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Introduction

Four types of limit orders of operator ideals A were introduced in 1971-2
by A. Pietsch with respective purposes, and these limit orders have been playing
an important role in the theory of operator ideals ([20], [21], [22], [23], [10],
[11],[12]). They are the S-, D-, I- and L-limit orders, A5() ([21]), Ap(2W) ([22]),
A(2) and A, (W) ([20]), which are defined by using Sobolev embeddings, (certain)
diagonal operators between £,-spaces, identity and Littlewood operators between
gr-spaces, respectively. (The last limit order is originally denoted by A,().
We shall, however, adopt the above notation A;(2)and call it the L-limit order.)
H. Konig [11] showed in 1974 the following remarkable relations among them:
For a complete quasi-normed operator ideal [, A],

1) A, u, v) = Ap(U, u, v)
and

SN = 1 1
)] As(U, u, v; N) = N<)-D(9l, u, v) + - — T)

for 1<u,v<oo. Thus, in Pietsch ([23], 14.4.1) the D-limit order is referred to
simply as the limit order and denoted by A(). In this paper, we are concerned
with the limit and L-limit orders. They are defined for 1 <u, v < oo respectively
by

3) MU, u, v): =inf {A > 0; D, e A4, 4,)}
and

4 AU, u,v)
= inf {4 > 0; Je=c(u,0,2) 5.t. A(Ayn: £2" - £2") < c(2")* (n = 0,1,2,...,)},

where D,({{,})={n"%¢,} and A,. are the Littlewood matrices ([15]), that is,

*) This research is partially supported by the Grant-in-Aid for Encouragement of Young
Scientists from the Ministry of Education, Science and Culture,
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Ay Apn

Azo = [1], A2n+l = [ jl (Il = O, 1, 2,) .

2n A2n

The limit order A(2, u, v) provides two kinds of criteria such that a diagonal
operator from 4, into £, belongs to A:

(@ If 2> AN, u, v) (resp. A < AN, u, v)), then D, € (4, 4,) (resp.D, &
A4, ¢,)).

(b) Let 1/r > MU, u,v). Then, for every o = {o,}€¥, the diagonal
operator D,: 4,— 4,, D ({&,})={0,&,}, belongs to A. More precisely,

%) MU, u,v) =inf{l/r >0;0€4, =D, e WU, 4,)}
([23], Proposition 14.4.2).

The first objective of this paper is to obtain, by generalizing (1), a nearly
necessary and sufficient condition in order that a diagonal operator between 4,-
spaces belongs to a given quasi-normed operator ideal. The second objective is
to investigate some properties of the @-limit order of 2 which we shall deane by

AW, u, v):=inf {4 > 0; D,;2eUA¥, 4,)} (1<u,v< ),

where @ ={o,} is an arbitrary fixed sequence of positive numbers which is strictly
increasing and divergent to oo, and Dy, ({&,})={«;*¢,}. The introduction of
the a-limit order is motivated by the fact that there are some examples for which
the above criteria given by A() are of little avail. The last objective is to investi-
gate the L-limit order, which has not yet been treated in detail.

Section 1 is devoted to some preliminary definitions and results, which are
quoted for the most part from the monograph [23]. In Section 2 we study a
couple of sequence spaces £, (@) and £° () to some extent for later use. The
former is a generalization of the Lorentz sequence space ¢, , and particularly
useful in Sections 4 and 5. In Section 3 we generalize (1) to obtain the nearly
necessary and sufficient condition stated above (Theorem 1 and its Corollary).
In Section 4 we discuss the a-limit order, where the identities generalizing re-
spectively (1) and (5) are shown (Theorems 3 and 2). In Section 5 the a-defects
of normed operator ideals are considered, whose notion is based on Koénig [12].
Under a certain assumption on a={«,}, it is obtained that the condition
A (W, u, v)+ A, (W*, v, u)=1 implies

log A (I,,: én——47)

A (WU, u, v) = lim, o 10g o,

(Corollary to Theorem 5). In Section 6, we obtain several criteria given by the
L-limit order A,(A) (and A(A) as well) such that a certain type of block diagonal
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matrix operator between ¢,-spaces belongs to 2; in particular, we obtain results
analogous to (1), (a), and (5) (Theorem 6, its Corollary, and Theorem 7), which
remain valid if the underlying ¢,-spaces are replaced by the Lorentz sequence
spaces ¢,  (Theorem 6', its Corollary, and Theorem 7°). In Theorem 8 we
introduce another type of limit order u(2l) and compare it with A1,(2) and A(2).
In the rest of this section, we give a representation of A;(8, u, v) by means of
427(Z,)-spaces (£ is the ideal of all bounded linear operators between arbitrary
Banach spaces), which is closely related with the Clarkson inequalities (Corollary
to Theorem 9). In the final section we deal with a relation between 4,(20) and
AA) (cf. (1) and (2)): It is shown that

MU, u, v) + max {min (1/u, 1/u’), min (1/v, 1/v")}
< A (AU, u, v)
< A, u, v) + min {max (1/u, 1/u"), max (1/v, 1/v")}

for 1<u,v<oo, 1/u+1/u’=1/v+1/v'=1, which is best possible for most values
of u and v (Theorem 10 and Remark 4).

The author would like to express his sincere gratitude to Professor F-Y. Maeda
for his valuable comments, and to Professors S. T6g6 and K. Miyazaki for their
constant encouragement.

§1. Preliminaries

The space of (bounded linear) operators from a Banach space E into another
Banach space F is denoted by Q(E, F), while the class of all operators between
arbitrary Banach spaces is denoted by 8. A subclass 2 of € is called an operator
ideal (cf. [23], 1.1.1; [22], 1.1.1) if the components

WU(E, F):=UA n KE, F)
satisfy the following conditions:

(Ol,) If aeE’, the dual space of E, and ye F, then a ® y e A(E, F).
(01,) IfS,, S,€U(E, F), then S, + S, e A(E, F).
(OLy) If Te X(E,, E), SeU(E, F),and R e &(F, F,), then RSTe W(E,, F,).

Every component of an operator ideal is a linear space ([23], Proposition 1.1.2).

A mapping A from an operator ideal 2 into the set of non-negative real
numbers is called a (ideal) quasi-norm (cf. [23], 6.1.1; [22], 8.1.1) if it has the
following properties:

(QN;) A(@®y) = lal |yl for aeE" and y€eF.
(QN,) There exists a constant ¢, > 1 such that
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A(S; + 8;) < c\[A(Sy) + A(S,)] for S, S,eW(E, F).

(QN,;) A(RST) < |RIA(S)|T| for TeL(Eo, E), SeUE, F), and Re
F, Fy).

In particular, A is called a norm if ¢,=1 in (QN,). A quasi-norm A is called
a p-norm (0<p<1) (cf. [23], 6.2.1) if the following p-triangle inequality holds:

A(Sy + S,)? < A(S)? + A(S,)?  for S, S,eA(E, F).

A quasi-normed operator ideal [, A] is an operator ideal A with a quasi-norm
A. Each of its components is a usual quasi-normed space (cf. [23], 6.1.2). We
always assume the completeness for quasi-normed operator ideals, that is, every
component of theirs is complete (cf. [23], 6.1.3).

LemMmA A ([23]), Theorem 6.2.5). Every quasi-normed operator ideal
has an equivalent p-norm.

For a normed operator ideal [, A] its adjoint operator ideal A* is defined
as follows (cf. [23], 9.1.1): An operator S e £(E, F) belongs to UA* if and only
if there exists a constant p>0 such that

|trace (SXLoB)| < pll X[|A(Lo)| Bl

for all Be &(F, Fy), Loe A(F,, E,), and X € &(E,, E), B and X being of finite
rank, where E, and F, are arbitrary Banach spaces. The infimum of all such
p is denoted by A*(S). Then, [2*, A*] is a normed operator ideal ([23], 9.1.3).

Let now the sequence spaces 4,, % (1<u< o), and ¢, be those as usual.
Foro={0,} €4, let D,=D,, , be the diagonal operator between £,-spaces defined
by D, {¢.})={0,,,}. The limit order of an operator ideal A and the L-
limit order of a quasi-normed operator ideal [, A] are defined by (3) and (4)
respectively ([23], 14.4.1; [20]). The I-limit order of a quasi-normed operator
ideal [, A] is defined by

AU, u, v)
:=inf {4 > 0; 3¢ = c(u,v,A) s.t. A(,: 6" - )< cn* (n=1,2,.)},
where I, are the identity operators ([20]). For an operator ideal 21, let
Luny:=1{0€b,; D, e A4, ¢,)} I<u,v< )

(cf. [22], 4.10.1). If A is a quasi-normed operator ideal with the quasi-norm
A, put |o],=A(D,) for 6€ £y, Then, ¢y,, becomes a complete quasi-
normed space with | - |, (cf. [12], p. 99). Let N (resp. N,) be the set of positive
(resp. non-negative) integers.
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LemMA B (cf. [12]). () 4(oue is symmetric: If {o,} €€y, then
{Onm)} € b for any permutation w on N.

(ll) {Ianl} € g(‘l!,u,u) lf and only lf {0',,} € Z(‘Zl,u,v)'

(iii) For a quasi-normed operator ideal [, A], the inclusion map
(Btuwy |- I1a) © £ is continuous.

They are easily derived from the definition of (quasi-normed) operator ideals
(cf. [23], Proposition 6.1.4 for (iii)).

Let 1<u<oo, 1<s<o or 1<u<oo, s=00. The Lorentz sequence space
4, is the space of all {s,} € ¢q such that

= ms Yo *)s (I1<u < 00,1 <5< 0),

{ou} s =

sup, n'/4|o,|* (l1<u<oo,s= )

is finite, where {|o,|*} is the non-increasing rearrangement of {|o,|} (cf. [23],
13.9.1; [16]). | :ll.s is @ norm (resp. quasi-norm) if 1<s<u < oo (resp. 1<u<
s<oo) ([7], Proposition 1; see also [23], 13.9.5). Clearly ¢,, coincides with
¢, Foru=s=oo,weputl, ,=£,.

LemMmA C ([23], Proposition 13.9.4; [16]). Let 1<u;<u,<o0 and
1<sy, s,<00. Then,

Z ¥

uy,S1 2,82
and the inclusion map ¢, <4, s, is continuous.

Let {a,} and {f,} be sequences of positive numbers. We write a,<p, if
o, <cB, (Yne N) with some c.

§2. The spaces ¢, .(a) and £2 (@)

DErFINITION 1. Let a={a,} be an arbitrary fixed sequence of positive
numbers which is strictly increasing and divergent to co. Let 0<r<oo. We
define

by (@)= {6 = {0,} € Co; |6]l;,00;0 1= sSUP 0}/ |0, |* < 0O},
where {|o,|*} is the non-increasing rearrangement of {|o,|}; and

22 (@)= {6 = {0,} €co; ||6]? ;a2 = sup 0,/"|,| < 0} .
For r=00, let £,,,(@&)=402 (@)=¢,.

4, .(@) is a generalization of the Lorentz sequence space ¢, .. ¢° (@)
is a Banach space, as is easily seen.
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Lemma 1 ([7], Lemma 1). Let {0,}, {tt.} €co. Let {|losml}, {|ttyml}, and
{l0om + loml} be the non-increasing rearrangements of {|o,|}, {lu,l}, and
{lo,+ |} respectively. Then, for any ne N

[Gweam T Hoenl < 10o@n-1) + Bon-1)] < 10am| + 1Hyml -

PrROPOSITION 1. Let 0<r<oo. Assume o,,<co,(YneN) with some con-
stant ¢. Then, ¢, (@) is a quasi-normed space;

) Nlotullwe <V (lol,00 + [4lr0;e)  Sforany o, net, (@).

Proor. Letusshow (6). Leto={o,}, u={u,} €4, (). Then, by Lemma 1

lo + ully,00;0 = Sup “;lrlo'm(n) + l»‘m(n)]
= max {sup “%'—ﬂaw(zn—l) + Hon-1)l> SUP “%’k’w(zn) + Hoeml}
< c'rsup o3 /(1o gl + [yl
< c(lolly,ee + 11l w;a) -

REMARK 1. (i) Without the condition a,,<o,, 4, (&) fails to become a

linear space.
(i) | ly,u0;:e iS5 1Ol @ nOrm.

Proofr. (i) Let us assume that {a,,/a,} is not bounded. Then, for each
ke N there exists n,e N such that «,, >ka,. Put o,,_,=0;'", 6,,=0, and
Uan=01" pyy =0 for neN. Then, clearly o={o,}, u={u,} €%, (@),
while o+ p& 4, (@) because

aéfnﬁ(aw(an) + uw(2nk)) = a%{l’; : a;kllr > kl/r > O (k (X)) .

(i) Take two positive numbers a and b such that 1<a/b<(o,/a)/",
and put o=(a,b,0,.) and u=(b, a,0,..). Then, [0l =kl o=
max {«}/ra, a/"b}=a}/"b. Therefore

lo + pll,e:a = ad/"(@+b) > 205/"b = [|6]l,,00;0 + [Lllr,c05a-

LemMA 2 ([7], Lemma 4). Let {0c'¥},, be a double sequence such that
lim,_, 0¥ =0 for each ke N, and lim,_, ¢'¥ =0, (uniformly in n). Then,
lim,_, 6,=0, and for each ne N

l6gm| < liminfy,q iaf;,k,f(n)l s

where {|o4ml} and {|o§,,)|}, are the non-increasing rearrangements of {|o,|}
and {|a'¥|}, respectively.
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PRrOPOSITION 2. Let 0<r<oo and let a,,<a, Then, ¢, (@) is complete.

PROOF. Let O<r<o. Let {a¥}, 6®¥={c'¥},, be an arbitrary Cauchy
sequence in ¢, ,(a). Then, for any ¢>0 there exists k, € N such that for any
ja kao

(7) ”O'(j) - a(k)”r,oo;a = sup, arlllrlo-gi’;),k(n) - o.g)’;),k(n)l <eg,

where {|6%)), @y —0% , m|}nis the non-increasing rearrangement of {|f/ — a®|},.
In particular, we have

sup, |6 — ¢¥| < a7lire  forany j, k > k,,

whence there exists a sequence o={g,} such that ¢,=lim,_, ¢'¥’ (uniformly in
n). Let k be an arbitrary positive integer with k>k, and be fixed. Then,
applying Lemma 2 to {¢{’ —o{¥},, we have

€3] 1Canny — OKm| < liminf o, |65, 1y — 0 )| for eachneN,

where {|0,,, (n) — 0|}, denotes the non-increasing rearrangement of {|o, — o'},
Consequently, by (7) and (8) we have for any k>k,

— oK)

"6 - G(k)"r,oo;a = sup, a'll/rlo- a)k(n)l

wi(n)

< sup, liminf;_, o a/7|65) sy — 6%, (ol

< liminf;,, sup, at/"|6F) oy — 6 ()

= liminf; |l — a®|, ..

<eg,
and hence {o,}={0,—0¥}+{0¥}e ¥, (@), which completes the proof.

LEMMA 3. Let {a,} be a non-decreasing sequence of positive numbers which
tendsto co. Let {0,} be a zero-sequence of positive numbers, and {0} its non-
increasing rearrangement. Then, if {«,0,} is bounded, so is {®,04}. The
converse is false.

PrOOF. Let m be an arbitrary positive integer and fixed. If m <¢(m), then
%O g(m) < %pmTp(m) < SUPy T
If m>¢(m), then there exists ke N such that 1<k<m and m<¢(k), whence
AmOgm) < %o T(k) < SUPn %nTp-

Consequently, if {a,0,} is bounded, so is {®,04()}-
For the latter assertion, put u,=1/a,. We show that for a certain rearrange-
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ment {ft,} Of {i,}, {%ulin(ny} is not bounded. We may assume «,>1 for all
neN. We choose a sequence {n,} of positive integers inductively as follows.
Let n, be the smallest n e N such that a3 <a,. If we have chosen {n,,..., n,_,},
let n; be the smallest n e N such that o2 _ <o, (hence n,_,<n). Letn: NoN
be a bijection such that n(n,)=n,_, (put no=1). Then, {a,u,} is bounded, but
{Oulz(my} 18 NOt 5O because

o
>,  —— 0 (k— ).

ank:un(nk) = o,
k-1

Nk -1

By Lemma 3 we have immediately

PROPOSITION 3. Let O<r<oo. Then,

e?,oo(a)ggr,oo(a)a ”'”r,oo;a < I|'”9,00;a'

§3. A nearly necessary and sufficient condition such that a diagonal operator
belongs to [U, A]

The identity
(1) MU, u, v) = A(YU, u, v)
follows from the fact that

(i) if Dy,-2,€UA(4,, £,), then there exists c=c(u, v, 1) such that
9) Al,: 61— 41y <cn* (YneN),

and coversely,
(ii) if (9) holds with some c, then for any >0 D, - z+e); € (4, £,).

We generalize these assertions in the following theorem. The proof of its essential
part is based on Pietsch’s simplified proof of (1) ([23], Theorem 14.4.3).

THEOREM 1. Let 1<u,v<oo. Let a={a,} be a non-decreasing sequence
of positive numbers which tends to co.

(i) If Dy4;1y belongs to (L, £,), then there exists c=c(u, v, &) such that
(10 A(l,: 4 — 4 < ca, (YneN).

(i) If (10) holds with some c, then for any ¢>0 D.u-e, belongs to
A, 4,).

PrOOF. (i) Put D=D;i;. Let D,({{i}i<i<w)={®7"Ci}1<i<n- Then, by
(QN3;) we have

A(Dn: Zﬂ I 43) < A(D Eu—’ gv),
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and hence
A(l,: 6 — €3) < A(D,: 45, — £2)| Dt 4y — 21
< A(D)a,,

(i) By Lemma A we may assume that [, A] is a p-normed operator ideal
(for some O<p<1). Let

Niy:={neN; 21 < ¢, <2k} (k=1,2,.)
and
No:={neN;0<a, < 1}.

Let n,=card N, the cardinal number of N, (ke N,). We first assume that
n,#0 for each ke N,. Put

L (neNy,
0  (n& Ny,

and let Q, be the diagonal operator defined by {q¥},, i.e., Qu({&,})={q¥ &},
Then, we have

q® =

n

AQy: 4,— 4,) < ca, (k=0,1,2,..)

by the assumption (10) and the property (QN;) of quasi-normed (in particular,
p-normed) operator ideals. Therefore, for any ¢>0

Xm0 ARl Qu £, — £, = Xino 27 FA(Qy: 4, — 4,)F

<P YR ,(27P) < 0.
Consequently, the operator
Si= Nie2 % a;l Q4 b, — £,
is well-defined and belongs to 2 because [, A] is complete. Next, we put
o, = 2%ka, o, (1F®) for neN,, k=0,1,2,....

Then {o,} is bounded. Indeed, let ne N,. Then 2¥'<gq, Since n,<ny+
ny+--+n; and {a,} is non-decreasing, we have a, <2%, whence a,, <2-2F1<
2a,. Therefore, we have

2eke, = 202¢k~Dg < 2¢02(2ar,) = 21+eqlte,

or g,<2'*¢. Consequently, the diagonal operator D, ,: ¢,—¢, belongs to L.
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Since the operator D,-u+ey: £,—4¢, is the composition of D ,: £,~£,e8
and S: ¢,—¢,e U, we have D,;a+a,€ A/, £,) as desired.

In the case where there exist k with n,=card N,=0, we have only to take
instead of {n,} the subsequence {n, } consisting of non-zero terms of {n,} in the
above proof. This completes the proof.

By Theorem 1 and Lemma B we have immediately the following

COROLLARY. Let {a,} be a sequence (of real or complex numbers) with
lim,_, , |o,| =00 and {*|a,|} the non-decreasing rearrangement of {|o,|}.
(i) If Dy € U(4,, ¢,), then there exists ¢ such that

A(l,: 4 — 63) < c(¥lay,]) (YneN).
(i) If
A(l,: 05— €3) < c(*la,)*  (YneN)
with some ¢ and p (0<pu<1), then D -1, (4, 4,).

§4. The a-limit order of operator ideals

DEFINITION 2. Let a={a,} be an arbitrary fixed sequence of positive
numbers which is strictly increasing and divergent to co. We define the a-
limit order of an operator ideal A by

AW, u, v):=inf {A > 0; D452, € U4, £,)}
for 1<u, v< 0.

If B={B,} is another sequence with the same property as a, and if «,<pB,,
then A (U, u, ©)=A4(A, u, v). In particular, if o,<n and n<a, AU, u,v)
coincides with A(2, u, v). We easily obtain

PROPOSITION 4. If A>2,(U, u,v) (resp. A<A (U, u,v)), then D€
A(4,, 6,) (resp. D1 EWL,, 4,)).

The following theorem generalizes (5) ([23], Proposition 14.4.2).
THEOREM 2. Let 1<u,v<oo. Then,

(11) AW, u, v) =inf{1/r > 0; 0€ 4, (@) =D, e U4, £,)}
=inf{l/r > 0;0€4? (@) =D, U, ¢,)}
=inf {1/r > 0; 0 = {0,} €4, (@), 6,>20,>-->0

=D, e W(4,, ¢,)}
=inf {1/r > 0; 0 = {0,} € ¢? (@), 6,=0,>+- >0

=D, eU,, ¢,)}.
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ProOF. The last equality is trivial. We write the first three terms of the
right-hand side of (11) as m,, m,, and m; in that order. Let us show

(12) AW, u, v) =my =my = my = A,(W, u, v).
Let A>A4,(U, u, v). Then, by Proposition 4
Dy-21,eU(4,, £,).
Put r=1/4 and let {0,} € 4, ,(@). Then, {a}6,(,} is bounded and hence
Diotio gy €L(4us 44),

where ¢ is so defined that {|g,,|} is the non-increasing rearrangement of {|o,|}.
Therefore
D{o'¢(n)) = D{a;;')oD{af.‘o'M,.))GQI(eus gv)

Consequently, by Lemma B we have D, ,eA(4,, £,), which implies the first
inequality in (12). The second inequality is an immediate consequence of Propo-
sition 3. The third one is trivial. For the last, assume that o={0,} € ¢, (@),
6,>0,>--->0 implies D, e A(4,, ¢,), and put o,=a,'/". Then we have m;>
AU, u, v), which completes the proof.

By Theorem 1, we immediately obtain the following generalization of the
identity (1), i.e.,

MU, u, v) =inf {4 > 0; Ic=c(u,v,A) s.t. A(l,: ¢" — ¢7) < cn* (YneN)}.

THEOREM 3. Let [U, A] be a quasi-normed operator ideal, and let
1<u, v<00. Then,

AW, u, v) = inf {1 > 0; 3¢ = c(u,v,A) s.t. A(I,: 6% — ¢7) < car (Yne N)}.

Now, W. Linde and Pietsch [14] introduced the ideal [B,, T,] of absolutely
y-summing operators as follows. Let y, denote the Gaussian measure on the n-
dimensional Euclidean space R" which is defined on every Borel set B by

1(B) = m)~"2 SB exp {— S1, 12/2}dr, -+ dx,.

An operator Se€ Q(E, F), E and F being real Banach spaces, is called absolutely
y-summing if there exists a constant p>0 such that for every x,, x,,..., x, € E,

{1, ISt wSxiPdn@} " < psup [{Sher IKx Y725 Jal < 1, a€ B,

The infimum of all such p is denoted by T (S). [*B,, T,] is a normed operator
ideal ([14], Theorems 1 and 2). They proved
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ProprosiTION A ([14], Theorem 9). Let 2<u<oo. Let o={0,}, 0,=>0,
+>0. Then, D, belongs to B,(£,, £-) if and only if

v

sup o,+/log(n+1) < co.

REMARK 2. Let 2<u< oo and let a={a,}, o,=log(n+1). Then, Proposi-
tion A with Lemma B implies that

Dae “By(eua gw) l:fand Only l.f g€ ez,oo(a)s

or
by ,m) = €2,0(@).

EXAMPLE 1. Let u and a={o,} be as in Remark 2. Then,
(13) 3By 4, 00) = -
while
(14) MB,, u, c0) = 0.

In fact, from Proposition A it follows that
15) Diy-2y€ By(Lus 45) (resp. Digzny & By(4us 40))

provided A>1/2 (resp. A < 1/2),

which implies (13). (14) is also derived immediately from Proposition A. Let
us here recall the following criteria given by (2, u, v):

(@ If A> AU, u, v)(resp. A <MW, u, v)),then D, e A(4,, 4,) (resp. D, &
AL, £,))-
(b) Let 1/r > AU, u, v). Then, for every o€ ¥,, D, belongs to W4, £,).

Since A(B,, u, 0)=0, the behavior (15) of {«;*} can not be described by these
criteria (a) and (b). (Note that {«;*}={log *(n+1)}¢& ¢, for any r>0.) On
the other hand, by Proposition 4, (15) is well expressed by 4,(*B,, u, ©0)=1/2.
(Compare also Proposition A or Remark 2 with (b); cf. Theorem 2.) Thus,
in this case, the @-limit order 1,(2) is more appropriate than A() for the ideal
A="P,.

Let us next recall the definitions of the ideals 9, and A, (p>0) of strictly
nuclear and U -operators respectively. Let Se £(E, F) and let a,(S) be its n-th
approximation number, i.e., a,(S):=inf {||S—L||; Le (E, F) and rank (L)<n}.
S is called a strictly nuclear operator (resp.an ,-operator) if {a,(S)}e£,:=
N p>o04, (resp.{a,(S)}e4,) (cf.[23], 18.7.1 (resp.14.2.4)). By Proposition
14.4.9 in [23] and Proposition 6 in [2] the limit order of 2, for 0< p <1 is given by
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1 _ 1.1
P ut (1<v<u< o),
1
(16) A’(Q[pa u, U)= —p— (lsugvszorZSuSvsw)’
1.1 _1 1 .1_1
max{p YT w ) T 2} (I1<u<2<v< o).

ExampPLE 2. (i) Forall1<u, v< o0

(Mo, u, v) = oo,

which only asserts
D, &ENo(4ys €,)  forall 2>0
and
4, & bouwy Sorall r>0.
(i) Put a={a,}, o,=o" (x>1). Then, for all 1<u, v<oo

Ao, u, v) =0,

which means that
Dyyz2y €No(£,, €,)  for all 2>0

or

é,,w(a) < g(mo,u’v) for all r>0.

(i) Let 1<u<v<oo. Then, there does not exist a sequence a={a,},
0<a, /0, such that 0<1,(Ny, u, v)<co.

ProOF. (i) Since Ny= N 50 A, (cf. [23], 18.7.2), we have by (16)
/1(9}0’ u, U) = X(QIP’ u, U) — © (p I 0)

(ii)) Let D,eL(4,, ¢,), c={0,}, 6,=>0,>--->0. Then, by Theorem 1.27
in C. V. Hutton [6] (see also [23], Theorem 11.11.4),

(17 %an <a(D) <o, for neN
if 1<u<v<o;and
(18) a(D,) = (X, 00" for neN

if 1<v<u< oo, where 1/r=1/v—1/u. Applying (17) and (18) to Dy ,z4: £,—4,,
we have for 1<u, v< o



146 Mikio Kato

{ak(D{a;"})}k €4q (YA >0),

or D -2, € No(4,, 4,) (YA>0). Hence A, (N, u, v)=0.

(iii) Suppose that A,(R,, u, v)<oo for some a={a,}, 0<a, "c0. Then,
there exists a A>0 such that D,.1, € No(4,, ¢,), i.e., {a(D(4;4))}k € 4o, Which is
also valid for all >0 by (17). Hence 4,(R,, u, v)=0.

§5. The a-defect of % and a-limit order of A*

In this section, let @ ={«,} be a fixed strictly increasing sequence of positive
numbers such that «,—» o0 (n—>o0) and «,,<a,; and let [A, A] be a normed
operator ideal. It should be noted that for normed operator ideals [, A]

(19) 0<iWMu,v)< 1 for 1<u,v<

([23], Theorem 6.7.2 and Propositions 14.4.4 and 22.4.6). In Konig [12] the
defect d(U, u, v) of W is defined by

. 1 |
a@u,0) =inf {L - L6, < 0 < 4},

As is easily shown (cf. Lemma C), it is represented as

o1l 1.
A2, u, v) = inf {7 L b © b }

= inf {"l.— - ":,_ > ‘gg,oo < g(%[,u,v) < gs,oo} 4

where 42 =102 ,({n}).
DEFINITION 3. We define the a-defect of W by

a2 w, o= inf - — L5 g, (@) © b © Lol

= inf{L =13 49.(@) < b < Lr(@)]

for 1<u, v< oo,
The following theorem generalizes Proposition 1 in K6nig [12].

THEOREM 4. For 1<u, v< oo we have

d (U, u,v) =inf { — pu; A, p > 0s.t. 3c, d > 0 with
dot < A(L,: 01— ¢7) < cat (YneN)}.

ProOF. Let us first show the inequality “>"’. Suppose 4, (@) <=4 g 4 <
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4 o(a). Then, the inclusion maps I: ¢, (@))€, and J: £y, nls (@)
are closed. Let us show that forI. Let 6®¥ ={¢¥}—>0={0,} (k—>0)in 4, (@)
and 6®—p={p,} (k=) in £y, Then, by Lemma B (iii)

sup, |o'$vk) - .unl < ”a(k) - Iu”A —0 (k - OO)

Therefore
sup, |6, — m,| < sup, o, — a'¥| + sup, [6¥ — pu,|
< a71/7 sup, “rl./'|0'wk(,.) _ agukk)(n)l + sup, |0_£‘k) —

-0 (k- 0),

where {|6om— 08I}, is the non-increasing rearrangement of {|o,—o'¥|},.
Hence we have o=y, i.e., I is closed. Consequently, I and J are continuous by
the closed graph theorem. (Note that ¢, (&) is complete metrizable by Propo-
sitions 1 and 2.) Therefore, there exist some constants ¢ and d such that

[-lla<el-lroe on £, (@)
and

I llsa < d M- la 0N bl
Consequently, we have for all ne N

r——
dol/s = d||(1,..., 1,0, ...) 5,014

s
I(1,..., 1,0, ..) [l
= AU, 03— £)

IA

/—5‘—\
< el 1, 0, ) lmge = cob™.

Hence we have the inequality “>"".
To prove the converse inequality, assume that

(20 dolls < A(l,: 48— 4 < call (YneN).
It is sufficient to show that for any ¢>0
gr—a,oo(a) < e(%l,u,u) < gs,oo(a)'

Let 0={0,} €4, , (@) and let {|o,,|} be the non-increasing rearragement of
{loal}. Then, {a}/"~®|g,,|} is bounded, and hence

D(GL/(r_t)aw(n)) € ﬁ(gu, Zu)-
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Since 1/(r—e)> AN, u, v) by (20) and Theorem 3, we have
Dzt €UA(4,, £,)
by Proposition 4. Therefore
D4y =Diazricr=0y0 Dt =35 4 1y EW(L s £,),

or {Gym} € b uy. Consequently, we have o€y, ,, by Lemma B. Let next
0={0,} € by If 0€cy, assume that |6,|>|0,.,|>0 (Yne N), and put

DP({€} 1<izm) = {0:} 1<in
Then, by (20) and (QN;) we have
dat/s < A(l,: 41 —> g1)
< ADP: 45— £3) | (DP) 1z 43 — 43|
< [0,7TAD,: £, — 4,),
or
wlo,| < d'AD,: 4, — £,)

for all neN, ie., o€t (a). If o&c,y, there exists g,>0 such that |o,|>¢,
for infinitely many n € N; let {n,; k€ N} be the set of all such n (n,<n,,, for all
ke N). Put é,=gc,. Then, by (OI;),

Dy €U(4y, £,).
Let now u={u}€f,. Then, {65} is bounded, and hence
D o1y, €8(6,, 4,).
Therefore we have
D= Dozt °Diary € UL, £,),

which implies £y, ,,=4,. Since the inclusion map 4, ¢, is continuous,
by the open mapping theorem we have with some K

datls < A(1,: 4" — 47)

= (1,00, 1, 0,014

Y St
<KI(1,.5 1,0, ) le=K

for all ne N, from which it follows that s=o0 and hence ¢ (@)=¢,. This
completes the proof.
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The next theorem is a generalization of Proposition 2 in Kénig [12].
THEOREM 5. Let 1<u, v< 0. Ifa,<n, then
A, u, v) + A,(W*, 0, u) > 1 + d (U, u, v).
If n<a,, then the converse inequality holds.
PrOOF. Suppose that o,<n. By Corollary 5.3 in [4],
A(l,: 41— £7)-A*(1,: 42— £7) = n.
Hence
ALU*, v, u) > (W*, v, u)
=inf{v>0; A*U,: ¢r— ¢") < dn® (YneN)}
=inf{v>0; d-'n'=" < A(,: " — ¢7) (Yne N)}
>inf{v>0; dal v < A(l,: 6" —> £4") (YneN)}
=inf{l—u>0;, u>0,doa* < A(,: 4 —> ¢%) (YneN)},

where one should observe that v<1 may be assumed (cf. (19); more precisely,
see [23], Theorem 6.7.2 and Lemma in 22.4.6). Therefore we have

AW, u, v) + A (U, v, u)
>inf{l >0; A(,: 4 — 4") < cat (YneN)}
+inf{l —u>0; u=>0,do < Al,: ¢7— ¢7) (YneN)}
=1+4+inf{d —p; A4, pu>0,do® < A(l,: 42 —> 4") < cat (Yne N)}
=1+ d (U, u, v).

If n<a,, then the converse inequalities ““ <’ hold in place of ““>’" in the above
proof.

Theorem 5, combined with Theorems 2, 3 and 4, yields
COROLLARY. Let 1<u,v<o0. Ifa,<n, then the condition
A, u, v) + A (U*, v, u) =1

implies the following (i)-(iv), which are mutually equivalent:
(1) dg W, u,v)=0;
(ii) There exists r>0 such that for any ¢>0

er—s,ao(a) < Z(‘l[,u,v) < €r+8,co(a);

(i) There exists A>0 such that for any ¢ > 0
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dai=s < A(I,: 67 — 47) < carte (YneN)
with some constants ¢ and d;

log A(I,: 67 — £7)
log a, ’

@iv) AU, u, v)=1lim,_
In (ii) and (iii), we have A=1/r=24U, u, v).
If n<o,, then each of (i)-(iv) implies that
AU, u, v) + A,(W*, v, u) < 1.

This result generalizes Corollary 1 to Proposition 2 in Konig [12]. The
proof is easy and is omitted.

§6. The L-limit order and block diagonal matrix operators

We recall that the L-limit order of a quasi-normed operator ideal [, A]
is defined by
@ ALY, u, v)

c=inf {4 > 0; 3¢ = c(u,v,2) s.t. A(Ayn: 02" > £27) < c(2")* (Yne Ny)}.

Let us first show an identity analogous to (1) for the L-limit order. For
A>0 we put
B A20 7
1
271421

1 .
A;i=3%0@ g Ayn =
’ AP L Ty A

0

(Although the notations 4; and A,. are not consistent, there will be no confusion.)

THEOREM 6. For 1<u,v<o0
(21) AW, u, v) =inf{A > 0; 4, e W4, ¢,)}.
PrROOF. We write the right-hand side of (21) as 4,. Suppose 4; € A(4,, ¢,).
Let
T 07 — b,= X0 @ 43
and
Pyil,=3P0® 03 — 47
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be the embedding and projection defined respectively by

2"
T(Eqserey Egn)i= (0325 0,y 05 Epyeny E5n3 0.0, 03.12)

and
Py&ysis Eanpey Eanrnmgsen)i=(Eansees Egnvtyq).
Then we have
A(Agn: 07" — £37") QI p: £ — LA 6,— 6)|IP,: 4, — 437
= A(4;: {,— ¢,)(2")*

for all ne Ny. Hence, A,(U, u, v) <4,.
Conversely, let A(A4;n: £2"—¢2")<c(2)* (Yne N,). By Lemma A we
may assume that [, A] is a p-normed operator ideal. Then, for any ¢>0

:O=0 A(Z—(l+e)nA2": gﬁ” N gg")p < cP 2;0=0 2—(1-}-£)pn‘2/1pu
=P YR 27 < o0,
Hence
AZ+£ = 2;0—_—0 ('B 2—(l+£)nA2nEQI(e’“ gl})’

which means A+e>4,. Consequently we have A, (2, u, v)>A,.

COROLLARY. If A>A (U, u, v) (resp. A<Aiy (W, u, v)), then A,eUA¥,, 4,)
(resp. A, &4, 4,)).

Proor. Let A>A, (U, u, v). Then, by Theorem 6 there exists a u with 1>
u=>A (U, u, v) such that 4, e U(4,, £,). Put

Esopi= Do ® 27601,

where E,. are the 2" x 2" unit matrices. Since E;_, € £(¢,, ¢,), we have 4,=
AE;_, €U, £,).

Next, for 6=1{0,},en, € ¢, We put

( 0'0A20 B
O'1A21

Agi= 2520 @ 0,450 = ‘.
GnAZ"
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Such a type of operator is used, e.g., in [13]. The following result is analogous
to (5).
THEOREM 7. For 1<u, v< o
(WU, u, v) =inf {1/r > 0; 0 4] ({27}) = 4,e U4, 4,)}.

PROOF. Let us assume that oe¢f ({2"}) implies A,€UA(¢,, ¢,). Then,
A, e, ¢,) for any A>1/r because {277} €4? ,({2"}). Hence we have the
inequality “<’’ by Theorem 6.

Conversely, let 1/r>A (U, u,v). Then A,,eUA,, ¢,). Let o={o,}€
4° ,({2"}). Then

D:=3Y2,®2"e,E,nel(l,, 4,).
Therefore we have A,=4,,De (¢, 4,).
The following lemma refines Pietsch’s results implicitly shown in [20].
LemMA 4 (cf. [20], Lemma 12, (5), and (5*)). Let 1<u,v<oo. Then,
(22) [Azn: €37 — £37] = 2n3=
(42"-spaces are assumed to be complex), where
1ju" + 1o — 1/2 if 2<u<oo, 1502,
Mu, v) = 2(8, u, v) =¢ 1/v if 1<u<2, 1<v<u,
1/u’ if Yy<u<o, 2<v< 00,
1ju+1/u'=1/v+1/v'=1. In particular,
| Agn: 63" — 627 = 2memaxCi/uifu),

PrOOF. The inequality “ <’ of (22) is obtained in the computation of (5)
in [20]. Let 2<u<o0, 1<v<2. Put A,,.=[e%]. We define ¢”={o{"}e
£2" inductively as follows. Let ¢{1?=2"1/2¢-in/4 g{) =2~1/2¢in/4 and put
ot = gV glm, gt = giVgm  (k=1,...,2"; m=1,..,n—1).  Then,
[ Azn0™|,=2"*. Indeed, we have |¥ 22, &R0 |=1 for j=1,...,2"; we prove
it by induction. The case n=1 is trivial. Assume that|¥ 7, e{Po{™|=1 for
j=1,...,2m.  Then, since

et = ein2 Y27 emaimt)  (j=1,..., 2m)
(note that o{mtl) = ein/2g{m+1)) and

21/2e"”/40'§{"“) — o-gcm) (k = 1,..., 2m),
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we have for j=1,..., 2"
|SE e o) = | I o ofr + DI ol |
= 212 Ty ol
= | 23 epop) = 1:
The proof for j=2m+1,...,2m*! is immediate from this. On the other hand,
lot™|,=(@2"/*~1/12.  Consequently, we have [[A,n0c(™|,=2m)V/ *1v=112|gm| .
In the second and last cases, the vectors (1, 0,...,0) and (1,..., 1) € 42" satisfy

the equation || 4,.&|,=2"*2| &||,, respectively. Thus, we obtain (22). [Note:
Combined with the computations of (5) and (5*) in [20], the inequality

| Ayn: 62" — £2"|IN{(Aan: €2" — £27) > trace (2"E,n) = 22"

(cf. the proof of Lemma 12 in [20]) also yields (22) except the case 2<u< o0,
1<v <2, in which it yields only

cg! 2R < || Ayt 43" —s 42" < 240,

¢g (>1) being the Grothendieck constant. Here N, is the nuclear norm (see

(33)in §7).]

Now, let B,. be arbitrary 2" x 2" matrices (n € N,) and put

[ Bao

B 0 |
21

B:= ZT:()@ an =

0

We write ||B;nlls, for [|Byn: 2" — £27||, 1<s, t<oo. In the next theorem we
introduce another limit order u(2l).

THEOREM 8. Let 1<u,v<00. Let k(t)=min(1/t, 1/t') for 1<t< o0, where
t+1/t'=1.

(1) If supen, 2")* O Byall,, <0 for t=u or v with some A>A (U, u, v),
then

B=370®BneU¥, ¢,).
(ii) Let
WA, u, v):=inf {u > 0; sup,ey, (2")*|Banll;, < © (t = u or v)
= Be U4, ¢,)}.
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Then,
(23) MU, u, v) < w(A, u, v) < A(A, u, v) — max {x(u), k(v)}.

PROOF. (i) Let us assume that sup,y, (2")*~*(*|B,n|l,, <. (The proof
for t=v is similar.) Put

Ci= 320 @23-1n4,.B,..
Then, Ce £(4,, ¢,) because by Lemma 4
sup,, 247D A3nBsnllyu < sup, 2370 Agnllyull Banlluu

= sup, (211 mer A1) | Byl

= sup, (2")*7|| Bz, < 0.
(Note that C is block diagonal.) On the other hand,

A,=320@27*4,,e U4, ¢,)
by the assumption A> A, (A, u, v). Since A3.=2"E,., we have
A;,C = Y eo® 27" A3 Byn = X720 @ Byn = B,

and consequently, Be (4, ¢,).
(i) From (i) it immediately follows that

w, u, v) < A (U, u, v) — k(1) for t=u and v,

or the second inequality of (23). Let us suppose that sup,.y, (2")*|Bznll,, < ©
for t=u or v implies Be A(4,, ¢,). Put

C @y

@+ 1) 0

@+ -1 |

Then, D,=3%70® ByncU¥,, ¢,) since sup,.n,(2")( Bl <oo. Conse-
quently, we have

MU, u, v) < p,
which implies the first inequality of (23).
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In Theorem 10 in the next section we shall show

24 AU, u, v) + max {x(u), x(v)} < A,(A, u, v)
< MU, u, v) + 1 — max {x(u), x(v)}.
Combined with this, Theorem 8 yields

COROLLARY 1. Let 1<u,v<oo. Then, we have
25) 24U, u, v) — 1 + max {x(u), xk(v)} < w(W, u, v)
< A (U, u, v) — max {x(u), k(v)}
and
(26) AU, u, v) < w(A, u, v) < MW, u, v) + 1 — 2max {x(u), x(v)}.

In particular,
Q7 w2, u, v) = MY, u, v) = A, (Y, u, v)— —;— if u=2 or v=2.

Combined with (24), (26) and (27), Theorems 6, 7 and 8 yield criteria by
MU, u, v) such that a block diagonal matrix operator belongs to A(4,, 4,).
Taking account of the fact that the limit order A(2, u, v) is extensively calculated
for various special ideals 2 (cf. [23], 14.4 and 22.4-6; [2]), these inequalities and
identities would be useful. In particular, by Theorem 8 with (26) and (25) we
obtain

COROLLARY 2. Let1<u,v<o. Let
SUPneny (24| Bonlley < 0 (t=u or v)
for some u with
u> MU, u, v) + 1 — 2 max {k(u), k(v)}
or
u> A (AU, u, v) — max {k(u), k(v)}.
Then,
B=370®B.eU(¥, ¢,).

This result may be compared with the following one given by Pietsch [24]
recently.

PROPOSITION B ([24], Theorem 1). Let O<p<oo and Se€ &(E, F). Then,
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SeU, if and only if there exists a sequence {S,} in &(E, F) with rank (S,)<2"
and Y50 2"||S,l|? < oo such that S=3.7, S,

Combining Corollary 2 and Proposition B, we have
COROLLARY 3. Let 1<u, v<oo. Let O<p<oo and
% > AU, u, v) + 1 — 2 max {x(u), x(v)}
or
% > A (W, u, v) — max {k(u), k(v)}.
Assume that
=0 2" Banlg, < oo,
where (s, t)=(u, u) or (v, v) if u<v and (s, )=(u, v) if u>v. Then,
B=370®Byme(An UYL, 4,).
The proof is immediate by observing that
IBanlluw < I1B2nlluw IBanllo, — if u <w
and '
I B2nlluws 1Banllo,o < 1 Banlly,,  if u>w.

Now, we show that A, (2, u, v) gives the same criteria as in Theorem 6 or
its Corollary, and Theorem 7 for (block diagonal matrix) operators between
Lorentz sequence spaces ¢, and 4,,. Some results of this type for A(%, u, v)
are obtained in [17] and [8].

The following lemma is easily derived from the property (QNj;) of quasi-
normed operator ideals (cf. (1.4) in [10]).

LEMMA 5. For 1<uy, u,, vy, v, < 00,

_ 1 _ 1 1 _ 1
[AL(A, uy, v1) — AL (Y, uy, v)| < ‘ul u, + lvl 0,1
THEOREM 6'. Let 1<u, v, s, t<oo. Then,
(28) Ay, u,v) =inf {1 > 0; A, e U4, ¢,,)}.

ProOF. Let us show the inequality “<”. If 1<u<oo and 1<v<oo0,
take arbitrary u; and v, with 1 <u; <u and v<v,<oo. Then, the inclusion maps
4,54, and £, 5¢, are continuous by Lemma C. Hence, A, U, ¢,,)
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implies 4,e%A(¢,,, ¢,). By Theorem 6 this implies
29) At uy, v)) <inf{A>0; 4,e U, £,.)}-

Letting u,—u and v, —»v, we have the desired inequality by Lemma 5. If u=1
or v=o00, we have only to put u;=u=1 or v, =v=c0.

In a similar way, we obtain the converse inequality of (29) for any u, and v,
with 1<u<u, <00 and 1<, <v< o0, and hence the inequality “>"" of (28).

COROLLARY. Let 1<u, v, s, t<00. If A>A (U, u, v) (resp. A< (N, u, v)),
then A}.E Q[(Zu,sa gv,t) (resp. AA$QI(€,"S, gv,t))'

By Theorem 6’ we have easily
THEOREM 7'. Let 1<u, v, s, t<oo. Then,
AL, u, v) =inf{1/r > 0; 042 ({2"}) = A, e (¥, £,,)}.

In the rest of this section, we give a representation of A.(&, u, v) which is
closely related with Clarkson’s inequalities. Let £,=.2,(X, .4, p) be the usual
(complex) #,-space, 1< p< o, on an arbitrary but fixed measure space (X, .#, p).
Let £3(%,), 1<u< o, denote the direct sum of n copies of %, with the norm

(5=l Fp e (1<u<o00),
max;c;<, | f;ll, (u= o0)

WMy =

for f={f;} € ¢3(%,). In [9] the author showed the following

THEOREM 9 ([9], Theorems 1 and 3). (i) Let 1<p<oo and 1<u, v<o0.
Assume that # contains infinitely many (countable) mutually disjoint sets of
finite positive measure. Then, for every ne N,

(30) [Agn: £37(£,) — £2"(ZL,)| = 2ne(wvin),
where

Ly l—min(L l) if min(p, p') <u<

u/ v P’ pl ) ) = ’

1 < v < max(p, p'),
clu, v, = . : ' ’
( p) _1%— if 1<u<min(p,p),1<v<u,
Ti—, if v<u<oo, max(p,p’) <v< oo,

1/p+1/p'=1ju+1ju’'=1/v+1/v'=1. In particular,
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(31 | dzn: £27(Z) — 437 (L) || = 2m440),
AMu, v) being as in Lemma 4.
(i) Let 1<q<p<owo. Assume that W(X)<oo. Then,
(32) | dan: £3°(,) — £37(L]| = p(X)HaH1p2mi0),

To compare the norms (22) and (30) of A,. in ¢2"- and ¢2"(%Z,)-spaces, it
is convenient to express A(u, v) and c(u, v; p) graphically in the unit squares with
the coordinates 1/u and 1/v as follows.

1
2
1.1 _1
u'+v 2
1
1 v
2
1
ul
AMu, v)
1 1
P P
1,1 _ 1 1,1 _1
u,+v pl ‘1_ u'+v p _1_
v c(u, v; p) v
1 1
pl
1 7 1
u’ w
l<p<?2 2<p<

By (30)—(32) and Lemma 4, we have

COROLLARY. (i) Letl<p<oo and 1<u,v<00. Assume that A contains
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infinitely many (countable) mutually disjoint sets of finite positive measure.
Then,

X'L(Qy u, U) + 6(“’ v, p)
= inf {1 > 0; Ie=c(u,0,A) s.t. |Ayn: £2'(L,) - £2°(L)| < c2")* (YneN,)},

where
—;——x(p) if 1<v<2<u< o,
L—xp) i mnpp)<u<2 I<v<u,
o(u, v; p) =
%—K(p) if v<u<oo, 2<v<max(p,p),
0 if 1<u<min(p, p’) or max(p, p') <v < o0,

k(p)=min (1/p, 1/p’). In particular,
A(8, u, v)
= inf {1 > 0; Fe=c(u,0,4) 5.t. |Ayn: 627°(FL,) = L27( L) < c2?)* (YneNy)}.
(ii) Let 1<v<u<oo. Assume that y(X)<oo. Then,
A8, u, v)
=inf {1 > 0; Ic=c(u,0,4) s.t. |Ayn: £2"(L,) = 2"(Z)I< ) (Yne Ny)}.
For (i), observe that
[ Agn: £37(£p) — €37(Zp)|| = 2"000P || Ay 43" — 437
REMARK 3. We write A,n=[g;;]. Then, (30) in Theorem 9 yields the
inequality

(X2 N3 e il < 2neeosp(ZIL N filp e (s, o fan € Z)

(the usual modification is required if u=00 or v=00). This includes as special
cases all the following well-known inequalities given by J. A. Clarkson [3] and
R.P. Boas [1]: Forallfand g in Z,,

212(I f1I + Nglipre if 1<p<2;

217°(If115 + Nglp)r if 2<p<oo;
Uf+gly + 1 —glp)te < 2V (I F15 + lglipve if 1<p<2;
(f+ gl + If = glpe < 2V2(FIIF + Mgl if 2<p<oo,

Uf+glp+1f—glPV? <
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where 1/p+1/p'=1 (Clarkson [3], Theorem 2; see also E. Hewitt and K.
Stromberg [5], §15); and including them except the first inequality for 1 <p<2,

(NS + gly + 1= glipre < 2V (LAl + lglip)

holds for l<u<p<v<oo and u'<v, l/u+1/u’=1 (Boas [1], Theorem 1).

§7. A relation between 4, (20) and ()

THEOREM 10. Let 1<u, v<oo. Let x(f)=min(1/¢, 1/t"), 1<t< o0, where
1/t+1/t' =1. Then,

(24) AU, u, v) + max {k(u), k(v)} < A (W, u, v)
< MU, u, v) + 1 — max {k(u), k(v)}.

In particular,
A,_(QI,u,v)=2(9I,u,v)+é— if u=2 or v=2.

ProOF. Let us first show the second inequality.  Suppose that
A(I,: 4n—4n)<cn* (Yne N) with some c¢. Then, by Lemma 4
| Azn: 63" — L3 A(Ipn: €37 — £37),

A(Ayn: 2" — 027) <
A(Ipn: 62" — £27)|| Agn: £2" — 237

{ C(Zn)/H-max(l/u, l/u’),

c(zn)).+max(1/v,l/v’)_

for all ne N,. Since max(1/t, 1/t")=1—k(t), we obtain the desired inequality.

The first inequality in (24) has already been obtained in Theorem 8; it can
be also shown directly as follows. Let A(A,.: £2"—>42")<c(2)* (YneN,).
Then, using the identity 42.=2"E,, and Lemma 4, we have

A(lgn: 42" — £27) < c(2r)A*() for t =u and v.
Consequently, by (QN,),
AU, u, v) = inf {4 > 0; Ic=c(u,v,A) s.t. A(n: 62" > £2") < c(2M*(Yne Ny)}
< A — max {k(u), x(v)}.

By Theorem 10 and (19) we have
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CorROLLARY. If[U, A] is a normed operator ideal, then
max {k(u), k(v)} < A(W, u, v) < 2 — max {k(u), k(v)}
for 1<u, v< 0.

We finally observe that (24) in Theorem 10 is best possible for most values of
u and v in the sense that equality occurs in each inequality of (24) with suitable
ideals. Let us first recall the definitions of the ideals 9, and P, (1<p<0)
of p-nuclear and absolutely p-summing operators respectively. An operator
SeQ(E, F) is called p-nuclear ([18]; [23], 18.2.1) if it is represented as

Sx = ¥%,4{x, a,y, forall xeE

with {a,} = E’ and {y,} = F such that

(=1 lla,9)!7? < 0o

and
sup {(X 51 [<ym BOIPH)VP' 5 |Ib]| < 1, be F'} < 0.
Put
(33)  N(S):=inf [(Z3y a9 supypyes (Tiy [<ym bYP)P,

where the infimum is taken over all such representations of S as above. An
operator S e L(E, F) is called absolutely p-summing ([19]; [23], 17.3.1) if there
exists a constant p >0 such that for every finite system of elements x;, x,,..., X, €
E,

(Zi=1 18x;1M)17? < p sup {(Xh=y| {xi, ad[P)!/?; |lall < 1, a€E'}.

The infimum of all such p is denoted by T ,(S). [N, N,]and [B,, T,] are
normed operator ideals.

REMARK 4. In the inequalities of (24) in Theorem 10, equality is attained
as in the following table:

left right
1<u,v<L2 N, g
I<u<2<v< 2
1<v<2<u<® Ry, Py
2<u, v< Ny, By L




162 Mikio KaTo

In fact, A(U, u, v) and A,(A, u, v) are calculated for A =L, N,, and P, in
Pietsch [20] (see also [23], 22.4), from which we obtain the following.

¥ if (host<lol
5 if (host<loloy
(B39 2 (21 0)= 2 u ) +{ L it (iii)osjsmn%,%),
% if (1v)-é—£—lll—sl, #S%S%»
Lt i<l Lol

The classification in (34) is graphically expressed as

(ii) ™

@iv)

8 |=
-
L)
~~
-
N
o
IA

<=
IA

& |
IA

& =

(35) ALy, u, 0)=A(Ry, u, v) +

°~l’_‘ N lt—a

R
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)]
(iv)
(ii)
(iii)
®
1 ; 111
y if (1)O$vgug2,
| " 1 1 1 1 _ 1
- if (II)OS“;S?, 7Svﬁu:,
(36) A’L(“Bla u, v)=l(§'B13 u, U) + I 1 1 1 1
Py if (111)03737, ;—,s—v—gl,
P N NPT
3 if (iv) 5 << 1:
(iii)
(ii) (iv)
@)

Now, let 0<1/u, 1/v<1/2. Then, the inequalities (24) are precisely

37 A™U, u,v) + % < AL (U, u, ) <A, u, v) + % if 0< ‘}7 < % <

N|=

and

(38) AW, u,0) + - <20 u, )<AW, w0 + L if 0L <<

v u v 2
From (34)—-(36) we conclude that both in (37) and (38), equality is attained on the
left with =N, and P,, and on the right with A=L.  This proves the assertion
of Remark 4 for 2<u, v<o. The desired conclusion for the other cases is also
derived from (34)-(36) in a similar way.
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