'} v_{i'j'}, \quad w' = \sum_{j',l'} d_{j'l'} v_{j'l'}.$$

Then we have

$$\begin{split} \phi_{v,w}(g) &= (v, (\hat{\pi}_{p,q}(g) \otimes I \otimes I)w) = \sum_{i,k} \sum_{j,l} \delta_{i_0 j_0} \delta_{k_0 l_0} a_{ik} b_{jl} g_{i_1 j_1} \cdots g_{i_p j_p} \overline{g}_{k_1 l_1} \cdots \overline{g}_{k_q l_q} \\ &= \sum_{i,k} \sum_{j,l} \delta_{i_0 j_0} \delta_{k_0 l_0} a_{ik} b_{jl} g_{ij} \overline{g}_{kl}. \end{split}$$

It follows that

$$\int_{\Omega} (g_{ij}\bar{g}_{kl})^{*}(z)((g_{i'j'}\bar{g}_{k'l'})^{*}(z))^{-}dv(z) = 0$$

unless $(i, j) \sim (i', j')$ and $(k, l) \sim (k', l')$. We put

$$d = \max\{i, j, k, l, i', j', k', l'; a_{ik}, b_{il}, c_{i'k'}, d_{i'l'} \neq 0\}.$$

Using the Schwarz inequality we have

$$|B(v, w, v', w')| = \left| \int_{\Omega} \phi^{\sharp}_{v,w}(z) (\phi^{\sharp}_{v,w'}(z))^{-} dv(z) \right|$$

$$\leq \sum_{i,k} \sum_{j,l} \sum_{i',k'} \sum_{j',l'} \delta_{i_{0}j_{0}} \delta_{k_{0}l_{0}} \delta_{i'_{0}j'_{0}} \delta_{k'_{0}l'_{0}} |a_{ik}|| b_{jl} ||c_{i'k'}|| d_{j'l'}|$$

Kiyosato Okamoto and Takatoshi Sakurai

$$\times \left| \int_{\Omega} (g_{ij} \bar{g}_{kl})^{\sharp}(z) ((g_{i'j'} \bar{g}_{k'l'})^{\sharp}(z))^{-} d\nu(z) \right|$$

$$\leq \sum_{\alpha} \sum_{\beta} \sum_{i,k}^{\alpha} \sum_{j,l}^{\beta} |a_{ik}| |c_{ik}| |b_{jl}| |d_{jl}| (\prod_{i,k} \alpha_{ik}!) (\prod_{j,l} \beta_{jl}!)$$

(where \sum_{α} and \sum_{β} mean the summations which are taken over all α in $Z_d(p)$ and β in $Z_d(q)$ respectively, $\sum_{i,k}^{\alpha}$ and $\sum_{j,l}^{\beta}$ mean the summations which are taken over (i, k) in $T_p^{-1}(\alpha)$ and (j, l) in $T_q^{-1}(\beta)$ respectively,)

$$= \sum_{\alpha} \sum_{\beta} \left\{ p! (\prod_{i,k} \alpha_{ik}!)^{-1} (\sum_{i,k}^{\alpha} a_{ik}^{2})^{1/2} (\sum_{i,k}^{\alpha} c_{ik}^{2})^{1/2} \right\}$$

$$\times \left\{ q! (\prod_{j,l} \beta_{jl}!)^{-1} (\sum_{j,l}^{\beta} b_{jl}^{2})^{1/2} (\sum_{j,l}^{\beta} d_{jl}^{2})^{1/2} \right\} (\prod_{i,k} \alpha_{ik}!) (\prod_{j,l} \beta_{jl}!)$$

$$\leq p! q! \left\{ (\sum_{i,k} a_{ik}^{2}) (\sum_{i,k} c_{ik}^{2}) \right\}^{1/2} \left\{ (\sum_{j,l} b_{jl}^{2}) (\sum_{j,l} d_{jl}^{2}) \right\}^{1/2}$$

$$= p! q! \|v\| \|w\| \|v'\| \|w'\|.$$

Thus we have

$$|B(v, w, v', w')| \leq p!q! ||v|| ||w|| ||v'|| ||w'||.$$

Conversely let (π, \mathfrak{H}) be an irreducible unitary polynomial representation of discrete class. Then by definition, there exists an orthonormal basis $\{v_i; i \in \mathbb{N}\}$ of \mathfrak{H} which satisfies the following conditions; $\phi_{i,j}^{\pi}(g) = (v_i, \pi(g)v_j)(i, j \in \mathbb{N})$ are polynomials and B:

$$\mathfrak{H}_{f} \times \mathfrak{H}_{f} \times \mathfrak{H}_{f} \times \mathfrak{H}_{f} \ni (v, w, v', w') \longmapsto \int_{\Omega} \phi_{v, w}^{\pi *}(z) (\phi_{v', w'}^{\pi *}(z))^{-} dv(z) \in \mathbb{C}$$

is continuous. From Proposition 1 there exists a positive constant c such that

$$B(v, w, v', w') = c(v, v')(w, w'),$$

where $v, w, v', w' \in \mathfrak{H}_f$. Now we fix v_0 , and for any v in \mathfrak{H}_f we define a linear operator A by

$$(Av)(z) = \phi_{v,v_0}^{\pi \sharp}(z).$$

Since B is continuous, A defines a bounded linear operator of \mathfrak{H} into $L^2(\Omega, \nu)$. As is easily seen we get the following

$$(A\pi(g)v)(z) = \phi_{\pi(g)v,v_0}^{\pi\sharp}(z) = \phi_{v,v_0}^{\pi\sharp}(g^{-1}z) = (\pi_L(g)Av)(z).$$

This implies that A is an intertwining operator of \mathfrak{H} into $L^2(\Omega, \nu)$. Thus (π, \mathfrak{H}) is equivalent to a subrepresentation of $(\pi_L, L^2(\Omega, \nu))$. On the other hand, from Theorem 2, we can prove that any subrepresentation of $(\pi_L, L^2(\Omega, \nu))$ is equivalent to $(\pi_{p,q,\rho,\delta}, \mathscr{H}_{p,q,\rho,\delta})$ for some p and q in $\mathbb{N} \cup \{0\}$ and ρ in \mathfrak{S}_p , δ in \mathfrak{S}_q . This completes the proof of the theorem.

REMARK. Using the similar argument we improve on the inequality:

540

$$|B(v, w, v', w')| \leq (n!)^2 ||v|| ||w|| ||v'|| ||w'||,$$

in the proof of Theorem 2 in [6] as follows:

$$|B(v, w, v', w')| \leq n! ||v|| ||w|| ||v'|| ||w'||.$$

References

- [1] R. P. Boyer, Representation theory of the Hilbert-Lie group $U(\mathfrak{H})_2$, Duke Math. J. 47 (1980), 325-344.
- [2] T. Hida, Brownian motion, Springer-Verlag, (1980).
- [3] A. A. Kirillov, Representations of an infinite dimensional unitary group, Soviet Math. Dokl. 14 (1973), 1355–1358.
- [4] A. A. Kirillov, Unitary representations of the group diffeomorphisms and some of its subgroup, Preprint IPM, No. 82 (1974).
- [5] H. Matsushima, K. Okamoto and T. Sakurai, On a certain class of irreducible unitary representations of the infinite dimensional rotation group I, Hiroshima Math. J. 11 (1981), 181-193.
- [6] K. Okamoto and T. Sakurai, On a certain class of irreducible unitary representations of the infinite dimensional rotation group II, Hiroshima Math. J. 12 (1982), 385–397.
- [7] G. I. Ol'shanskii, Unitary representations of the infinite-dimensional classical groups $U(p, \infty)$, $SO_0(p, \infty)$, $Sp(p, \infty)$ and the corresponding motion groups, Functional Anal. and Appl. 12 (1978), 185-195.
- [8] S. Strătilă and D. Voiculescu, Representations of AF-algebras and of the group $U(\infty)$, Lecture Notes in Math. **486**, Springer-Verlag (1975).
- [9] A. M. Vershik, I. M. Gel'fand and M. I. Graev, Representations of the group of diffeomorphisms, Russian Math. Surveys 30 (1975), 1-50.
- [10] B. ørsted, A model for an interaction quantum field, J. Functional Anal. 36 (1980), 53-71.

Department of Mathematics, Faculty of Science, Hiroshima University

and

Department of Mathematics, Fukuoka University of Education