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Introduction

Four types of limit orders of operator ideals $1 were introduced in 1971-2

by A. Pietsch with respective purposes, and these limit orders have been playing

an important role in the theory of operator ideals ([20], [21], [22], [23], [10],

[11], [12]). They are the S-, D-, /- and L-limit orders, 4(91) ([21]), λD(W} ([22]),

2,(51) and λL{%) ([20]), which are denned by using Sobolev embeddings, (certain)

diagonal operators between ^-spaces, identity and Littlewood operators between

•έ̂ -spaces, respectively. (The last limit order is originally denoted by ^(91).

We shall, however, adopt the above notation AL(2l) and call it the L-limit order.)

H. Konig [11] showed in 1974 the following remarkable relations among them:

For a complete quasi-normed operator ideal [21, A],

(1) λj(% u9 υ) = λD(% u, v)

and

(2) λs(% u,v;N) = N (λ£% u9v) +

for \<u, t;<oo. Thus, in Pietsch ([23], 14.4.1) the D-limit order is referred to

simply as the limit order and denoted by λ{%). In this paper, we are concerned

with the limit and L-limit orders. They are denned for l<w, v<oo respectively

by

(3) λ(% u, v): = inf {λ > 0; Dλe M(£u, £v)}

and

(4) λL(%u9υ)

: = inf {λ > 0; 3c = c(u,v,λ)s.L A(Λ2n: £2

u

n -> £ln)< c(2»)λ(n = 0,1,2,...,)},

where Dλ({ξn}) = {n~λξn} and Λ2n are the Littlewood matrices ([15]), that is,
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A2n A2n

(Λ = 0,1,2, . . . ) .
A2n ~A2n

The limit order Λ,(9l, u, v) provides two kinds of criteria such that a diagonal

operator from £u into £v belongs to 91:

(a) If λ> λ(% u, v) (resp. λ < λ(% u, υ))9 then Dλ e <&(£u9 £Ό) (resp. Dλ £

Ώ{£U9£Ό)).

(b) Let 1/r > λ(9l, u, υ). Then, for every σ = {σn} e £r the diagonal

operator Dσ: £u -• £υ, Dσ({ξn}) = {σnξn}9 belongs to 91. More precisely,

(5) A(9I, ii, ϋ) = inf {1/r > 0; σe£r==^Dσ

([23], Proposition 14.4.2).

The first objective of this paper is to obtain, by generalizing (1), a nearly

necessary and sufficient condition in order that a diagonal operator between £u-

spaces belongs to a given quasi-normed operator ideal. The second objective is

to investigate some properties of the α-limit order of 91 which we shall deane by

Aβ(9I, u9υ):= inf {λ > 0; D{α-Λ}G9ί(^tt, £Ό)} (1 < u9 v < oo),

where a = {αj is an arbitrary fixed sequence of positive numbers which is strictly

increasing and divergent to oo, and D{(χ-λ}({ξn}) = {oc~λξn}. The introduction of

the α-limit order is motivated by the fact that there are some examples for which

the above criteria given by Λ,(9l) are of little avail. The last objective is to investi-

gate the irlimit order, which has not yet been treated in detail.

Section 1 is devoted to some preliminary definitions and results, which are

quoted for the most part from the monograph [23]. In Section 2 we study a

couple of sequence spaces ^Γ j 0 0(α) and £?tO0(a) to some extent for later use. The

former is a generalization of the Lorentz sequence space £rtO0 and particularly

useful in Sections 4 and 5. In Section 3 we generalize (1) to obtain the nearly

necessary and sufficient condition stated above (Theorem 1 and its Corollary).

In Section 4 we discuss the α-limit order, where the identities generalizing re-

spectively (1) and (5) are shown (Theorems 3 and 2). In Section 5 the α-defects

of normed operator ideals are considered, whose notion is based on Konig [12].

Under a certain assumption on α = {απ}, it is obtained that the condition

Aβ(9I, II, ϋ) + Aβ(9I*, v9u) = ί implies

λ (91 u v) - lim log A ( 7 , : ^ >£%)

(Corollary to Theorem 5). In Section 6, we obtain several criteria given by the

L-limit order Aχ,(9l) (and A(9l) as well) such that a certain type of block diagonal
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matrix operator between .^-spaces belongs to 91; in particular, we obtain results

analogous to (1), (a), and (5) (Theorem 6, its Corollary, and Theorem 7), which

remain valid if the underlying ^-spaces are replaced by the Lorentz sequence

spaces SUfS (Theorem 6', its Corollary, and Theorem 7'). In Theorem 8 we

introduce another type of limit order μ(9I) and compare it with /lL(9Γ) and 2(91).

In the rest of this section, we give a representation of λL(2, u, v) by means of

^"(j^-spaces (£ is the ideal of all bounded linear operators between arbitrary

Banach spaces), which is closely related with the Clarkson inequalities (Corollary

to Theorem 9). In the final section we deal with a relation between AL(9I) and

2(91) (cf. (1) and (2)): It is shown that

u, v) + max{min(l/u, 1/κ'

< λL(% ii, Ό)

< λ(% u, v) + min {max(l/u, 1/u'), max(l/t;, 1/t/)}

for l<w, t;<oo, 1/w + l/u' = ί/υ + l/t/ = l, which is best possible for most values

of u and v (Theorem 10 and Remark 4).

The author would like to express his sincere gratitude to Professor F-Y. Maeda

for his valuable comments, and to Professors S. Togo and K. Miyazaki for their

constant encouragement.

§ 1. Preliminaries

The space of (bounded linear) operators from a Banach space E into another

Banach space F is denoted by £(£, F), while the class of all operators between

arbitrary Banach spaces is denoted by fi. A subclass 91 of £ is called an operator

ideal (cf. [23], 1.1.1; [22], 1.1.1) if the components

, F):= 91 Π £(£, F)

satisfy the following conditions:

(OIJ If a e E\ the dual space of E, and y e F, then a® ye 9X(£, F).

(012) If SuS2e9ί(£, F), then Sx + S2e9ί(£, F).

(013) If Te £(£o, E\ S e 9I(E, F), and R e £(F, Fo), then RSTe 9I(£0, Fo).

Every component of an operator ideal is a linear space ([23], Proposition 1.1.2).

A mapping A from an operator ideal 91 into the set of non-negative real

numbers is called a (ideal) quasi-norm (cf. [23], 6.1.1; [22], 8.1.1) if it has the

following properties:

A(a ® y) = \\a\\ \\y\\ for a eEf and y eF.

(QN2) There exists a constant cA > 1 such that
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+ S2) < cAMSJ + A(S2)] for Su S2e2I(£, F).

(QN3) A(ΛSΓ)^||1Ϊ||A(S)||Γ|| for TeQ(E0,E), Se2I(£, F), and Re
, Fo).

In particular, A is called a norm if cA = 1 in (QN2). A quasi-norm A is called
a p-norm (0<p<l) (cf. [23], 6.2.1) if the following p-triangle inequality holds:

A(Si + S2)* < A(St)^ + A(S2)*> for Su S2 e 2l(£, F).

A quasi-normed operator ideal [21, A] is an operator ideal 21 with a quasi-norm
A. Each of its components is a usual quasi-normed space (cf. [23], 6.1.2). We
always assume the completeness for quasi-normed operator ideals, that is, every
component of theirs is complete (cf. [23], 6.1.3).

LEMMA A ([23]), Theorem 6.2.5). Every quasi-normed operator ideal
has an equivalent p-norm.

For a normed operator ideal [21, A] its adjoint operator ideal 21* is defined
as follows (cf. [23], 9.1.1): An operator Se2(E, F) belongs to 21* if and only
if there exists a constant p > 0 such that

for all B e 2(F, Fo), Lo e 2ί(F0, Eo\ and X e 2(E0, £), B and X being of finite
rank, where Eo and Fo are arbitrary Banach spaces. The infimum of all such
p is denoted by A*(S). Then, [21*, A*] is a normed operator ideal ([23], 9.1.3).

Let now the sequence spaces £u9 &n

u (1<M<OO), and c0 be those as usual.
For σ = {σn} e S^ let Dσ = D{σn} be the diagonal operator between ^u-spaces defined
by Dσ({ξn}) = {σnξn}. The limit order of an operator ideal 21 and the L-
limit order of a quasi-normed operator ideal [2ί, A] are defined by (3) and (4)
respectively ([23], 14.4.1; [20]). The I-limit order of a quasi-normed operator
ideal [2t, A] is defined by

II, I?)

:=inf{/l> 0; 3c = c(u,v,λ) s.t. A(/M: βn

u-*£$)< cnλ (n = 1, 2,...)},

where In are the identity operators ([20]). For an operator ideal 21, let

£v)} (1 < u, v < oo)

(cf. [22], 4.10.1). If 21 is a quasi-normed operator ideal with the quasi-norm
A, put ||σ||A=A(Dσ) for (τe^ ) U ) ϋ ) . Then, -β^^v) becomes a complete quasi-
normed space with || ||A (cf. [12], p. 99). Let iV(resp. 7V0) be the set of positive
(resp. non-negative) integers.
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LEMMA B (cf. [12]). (i) £^lUtv) ί S symmetric: If {σn} e £(^>UtV)9 then

ίσπ(n)} E ^(w,u,v) for any permutation π on N.
(ii) {|σj} e i^tUtΌ) if and only if {σn} e Ά^>UtΌy

(iii) For a quasi-normed operator ideal [31, A], the inclusion map

v)> II II A) ^ ôo is continuous.

They are easily derived from the definition of (quasi-normed) operator ideals

(cf. [23], Proposition 6.1.4 for (iii)).

Let 1 < M < O O , l < s < o o or l < u < o o , s = oo. The Lorentz sequence space

£UtS is the space of all {σn} e c0 such that

(Σ"=i ns/«-ί\σn\*°y/s (1 < u < oQ, 1 < 5 < 00),

supn ^^"IσJ* (1 < u < 00, s = 00)

is finite, where {|σΠ|*} is the non-increasing rearrangement of {\σn\} (cf. [23],

13.9.1; [16]). || ||u>s is a norm (resp. quasi-norm) if l < s < w < o o (resp. l < w <

s<oo) ([7], Proposition 1; see also [23], 13.9.5). Clearly £UtU coincides with

£u. For w = 5 = oo, we put Ά^^^^^.

LEMMA C ([23], Proposition 13.9.4; [16]). Let \<uγ<u2<a^ and

l < s l 9 5 2 <oo. Then,

and the inclusion map ̂ uus^^u2^2

 ι s continuous.

Let {αj and {βn} be sequences of positive numbers. We write an<βn if

un<cβn ( v n G N ) with some c.

§2. The spaces £rj00(α) and £%(a)

DEFINITION 1. Let a = {ccn} be an arbitrary fixed sequence of positive

numbers which is strictly increasing and divergent to 00. Let 0 < r < o o . We

define

tr9ja)'.= {σ = {σn}ec0; | | σ | | r f 0 0 ; β : = s u p α y i σ j * < 00},

where {|σw|*} is the non-increasing rearrangement 0/{|σΠ|}; and

< . ( « ) : = {σ = {σn}ec0; ||σ||? f00.β:= supαj/iσj < 00}.

For r=oo, let ^oo,oo(«) = ^,oo(«) = ôo

^ Γ 0 0 (α) is a generalization of the Lorentz sequence space £rt00. ^?>00(α)

is a Banach space, as is easily seen.
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LEMMA 1 ([7], Lemma 1). Let {σn}, {μn}ec0. Let {\σφ(n)\}, {\μψ(n)\}, and

{lσω(n) + μω(n)l} b e t h e non-increasing rearrangements of {\σn\}, {\μn\}, and

{\σn + μn\} respectively. Then, for any neN

\σω(2n) + μ<o(2n)\ ^ lσω(2n-l) + ^ω(2π-l)l ^ \σφ(n)\ + l/fy(»)l

PROPOSITION 1. Let 0 < r < o o . Assume α 2 π<cαM( vn6iV) with some con-

stant c. Then, £roo(a) is a quasi-normed space;

(6) Ik + μ l U α < c 1 / r ( l k l U ; α + llμL.oo α) for any σ, μe£rtJa).

PROOF. Let us show (6). Let σ = {σn}, μ = {μn} e ^ r o o ( α ) . Then, by Lemma 1

+ μl.oo α = supαj/ iσ^) + μω{n)\

= max {supαίί,Γ-ikω(2B-i) + μω(2«-i)l» supαJi r k ω ( 2 l l ) +

REMARK 1. (i) Without the condition α2π-<αM, £r^{a) fails to become a

linear space.

(ϋ) W'Ww ™ not a norm.

PROOF, (i) Let us assume that {α2π/απ} is not bounded. Then, for each

keN there exists nkeN such that α2πk>fcαMk. Put σ 2 w_ 1 = α~1/r, σ2 π = 0, and

μ2n = *nί/r> μ2n-i=® for fleΛT. Then, clearly σ = {σj, μ = {μB} e^Γ > 0 0(α),

while σ + μ^£r>o0(a) because

αίi r>»(2B f c ) + ^(2«k)) = «iir

k α"k

1/r > /c1/̂  > oo (k > oo).

(ii) Take two positive numbers a and b such that I<α/fo<(α 2/α 1) 1 / r,

and put σ = (a, fe, 0,...) and μ = (b, a, 0,...). Then, | |σ||Γ 5 θ θ ; α = | |μ| | r > o o ; β =

max {α}/Γα, α|/ rb} = α^/Γb. Therefore

Ik + /illr.co;. = OL\l'(a + b) > 2*ψb = | |σ | | r ί 0 0 ; α + | |μ| |Γ i 0 0 ; β.

LEMMA 2 ([7], Lemma 4). Let {σ^fc)}wfc be a double sequence such that

lim,,.^ σ[k) = 0 for each keN, and \imk^O0σ
(

n

k) = σn (uniformly in ή). Then,

limw_ 00^ = 0, and for each neN

\σφ(n)\ ^ l i m i ^

where { lo^l} and {|σ^fc

k

)

(π)|}M are the non-increasing rearrangements of {\σn\}

and {\σ(

n

k)\}n respectively.
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PROPOSITION 2. Let 0<r<oo and let α2π-<α/l. Then, £r}00(a) is complete.

PROOF. Let 0 < r < o o . Let {σ^k)}, σik) = {σ[k)}n, be an arbitrary Cauchy

sequence in ^Γ > 0 0(α). Then, for any ε > 0 there exists koeN such that for any

j,k>k0

\l) \\σ σ llr,oo;α ~ S U P π α « \σωjfk{n) σωjtk(n)\ < ε>

where {|σ^')

>k(n)-σ^)

ίc(M)|}π is the non-increasing rearrangement of {IσJ^-σ^l},,.

In particular, we have

sup,, \σ{

n

J) - σ(

n

k)\ < ocjV'ε for any j , k > kOi

whence there exists a sequence σ = {σn} such that σM = limfc_+00 σ(

n

k) (uniformly in

ή). Let k be an arbitrary positive integer with k>k0 and be fixed. Then,

applying Lemma 2 to {σ^1 — σ(

n

k)}n9 we have

(8) |σωk(») - σttϊwl ^ l i m i n f / - o o Wω-Mn) - ^ ^ ( n ) ! for each neN,

where {\σωk(n) — σ^fe

fc

)

(w)|}M denotes the non-increasing rearrangement of {\σn — σ(

n

k)\}n.

Consequently, by (7) and (8) we have for any k>k0

Ik - tf(fc)llr,oo;« = supnαj/'|σω k ( l l ) -σS*>(B)|

< supn lim inf^oo ccl/r\σ(J}Mn) - σ$Mn)\

l f ^ o o supπ ^Jr\σ{J]Mn) - σ™Mn)\

and hence {σn} = {σn — σ(

n

k)} + {σ(

n

k)} e ^ r ? 0 0 (α), which completes the proof.

LEMMA 3. Let {an} be a non-decreasing sequence of positive numbers which

tends to oo. Let {σn} be a zero-sequence of positive numbers, and {σφ^} its non-

increasing rearrangement. Then, if {ocnσn} is bounded, so is {unσφ(n)}. The

converse is false.

PROOF. Let m be an arbitrary positive integer and fixed. If m<φ(m), then

ccmσφ(m) < ccφ{m)σφ(m) < s u p n anσn.

If m>φ(m), then there exists keN such that \<k<m and m<φ(k), whence

Consequently, if {αnσj is bounded, so is {ocnσφ(n)}.

For the latter assertion, put μn = l/ocn. We show that for a certain rearrange-
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ment {μπ(n)} of {μj, {<xnμπ(n)} is not bounded. We may assume α M >l for all

ne N. We choose a sequence {nk} of positive integers inductively as follows.

Let nί be the smallest πeiVsuch that αf <αM. If we have chosen {«!,..., nfc_j},

let nfc be the smallest neNsuch that afik_ι<aίn (hence nk_ί<nk). Let π: N-+N

be a bijection such that π(nk) = nk_ι (put n o = l). Then, {αΠμJ is bounded, but

{ttnμπ(n)} is not so because

k) = - ^ - > *nk-, > ™ (k > OO) .

By Lemma 3 we have immediately

PROPOSITION 3. Let 0< r < oo. Then,

§ 3. A nearly necessary and sufficient condition such that a diagonal operator

belongs to [21, A]

The identity

(1) λ(% u9 v) = A7(«, ii, ϋ)

follows from the fact that

(i) if D{n-λ}etyί{jβu, £v), then there exists c = c(u9 v, λ) such that

(9) A(/M: &l > t«) < cnλ C*neN),

and coversely,

(ii) if (9) holds with some c, then for any ε > 0 D{n-iΛ+ε)} e &(£„, £υ).

We generalize these assertions in the following theorem. The proof of its essential

part is based on Pietsch's simplified proof of (1) ([23], Theorem 14.4.3).

THEOREM 1. Let l < u , ι;<oo. Let a = {ccn} be a non-decreasing sequence

of positive numbers which tends to oo.

(i) If D{a-i} belongs to 9l(^M5 £υ), then there exists c = c(u, v, a) such that

(10) Mϊn.Λl—>ίΐ)<coin ?neN)

(ii) // (10) holds with some c, then for any ε>0 D{α-(wε)} belongs to

PROOF, (i) Put D = D{a-ίy Let Dn({ξi}1^n) = {ctT1ξi}ί^n. Then, by

(QN 3) we have

A(Dn: £Z — , £'i) < A(D: £u — > £v),
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and hence

A(In: t« —> £*) < A(Dn: £»u —> £*)\\D?: £« — £«\

(ii) By L e m m a A we may assume that [91, A] is a p-normed operator ideal

(for some 0 < p < 1). Let

Nk: = {neN; 2*" 1 < αn < 2*} (fe = 1, 2,...)

and

iV o :={neiV;0<α / I < 1}.

Let nk = ca,τdNk9 the cardinal number of Nk (keN0). We first assume that
nk Φ 0 for each ke No. Put

1 (n6iVfc),

0 ( n ί Nk),

and let Qk be the diagonal operator defined by {q(

n

k)}n, i.e., Qki^n}) — ^^^}^
Then, we have

MQk' K — > K) < ™nk (k = o, l, 2,...)

by the assumption (10) and the property (QN3) of quasi-normed (in particular,
p-normed) operator ideals. Therefore, for any ε>0

*αίϊβι: £U—+£OY = Σ ? = o 2 " ^

< cpΣΐ=o(2~εp)k < oo

Consequently, the operator

S:= Σΐ=o2-εk*-lQk:£u > £v

is well-defined and belongs to 51 because [21, A] is complete. Next, we p u t

σn = 2**an ka-(1 +*> for neNk9 fc = 0 , l , 2 , . . . .

Then {σw} is bounded. Indeed, let neNk. Then 2 f e ~ 1 < a π . Since n f c < n 0 +

WiH \-nk and {απ} is non-decreasing, we have ocnk<2k

9 whence α Π f c < 2 2 f e ~ 1 <

2<xn. Therefore, we have

2^αM k = 2 ' 2 ' ί * - 1 ) ^ < 2 ^ ( 2 0 0 = 2 1 +«αϊ+«,

or σ n < 2 1 + ε . Consequently, the diagonal operator D{ σ n } : £u->£u belongs to fl.
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Since the operator D{a-tn ε)}: £u-+£v is the composition of D{σn}: £u->£ue2

and S: £u-*£ve% we have D { α-(i+ ε ) }e9ί(^M, £v) as desired.

In the case where there exist k with nk = cardNk = 0, we have only to take

instead of {nk} the subsequence {nk.} consisting of non-zero terms of {nk} in the

above proof. This completes the proof.

By Theorem 1 and Lemma B we have immediately the following

COROLLARY. Let {&„} be a sequence (of real or complex numbers) with

lim,,.^ |αj = oo and {*|αM|} the non-decreasing rearrangement of {\ocn\}.

(i) If D{oc-i} e M(£u9 £v), then there exists c such that

A(/B: t« > £») < c(* |αj) (*

(ϋ) //
A(In:£i—* W <L c(*\*Λ\)" C

with some c and μ ( 0 < μ < 1), then D{a-i} e 8I(^M, £v).

§ 4. The α-limit order of operator ideals

DEFINITION 2. Let a = {ocn} be an arbitrary fixed sequence of positive

numbers which is strictly increasing and divergent to oo. We define the a-

limit order of an operator ideal 91 by

λΛ(% u,v):= inf {λ > 0; D { e - A } eΏ{£u9 £υ)}

for l<w, v<oo.

If β = {βn} is another sequence with the same property as α, and if ocn<βn9

then λa(% u, v)>λβ(^ u, v). In particular, if ocn<n and n-<απ, Λα(2ϊ, u, v)

coincides with Λ,($ί, w, v). We easily obtain

PROPOSITION 4. // λ>λa(% u, v) (resp. λ<λa(% u, v))9 then D{a-χ} e

£v) (resp. D{Λ-X)φ%(£„ £v)\

The following theorem generalizes (5) ([23], Proposition 14.4.2).

THEOREM 2. Let 1 < w, v < oo. Then,

(11) λa(% ii, i;) = inf {1/r > 0; σe£r>o0(a) =^Dσe%(£u, £v)}

= inf {1/r > 0; σe £?^(a)=^DσeW(£u9 £v)}

= inf {1/r > 0; σ = {σn} e £r^(a

= inf {1/r > 0; σ = {σn} e£°r^(a\ σ 1 > σ 2 > > 0
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PROOF. The last equality is trivial. We write the first three terms of the

right-hand side of (11) as ml9 m2, and m3 in that order. Let us show

(12) λa(% u, υ)>m1>m2>m2> λa(% u, v).

Let A>Aα(2ί, w, ύ). Then, by Proposition 4

Put r = 1/λ and let {σn} e -0ΓfQO(α). Then, {<*iσφin)} is bounded and hence

U9 £u),

where φ is so defined that {|a^(n)|} is the non-increasing rearrangement of {\σn\}.

Therefore

Di*Φ<n>} = Di^fD{aiσφin)}sStί(£tn £v).

Consequently, by Lemma B we have D{σn} e %l(£u9 £v), which implies the first

inequality in (12). The second inequality is an immediate consequence of Propo-

sition 3. The third one is trivial. For the last, assume that σ = {σn} e £rt00(a),

σι>σ2>"->0 implies Dσe
(iί(£u, £v), and put σM = α~1/r. Then we have m 3 >

λJ^Ά, w, v), which completes the proof.

By Theorem 1, we immediately obtain the following generalization of the

identity (1), i.e.,

λ(Sn, u, v) = inf {λ > 0; 1c = c(u,viλ) s.t. A(In: £n

u -» £n

v) < cnλ CneN)}.

THEOREM 3. Lei [3ί, A] be a quasi-normed operator ideal, and lei

l<u, v < oo. Then,

λΛ(% u, υ) = inf {λ > 0; 3 c = c(u,v,λ) s.t. A(In: £n

u -> £*) < cα^( v neiV)}.

Now, W. Linde and Pietsch [14] introduced the ideal [Sβγ, T y ] of absolutely

y-summing operators as follows. Let yn denote the Gaussian measure on the n-

dimensional Euclidean space Rn which is defined on every Borel set B by

γn(B) = (2π)-»/2 \ exp {- Σ?=i τ
J B

An operator Se2(E, F), E and F being real Banach spaces, is called absolutely

y-summing if there exists a constant p > 0 such that for every xί9 x2> > xneE,

2 < p sup [{Σ?=i |<x,, <*>I2}1/2; \\a\\ < l , β e £ ' ] .

The infimum of all such p is denoted by TΓ/S). [ φ y , T y ] is a normed operator

ideal ([14], Theorems 1 and 2). They proved



144 Mikio KATO

PROPOSITION A ([14], Theorem 9). Let 2<u<oo. Let σ = {σn}, σx>σ2

> - > 0 . Then, Dσ belongs to ψγ(£u, £^) if and only if

oo.

REMARK 2. Lei 2<u < oo and let a = {αj, αn = log (n +1). Then, Proposi-

tion A with Lemma B implies that

Dσ e %(£u, £„) if and only if σe £2fO0(a),

or

^ v ,u ,oo) = ^2,oo(«)

EXAMPLE 1. Let u and a = {ocn} be as in Remark 2. Then,

(13) λxWv u,π)=j-

while

(14) λ(yγ, u, oo) = 0.

In fact, from Proposition A it follows that

(15) D { α - , } G yy(tu, £J (resp. D ( β r t

provided λ > 1/2 (resp. λ < 1/2),

which implies (13). (14) is also derived immediately from Proposition A. Let

us here recall the following criteria given by A(9I, u, υ):

(a) If λ> λ(% u, v) (resp. λ < λ(% u, i?)), then Dλ e M(£u, £ΰ) (resp. Dλ<£

(b) Let \\r > λ(% u, v). Then, for every σe£r, Dσ belongs to %(£u, £υ).

Since λ(tyy, u, oo) = 0, the behavior (15) of {oc~λ} can not be described by these

criteria (a) and (b). (Note that {(χ-λ} = {\og-λ(n + l)}(££r for any r>0.) On

the other hand, by Proposition 4, (15) is well expressed by λa(9βy, u, oo) = l/2.

(Compare also Proposition A or Remark 2 with (b) cf. Theorem 2.) Thus,

in this case, the α-limit order λa(S&) is more appropriate than Λ,(2I) for the ideal

Let us next recall the definitions of the ideals 9t0

 a n d 3Ip (P>0) of strictly

nuclear and ̂ -operators respectively. Let S e 2(E, F) and let an(S) be its n-th

approximation number, i.e., an(S):=inf {\\S — L\\ L e £ ( £ , F) and rank(L)<n}.

S is called a strictly nuclear operator (resp. an $lp-operator) if {an(S)} e£0: =

n p > 0 ^ (resp. {an(S)} e £p) (cf. [23], 18.7.1 (resp. 14.2.4)). By Proposition

14.4.9 in [23] and Proposition 6 in [2] the limit order of %p for 0 < p < 1 is given by
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(16) «, v) = (l<u<v<2or 2<u<v<co),

EXAMPLE 2. (i) For all 1 < w, v < oo

λ(9l0, M, i>) = oo,

which only asserts

Dλ<£WU9£v) for all λ>0

and

tr<ttm,u,v) for all r>0.

(ii) Put a = {αj, ocn = αM (α> 1). 77ze«, for all l<u, υ<oo

λa(9l09 u, υ) = 0,

w/wc/z means that

D{a-*}e9l0(£u9£v) for all λ>0

or

r̂.oo(α) c (̂»o.-.p) / o r β / / r > 0

(iii) Let l<u<v<co. Then, there does not exist a sequence α = {αj,

0 < α π / Ό o , such that 0</lα(9lo, M, υ)<co.

PROOF, (i) Since 5U0= Π p > 0 % (cf. [23], 18.7.2), we have by (16)

A(9t0, u, t?) > A(3lp, iι, t;) > oo (p > 0).

(ii) Let D σ e £ ( 4 , 4 ) , σ=t{σM}, σ 1 > σ 2 > > 0 . Then, by Theorem 1.27

in C. V. Hutton [6] (see also [23], Theorem 11.11.4),

γσn<an(Dσ)<σn for neN(17)

if l<u<v<oo; and

(18)

if 1 < U < M < O O , where l/r=l/ι;-l/w. Applying (17) and (18) to D{a-*.}: £u^#v9

we have for 1 < u, v < oo
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or D { a : ^ } e 9 l o ( C 40) ( v ^>0) . Hence λj@tθ9 u, v) = 0.

(iii) Suppose that λa(9l0, w, V)<OO for some α = {απ}, 0<α / t /
f oo. Then,

there exists a λ>0 such that D{α-A} e$lo(£u, £υ), i.e., {^(^{α-λ})}^e£θ9 which is

also valid for a l U > 0 by (17). Hence λΛ(9l0, u, U) = 0.

§ 5. The α-defect of 9Ϊ and α-limit order of 91*

In this section, let a = {ccn} be a fixed strictly increasing sequence of positive

numbers such that απ->oo (n->oo) and α 2 n < α w ; and let [91, A] be a normed

operator ideal. It should be noted that for normed operator ideals [91, A]

(19) 0 < vl(9T, u, f?) < 1 for 1 < w, υ < oo

([23], Theorem 6.7.2 and Propositions 14.4.4 and 22.4.6). In Konig [12] the

defect d(9I, u, v) of 91 is defined by

As is easily shown (cf. Lemma C), it is represented as

ί, M, v) = inf ί— - — £r>o0 cz ί ( a } cz ^ i
( r Λ )

= inf j i - J - Γ̂

0

>00 c

where ^0,,00 = ̂ 0,00({n}).

DEFINITION 3. We d ^ n e ί/iβ a-defect o/9I

d β («, ii, t?):= inf { i - -i- ^ r > 0 0 (α)

= inf j i - i £lJa)

The following theorem generalizes Proposition 1 in Konig [12].

THEOREM 4. For l<u,v<ao we have

4(91, M, v) = inf {A - μ; λ, μ > 0 s.ί. 3c, d > 0 with

dαj; < A(/n: £»u -* ^ ) < cα^ ( v n 6

PROOF. Let us first show the inequality " > " . Suppose ^^ooi^
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£s>oo(a). Then, the inclusion maps /: ^ Γ f O 0 (α)^^ ( Ϊ I ί l < f i ; ) and J: ^(«,I

are closed. Let us show that for /. Let σik) = {σ(

n

k)}-+σ = {σn} (fc->oo)in £rtO0(a)

and σ{k)-+μ = {μn} (fc->oo) in ^(?ϊjH>t;). Then, by Lemma B (iii)

supM |σ<*> - μj < ||σ<*> - μ\\A — > 0 (fc — > c»).

Therefore

\σn — Λ̂ il < s u p π \σn - σ(

n

k)\ + sup M \σ(

n

k) - μn\

^\σωk(n) - σ™iH)\ + sup π \σ[k) - μn\

->0 (fc -> oo),

where { k ^ ^ - σ ^ ^ l } , , is the non-increasing rearrangement of {|σM-σ^} |}n.

Hence we have σ = μ, i.e., / is closed. Consequently, / and J are continuous by

the closed graph theorem. (Note that ^Γ ) 0 0(α) is complete metrizable by Propo-

sitions 1 and 2.) Therefore, there exist some constants c and d such that

H I A < Φ L , O O ; « on £rtO0(a)

and

Consequently, we have for all n e N

I Γ T Γ , o,...)ii

< c||(ί77?7T, 0,...)llr,oo;β = cαj/-.

Hence we have the inequality " > " .

To prove the converse inequality, assume that

(20) d«}Js < A(/n: £Z > £*}) < ca1^ ( v n e N).

It is suίficient to show that for any ε>0

Let σ = {σw}e^Γ_ε>00(α) and let {|σψ(π)|} be the non-increasing rearragement of

{|σM|}. Then, {αi/(r-fi)|σφ(M)|} is bounded, and hence
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Since l/(r-ε)>λΛ(% u, υ) by (20) and Theorem 3, we have

by Proposition 4. Therefore

o r {σφ(n)} e (̂«,«,«;). Consequently, we have σεί ( a ι B ι l > ) by Lemma B. Let next

σ = {σπ}e^(ϊlfllil;). If σ e c 0 , assume that | σ J > | σ M + 1 | > 0 ( vneiV), and put

Then, by (20) and (QN3) we have

: ^ — £ζ)

<">: £»u > £>

<\σn\-iA(Dσ:£u—>tv),

or

a^\σn\<d-Ά(Dσ:£u > £v)

for all neN, i.e., σe^ 5 j 0 0 (α). If σ ^ c 0 , there exists ε o > 0 such that |σM |>ε 0

for infinitely many neN; let {nk; ke N} be the set of all such n (nk<nk+1 for all

. Putσfc==σΠk. Then, by (OI3),

Let now μ — {μk} e £o0. Then, {μfeσfcx} is bounded, and hence

Therefore we have

which implies £φtutΌ) = 4«>• Since the inclusion map £(wtUtV)
<-*£ao is continuous,

by the open mapping theorem we have with some K

< A(/B: £1 >£«)

n

= I K C Γ T , O,...)IIA

for all neN, from which it follows that s = oo and hence ^s,oo(«) = ̂ oo This

completes the proof.



On the limit orders of operator ideals 149

The next theorem is a generalization of Proposition 2 in Kδnig [12].

THEOREM 5. Let l<u, v<oo. Ifan<n, then

λa(% u, v) + λ.(Sl , Ό9 u) > 1 + da(% u, υ).

If n~ζccn, then the converse inequality holds.

PROOF. Suppose that an<n. By Corollary 5.3 in [4],

A(In: £'u — ί-).A*(/B: £% • £*) = n.

Hence

A,(9ί*. v, u) z λ(M*, v, u)

= i n f { v > 0 ; A*(/n:^« > £») £ 3n» ( t fneiV)}

= i n f { v > 0 ; 5~1n1-v < A(/n: ^2 • ̂ J) (vneN)}

> i n f { v > 0 ; dai~» < A(/n: ^ • ̂ ») ( v n e Λ 0 )

= ί n f { l - μ > 0 ; μ > 0, dot; < A(/π: £»u > it) ( v neiV)},

where one should observe that v < l may be assumed (cf. (19); more precisely,

see [23], Theorem 6.7.2 and Lemma in 22.4.6). Therefore we have

λa(% u, v) + λj&*, v, u)

>inf{A>0; A(/.:^ϊ • £%) < cxλ

n (vneN)}

+ inf{l-/i^0; μ > 0, dtf < A(/n: £"u > £*) (vneN)}

= 1 + inf {λ - μ; λ,μ> 0, dαj; ̂  A(/B: 61 • £-) < ca* (vn e N)}

= l+da(%u,v).

If n -< αn, then the converse inequalities " < " hold in place of " > " in the above

proof.

Theorem 5, combined with Theorems 2, 3 and 4, yields

COROLLARY. Let \<,u, v<,oo. Ifan<n, then the condition

λΛ(% u, v) + λΛ(<&*, v, u) = 1

implies the following (i)-(iv), which are mutually equivalent:

( i ) da(% u, v) = 0;

(ii) There exists r>0 such that for any ε > 0

^r-β,oo(«) c (̂m,«,t>) C ^r + ε,oo(«);

(iii) T/iere exists λ>0 such that for any ε > 0
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doc*-* < A(In: £n

u > £$ < <

with some constants c and d;

(iv) λa(tyί, u, υ)= l i m , , . ^ — i
£*)•

In (ii) and (iii), we have λ = llr = λa($l, u, υ).

Ifn~ζ<xn, then each o/(i)-(iv) implies that

λa(% u9 v) + λβ(«*, i?, II) < 1.

This result generalizes Corollary 1 to Proposition 2 in Kδnig [12]. The

proof is easy and is omitted.

§ 6. The L-limit order and block diagonal matrix operators

We recall that the L-limit order of a quasi-normed operator ideal [91, A]

is defined by

(4)

: = inf {λ > 0; 3 c = c(u,v,λ) s.t. A(A2n: £2

u

n -> £2

v

n) < c(2")λ ( v n e No)}.

Let us first show an identity analogous to (1) for the L-limit order. For

λ > 0 we put

A2o

l , 0

1
l

(2nY
A2n

0

(Although the notations Aλ and A2» are not consistent, there will be no confusion.)

THEOREM 6. For 1 < u, v < oo

(21) λL(% u, v) = inf {λ > 0;Aλ e Ώ(£u9 £v)}.

PROOF. We write the right-hand side of (21) as λ0. Suppose Aλ e 9l(^tt, £v).

Let

and
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be the embedding and projection defined respectively by

JJtξ»...9 ζ2n):= (0;...; 0,..., 0; ξu..., ξ2n; 0,..., 0;...)

•* n ( ζ 1 ? 5 ( » 2 M > 5 < 3 2 n + 1 - l ? ) : = ( S 2 " J »

and

Then we have

HA2n'£T —

for all n e No. Hence, AL(2I, u, v)<λ0.

Conversely, let A(A2n: £*n >£2

υ

n)<c{2n)λ ( v neΛ Γ

0 ). By Lemma A we

may assume that [91, A] is a p-normed operator ideal. Then, for any ε > 0

= ^ Σ S = o 2 " ε p n < oo.

Hence

Aλ+ε = Σn=o Θ 2 - ^ + ε ) M 2 , 6 9I(^M, £0),

which means A + ε>/l 0. Consequently we have λL(% u, v)>λ0.

COROLLARY. // λ>λL(% w, υ) (resp. A<AL(9X, u, v)\ then Aλe W(£u, £v)

PROOF. Let Λ,>/lL(9ϊ, M, V). Then, by Theorem 6 there exists a μ with

μ>λL(% M, i;) such that Aμ e 9I(^M, ^ J . Put

E . V 0 0 £D 9-(^-M)nF

where £ 2 " a r e ̂ e 2nx2n unit matrices. Since Eλ_μe2(£u, £u), we have >4λ =

Next, for σ = {σJ / ι e i V oe^ o o we put

0

0
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Such a type of operator is used, e.g., in [13]. The following result is analogous

to (5).

THEOREM 7. For l<u,v<oo

λL(% u, v) = inf {1/r > 0; σ6<? |β0({2-}) =^Aσe%{£u, £.)}.

PROOF. Let us assume that σe^°>00({2"}) implies Aσe9L(£u9 £v). Then,

AλeSΆ{£u, £υ) for any λ>\jr because {2"An} e^r°>00({2M}). Hence we have the

inequality " < " by Theorem 6.

Conversely, let \jr>λL{%,u,v). Then A1/reM(£u, £Ό). Let σ = { σ j e

^ f 0 0({2»}). Then

Therefore we have Aσ = Aί/rD e ^{£u, £v).

The following lemma refines Pietsch's results implicitly shown in [20].

LEMMA 4 (cf. [20], Lemma 12, (5), and (5*)). Let l<u,v<oo. Then,

(22) \\A2n\£ln—>£2

v

n\\ =2"A(«'»>

(£2n-spaces are assumed to be complex), where

\jur + 1/v - 1/2 if 2 < u < oo, 1 < v < 2,

1/v if 1 < u < 2, 1 < v < u',

1/n' // V) < u < oo, 2 < υ < oo,

l/ii + 1/M' = l/i? + 1/f?' = 1. In particular,

\\Λ2n: vu -+ vu \\ = z i ' ' >.

PROOF. The inequality " < " of (22) is obtained in the computation of (5)

in [20]. Let 2<w<oo, l<ι><2. Put i42n = [ε^ ) ] . We define σ(n) = {σ{

k

n)} e

£2" inductively as follows. Let σ[1) = 2'1^2e-iπ^, σ2

1) = 2-^2eίπ/4, and put

σ2

m

ktγ = σ^ σ(

k

m\ σ ^ + 1 ) = σ^σ^ (lc=l,...,2m; m = l,..., n - 1 ) . Then,

\\A2nσin)\\υ = 2nlv. Indeed, we have |Σfe=i ^jkσkn)\ = 1 for j = l,..., 2Π; we prove

it by induction. The case n = l is trivial. Assume that | Σ * = i ε(jk)σkm)\ = 1 f°Γ

j = l,...,2m. Then, since

Σ 2m o(m)/τ(m+l) s>iπ/2 V^2m

 c(m)/τ(m+l) (1 1 1m\

k=lεjk σ2m+k — e Z*k=ίεjk σk \J — AJ J z )

(note that σfeV = eiπ/2σ^m+1)) and
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we have for 7 = 1,..., 2m

•rffc=l bjk °k I — + ( m + l )
2TO+fc

The proof for j = 2m + l,...9 2m+ι is immediate from this. On the other hand,

||(7(")||u = (2/1)1/M~1/2. Consequently, we have | | ^ 2 " σ ( n ) L = (2")1/M'+1/t;~1/2l|0"(n)llu

In the second and last cases, the vectors (1, 0,...,0) and (1,..., l ) e ^ " satisfy

the equation \\A2nξ\\v = 2nλ<u*υ)\\ξ\\u, respectively. Thus, we obtain (22). [Note:

Combined with the computations of (5) and (5*) in [20], the inequality

\\A2n: £ln • £2n\\N1(A2n: #1" > #Γ) ^ t r a c © (2nE2n) = 22n

(cf. the proof of Lemma 12 in [20]) also yields (22) except the case 2 < u < o o ,

1 < v < 2, in which it yields only

n-l 9nΛ(M,y) <- || A . βln v / 2 M | | <̂  Jnλiu.v)
CQ L Si 11 *̂2" ϋu > "v II ^ Z »

cG (>1) being the Grothendieck constant. Here N t is the nuclear norm (see

(33) in §7).]

Now, let B2n be arbitrary 2n x 2" matrices (n e No) and put

0

— 2
B2n

0

We write | |£2«|| s > ί for \\B2n\ Ps

n > £*n\\, l < s , ί<oo. In the next theorem we

introduce another limit order

THEOREM 8. Let l<u, v<00. Let κ(f) = min(l/ί, l/tr)for l < ί < o o , where

l/ί' = l.
(i) If supneNo(2ny-κ^\\B2n\\tit< co for t = u or v with some λ>λL(% u9 υ)9

then

(ii) Let

u, !>):= inf {μ > 0; svφneNo(2"Y\\B2n\\t,t < ao (t = u or v)
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Then,

(23)

PROOF, (i) Let us assume that supπe2Vo{2n)λ~κ{u)\\Bln\\UiU< oo. (The proof

for t = v is similar.) Put

Mikio KATO

u, v) < μ(% u, v) < λL(% u, v) - max {κ(u\ κ(v)}.

Then, C e 2(£u, £u) because by Lemma 4

supB \\2^"A2nB2n\\u,u < s u p ^

= supM (

(Note that C is block diagonal.) On the other hand,

by the assumption λ>λL(<H, w, v). Since y4|n = 2nE2"j w e n a v e

Λ C = Σ ? = o θ 2-"AlnB2n = Σ?=o θ ^ = ^

and consequently,

(ii) From (i) it immediately follows that

μ(% u9 v) < λL(% u, v) - κ(t) for t = u and υ,

or the second inequality of (23). Let us suppose that supn e i V o (2π)μ | |J52"llί,f<00

for t = u or v implies B e 2I(^M, £Ό). Put

(2-)-"

0

0

Then, Dμ = Σ"=o θ B2» e W(£u9 £v) since supπ e j V o (2»)^||B2»||lif < oo. Conse-

quently, we have

λ(% u, v) < μ,

which implies the first inequality of (23).
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In Theorem 10 in the next section we shall show

(24) λ{%, u, v) + max {κ(u), κ(v)} < λL(% u, v)

< λ(% u, v) + 1 - max {κ(u), κ(v)}.

Combined with this, Theorem 8 yields

COROLLARY 1. Let l<u, v<oo. Then, we have

(25) λL(% u,v)-l+ max {κ(u), κ(υ)} < μ(% u, v)

< λL(% ii, i?) - max {κ(u)9 κ(v)}

and

(26) λ(% II, Ό) < μ(% u9 υ) < λ(% u, v) + 1 - 2 max {κ(u), κ(v)}.

In particular,

(27) μ(% u, v) = λ(% u, v) = λL(% u, Ό)- \ if u = 2 or v = 2.

Combined with (24), (26) and (27), Theorems 6, 7 and 8 yield criteria by

λ(% u, v) such that a block diagonal matrix operator belongs to 9l(^u, ^ y ) .

Taking account of the fact that the limit order Λ($ί, u, v) is extensively calculated

for various special ideals 21 (cf. [23], 14.4 and 22.4-6; [2]), these inequalities and

identities would be useful. In particular, by Theorem 8 with (26) and (25) we

obtain

COROLLARY 2. Let 1 < u, v < oo. Let

S*PneNo<FY\\B2»\\t.t < «> (t = U Or V)

for some μ with

μ > λ(% u,v) + l-2 max {κ(u), κ(v)}

or

μ > λL(% u, υ) - max {κ(u), κ(v)}.

Then,

This result may be compared with the following one given by Pietsch [24]

recently.

PROPOSITION B ([24], Theorem 1). Let 0<p<oo and Se2(E, F). Then,
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SeSΆp if and only if there exists a sequence {Sn} in £(£, F) with rank (Sw) < 2"

and Σn=o^n\\Sn\\p<co such that S=Σn=oSn.

Combining Corollary 2 and Proposition B, we have

COROLLARY 3. Let l<u, v<oo. Let 0<p<oo and

— > λ(% u9 v) + 1 - 2 max {κ(u\ κ(v)}

or

•j > λL(% u, v) - max {κ(u\ κ(v)}.

Assume that

ΣZ=o2n\\B24ί, < *>,

where (s, t) = (u, ύ) or (v, v) if u<v and (s, t) = (u, v) if u>v. Then,

B = Σ?=o θ B2ne(% n Kp)(£u9 £0).

The proof is immediate by observing that

\ \ B 2 4 u , v < \\B2n\\u,u, \\B2n\\ΌtV i f u < v

a n d

I |B2-L.«, \\B24v,v< \\B24u,v if u>v.

Now, we show that ΛL($ί, u, v) gives the same criteria as in Theorem 6 or

its Corollary, and Theorem 7 for (block diagonal matrix) operators between

Lorentz sequence spaces £u>s and £Όtt. Some results of this type for Λ($l, u, v)

are obtained in [17] and [8].

The following lemma is easily derived from the property (QN 3) of quasi-

normed operator ideals (cf. (1.4) in [10]).

LEMMA 5. For l < w 1 ? w2, vl9 f 2 <oo,

\λL(.% «i, »i) - ^(31, u2, υ2)\ < „
£*2

j j

THEOREM 6'. Let 1 <u, v, s, t<00. Then,

(28) λL(ίl, 11, 1;) = inf {λ > 0;Aλ e K(£UtS, £Vtt)}.

PROOF. Let us show the inequality " < " . If 1 < M < O O and

take arbitrary ut and v1 with 1 <ux <u and v<vt < 00. Then, the inclusion maps

£Uι

c->£UjS and £v,t

c^£Vi

 a r e continuous by Lemma C. Hence, AλeS&(£u^ £vt)
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implies Aλe$l(£Ui, £Vί). By Theorem 6 this implies

(29) λL(% ux, υt) < inf {λ > 0; AλeK(£U)S, £ϋtt)}.

Letting u1-^u and v^v, we have the desired inequality by Lemma 5. If u — \

or t?=αo, we have only to put u1=u = l or υ1 — υ= oo.

In a similar way, we obtain the converse inequality of (29) for any u1 and υί

with l<u<:uί<oo and l^ i>!<t;<oo, and hence the inequality " > " of (28).

COROLLARY. Let l<u, V, S, ί<oo. If λ>λL(% u, v) (resp.λ<λL(M, u, v)),

then AλeSΆ{βUtSi £0Jt) (resp. Aλφ^(£Uίβ9 tυJS).

By Theorem 6' we have easily

THEOREM Ί'. Let l<w, v, s, ί<oo. Then,

λL(VL, u, v) = inf {1/r > 0; σe<?ιβ0({2»})

In the rest of this section, we give a representation of AL(£, M, U) which is

closely related with Clarkson's inequalities. Let g/

p = &p(X, Jΐ, μ) be the usual

(complex) j£?p-space, 1 < p < oo, on an arbitrary but fixed measure space (X, Jί, μ).

Let ^(jέfp), l < w < o o , denote the direct sum of n copies of j£?p with the norm

(w=oo)

for / = {/,} e £&&J. In [9] the author showed the following

THEOREM 9 ([9], Theorems 1 and 3). (i) Let l<p<co and l<u,v<co.

Assume that Jί contains infinitely many (countable) mutually disjoint sets of

finite positive measure. Then, for every neN0

(30) \\A2n:£ΐι

where

/ + — - mini-—, —j) if m'm(p, p') < u < oo,

1 < v <max(/?,/?')>

c ( u > V ; p ) = f if l<u<mm(p9p'),l<v<uf

9

~, if v'<u<co9msίx(p,p') <v < co,

' = Xjv + ljv' = 1. In particular,
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(31) \\A2n: £2Λ

λ(u, υ) being as in Lemma 4.

(ii) Let l<q<p<co. Assume that μ(X)<oo. Then,

(32) \\A2 i f

To compare the norms (22) and (30) of A2n in Pu

n- and ^2"( j^) . S p a c e S j ft

is convenient to express λ(u, v) and c(u, v; p) graphically in the unit squares with

the coordinates 1/w and 1/v as follows.

X
2

1
2

1
u'

. 1
V

1
u'

1
2

V

\

(u9 v)

X

X , j L
u v p'

1
u'

X

\

w ' + v p

X

X

\

1 </;< 2 2 <p< oo

By (30)-(32) and Lemma 4, we have

COROLLARY, (i) Let 1 < p < oo and 1 <u9 v< oo. Assume that Jί contains
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infinitely many (countable) mutually disjoint sets of finite positive measure.
Then,

λL(2, u, v) + δ(u, v; p)

= inf {λ > 0; r*c = c(u,viλ) s.t. \\Λ2n: tl\Stp) -> £l\&

where

' i- - κ(p) if l<υ<2<u<oo,

c(2»)λ ( v n e iV0)},

δ(u, v; p) =
^7 - κ(p) if min (p, p') < u < 2, 1 < v < u',

κ(p) if vf < u < co, 2 < v < max (p, p'),

0 if 1 < u < min(p, p') or max(p, pf) < v < oo,

τc(p) = min(l/p, lip'). In particular,

λL(2, u, v)

= inf {λ > 0; 1c = c(u,v,λ) s.t. \\A2n: ΰ2

u

n(&2)-+ &T{&i)l < c(2")Λ (vneiV0)}.

(ii) Let l<υ<u<co. Assume that μ(X)<oo. 77zeπ,

AL(fl, u, υ)

= inf {λ > 0; 3C = C(M,U,/1) 5.ί. ||A2n: ^Γ(^ t t) -* £2

V"(&V)\\< <2n)λ (vneiV0)}.

For (i), observe that

REMARK 3. We write A2» = [ε y]. ΓÂ /2, (30) //i Theorem 9 yields the
inequality

usual modification is required if u = oo or t;= oo). This includes as special
cases all the following well-known inequalities given by J. A. Clarkson [3] and
R. P. Boas [1]: For all/and g in J ^ ,

if 1 < P < 2 ;

if 2 < j p < α o ;

Γ Ό ? if 1 < P < 2;

(11/+ 1̂15 + 11/- 0IIP)1 / P ^ 2i/p(iι/ιι;' + \\gVPγ«>' if 2 < P < 00,

Γ + Wf-9\Όllp'
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where l/p + l/p' = l (Clarkson [3], Theorem 2; see also E.Hewitt and K.
Stromberg [5], §15); and including them except the first inequality for l < p < 2 ,

g\\l + 1 1 / - g\\v

P)1/v < 21/M'(II/II? + \\g\\u

P)1/u

holds for ί<u<p<v<oo and u'<v, l/w + l/w' = l (Boas [1], Theorem 1).

§7. A relation between ^(91) and λ(M)

THEOREM 10. Let \<u, v<oo. Let κ(t) = mm(l/t, I/O, l<t<oo, where
l/ί + l/f' = l. Then,

(24) ,1021, u, v) + max {κ(u), κ(v)} < λL(% u, v)

< λ(% u, v) + 1 - max {κ(u\ κ(v)}.

In particular,

λL(% u, v) = λ(% u,v) + γ if u = 2 or v = 2.

PROOF. Let us first show the second inequality. Suppose that
A(/n: £^£^)<cnλ (vneiV) with some c. Then, by Lemma 4

A(Λ2 n:C

for all neN0. Since max(l/ί, l/ί') = 1 — κ(t), we obtain the desired inequality.
The first inequality in (24) has already been obtained in Theorem 8; it can

be also shown directly as follows. Let A(A2«: £ln-+£ln)£c(2n)λ CneN0).
Then, using the identity Aln=2nE2n and Lemma 4, we have

A{I2n\ £ln • £ln) < c(2n)λ~κ^ for t = u and v.

Consequently, by (QN3),

λ(% u, v) = inf {λ > 0; 2c = c(u,v,λ) s.t. A(/2Λ: £*n -• £?)<, c(2n)λCn e No)}

<, λ — max {κ(u), κ(v)} .

By Theorem 10 and (19) we have
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COROLLARY. //[$! , A] is a normed operator ideal, then

max {κ(u), κ(v)} < >lL(2I, w, v) < 2 — max {κ(u), κ(υ)}

for l<w, v<co.

We finally observe that (24) in Theorem 10 is best possible for most values of

u and v in the sense that equality occurs in each inequality of (24) with suitable

ideals. Let us first recall the definitions of the ideals $lp and typ(l<p<oo)

of p-nuclear and absolutely p-summing operators respectively. An operator

S e £ ( E , F) is called p-nuclear ([18]; [23], 18.2.1) if it is represented as

for all xeE

with {an}aE' and {yn}^F such that

and

Put

(33) NP(S):= inf

?=i \<yH, oo.

^i \<yn,

where the infimum is taken over all such representations of S as above. An

operator Se2(E9 F) is called absolutely p-summing ([19]; [23], 17.3.1) if there

exists a constant p > 0 such that for every finite system of elements xl9 x2,...9 xn

e

E,

(Σ?=i WSxtVy* < p sup{(Σ?=il <^, a w ; \\a\\ <l,aeE'}.

The infimum of all such p is denoted by TP(S). [5lp, N p ] and [ φ p , T p ] are

normed operator ideals.

REMARK 4. /« /Λβ inequalities of (24) zTi Theorem 10, equality is attained

as in the following table:

1 < M , v<2

l<u<2^v<ao

l<v^2<u<oo

2<u, t?^oo

left

£

right

£

£
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In fact, λ(% u, v) and λL(% u, v) are calculated for 9I = £, 9tp, and Sβp in

Pietsch [20] (see also [23], 22.4), from which we obtain the following.

f 1

(34) λL(2,u,υ)=λ(2,u,v)

i f

y i f

if

T i f αv)|<i

•ΐ- i f (^T^i
The classification in (34) is graphically expressed as

(35)

ΊΓ i f

T i f

T i f

F i f

i if
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(36)

i i f (ix^i^T'

\ if (u)o<i<|, i<i<i>

I if (iv)-*-£-J-

(37)

and

(38) A(«, i/, i?) + -J-

Now, let 0< 1/M, l/t;< 1/2. Then, the inequalities (24) are precisely

^7 if 0 < - i - < - ^

v) + ̂  if 0< \ < \ < \ .

From (34)-(36) we conclude that both in (37) and (38), equality is attained on the
left with 21 = 91! and Sβu and on the right with 2ί = £. This proves the assertion
of Remark 4 for 2< u, v< oo. The desired conclusion for the other cases is also
derived from (34)-(36) in a similar way.
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