On the limit orders of operator ideals*)

Mikio Kato
(Received September 14, 1982)

Introduction

Four types of limit orders of operator ideals \mathfrak{M} were introduced in 1971-2 by A. Pietsch with respective purposes, and these limit orders have been playing an important role in the theory of operator ideals ([20], [21], [22], [23], [10], [11], [12]). They are the S-, D-, I - and L-limit orders, $\lambda_{S}(\mathfrak{H})([21]), \lambda_{D}(\mathfrak{H})([22])$, $\lambda_{I}(\mathfrak{H})$ and $\lambda_{L}(\mathfrak{H})$ ([20]), which are defined by using Sobolev embeddings, (certain) diagonal operators between ℓ_{u}-spaces, identity and Littlewood operators between ℓ_{u}^{n}-spaces, respectively. (The last limit order is originally denoted by $\lambda_{A}(\mathfrak{H})$. We shall, however, adopt the above notation $\lambda_{L}(\mathfrak{A l})$ and call it the L-limit order.) H. König [11] showed in 1974 the following remarkable relations among them: For a complete quasi-normed operator ideal [$\mathfrak{A}, \mathbf{A}]$,

$$
\begin{equation*}
\lambda_{I}(\mathfrak{A}, u, v)=\lambda_{D}(\mathfrak{A}, u, v) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{s}(\mathfrak{H}, u, v ; N)=N\left(\lambda_{D}(\mathfrak{H}, u, v)+\frac{1}{u}-\frac{1}{v}\right) \tag{2}
\end{equation*}
$$

for $1 \leq u, v \leq \infty$. Thus, in Pietsch ([23], 14.4.1) the D-limit order is referred to simply as the limit order and denoted by $\lambda(\mathfrak{H})$. In this paper, we are concerned with the limit and L-limit orders. They are defined for $1 \leq u, v \leq \infty$ respectively by

$$
\begin{equation*}
\lambda(\mathfrak{H}, u, v):=\inf \left\{\lambda>0 ; D_{\lambda} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)\right\} \tag{3}
\end{equation*}
$$

and
(4) $\lambda_{L}(\mathfrak{A}, u, v)$

$$
:=\inf \left\{\lambda>0 ;{ }^{\exists} c=c(u, v, \lambda) \text { s.t. } \mathbf{A}\left(A_{2^{n}}: \ell_{u}^{2^{n}} \rightarrow \ell_{v}^{2^{n}}\right) \leq c\left(2^{n}\right)^{\lambda}(n=0,1,2, \ldots,)\right\}
$$

where $D_{\lambda}\left(\left\{\xi_{n}\right\}\right)=\left\{n^{-\lambda} \xi_{n}\right\}$ and $A_{2^{n}}$ are the Littlewood matrices ([15]), that is,

[^0]\[

A_{2^{0}}=[1], A_{2^{n+1}}=\left[$$
\begin{array}{cc}
A_{2^{n}} & A_{2^{n}} \\
A_{2^{n}} & -A_{2^{n}}
\end{array}
$$\right] \quad(n=0,1,2, ···) .
\]

The limit order $\lambda(\mathfrak{H}, u, v)$ provides two kinds of criteria such that a diagonal operator from ℓ_{u} into ℓ_{v} belongs to \mathfrak{A} :
(a) If $\lambda>\lambda(\mathfrak{H}, u, v)($ resp. $\lambda<\lambda(\mathfrak{H}, u, v))$, then $D_{\lambda} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)\left(\right.$ resp. $D_{\lambda} \notin$ $\left.\mathfrak{H}\left(\ell_{u}, \ell_{v}\right)\right)$.
(b) Let $1 / r>\lambda(\mathfrak{A}, u, v)$. Then, for every $\sigma=\left\{\sigma_{n}\right\} \in \ell_{r}$ the diagonal operator $D_{\sigma}: \ell_{u} \rightarrow \ell_{v}, D_{\sigma}\left(\left\{\xi_{n}\right\}\right)=\left\{\sigma_{n} \xi_{n}\right\}$, belongs to \mathfrak{A}. More precisely,

$$
\begin{equation*}
\lambda(\mathfrak{H}, u, v)=\inf \left\{1 / r \geq 0 ; \sigma \in \ell_{r} \Longrightarrow D_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\} \tag{5}
\end{equation*}
$$

([23], Proposition 14.4.2).
The first objective of this paper is to obtain, by generalizing (1), a nearly necessary and sufficient condition in order that a diagonal operator between $\ell_{u^{-}}$ spaces belongs to a given quasi-normed operator ideal. The second objective is to investigate some properties of the $\boldsymbol{\alpha}$-limit order of \mathfrak{A} which we shall deane by

$$
\lambda_{\alpha}(\mathfrak{H}, u, v):=\inf \left\{\lambda>0 ; \quad D_{\left\{\alpha_{n}^{-2}\right\}} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)\right\} \quad(1 \leq u, v \leq \infty)
$$

where $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}$ is an arbitrary fixed sequence of positive numbers which is strictly increasing and divergent to ∞, and $D_{\left\{\alpha_{\bar{n}} \lambda\right\}}\left(\left\{\xi_{n}\right\}\right)=\left\{\alpha_{n}^{-\lambda} \xi_{n}\right\}$. The introduction of the $\boldsymbol{\alpha}$-limit order is motivated by the fact that there are some examples for which the above criteria given by $\lambda(\mathfrak{H})$ are of little avail. The last objective is to investigate the L-limit order, which has not yet been treated in detail.

Section 1 is devoted to some preliminary definitions and results, which are quoted for the most part from the monograph [23]. In Section 2 we study a couple of sequence spaces $\ell_{r, \infty}(\boldsymbol{\alpha})$ and $\ell_{r, \infty}^{0}(\boldsymbol{\alpha})$ to some extent for later use. The former is a generalization of the Lorentz sequence space $\ell_{r, \infty}$ and particularly useful in Sections 4 and 5. In Section 3 we generalize (1) to obtain the nearly necessary and sufficient condition stated above (Theorem 1 and its Corollary). In Section 4 we discuss the \boldsymbol{a}-limit order, where the identities generalizing respectively (1) and (5) are shown (Theorems 3 and 2). In Section 5 the $\boldsymbol{\alpha}$-defects of normed operator ideals are considered, whose notion is based on König [12]. Under a certain assumption on $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}$, it is obtained that the condition $\lambda_{\alpha}(\mathfrak{H}, u, v)+\lambda_{\alpha}\left(\mathfrak{H}^{*}, v, u\right)=1$ implies

$$
\lambda_{\alpha}(\mathfrak{H}, u, v)=\lim _{n \rightarrow \infty} \frac{\log \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right)}{\log \alpha_{n}}
$$

(Corollary to Theorem 5). In Section 6, we obtain several criteria given by the L-limit order $\lambda_{L}(\mathfrak{U})$ (and $\lambda(\mathfrak{H})$ as well) such that a certain type of block diagonal
matrix operator between ℓ_{u}-spaces belongs to \mathfrak{A}; in particular, we obtain results analogous to (1), (a), and (5) (Theorem 6, its Corollary, and Theorem 7), which remain valid if the underlying ℓ_{u}-spaces are replaced by the Lorentz sequence spaces $\ell_{u, s}$ (Theorem 6', its Corollary, and Theorem 7'). In Theorem 8 we introduce another type of limit order $\mu(\mathfrak{H})$ and compare it with $\lambda_{L}(\mathfrak{A})$ and $\lambda(\mathfrak{H})$. In the rest of this section, we give a representation of $\lambda_{L}(\mathcal{L}, u, v)$ by means of $\ell_{u}^{2 n}\left(\mathscr{L}_{p}\right)$-spaces (\mathscr{L} is the ideal of all bounded linear operators between arbitrary Banach spaces), which is closely related with the Clarkson inequalities (Corollary to Theorem 9). In the final section we deal with a relation between $\lambda_{L}(\mathfrak{H})$ and $\lambda(\mathfrak{H})$ (cf. (1) and (2)): It is shown that

$$
\begin{aligned}
& \lambda(\mathfrak{A}, u, v)+\max \left\{\min \left(1 / u, 1 / u^{\prime}\right), \min \left(1 / v, 1 / v^{\prime}\right)\right\} \\
& \quad \leq \lambda_{L}(\mathfrak{H}, u, v) \\
& \quad \leq \lambda(\mathfrak{H}, u, v)+\min \left\{\max \left(1 / u, 1 / u^{\prime}\right), \max \left(1 / v, 1 / v^{\prime}\right)\right\}
\end{aligned}
$$

for $1 \leq u, v \leq \infty, 1 / u+1 / u^{\prime}=1 / v+1 / v^{\prime}=1$, which is best possible for most values of u and v (Theorem 10 and Remark 4).

The author would like to express his sincere gratitude to Professor F-Y. Maeda for his valuable comments, and to Professors S. Tôgô and K. Miyazaki for their constant encouragement.

§ 1. Preliminaries

The space of (bounded linear) operators from a Banach space E into another Banach space F is denoted by $\mathfrak{L}(E, F)$, while the class of all operators between arbitrary Banach spaces is denoted by \mathfrak{L}. A subclass \mathfrak{A} of \mathfrak{L} is called an operator ideal (cf. [23], 1.1.1; [22], 1.1.1) if the components

$$
\mathfrak{A}(E, F):=\mathfrak{A} \cap \mathfrak{L}(E, F)
$$

satisfy the following conditions:
(OI_{1}) If $a \in E^{\prime}$, the dual space of E, and $y \in F$, then $a \otimes y \in \mathfrak{A}(E, F)$.
$\left(\mathrm{OI}_{2}\right) \quad$ If $S_{1}, S_{2} \in \mathfrak{A l}(E, F)$, then $S_{1}+S_{2} \in \mathfrak{H}(E, F)$.
$\left(\mathrm{OI}_{3}\right)$ If $T \in \mathfrak{Q}\left(E_{0}, E\right), S \in \mathfrak{A l}(E, F)$, and $R \in \mathfrak{L}\left(F, F_{0}\right)$, then $R S T \in \mathfrak{A l}\left(E_{0}, F_{0}\right)$.
Every component of an operator ideal is a linear space ([23], Proposition 1.1.2).
A mapping \mathbf{A} from an operator ideal \mathfrak{H} into the set of non-negative real numbers is called a (ideal) quasi-norm (cf. [23], 6.1.1; [22], 8.1.1) if it has the following properties:
$\left(\mathrm{QN}_{1}\right) \quad \mathbf{A}(a \otimes y)=\|a\|\|y\|$ for $a \in E^{\prime}$ and $y \in F$.
$\left(\mathrm{QN}_{2}\right) \quad$ There exists a constant $c_{\mathrm{A}} \geq 1$ such that

$$
\mathbf{A}\left(S_{1}+S_{2}\right) \leq c_{\mathbf{A}}\left[\mathbf{A}\left(S_{1}\right)+\mathbf{A}\left(S_{2}\right)\right] \quad \text { for } \quad S_{1}, S_{2} \in \mathfrak{H}(E, F) .
$$

$\left(\mathrm{QN}_{3}\right) \quad \mathbf{A}(R S T) \leq\|R\| \mathbf{A}(S)\|T\| \quad$ for $\quad T \in \mathfrak{R}\left(E_{0}, E\right), \quad S \in \mathfrak{A}(E, F)$, and $R \in$ $\mathfrak{L}\left(F, F_{0}\right)$.

In particular, \mathbf{A} is called a norm if $c_{\mathbf{A}}=1$ in $\left(\mathrm{QN}_{2}\right)$. A quasi-norm \mathbf{A} is called a p-norm $(0<p \leq 1)$ (cf. [23], 6.2.1) if the following p-triangle inequality holds:

$$
\mathbf{A}\left(S_{1}+S_{2}\right)^{p} \leq \mathbf{A}\left(S_{1}\right)^{p}+\mathbf{A}\left(S_{2}\right)^{p} \quad \text { for } \quad S_{1}, S_{2} \in \mathfrak{H}(E, F) .
$$

A quasi-normed operator ideal $[\mathfrak{A}, \mathbf{A}]$ is an operator ideal \mathfrak{A} with a quasi-norm A. Each of its components is a usual quasi-normed space (cf. [23], 6.1.2). We always assume the completeness for quasi-normed operator ideals, that is, every component of theirs is complete (cf. [23], 6.1.3).

Lemma A ([23]), Theorem 6.2.5). Every quasi-normed operator ideal has an equivalent p-norm.

For a normed operator ideal $[\mathfrak{A}, \mathbf{A}]$ its adjoint operator ideal \mathfrak{A}^{*} is defined as follows (cf. [23], 9.1.1): An operator $S \in \mathfrak{L}(E, F)$ belongs to \mathfrak{A}^{*} if and only if there exists a constant $\rho \geq 0$ such that

$$
\left|\operatorname{trace}\left(S X L_{0} B\right)\right| \leq \rho\|X\| \mathbf{A}\left(L_{0}\right)\|B\|
$$

for all $B \in \mathfrak{L}\left(F, F_{0}\right), L_{0} \in \mathfrak{A}\left(F_{0}, E_{0}\right)$, and $X \in \mathfrak{L}\left(E_{0}, E\right)$, B and X being of finite rank, where E_{0} and F_{0} are arbitrary Banach spaces. The infimum of all such ρ is denoted by $\mathbf{A}^{*}(S)$. Then, $\left[\mathfrak{U}^{*}, \mathbf{A}^{*}\right]$ is a normed operator ideal ([23], 9.1.3).

Let now the sequence spaces $\ell_{u}, \ell_{u}^{n}(1 \leq u \leq \infty)$, and c_{0} be those as usual. For $\sigma=\left\{\sigma_{n}\right\} \in \ell_{\infty}$ let $D_{\sigma}=D_{\left\{\sigma_{n}\right\}}$ be the diagonal operator between ℓ_{u}-spaces defined by $D_{\sigma}\left(\left\{\xi_{n}\right\}\right)=\left\{\sigma_{n} \xi_{n}\right\}$. The limit order of an operator ideal \mathfrak{A} and the L limit order of a quasi-normed operator ideal [$\mathfrak{A}, \mathbf{A}]$ are defined by (3) and (4) respectively ([23], 14.4.1; [20]). The I-limit order of a quasi-normed operator ideal $[\mathfrak{H}, \mathbf{A}]$ is defined by

$$
\begin{aligned}
& \lambda_{I}(\mathfrak{U}, u, v) \\
& \quad:=\inf \left\{\lambda>0 ;{ }^{\exists} c=c(u, v, \lambda) \text { s.t. } \mathbf{A}\left(I_{n}: \ell_{u}^{n} \rightarrow \ell_{v}^{n}\right) \leq c n^{\lambda} \quad(n=1,2, \ldots)\right\},
\end{aligned}
$$

where I_{n} are the identity operators ([20]). For an operator ideal \mathfrak{A}, let

$$
\ell_{(\mathscr{O}, u, v)}:=\left\{\sigma \in \ell_{\infty} ; D_{\sigma} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)\right\} \quad(1 \leq u, v \leq \infty)
$$

(cf. [22], 4.10.1). If \mathfrak{A} is a quasi-normed operator ideal with the quasi-norm \mathbf{A}, put $\|\sigma\|_{\mathbf{A}}=\mathbf{A}\left(D_{\sigma}\right)$ for $\sigma \in \ell_{(थ, u, v)}$. Then, $\ell_{(थ, u, v)}$ becomes a complete quasinormed space with $\|\cdot\|_{\mathbf{A}}$ (cf. [12], p. 99). Let $N\left(\right.$ resp. $\left.N_{0}\right)$ be the set of positive (resp. non-negative) integers.

Lemma B (cf. [12]). (i) $\ell_{(\Omega, u, v)}$ is symmetric: If $\left\{\sigma_{n}\right\} \in \ell_{(\Omega, u, v)}$, then $\left\{\sigma_{\pi(n)}\right\} \in \ell_{(2,, u, v)}$ for any permutation π on \boldsymbol{N}.
(ii) $\left\{\left|\sigma_{n}\right|\right\} \in \ell_{(\Re, u, v)}$ if and only if $\left\{\sigma_{n}\right\} \in \ell_{(\Re, u, v)}$.
(iii) For a quasi-normed operator ideal [$\mathfrak{A}, \mathbf{A}]$, the inclusion map $\left(\ell_{(थ, u, v)},\|\cdot\|_{\mathbf{A}}\right) \hookrightarrow \ell_{\infty}$ is continuous.

They are easily derived from the definition of (quasi-normed) operator ideals (cf. [23], Proposition 6.1.4 for (iii)).

Let $1 \leq u \leq \infty, 1 \leq s<\infty$ or $1 \leq u<\infty, s=\infty$. The Lorentz sequence space $\ell_{u, s}$ is the space of all $\left\{\sigma_{n}\right\} \in c_{0}$ such that

$$
\left\|\left\{\sigma_{n}\right\}\right\|_{u, s}= \begin{cases}\left(\sum_{n=1}^{\infty} n^{s / u-1}\left|\sigma_{n}\right|^{* s}\right)^{1 / s} & (1 \leq u \leq \infty, 1 \leq s<\infty), \\ \sup _{n} n^{1 / u}\left|\sigma_{n}\right|^{*} & (1 \leq u<\infty, s=\infty)\end{cases}
$$

is finite, where $\left\{\left|\sigma_{n}\right|^{*}\right\}$ is the non-increasing rearrangement of $\left\{\left|\sigma_{n}\right|\right\}$ (cf. [23], 13.9.1; [16]). $\|\cdot\|_{u, s}$ is a norm (resp. quasi-norm) if $1 \leq s \leq u \leq \infty$ (resp. $1 \leq u<$ $s \leq \infty$) ([7], Proposition 1; see also [23], 13.9.5). Clearly $\ell_{u, u}$ coincides with ℓ_{u}. For $u=s=\infty$, we put $\ell_{\infty, \infty}=\ell_{\infty}$.

Lemma C ([23], Proposition 13.9.4; [16]). Let $1 \leq u_{1}<u_{2} \leq \infty$ and $1 \leq s_{1}, s_{2} \leq \infty$. Then,

$$
\ell_{u_{1}, s_{1}} \subset \ell_{u_{2}, s_{2}}
$$

and the inclusion map $\ell_{u_{1}, s_{1}} \hookrightarrow \ell_{u_{2}, s_{2}}$ is continuous.
Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences of positive numbers. We write $\alpha_{n}<\beta_{n}$ if $\alpha_{n} \leq c \beta_{n}\left({ }^{\forall} n \in N\right)$ with some c.
§ 2. The spaces $\ell_{r, \infty}(\alpha)$ and $\ell_{r, \infty}^{0}(\alpha)$
Definition 1. Let $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}$ be an arbitrary fixed sequence of positive numbers which is strictly increasing and divergent to ∞. Let $0<r<\infty$. We define

$$
\ell_{\boldsymbol{r}, \infty}(\boldsymbol{\alpha}):=\left\{\sigma=\left\{\sigma_{n}\right\} \in c_{0} ;\|\sigma\|_{r, \infty ; \alpha}:=\sup \alpha_{n}^{1 / r}\left|\sigma_{n}\right|^{*}<\infty\right\}
$$

where $\left\{\left|\sigma_{n}\right|^{*}\right\}$ is the non-increasing rearrangement of $\left\{\left|\sigma_{n}\right|\right\}$; and

$$
\ell_{r, \infty}^{0}(\boldsymbol{\alpha}):=\left\{\sigma=\left\{\sigma_{n}\right\} \in c_{0} ;\|\sigma\|_{r, \infty ; \alpha}^{0}:=\sup \alpha_{n}^{1 / r}\left|\sigma_{n}\right|<\infty\right\} .
$$

For $r=\infty$, let $\ell_{\infty, \infty}(\boldsymbol{\alpha})=\ell_{\infty, \infty}^{0}(\boldsymbol{\alpha})=\ell_{\infty}$.
$\ell_{r, \infty}(\boldsymbol{\alpha})$ is a generalization of the Lorentz sequence space $\ell_{r, \infty} . \quad \ell_{r, \infty}^{0}(\boldsymbol{\alpha})$ is a Banach space, as is easily seen.

Lemma 1 ([7], Lemma 1). Let $\left\{\sigma_{n}\right\},\left\{\mu_{n}\right\} \in c_{0}$. Let $\left\{\left|\sigma_{\phi(n)}\right|\right\}$, $\left\{\left|\mu_{\psi(n)}\right|\right\}$, and $\left\{\left|\sigma_{\omega(n)}+\mu_{\omega(n)}\right|\right\}$ be the non-increasing rearrangements of $\left\{\left|\sigma_{n}\right|\right\},\left\{\left|\mu_{n}\right|\right\}$, and $\left\{\left|\sigma_{n}+\mu_{n}\right|\right\}$ respectively. Then, for any $n \in \boldsymbol{N}$

$$
\left|\sigma_{\omega(2 n)}+\mu_{\omega(2 n)}\right| \leq\left|\sigma_{\omega(2 n-1)}+\mu_{\omega(2 n-1)}\right| \leq\left|\sigma_{\phi(n)}\right|+\left|\mu_{\psi(n)}\right| .
$$

Proposition 1. Let $0<r<\infty$. Assume $\alpha_{2 n} \leq c \alpha_{n}(\forall n \in N)$ with some constant c. Then, $\ell_{r, \infty}(\boldsymbol{a})$ is a quasi-normed space;

$$
\begin{equation*}
\|\sigma+\mu\|_{r, \infty ; \alpha} \leq c^{1 / r}\left(\|\sigma\|_{r, \infty ; \alpha}+\|\mu\|_{r, \infty ; \alpha}\right) \quad \text { for any } \quad \sigma, \mu \in \ell_{r, \infty}(\boldsymbol{\alpha}) . \tag{6}
\end{equation*}
$$

Proof. Let us show (6). Let $\sigma=\left\{\sigma_{n}\right\}, \mu=\left\{\mu_{n}\right\} \in \ell_{\boldsymbol{r}, \infty}(\boldsymbol{\alpha})$. Then, by Lemma 1

$$
\begin{aligned}
\|\sigma+\mu\|_{r, \infty ; \alpha} & =\sup \alpha_{n}^{1 / r}\left|\sigma_{\omega(n)}+\mu_{\omega(n)}\right| \\
& =\max \left\{\sup \alpha_{2 n-1}^{1 / r}\left|\sigma_{\omega(2 n-1)}+\mu_{\omega(2 n-1)}\right|, \sup \alpha_{2 n}^{1 / r}\left|\sigma_{\omega(2 n)}+\mu_{\omega(2 n)}\right|\right\} \\
& \leq c^{1 / r} \sup \alpha_{n}^{1 / r}\left(\left|\sigma_{\phi(n)}\right|+\left|\mu_{\psi(n)}\right|\right) \\
& \leq c^{1 / r}\left(\|\sigma\|_{r, \infty ; \alpha}+\|\mu\|_{r, \infty ; \alpha}\right) .
\end{aligned}
$$

Remark 1. (i) Without the condition $\alpha_{2 n} \prec \alpha_{n}, \ell_{r, \infty}(\boldsymbol{\alpha})$ fails to become a linear space.
(ii) $\|\cdot\|_{r, \infty ; \alpha}$ is not a norm.

Proof. (i) Let us assume that $\left\{\alpha_{2 n} / \alpha_{n}\right\}$ is not bounded. Then, for each $k \in N$ there exists $n_{k} \in N$ such that $\alpha_{2 n_{k}}>k \alpha_{n_{k}}$. Put $\sigma_{2 n-1}=\alpha_{n}^{-1 / r}, \sigma_{2 n}=0$, and $\mu_{2 n}=\alpha_{n}^{-1 / r}, \mu_{2 n-1}=0$ for $n \in \boldsymbol{N}$. Then, clearly $\sigma=\left\{\sigma_{n}\right\}, \mu=\left\{\mu_{n}\right\} \in \ell_{\boldsymbol{r}, \infty}(\boldsymbol{\alpha})$, while $\sigma+\mu \notin \ell_{\boldsymbol{r}, \infty}(\boldsymbol{\alpha})$ because

$$
\alpha_{2 n_{k}}^{1 / r}\left(\sigma_{\omega\left(2 n_{k}\right)}+\mu_{\omega\left(2 n_{k}\right)}\right)=\alpha_{2 n_{k}}^{1 / r} \cdot \alpha_{n_{k}}^{-1 / r}>k^{1 / r} \longrightarrow \infty \quad(k \longrightarrow \infty)
$$

(ii) Take two positive numbers a and b such that $1<a / b<\left(\alpha_{2} / \alpha_{1}\right)^{1 / r}$, and put $\sigma=(a, b, 0, \ldots)$ and $\mu=(b, a, 0, \ldots)$. Then, $\|\sigma\|_{r, \infty ; \alpha}=\|\mu\|_{r, \infty ; \alpha}=$ $\max \left\{\alpha_{1}^{1 / r} a, \alpha_{2}^{1 / r} b\right\}=\alpha_{2}^{1 / r} b$. Therefore

$$
\|\sigma+\mu\|_{r, \infty ; \alpha}=\alpha_{2}^{1 / r}(a+b)>2 \alpha_{2}^{1 / r} b=\|\sigma\|_{r, \infty ; \alpha}+\|\mu\|_{r, \infty ; \alpha}
$$

Lemma 2 ([7], Lemma 4). Let $\left\{\sigma_{n}^{(k)}\right\}_{n, k}$ be a double sequence such that $\lim _{n \rightarrow \infty} \sigma_{n}^{(k)}=0$ for each $k \in N$, and $\lim _{k \rightarrow \infty} \sigma_{n}^{(k)}=\sigma_{n}$ (uniformly in n). Then, $\lim _{n \rightarrow \infty} \sigma_{n}=0$, and for each $n \in N$

$$
\left|\sigma_{\phi(n)}\right| \leq \liminf _{k \rightarrow \infty}\left|\sigma_{\phi_{k}(n)}^{(k)}\right|
$$

where $\left\{\left|\sigma_{\phi(n)}\right|\right\}$ and $\left\{\left|\sigma_{\phi_{k}(n)}^{(k)}\right|\right\}_{n}$ are the non-increasing rearrangements of $\left\{\left|\sigma_{n}\right|\right\}$ and $\left\{\left|\sigma_{n}^{(k)}\right|\right\}_{n}$ respectively.

Proposition 2. Let $0<r \leq \infty$ and let $\alpha_{2 n}<\alpha_{n}$. Then, $\ell_{r, \infty}(\boldsymbol{\alpha})$ is complete.
Proof. Let $0<r<\infty$. Let $\left\{\sigma^{(k)}\right\}, \sigma^{(k)}=\left\{\sigma_{n}^{(k)}\right\}_{n}$, be an arbitrary Cauchy sequence in $\ell_{r, \infty}(\boldsymbol{\alpha})$. Then, for any $\varepsilon>0$ there exists $k_{0} \in N$ such that for any $j, k \geq k_{0}$

$$
\begin{equation*}
\left\|\sigma^{(j)}-\sigma^{(k)}\right\|_{r, \infty ; \alpha}=\sup _{n} \alpha_{n}^{1 / r}\left|\sigma_{\omega_{j, k}(n)}^{(j)}-\sigma_{\omega_{j, k}(n)}^{(k)}\right|<\varepsilon, \tag{7}
\end{equation*}
$$

where $\left\{\left|\sigma_{\omega_{j}, k(n)}^{(j)}-\sigma_{\omega_{j, k}(n)}^{(k)}\right|\right\}_{n}$ is the non-increasing rearrangement of $\left\{\left|\sigma_{n}^{(j)}-\sigma_{n}^{(k)}\right|\right\}_{n}$. In particular, we have

$$
\sup _{n}\left|\sigma_{n}^{(j)}-\sigma_{n}^{(k)}\right|<\alpha_{1}^{-1 / r} \varepsilon \quad \text { for any } \quad j, k \geq k_{0}
$$

whence there exists a sequence $\sigma=\left\{\sigma_{n}\right\}$ such that $\sigma_{n}=\lim _{k \rightarrow \infty} \sigma_{n}^{(k)}$ (uniformly in n). Let k be an arbitrary positive integer with $k \geq k_{0}$ and be fixed. Then, applying Lemma 2 to $\left\{\sigma_{n}^{(j)}-\sigma_{n}^{(k)}\right\}_{n}$, we have

$$
\begin{equation*}
\left|\sigma_{\omega_{k}(n)}-\sigma_{\omega_{k}(n)}^{(k)}\right| \leq \liminf _{j \rightarrow \infty}\left|\sigma_{\omega_{j, k}(n)}^{(j)}-\sigma_{\omega_{j, k}(n)}^{(k)}\right| \quad \text { for } \quad \text { each } n \in N, \tag{8}
\end{equation*}
$$

where $\left\{\left|\sigma_{\omega_{k}(n)}-\sigma_{\omega_{k}(n)}^{(k)}\right|\right\}_{n}$ denotes the non-increasing rearrangement of $\left\{\left|\sigma_{n}-\sigma_{n}^{(k)}\right|\right\}_{n}$. Consequently, by (7) and (8) we have for any $k \geq k_{0}$

$$
\begin{aligned}
\left\|\sigma-\sigma^{(k)}\right\|_{r, \infty ; \alpha} & =\sup _{n} \alpha_{n}^{1 / r}\left|\sigma_{\omega_{k}(n)}-\sigma_{\omega_{k}(n)}^{(k)}\right| \\
& \leq \sup _{n} \lim _{\inf _{j \rightarrow \infty}} \alpha_{n}^{1 / r}\left|\sigma_{\omega_{j, k}(n)}^{(j)}-\sigma_{\omega_{j, k}(n)}^{(k)}\right| \\
& \leq \liminf _{j \rightarrow \infty} \sup _{n} \alpha_{n}^{1 / r}\left|\sigma_{\omega_{j, k}(n)}^{(j)}-\sigma_{\omega_{j, k}(n)}^{(k)}\right| \\
& =\liminf _{j \rightarrow \infty}\left\|\sigma^{(j)}-\sigma^{(k)}\right\|_{r, \infty ; \alpha} \\
& \leq \varepsilon,
\end{aligned}
$$

and hence $\left\{\sigma_{n}\right\}=\left\{\sigma_{n}-\sigma_{n}^{(k)}\right\}+\left\{\sigma_{n}^{(k)}\right\} \in \ell_{r, \infty}(\boldsymbol{\alpha})$, which completes the proof.
Lemma 3. Let $\left\{\alpha_{n}\right\}$ be a non-decreasing sequence of positive numbers which tends to ∞. Let $\left\{\sigma_{n}\right\}$ be a zero-sequence of positive numbers, and $\left\{\sigma_{\phi(n)}\right\}$ its nonincreasing rearrangement. Then, if $\left\{\alpha_{n} \sigma_{n}\right\}$ is bounded, so is $\left\{\alpha_{n} \sigma_{\phi(n)}\right\}$. The converse is false.

Proof. Let m be an arbitrary positive integer and fixed. If $m \leq \phi(m)$, then

$$
\alpha_{m} \sigma_{\phi(m)} \leq \alpha_{\phi(m)} \sigma_{\phi(m)} \leq \sup _{n} \alpha_{n} \sigma_{n} .
$$

If $m>\phi(m)$, then there exists $k \in \boldsymbol{N}$ such that $1 \leq k<m$ and $m \leq \phi(k)$, whence

$$
\alpha_{m} \sigma_{\phi(m)} \leq \alpha_{\phi(k)} \sigma_{\phi(k)} \leq \sup _{n} \alpha_{n} \sigma_{n} .
$$

Consequently, if $\left\{\alpha_{n} \sigma_{n}\right\}$ is bounded, so is $\left\{\alpha_{n} \sigma_{\phi(n)}\right\}$.
For the latter assertion, put $\mu_{n}=1 / \alpha_{n}$. We show that for a certain rearrange-
ment $\left\{\mu_{\pi(n)}\right\}$ of $\left\{\mu_{n}\right\},\left\{\alpha_{n} \mu_{\pi(n)}\right\}$ is not bounded. We may assume $\alpha_{n} \geq 1$ for all $n \in \boldsymbol{N}$. We choose a sequence $\left\{n_{k}\right\}$ of positive integers inductively as follows. Let n_{1} be the smallest $n \in \boldsymbol{N}$ such that $\alpha_{1}^{2}<\alpha_{n}$. If we have chosen $\left\{n_{1}, \ldots, n_{k-1}\right\}$, let n_{k} be the smallest $n \in \boldsymbol{N}$ such that $\alpha_{n_{k-1}}^{2}<\alpha_{n}\left(\right.$ hence $\left.n_{k-1}<n_{k}\right)$. Let $\pi: \boldsymbol{N} \rightarrow \boldsymbol{N}$ be a bijection such that $\pi\left(n_{k}\right)=n_{k-1}$ (put $n_{0}=1$). Then, $\left\{\alpha_{n} \mu_{n}\right\}$ is bounded, but $\left\{\alpha_{n} \mu_{\pi(n)}\right\}$ is not so because

$$
\alpha_{n_{k}} \mu_{\pi\left(n_{k}\right)}=\frac{\alpha_{n_{k}}}{\alpha_{n_{k-1}}}>\alpha_{n_{k-1}} \longrightarrow \infty \quad(k \longrightarrow \infty)
$$

By Lemma 3 we have immediately
Proposition 3. Let $0<r<\infty$. Then,

$$
\ell_{r, \infty}^{0}(\boldsymbol{\alpha}) \subsetneq \ell_{r, \infty}(\boldsymbol{\alpha}), \quad\|\cdot\|_{r, \infty ; \boldsymbol{\alpha}} \leq\|\cdot\|_{r, \infty ; \boldsymbol{\alpha}}^{0} .
$$

§ 3. A nearly necessary and sufficient condition such that a diagonal operator belongs to [Я, A]

The identity

$$
\begin{equation*}
\lambda(\mathfrak{A}, u, v)=\lambda_{I}(\mathfrak{A}, u, v) \tag{1}
\end{equation*}
$$

follows from the fact that
(i) if $D_{\left\{n-\lambda_{\}}\right.} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$, then there exists $c=c(u, v, \lambda)$ such that

$$
\begin{equation*}
\mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c n^{\lambda} \quad\left({ }^{\forall} n \in N\right), \tag{9}
\end{equation*}
$$

and coversely,
(ii) if (9) holds with some c, then for any $\varepsilon>0 D_{\{n-(\imath+\varepsilon)\}} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)$.

We generalize these assertions in the following theorem. The proof of its essential part is based on Pietsch's simplified proof of (1) ([23], Theorem 14.4.3).

Theorem 1. Let $1 \leq u, v \leq \infty$. Let $\alpha=\left\{\alpha_{n}\right\}$ be a non-decreasing sequence of positive numbers which tends to ∞.
(i) If $D_{\left\{\alpha_{n}^{-1}\right\}}$ belongs to $\mathfrak{H}\left(\ell_{u}, \ell_{v}\right)$, then there exists $c=c(u, v, \boldsymbol{a})$ such that

$$
\begin{equation*}
\mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c \alpha_{n} \quad\left({ }^{\forall} n \in N\right) . \tag{10}
\end{equation*}
$$

(ii) If (10) holds with some c, then for any $\varepsilon>0 D_{\left\{\alpha \bar{n}^{(1+\varepsilon)}\right\}}$ belongs to $\mathfrak{Y}\left(\ell_{u}, \ell_{v}\right)$.

Proof. (i) Put $D=D_{\left\{\alpha n_{n}^{-1}\right\}}$. Let $D_{n}\left(\left\{\xi_{i}\right\}_{1 \leq i \leq n}\right)=\left\{\alpha_{i}^{-1} \xi_{i}\right\}_{1 \leq i \leq n}$. Then, by $\left(\mathrm{QN}_{3}\right)$ we have

$$
\mathbf{A}\left(D_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq \mathbf{A}\left(D: \ell_{u} \longrightarrow \ell_{v}\right),
$$

and hence

$$
\begin{aligned}
\mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) & \leq \mathbf{A}\left(D_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right)\left\|D_{n}^{-1}: \ell_{u}^{n} \longrightarrow \ell_{u}^{n}\right\| \\
& \leq \mathbf{A}(D) \alpha_{n} .
\end{aligned}
$$

(ii) By Lemma A we may assume that $[\mathfrak{A}, \mathbf{A}]$ is a p-normed operator ideal (for some $0<p \leq 1$). Let

$$
N_{k}:=\left\{n \in N ; 2^{k-1}<\alpha_{n} \leq 2^{k}\right\} \quad(k=1,2, \ldots)
$$

and

$$
N_{0}:=\left\{n \in N ; 0<\alpha_{n} \leq 1\right\} .
$$

Let $n_{k}=\operatorname{card} N_{k}$, the cardinal number of $N_{k}\left(k \in N_{0}\right)$. We first assume that $n_{k} \neq 0$ for each $k \in N_{0}$. Put

$$
q_{n}^{(k)}= \begin{cases}1 & \left(n \in N_{k}\right) \\ 0 & \left(n \notin N_{k}\right),\end{cases}
$$

and let Q_{k} be the diagonal operator defined by $\left\{q_{n}^{(k)}\right\}_{n}$, i.e., $Q_{k}\left(\left\{\xi_{n}\right\}\right)=\left\{q_{n}^{(k)} \xi_{n}\right\}_{n}$. Then, we have

$$
\mathbf{A}\left(Q_{k}: \ell_{u} \longrightarrow \ell_{v}\right) \leq c \alpha_{n_{k}} \quad(k=0,1,2, \ldots)
$$

by the assumption (10) and the property $\left(\mathrm{QN}_{3}\right)$ of quasi-normed (in particular, p-normed) operator ideals. Therefore, for any $\varepsilon>0$

$$
\begin{aligned}
\sum_{k=0}^{\infty} \mathbf{A}\left(2^{-\varepsilon k} \alpha_{n_{k}}^{-1} Q_{k}: \ell_{u} \longrightarrow \ell_{v}\right)^{p} & =\sum_{k=0}^{\infty} 2^{-\varepsilon k p} \alpha_{n_{k}}^{-p} \mathbf{A}\left(Q_{k}: \ell_{u} \longrightarrow \ell_{v}\right)^{p} \\
& \leq c^{p} \sum_{k=0}^{\infty}\left(2^{-\varepsilon p}\right)^{k}<\infty
\end{aligned}
$$

Consequently, the operator

$$
S:=\sum_{k=0}^{\infty} 2^{-\varepsilon k} \alpha_{n_{k}}^{-1} Q_{k}: \ell_{u} \longrightarrow \ell_{v}
$$

is well-defined and belongs to \mathfrak{A} because $[\mathfrak{A}, \mathbf{A}$] is complete. Next, we put

$$
\sigma_{n}=2^{\varepsilon k} \alpha_{n_{k}} \alpha_{n}^{-(1+\varepsilon)} \quad \text { for } \quad n \in N_{k}, \quad k=0,1,2, \ldots
$$

Then $\left\{\sigma_{n}\right\}$ is bounded. Indeed, let $n \in N_{k}$. Then $2^{k-1}<\alpha_{n}$. Since $n_{k}<n_{0}+$ $n_{1}+\cdots+n_{k}$ and $\left\{\alpha_{n}\right\}$ is non-decreasing, we have $\alpha_{n_{k}} \leq 2^{k}$, whence $\alpha_{n_{k}} \leq 2 \cdot 2^{k-1}<$ $2 \alpha_{n}$. Therefore, we have

$$
2^{\varepsilon k} \alpha_{n_{k}}=2^{\varepsilon} 2^{\varepsilon(k-1)} \alpha_{n_{k}} \leq 2^{\varepsilon} \alpha_{n}^{\varepsilon}\left(2 \alpha_{n}\right)=2^{1+\varepsilon} \alpha_{n}^{1+\varepsilon},
$$

or $\sigma_{n} \leq 2^{1+\varepsilon}$. Consequently, the diagonal operator $D_{\left\{\sigma_{n}\right\}}: \ell_{u} \rightarrow \ell_{u}$ belongs to \mathscr{L}.

Since the operator $D_{\left\{\alpha_{n}^{-(1+\varepsilon)}\right\}}: \ell_{u} \rightarrow \ell_{v}$ is the composition of $D_{\left\{\sigma_{n}\right\}}: \ell_{u} \rightarrow \ell_{u} \in \mathbb{L}$ and $S: \ell_{u} \rightarrow \ell_{v} \in \mathfrak{A}$, we have $D_{\left\{\alpha_{n}^{-(1+\varepsilon)}\right\}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$ as desired.

In the case where there exist k with $n_{k}=\operatorname{card} N_{k}=0$, we have only to take instead of $\left\{n_{k}\right\}$ the subsequence $\left\{n_{k_{i}}\right\}$ consisting of non-zero terms of $\left\{n_{k}\right\}$ in the above proof. This completes the proof.

By Theorem 1 and Lemma B we have immediately the following
Corollary. Let $\left\{\alpha_{n}\right\}$ be a sequence (of real or complex numbers) with $\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|=\infty$ and $\left\{{ }^{*}\left|\alpha_{n}\right|\right\}$ the non-decreasing rearrangement of $\left\{\left|\alpha_{n}\right|\right\}$.
(i) If $D_{\left\{\alpha_{n}^{-1}\right\}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$, then there exists c such that

$$
\mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c\left(*\left|\alpha_{n}\right|\right) \quad\left({ }^{\forall} n \in N\right)
$$

(ii) $I f$

$$
\mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c\left({ }^{*}\left|\alpha_{n}\right|\right)^{\mu} \quad\left({ }^{\forall} n \in N\right)
$$

with some c and $\mu(0<\mu<1)$, then $D_{\left\{\alpha^{-1}\right\}} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)$.

§4. The $\boldsymbol{\alpha}$-limit order of operator ideals

Definition 2. Let $\alpha=\left\{\alpha_{n}\right\}$ be an arbitrary fixed sequence of positive numbers which is strictly increasing and divergent to ∞. We define the α limit order of an operator ideal \mathfrak{A} by

$$
\lambda_{\alpha}(\mathfrak{A}, u, v):=\inf \left\{\lambda>0 ; D_{\left\{\alpha_{n}^{-} \lambda^{2}\right.} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\}
$$

for $1 \leq u, v \leq \infty$.
If $\beta=\left\{\beta_{n}\right\}$ is another sequence with the same property as α, and if $\alpha_{n} \prec \beta_{n}$, then $\lambda_{\alpha}(\mathfrak{H}, u, v) \geq \lambda_{\beta}(\mathfrak{A}, u, v)$. In particular, if $\alpha_{n} \prec n$ and $n \prec \alpha_{n}, \lambda_{\alpha}(\mathfrak{H}, u, v)$ coincides with $\lambda(\mathfrak{R}, u, v)$. We easily obtain

Proposition 4. If $\lambda>\lambda_{\alpha}(\mathfrak{A}, u, v) \quad\left(\right.$ resp. $\quad \lambda<\lambda_{\alpha}(\mathfrak{H}, u, v)$), then $D_{\left\{\alpha_{n}^{-\lambda}\right\}} \in$ $\mathfrak{H}\left(\ell_{u}, \ell_{v}\right) \quad\left(\right.$ resp. $\left.\quad D_{\left\{\alpha_{n} \lambda_{\}}\right.} \notin \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)\right)$.

The following theorem generalizes (5) ([23], Proposition 14.4.2).
Theorem 2. Let $1 \leq u, v \leq \infty$. Then,

$$
\begin{align*}
\lambda_{a}(\mathfrak{A}, u, v)= & \inf \left\{1 / r \geq 0 ; \sigma \in \ell_{r, \infty}(\boldsymbol{\alpha}) \Longrightarrow D_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\} \tag{11}\\
= & \inf \left\{1 / r \geq 0 ; \sigma \in \ell_{r, \infty}^{0}(\boldsymbol{\alpha}) \Longrightarrow D_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\} \\
= & \inf \left\{1 / r \geq 0 ; \sigma=\left\{\sigma_{n}\right\} \in \ell_{r, \infty}(\boldsymbol{\alpha}), \sigma_{1} \geq \sigma_{2} \geq \cdots>0\right. \\
& \left.\Longrightarrow D_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\} \\
= & \inf \left\{1 / r \geq 0 ; \sigma=\left\{\sigma_{n}\right\} \in \ell_{r, \infty}^{0}(\boldsymbol{\alpha}),\right. \\
& \sigma_{1} \geq \sigma_{2} \geq \cdots>0 \\
& \left.\Longrightarrow D_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\} .
\end{align*}
$$

Proof. The last equality is trivial. We write the first three terms of the right-hand side of (11) as m_{1}, m_{2}, and m_{3} in that order. Let us show

$$
\begin{equation*}
\lambda_{\alpha}(\mathfrak{H}, u, v) \geq m_{1} \geq m_{2} \geq m_{3} \geq \lambda_{\boldsymbol{a}}(\mathfrak{H}, u, v) . \tag{12}
\end{equation*}
$$

Let $\lambda>\lambda_{\alpha}(\mathfrak{H}, u, v)$. Then, by Proposition 4

$$
D_{\left\{\alpha_{n}^{-\lambda}\right\}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right) .
$$

Put $r=1 / \lambda$ and let $\left\{\sigma_{n}\right\} \in \ell_{r, \infty}(\boldsymbol{\alpha})$. Then, $\left\{\alpha_{n}^{\lambda} \sigma_{\phi(n)}\right\}$ is bounded and hence

$$
D_{\left\{\alpha_{n}^{2} \sigma_{\phi(n)\}}\right.} \in \mathfrak{L}\left(\ell_{u}, \quad \ell_{u}\right),
$$

where ϕ is so defined that $\left\{\left|\sigma_{\phi(n)}\right|\right\}$ is the non-increasing rearrangement of $\left\{\left|\sigma_{n}\right|\right\}$. Therefore

$$
D_{\left\{\sigma_{\phi(n)}\right\}}=D_{\left\{\alpha \bar{n} \bar{n}^{\lambda} \circ\right.} D_{\left\{a_{n}^{\lambda} \sigma_{\phi(n)}\right\}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)
$$

Consequently, by Lemma B we have $D_{\left\{\sigma_{n}\right\}} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)$, which implies the first inequality in (12). The second inequality is an immediate consequence of Proposition 3. The third one is trivial. For the last, assume that $\sigma=\left\{\sigma_{n}\right\} \in \ell_{r, \infty}(\boldsymbol{\alpha})$, $\sigma_{1} \geq \sigma_{2} \geq \cdots>0$ implies $D_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$, and put $\sigma_{n}=\alpha_{n}^{-1 / r}$. Then we have $m_{3} \geq$ $\lambda_{a}(\mathfrak{N}, u, v)$, which completes the proof.

By Theorem 1, we immediately obtain the following generalization of the identity (1), i.e.,

$$
\lambda(\mathfrak{A}, u, v)=\inf \left\{\lambda>0 ;{ }^{\exists} c=c(u, v, \lambda) \text { s.t. } \mathbf{A}\left(I_{n}: \ell_{u}^{n} \rightarrow \ell_{v}^{n}\right) \leq c n^{\lambda}\left({ }^{\forall} n \in N\right)\right\} .
$$

Theorem 3. Let [$\mathfrak{U}, \mathrm{A}]$ be a quasi-normed operator ideal, and let $1 \leq u, v \leq \infty$. Then,

$$
\lambda_{\alpha}(\mathfrak{A}, u, v)=\inf \left\{\lambda>0 ;{ }^{\exists} c=c(u, v, \lambda) \text { s.t. } \mathbf{A}\left(I_{n}: \ell_{u}^{n} \rightarrow \ell_{v}^{n}\right) \leq c \alpha_{n}^{\lambda}\left({ }^{\forall} n \in N\right)\right\} .
$$

Now, W. Linde and Pietsch [14] introduced the ideal $\left[\mathfrak{P}_{\gamma}, \Pi_{\gamma}\right.$] of absolutely γ-summing operators as follows. Let γ_{n} denote the Gaussian measure on the n dimensional Euclidean space $\boldsymbol{R}^{\boldsymbol{n}}$ which is defined on every Borel set \boldsymbol{B} by

$$
\gamma_{n}(B)=(2 \pi)^{-n / 2} \int_{B} \exp \left\{-\sum_{i=1}^{n} \tau_{i}^{2} / 2\right\} d \tau_{1} \cdots d \tau_{n} .
$$

An operator $S \in \mathfrak{L}(E, F), E$ and F being real Banach spaces, is called absolutely γ-summing if there exists a constant $\rho \geq 0$ such that for every $x_{1}, x_{2}, \ldots, x_{n} \in E$,

$$
\left\{\int_{R^{n}}\left\|\sum_{i=1}^{n} \tau_{i} S x_{i}\right\|^{2} d \gamma_{n}(\tau)\right\}^{1 / 2} \leq \rho \sup \left[\left\{\sum_{i=1}^{n}\left|\left\langle x_{i}, a\right\rangle\right|^{2}\right\}^{1 / 2} ;\|a\| \leq 1, a \in E^{\prime}\right]
$$

The infimum of all such ρ is denoted by $\pi_{\gamma}(S) . \quad\left[\mathfrak{P}_{\gamma}, \pi_{\gamma}\right]$ is a normed operator ideal ([14], Theorems 1 and 2). They proved

Proposition A ([14], Theorem 9). Let $2 \leq u \leq \infty$. Let $\sigma=\left\{\sigma_{n}\right\}, \sigma_{1} \geq \sigma_{2}$ $\geq \cdots \geq 0$. Then, D_{σ} belongs to $\mathfrak{P}_{\gamma}\left(\ell_{u}, \ell_{\infty}\right)$ if and only if

$$
\sup \sigma_{n} \sqrt{\log (n+1)}<\infty
$$

Remark 2. Let $2 \leq u \leq \infty$ and let $\alpha=\left\{\alpha_{n}\right\}, \alpha_{n}=\log (n+1)$. Then, Proposition A with Lemma B implies that

$$
D_{\sigma} \in \mathfrak{P}_{\gamma}\left(\ell_{u}, \ell_{\infty}\right) \quad \text { if and only if } \sigma \in \ell_{2, \infty}(\boldsymbol{\alpha})
$$

or

$$
\ell_{\left(\mathfrak{P}_{\gamma, u, \infty)}\right.}=\ell_{2, \infty}(\boldsymbol{\alpha}) .
$$

Example 1. Let u and $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}$ be as in Remark 2. Then,

$$
\begin{equation*}
\lambda_{x}\left(\mathfrak{P}_{\gamma}, u, \infty\right)=\frac{1}{2} \tag{13}
\end{equation*}
$$

while

$$
\begin{equation*}
\lambda\left(\mathfrak{P}_{\gamma}, u, \infty\right)=0 . \tag{14}
\end{equation*}
$$

In fact, from Proposition A it follows that

$$
\begin{align*}
& D_{\left\{\alpha-\lambda_{\}}\right.} \in \mathfrak{P}_{\gamma}\left(\ell_{u}, \ell_{\infty}\right) \quad\left(\text { resp. } D_{\left\{\alpha \bar{n}^{-}\right\}} \notin \mathfrak{P}_{\gamma}\left(\ell_{u}, \ell_{\infty}\right)\right) \tag{15}\\
& \text { provided } \lambda>1 / 2 \quad(\text { resp. } \lambda<1 / 2),
\end{align*}
$$

which implies (13). (14) is also derived immediately from Proposition A. Let us here recall the following criteria given by $\lambda(\mathfrak{A}, u, v)$:
(a) If $\lambda>\lambda(\mathfrak{H}, u, v)\left(\right.$ resp. $\lambda<\lambda(\mathfrak{H}, u, v)$), then $D_{\lambda} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\left(\right.$ resp. $D_{\lambda} \notin$ $\left.\mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right)$.
(b) Let $1 / r>\lambda(\mathfrak{A}, u, v)$. Then, for every $\sigma \in \ell_{r}, D_{\sigma}$ belongs to $\mathfrak{H}\left(\ell_{u}, \ell_{v}\right)$.

Since $\lambda\left(\mathfrak{P}_{\gamma}, u, \infty\right)=0$, the behavior (15) of $\left\{\alpha_{n}^{-\lambda}\right\}$ can not be described by these criteria (a) and (b). (Note that $\left\{\alpha_{n}^{-\lambda}\right\}=\left\{\log ^{-\lambda}(n+1)\right\} \notin \ell_{r}$ for any $r>0$.) On the other hand, by Proposition 4, (15) is well expressed by $\lambda_{\alpha}\left(\mathfrak{F}_{\gamma}, u, \infty\right)=1 / 2$. (Compare also Proposition A or Remark 2 with (b); cf. Theorem 2.) Thus, in this case, the $\boldsymbol{\alpha}$-limit order $\lambda_{\boldsymbol{\alpha}}(\mathfrak{H})$ is more appropriate than $\lambda(\mathfrak{H})$ for the ideal $\mathfrak{A}=\mathfrak{P}_{\gamma}$.

Let us next recall the definitions of the ideals \mathfrak{N}_{0} and $\mathfrak{N}_{p}(p>0)$ of strictly nuclear and \mathfrak{A}_{p}-operators respectively. Let $S \in \mathfrak{L}(E, F)$ and let $a_{n}(S)$ be its n-th approximation number, i.e., $a_{n}(S):=\inf \{\|S-L\| ; L \in \mathfrak{L}(E, F)$ and $\operatorname{rank}(L)<n\}$. S is called a strictly nuclear operator (resp. an \mathfrak{U}_{p}-operator) if $\left\{a_{n}(S)\right\} \in \ell_{0}:=$ $\cap_{p>0} \ell_{p}$ (resp. $\left\{a_{n}(S)\right\} \in \ell_{p}$) (cf. [23], 18.7.1 (resp. 14.2.4)). By Proposition 14.4.9 in [23] and Proposition 6 in [2] the limit order of \mathfrak{A}_{p} for $0<p<1$ is given by
(16) $\lambda\left(\mathfrak{A}_{p}, u, v\right)=\left\{\begin{array}{lr}\frac{1}{p}-\frac{1}{u}+\frac{1}{v} & (1 \leq v \leq u \leq \infty), \\ \frac{1}{p} & (1 \leq u \leq v \leq 2 \text { or } 2 \leq u \leq v \leq \infty), \\ \max \left\{\frac{1}{p}+\frac{1}{2}-\frac{1}{u}, \frac{1}{p}+\frac{1}{v}-\frac{1}{2}\right\} & (1 \leq u \leq 2 \leq v \leq \infty) .\end{array}\right.$

Example 2. (i) For all $1 \leq u, v \leq \infty$

$$
\lambda\left(\mathfrak{N}_{0}, u, v\right)=\infty,
$$

which only asserts

$$
D_{\lambda} \notin \mathfrak{N}_{0}\left(\ell_{u}, \ell_{v}\right) \quad \text { for all } \quad \lambda>0
$$

and

$$
\ell_{\boldsymbol{r}} \not \subset \ell_{\left(\Omega_{0}, u, v\right)} \quad \text { for all } \quad r>0
$$

(ii) Put $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}, \alpha_{n}=\alpha^{n}(\alpha>1)$. Then, for all $1 \leq u, v \leq \infty$

$$
\lambda_{a}\left(\mathfrak{N}_{0}, u, v\right)=0
$$

which means that

$$
D_{\left\{\alpha_{n}^{-\lambda}\right\}} \in \mathfrak{N}_{0}\left(\ell_{u}, \ell_{v}\right) \quad \text { for } \quad \text { all } \quad \lambda>0
$$

or

$$
\ell_{r, \infty}(\alpha) \subset \ell_{\left(\Omega_{0}, u, v\right)} \quad \text { for } \quad \text { all } \quad r>0 .
$$

(iii) Let $1 \leq u \leq v \leq \infty$. Then, there does not exist a sequence $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}$, $0<\alpha_{n} \nearrow \infty$, such that $0<\lambda_{\alpha}\left(\mathfrak{N}_{0}, u, v\right)<\infty$.

Proof. (i) Since $\mathfrak{N}_{0}=\cap_{p>0} \mathfrak{U}_{p}$ (cf. [23], 18.7.2), we have by (16)

$$
\lambda\left(\mathfrak{M}_{0}, u, v\right) \geq \lambda\left(\mathfrak{A}_{p}, u, v\right) \longrightarrow \infty \quad(p \longrightarrow 0)
$$

(ii) Let $D_{\sigma} \in \mathfrak{L}\left(\ell_{u}, \ell_{v}\right), \sigma=\left\{\sigma_{n}\right\}, \sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0$. Then, by Theorem 1.27 in C. V. Hutton [6] (see also [23], Theorem 11.11.4),

$$
\begin{equation*}
\frac{1}{2} \sigma_{n} \leq a_{n}\left(D_{\sigma}\right) \leq \sigma_{n} \quad \text { for } \quad n \in N \tag{17}
\end{equation*}
$$

if $1 \leq u \leq v \leq \infty$; and

$$
\begin{equation*}
a_{n}\left(D_{\sigma}\right)=\left(\sum_{k=n}^{\infty} \sigma_{k}^{r}\right)^{1 / r} \quad \text { for } \quad n \in N \tag{18}
\end{equation*}
$$

if $1 \leq v<u \leq \infty$, where $1 / r=1 / v-1 / u$. Applying (17) and (18) to $D_{\left\{\alpha_{n}^{-\lambda}\right\}}: \ell_{u} \rightarrow \ell_{v}$, we have for $1 \leq u, v \leq \infty$

$$
\left\{a_{k}\left(D_{\left\{\alpha_{n}^{-\lambda}\right\}}\right)\right\}_{k} \in \ell_{0} \quad\left({ }^{*} \lambda>0\right),
$$

or $D_{\left\{\alpha_{n}^{-\lambda}\right\}} \in \mathfrak{N}_{0}\left(\ell_{u}, \ell_{v}\right)\left({ }^{\forall} \lambda>0\right)$. Hence $\lambda_{\alpha}\left(\mathfrak{N}_{0}, u, v\right)=0$.
(iii) Suppose that $\lambda_{\alpha}\left(\mathfrak{N}_{0}, u, v\right)<\infty$ for some $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}, 0<\alpha_{n} \nearrow \infty$. Then, there exists a $\lambda>0$ such that $D_{\left\{\alpha_{n}^{-\lambda}\right\}} \in \mathfrak{N}_{0}\left(\ell_{u}, \ell_{v}\right)$, i.e., $\left\{a_{k}\left(D_{\left\{\alpha_{n}^{-\lambda}\right\}}\right)\right\}_{k} \in \ell_{0}$, which is also valid for all $\lambda>0$ by (17). Hence $\lambda_{\alpha}\left(\Re_{0}, u, v\right)=0$.

§ 5. The $\boldsymbol{\alpha}$-defect of \mathfrak{Q} and $\boldsymbol{\alpha}$-limit order of \mathfrak{A} *

In this section, let $\boldsymbol{\alpha}=\left\{\alpha_{n}\right\}$ be a fixed strictly increasing sequence of positive numbers such that $\alpha_{n} \rightarrow \infty(n \rightarrow \infty)$ and $\alpha_{2 n} \prec \alpha_{n}$; and let [$\left.\mathfrak{A}, \mathbf{A}\right]$ be a normed operator ideal. It should be noted that for normed operator ideals [$\mathfrak{N}, \mathbf{A}]$

$$
\begin{equation*}
0 \leq \lambda(\mathfrak{H}, u, v) \leq 1 \quad \text { for } \quad 1 \leq u, v \leq \infty \tag{19}
\end{equation*}
$$

([23], Theorem 6.7.2 and Propositions 14.4.4 and 22.4.6). In König [12] the defect $d(\mathfrak{A}, u, v)$ of \mathfrak{A} is defined by

$$
d(\mathfrak{A}, u, v)=\inf \left\{\frac{1}{r}-\frac{1}{s} ; \ell_{r} \subset \ell_{(\mathfrak{Q}, u, v)} \subset \ell_{s}\right\} .
$$

As is easily shown (cf. Lemma C), it is represented as

$$
\begin{aligned}
d(\mathfrak{Y}, u, v) & =\inf \left\{\frac{1}{r}-\frac{1}{s} ; \ell_{r, \infty} \subset \ell_{(\mathfrak{\mu}, u, v)} \subset \ell_{s, \infty}\right\} \\
& =\inf \left\{\frac{1}{r}-\frac{1}{s} ; \ell_{r, \infty}^{0} \subset \ell_{(\mathfrak{(r , u , v)}} \subset \ell_{s, \infty}\right\},
\end{aligned}
$$

where $\ell_{r,, \infty}^{0}=\ell_{r, \infty}^{0}(\{n\})$.
Definition 3. We define the $\boldsymbol{\alpha}$-defect of \mathfrak{A} by

$$
\begin{aligned}
d_{\alpha}(\mathfrak{H}, u, v): & =\inf \left\{\frac{1}{r}-\frac{1}{s} ; \ell_{r, \infty}(\boldsymbol{\alpha}) \subset \ell_{(\mathfrak{Q}, u, v)} \subset \ell_{s, \infty}(\boldsymbol{\alpha})\right\} \\
& =\inf \left\{\frac{1}{r}-\frac{1}{s} ; \ell_{r, \infty}^{0}(\boldsymbol{\alpha}) \subset \ell_{(\mathfrak{U}, u, v)} \subset \ell_{s, \infty}(\boldsymbol{\alpha})\right\}
\end{aligned}
$$

for $1 \leq u, v \leq \infty$.
The following theorem generalizes Proposition 1 in König [12].
Theorem 4. For $1 \leq u, v \leq \infty$ we have

$$
\begin{aligned}
& d_{\alpha}(\mathfrak{A}, u, v)=\inf \left\{\lambda-\mu ; \lambda, \mu \geq 0 \text { s.t. }{ }^{\exists} c, d>0\right. \text { with } \\
& \left.\qquad d \alpha_{n}^{\mu} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \rightarrow \ell_{v}^{n}\right) \leq c \alpha_{n}^{\lambda}\left({ }^{\forall} n \in N\right)\right\} .
\end{aligned}
$$

Proof. Let us first show the inequality " \geq ". Suppose $\ell_{r, \infty}(\boldsymbol{\alpha}) \subset \ell_{(\Omega, u, v)} \subset$
$\ell_{s, \infty}(\boldsymbol{\alpha})$. Then, the inclusion maps $I: \ell_{\boldsymbol{r}, \infty}(\boldsymbol{\alpha}) \hookrightarrow \ell_{(थ, u, v)}$ and $J: \ell_{(\mathfrak{Q}, u, v)} \hookrightarrow \ell_{s, \infty}(\boldsymbol{a})$ are closed. Let us show that for I. Let $\sigma^{(k)}=\left\{\sigma_{n}^{(k)}\right\} \rightarrow \sigma=\left\{\sigma_{n}\right\}(k \rightarrow \infty)$ in $\ell_{r, \infty}(\boldsymbol{\alpha})$ and $\sigma^{(k)} \rightarrow \mu=\left\{\mu_{n}\right\}(k \rightarrow \infty)$ in $\ell_{(\Omega, u, v)}$. Then, by Lemma B (iii)

$$
\sup _{n}\left|\sigma_{n}^{(k)}-\mu_{n}\right| \leq\left\|\sigma^{(k)}-\mu\right\|_{\mathbf{A}} \longrightarrow 0 \quad(k \longrightarrow \infty) .
$$

Therefore

$$
\begin{aligned}
\sup _{n}\left|\sigma_{n}-\mu_{n}\right| & \leq \sup _{n}\left|\sigma_{n}-\sigma_{n}^{(k)}\right|+\sup _{n}\left|\sigma_{n}^{(k)}-\mu_{n}\right| \\
& \leq \alpha_{1}^{-1 / r} \sup _{n} \alpha_{n}^{1 / r}\left|\sigma_{\omega_{k}(n)}-\sigma_{\omega_{k}(n)}^{(k)}\right|+\sup _{n}\left|\sigma_{n}^{(k)}-\mu_{n}\right| \\
& \rightarrow 0 \quad(k \rightarrow \infty),
\end{aligned}
$$

where $\left\{\left|\sigma_{\omega_{k}(n)}-\sigma_{\omega_{k}(n)}^{(k)}\right|\right\}_{n}$ is the non-increasing rearrangement of $\left\{\left|\sigma_{n}-\sigma_{n}^{(k)}\right|\right\}_{n}$. Hence we have $\sigma=\mu$, i.e., I is closed. Consequently, I and J are continuous by the closed graph theorem. (Note that $\ell_{\boldsymbol{r}, \infty}(\boldsymbol{\alpha})$ is complete metrizable by Propositions 1 and 2.) Therefore, there exist some constants c and d such that

$$
\|\cdot\|_{\mathbf{A}} \leq c\|\cdot\|_{r, \infty ; \boldsymbol{\alpha}} \quad \text { on } \quad \ell_{r, \infty}(\boldsymbol{\alpha})
$$

and

$$
\|\cdot\|_{s, \infty ; \alpha} \leq d^{-1}\|\cdot\|_{\mathbf{A}} \quad \text { on } \quad \ell_{(\mathfrak{\varkappa}, u, v)} .
$$

Consequently, we have for all $n \in N$

$$
\begin{aligned}
d \alpha_{n}^{1 / s} & =d\|(\overbrace{1, \ldots, 1}^{n}, 0, \ldots)\|_{s, \infty ; \alpha} \\
& \leq\|(\overbrace{1, \ldots, 1}^{n}, 0, \ldots)\|_{\mathbf{A}} \\
& =\mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \\
& \leq c\|(\overbrace{1, \ldots, 1}^{n}, 0, \ldots)\|_{r, \infty ; \alpha}=c \alpha_{n}^{1 / r} .
\end{aligned}
$$

Hence we have the inequality " \geq ".
To prove the converse inequality, assume that

$$
\begin{equation*}
d \alpha_{n}^{1 / s} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c \alpha_{n}^{1 / r} \quad\left({ }^{\forall} n \in N\right) . \tag{20}
\end{equation*}
$$

It is sufficient to show that for any $\varepsilon>0$

$$
\ell_{\boldsymbol{r}-\varepsilon, \infty}(\boldsymbol{\alpha}) \subset \ell_{(थ, u, v)} \subset \ell_{s, \infty}(\boldsymbol{\alpha}) .
$$

Let $\sigma=\left\{\sigma_{n}\right\} \in \ell_{r-\varepsilon, \infty}(\boldsymbol{\alpha})$ and let $\left\{\left|\sigma_{\phi(n)}\right|\right\}$ be the non-increasing rearragement of $\left\{\left|\sigma_{n}\right|\right\}$. Then, $\left\{\alpha_{n}^{1 /(r-\varepsilon)}\left|\sigma_{\phi(n)}\right|\right\}$ is bounded, and hence

Since $1 /(r-\varepsilon)>\lambda_{a}(\mathfrak{A}, u, v)$ by (20) and Theorem 3, we have

$$
D_{\left\{\alpha_{n}^{1 /(r-\varepsilon)}\right\}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)
$$

by Proposition 4. Therefore

$$
D_{\left\{\sigma_{\phi(n)}\right\}}=D_{\left\{\alpha_{n}^{-1 /(r-\varepsilon)}\right.} \circ D_{\left\{\alpha_{n}^{11(r-\varepsilon)} \sigma_{\phi(n)\}}\right.} \in \mathscr{A}\left(\ell_{u}, \ell_{v}\right),
$$

or $\left\{\sigma_{\phi(n)}\right\} \in \ell_{(\mathfrak{r}, u, v)}$. Consequently, we have $\sigma \in \ell_{(\mathfrak{e}, u, v)}$ by Lemma B. Let next $\sigma=\left\{\sigma_{n}\right\} \in \ell_{(\Omega, u, v)}$. If $\sigma \in c_{0}$, assume that $\left|\sigma_{n}\right| \geq\left|\sigma_{n+1}\right|>0\left({ }^{\forall} n \in N\right)$, and put

$$
D_{\sigma}^{(n)}\left(\left\{\xi_{i}\right\}_{1 \leq i \leq n}\right)=\left\{\sigma_{i} \xi_{i}\right\}_{1 \leq i \leq n} .
$$

Then, by (20) and $\left(\mathrm{QN}_{3}\right)$ we have

$$
\begin{aligned}
d \alpha_{n}^{1 / s} & \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \\
& \leq \mathbf{A}\left(D_{\sigma}^{(n)}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right)\left\|\left(D_{\sigma}^{(n)}\right)^{-1}: \ell_{v}^{n} \longrightarrow \ell_{v}^{n}\right\| \\
& \leq\left|\sigma_{n}\right|^{-1} \mathbf{A}\left(D_{\sigma}: \ell_{u} \longrightarrow \ell_{v}\right),
\end{aligned}
$$

or

$$
\alpha_{n}^{1 / s}\left|\sigma_{n}\right| \leq d^{-1} \mathbf{A}\left(D_{\sigma}: \ell_{u} \longrightarrow \ell_{v}\right)
$$

for all $n \in N$, i.e., $\sigma \in \ell_{s, \infty}(\boldsymbol{\alpha})$. If $\sigma \notin c_{0}$, there exists $\varepsilon_{0}>0$ such that $\left|\sigma_{n}\right| \geq \varepsilon_{0}$ for infinitely many $n \in N$; let $\left\{n_{k} ; k \in N\right\}$ be the set of all such $n\left(n_{k}<n_{k+1}\right.$ for all $k \in N)$. Put $\tilde{\sigma}_{k}=\sigma_{n_{k}}$. Then, by $\left(\mathrm{OI}_{3}\right)$,

$$
D_{\left\{\tilde{\sigma}_{k}\right\}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right) .
$$

Let now $\mu=\left\{\mu_{k}\right\} \in \ell_{\infty}$. Then, $\left\{\mu_{k} \tilde{\sigma}_{k}^{-1}\right\}$ is bounded, and hence

$$
D_{\left\{\mu_{k} \tilde{\sigma}_{k} \overline{1}^{1}\right.} \in \mathscr{L}\left(\ell_{v}, \ell_{v}\right) .
$$

Therefore we have

$$
D_{\mu}=D_{\left\{\mu_{k} \tilde{\sigma}_{\bar{k}}^{1}\right\}} \circ D_{\left\{\tilde{\tilde{q}}_{k}\right\}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)
$$

which implies $\ell_{(\Omega, u, v)}=\ell_{\infty}$. Since the inclusion map $\ell_{(\Omega, u, v)}{ }^{\hookrightarrow} \ell_{\infty}$ is continuous, by the open mapping theorem we have with some K

$$
\begin{aligned}
d \alpha_{n}^{1 / s} & \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \\
& =\|(\overbrace{1, \ldots, 1}^{n}, 0, \ldots)\|_{\mathbf{A}} \\
& \leq K\|(\overbrace{1, \ldots, 1}^{n}, 0, \ldots)\|_{\infty}=K
\end{aligned}
$$

for all $n \in \boldsymbol{N}$, from which it follows that $s=\infty$ and hence $\ell_{s, \infty}(\boldsymbol{\alpha})=\ell_{\infty}$. This completes the proof.

The next theorem is a generalization of Proposition 2 in König [12].
Theorem 5. Let $1 \leq u, v \leq \infty$. If $\alpha_{n}<n$, then

$$
\lambda_{\alpha}(\mathfrak{A}, u, v)+\lambda_{\alpha}\left(\mathfrak{H}^{*}, v, u\right) \geq 1+d_{\alpha}(\mathfrak{H}, u, v) .
$$

If $n<\alpha_{n}$, then the converse inequality holds.
Proof. Suppose that $\alpha_{n} \prec n$. By Corollary 5.3 in [4],

$$
\mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \cdot \mathbf{A}^{*}\left(I_{n}: \ell_{v}^{n} \longrightarrow \ell_{u}^{n}\right)=n .
$$

Hence

$$
\begin{aligned}
\lambda_{a}\left(\mathfrak{H}^{*}, v, u\right) & \geq \lambda\left(\mathfrak{A}^{*}, v, u\right) \\
& =\inf \left\{v \geq 0 ; \quad \mathbf{A}^{*}\left(I_{n}: \ell_{v}^{n} \longrightarrow \ell_{u}^{n}\right) \leq \tilde{d} n^{v} \quad\left({ }^{\forall} n \in N\right)\right\} \\
& =\inf \left\{v \geq 0 ; \quad \tilde{d}^{-1} n^{1-v} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \quad\left({ }^{\forall} n \in N\right)\right\} \\
& \geq \inf \left\{v \geq 0 ; \quad d \alpha_{n}^{1-v} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \quad\left({ }^{\forall} n \in N\right)\right\} \\
& =\inf \left\{1-\mu \geq 0 ; \quad \mu \geq 0, d \alpha_{n}^{\mu} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \quad\left({ }^{\forall} n \in N\right)\right\},
\end{aligned}
$$

where one should observe that $v \leq 1$ may be assumed (cf. (19); more precisely, see [23], Theorem 6.7.2 and Lemma in 22.4.6). Therefore we have

$$
\begin{aligned}
& \lambda_{\alpha}(\mathfrak{A l}, u, v)+\lambda_{\alpha}\left(\mathfrak{H}^{*}, v, u\right) \\
& \quad \geq \inf \left\{\lambda \geq 0 ; \quad \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c \alpha_{n}^{\lambda} \quad\left({ }^{\forall} n \in N\right)\right\} \\
& \quad+\inf \left\{1-\mu \geq 0 ; \quad \mu \geq 0, d \alpha_{n}^{\mu} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \quad\left({ }^{\forall} n \in N\right)\right\} \\
& = \\
& =1+\inf \left\{\lambda-\mu ; \quad \lambda, \mu \geq 0, d \alpha_{n}^{\mu} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c \alpha_{n}^{\lambda} \quad\left({ }^{\forall} n \in N\right)\right\} \\
& = \\
& 1+d_{a}(\mathfrak{H}, u, v) .
\end{aligned}
$$

If $n<\alpha_{n}$, then the converse inequalities " \leq " hold in place of " \geq " in the above proof.

Theorem 5, combined with Theorems 2, 3 and 4, yields
Corollary. Let $1 \leq u, v \leq \infty$. If $\alpha_{n}<n$, then the condition

$$
\lambda_{\alpha}(\mathfrak{H}, u, v)+\lambda_{\alpha}\left(\mathfrak{H}^{*}, v, u\right)=1
$$

implies the following (i)-(iv), which are mutually equivalent:
(i) $d_{a}(\mathfrak{A}, u, v)=0$;
(ii) There exists $r>0$ such that for any $\varepsilon>0$

$$
\ell_{\boldsymbol{r}-\varepsilon, \infty}(\boldsymbol{\alpha}) \subset \ell_{(\mathfrak{Q}, u, v)} \subset \ell_{\boldsymbol{r}+\varepsilon, \infty}(\boldsymbol{\alpha}) ;
$$

(iii) There exists $\lambda \geq 0$ such that for any $\dot{\varepsilon}>0$

$$
d \alpha_{n}^{\lambda-\varepsilon} \leq \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right) \leq c \alpha_{n}^{\lambda+\varepsilon} \quad\left({ }^{\forall} n \in N\right)
$$

with some constants c and d;
(iv)

$$
\lambda_{\alpha}(\mathfrak{Q}, u, v)=\lim _{n \rightarrow \infty} \frac{\log \mathbf{A}\left(I_{n}: \ell_{u}^{n} \longrightarrow \ell_{v}^{n}\right)}{\log \alpha_{n}} .
$$

In (ii) and (iii), we have $\lambda=1 / r=\lambda_{\alpha}(\mathfrak{H}, u, v)$.
If $n \prec \alpha_{n}$, then each of (i)-(iv) implies that

$$
\lambda_{\alpha}(\mathfrak{H}, u, v)+\lambda_{\alpha}\left(\mathfrak{A}^{*}, v, u\right) \leq 1 .
$$

This result generalizes Corollary 1 to Proposition 2 in König [12]. The proof is easy and is omitted.

§ 6. The L-limit order and block diagonal matrix operators

We recall that the L-limit order of a quasi-normed operator ideal $[\mathfrak{A}, \mathbf{A}]$ is defined by
(4) $\lambda_{L}(\mathfrak{A}, u, v)$

$$
:=\inf \left\{\lambda>0 ;{ }^{\exists} c=c(u, v, \lambda) \text { s.t. } \mathbf{A}\left(A_{2^{n}}: \ell_{u}^{2^{n}} \rightarrow \ell_{v}^{2^{n}}\right) \leq c\left(2^{n}\right)^{\lambda}\left({ }^{\forall} n \in N_{0}\right)\right\} .
$$

Let us first show an identity analogous to (1) for the L-limit order. For $\lambda>0$ we put

$$
A_{\lambda}:=\sum_{n=0}^{\infty} \oplus \frac{1}{\left(2^{n}\right)^{\lambda}} A_{2^{n}}=\left[\begin{array}{ccccc}
A_{2^{0}} & & & & \\
& \frac{1}{2^{\lambda}} A_{2^{1}} & & & 0 \\
& & \ddots & & \\
& & \frac{1}{\left(2^{n}\right)^{\lambda}} & A_{2^{n}} & \\
0 & & & \ddots & \ddots
\end{array}\right] .
$$

(Although the notations $A_{\dot{\lambda}}$ and $A_{2^{n}}$ are not consistent, there will be no confusion.)
Theorem 6. For $1 \leq u, v \leq \infty$

$$
\begin{equation*}
\lambda_{L}(\mathfrak{H}, u, v)=\inf \left\{\lambda>0 ; A_{\lambda} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\} \tag{21}
\end{equation*}
$$

Proof. We write the right-hand side of (21) as λ_{0}. Suppose $A_{\lambda} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$. Let

$$
J_{n}: \ell_{u}^{2 n} \longrightarrow \ell_{u}=\sum_{k=0}^{\infty} \oplus \ell_{u}^{2^{k}}
$$

and

$$
P_{n}: \ell_{v}=\sum_{k=0}^{\infty} \oplus \ell_{v}^{2 k} \longrightarrow \ell_{v}^{2^{n}}
$$

be the embedding and projection defined respectively by
and

$$
P_{n}\left(\xi_{1} ; \ldots ; \xi_{2^{n}, \ldots,}, \xi_{2^{n+1}-1} ; \ldots\right):=\left(\xi_{2^{n}}, \ldots, \xi_{2^{n+1}-1}\right) .
$$

Then we have

$$
\begin{aligned}
\mathbf{A}\left(A_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{v}^{2 n}\right) & \leq\left(2^{n}\right)^{\lambda}\left\|J_{n}: \ell_{u}^{2 n} \longrightarrow \ell_{u}\right\| \mathbf{A}\left(A_{\lambda}: \ell_{u} \longrightarrow \ell_{v}\right)\left\|P_{n}: \ell_{v} \longrightarrow \ell_{v}^{2 n}\right\| \\
& =\mathbf{A}\left(A_{\lambda}: \ell_{u} \longrightarrow \ell_{v}\right)\left(2^{n}\right)^{\lambda}
\end{aligned}
$$

for all $n \in N_{0}$. Hence, $\lambda_{L}(\{), u, v) \leq \lambda_{0}$.
Conversely, let $\mathbf{A}\left(A_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{v}^{2 n}\right) \leq c\left(2^{n}\right)^{\lambda}\left({ }^{\forall} n \in N_{0}\right)$. By Lemma A we may assume that $[\mathfrak{A}, \mathbf{A}]$ is a p-normed operator ideal. Then, for any $\varepsilon>0$

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathbf{A}\left(2^{-(\lambda+\varepsilon) n} A_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{v}^{2 n}\right)^{p} & \leq c^{p} \sum_{n=0}^{\infty} 2^{-(\lambda+\varepsilon) p n} \cdot 2^{\lambda p n} \\
& =c^{p} \sum_{n=0}^{\infty} 2^{-\varepsilon p n}<\infty .
\end{aligned}
$$

Hence

$$
A_{\lambda+\varepsilon}=\sum_{n=0}^{\infty} \oplus 2^{-(\lambda+\varepsilon) n} A_{2^{n}} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right),
$$

which means $\lambda+\varepsilon \geq \lambda_{0}$. Consequently we have $\lambda_{L}(\mathfrak{H}, u, v) \geq \lambda_{0}$.
Corollary. If $\lambda>\lambda_{\mathbf{L}}(\mathfrak{A}, u, v)\left(\right.$ resp. $\left.\lambda<\lambda_{L}(\mathfrak{A}, u, v)\right)$, then $A_{\lambda} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$ (resp. $\left.A_{\lambda} \notin \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)\right)$.

Proof. Let $\lambda>\lambda_{L}(\mathfrak{A}, u, v)$. Then, by Theorem 6 there exists a μ with $\lambda>$ $\mu \geq \lambda_{L}(\mathfrak{A}, u, v)$ such that $A_{\mu} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)$. Put

$$
E_{\lambda-\mu}:=\sum_{n=0}^{\infty} \oplus 2^{-(\lambda-\mu) n} E_{2^{n}},
$$

where $E_{2^{n}}$ are the $2^{n} \times 2^{n}$ unit matrices. Since $E_{\lambda-\mu} \in \mathcal{Q}\left(\ell_{\mu}, \ell_{u}\right)$, we have $A_{\lambda}=$ $A_{\mu} E_{\lambda-\mu} \in \mathfrak{A}\left(\ell_{\mu}, \ell_{\nu}\right)$.

Next, for $\sigma=\left\{\sigma_{n}\right\}_{n \in N_{0}} \in \ell_{\infty}$ we put

$$
A_{\sigma}:=\sum_{n=0}^{\infty} \oplus \sigma_{n} A_{2^{n}}=\left[\begin{array}{cccc}
\sigma_{0} A_{2^{0}} & & & \\
& \sigma_{1} A_{2^{1}} & & 0 \\
& \ddots & \\
& & \ddots & \\
& & \sigma_{n} A_{2^{n}} \\
& & & \ddots \\
0 & & & \ddots
\end{array}\right] .
$$

Such a type of operator is used, e.g., in [13]. The following result is analogous to (5).

Theorem 7. For $1 \leq u, v \leq \infty$

$$
\lambda_{L}(\mathfrak{A}, u, v)=\inf \left\{1 / r \geq 0 ; \sigma \in \ell_{r, \infty}^{0}\left(\left\{2^{n}\right\}\right) \Longrightarrow A_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\}
$$

Proof. Let us assume that $\sigma \in \ell_{r, \infty}^{0}\left(\left\{2^{n}\right\}\right)$ implies $A_{\sigma} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$. Then, $A_{\lambda} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$ for any $\lambda>1 / r$ because $\left\{2^{-\lambda n}\right\} \in \ell_{r, \infty}^{0}\left(\left\{2^{n}\right\}\right)$. Hence we have the inequality " \leq " by Theorem 6 .

Conversely, let $1 / r>\lambda_{L}(\mathfrak{A}, u, v)$. Then $A_{1 / r} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$. Let $\sigma=\left\{\sigma_{n}\right\} \in$ $\ell_{r, \infty}^{0}\left(\left\{2^{n}\right\}\right)$. Then

$$
D:=\sum_{n=0}^{\infty} \oplus 2^{n / r} \sigma_{n} E_{2^{n}} \in \mathscr{L}\left(\ell_{u}, \ell_{u}\right)
$$

Therefore we have $A_{\sigma}=A_{1 / r} D \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)$.
The following lemma refines Pietsch's results implicitly shown in [20].
Lemma 4 (cf. [20], Lemma 12, (5), and (5*)). Let $1 \leq u, v \leq \infty$. Then,

$$
\begin{equation*}
\left\|A_{2^{n}}: \ell_{u}^{2^{n}} \longrightarrow \ell_{v}^{2^{n}}\right\|=2^{n \lambda(u, v)} \tag{22}
\end{equation*}
$$

($\ell_{u}^{2 n}$-spaces are assumed to be complex), where

$$
\lambda(u, v)=\lambda_{L}(\mathcal{L}, u, v)= \begin{cases}1 / u^{\prime}+1 / v-1 / 2 & \text { if } 2 \leq u \leq \infty, 1 \leq v \leq 2 \\ 1 / v & \text { if } 1 \leq u \leq 2,1 \leq v \leq u^{\prime} \\ 1 / u^{\prime} & \text { if } v^{\prime} \leq u \leq \infty, 2 \leq v \leq \infty\end{cases}
$$

$1 / u+1 / u^{\prime}=1 / v+1 / v^{\prime}=1 . \quad$ In particular,

$$
\left\|A_{2^{n}}: \ell_{u}^{2 n} \rightarrow \ell_{u}^{2^{n}}\right\|=2^{n \cdot \max \left(1 / u, 1 / u^{\prime}\right)}
$$

Proof. The inequality " \leq " of (22) is obtained in the computation of (5) in [20]. Let $2 \leq u \leq \infty, 1 \leq v \leq 2$. Put $A_{2^{n}}=\left[\varepsilon_{j k}^{(n)}\right]$. We define $\sigma^{(n)}=\left\{\sigma_{k}^{(n)}\right\} \in$ $\ell_{u}^{2 n}$ inductively as follows. Let $\sigma_{1}^{(1)}=2^{-1 / 2} e^{-i \pi / 4}, \sigma_{2}^{(1)}=2^{-1 / 2} e^{i \pi / 4}$, and put $\sigma_{2 k-1}^{(m+1)}=\sigma_{1}^{(1)} \sigma_{k}^{(m)}, \quad \sigma_{2 k}^{(m+1)}=\sigma_{2}^{(1)} \sigma_{k}^{(m)} \quad\left(k=1, \ldots, 2^{m} ; m=1, \ldots, n-1\right)$. Then, $\left\|A_{2^{n}} \sigma^{(n)}\right\|_{v}=2^{n / v}$. Indeed, we have $\left|\sum_{k=1}^{2^{n}} \varepsilon_{j k}^{(n)} \sigma_{k}^{(n)}\right|=1$ for $j=1, \ldots, 2^{n}$; we prove it by induction. The case $n=1$ is trivial. Assume that $\left|\sum_{k=1}^{2 m} \varepsilon_{j k}^{(m)} \sigma_{k}^{(m)}\right|=1$ for $j=1, \ldots, 2^{m}$. Then, since

$$
\sum_{k=1}^{2 m} \varepsilon_{j k}^{(m)} \sigma_{2 m+k}^{(m+1)}=e^{i \pi / 2} \sum_{k=1}^{2 m} \varepsilon_{j k}^{(m)} \sigma_{k}^{(m+1)} \quad\left(j=1, \ldots, 2^{m}\right)
$$

(note that $\sigma_{2^{m+k}}^{(m+1)}=e^{i \pi / 2} \sigma_{k}^{(m+1)}$) and

$$
2^{1 / 2} e^{i \pi / 4} \sigma_{k}^{(m+1)}=\sigma_{k}^{(m)} \quad\left(k=1, \ldots, 2^{m}\right)
$$

we have for $j=1, \ldots, 2^{m}$

$$
\begin{aligned}
\left|\sum_{k=1}^{2 m+1} \varepsilon_{j k}^{(m+1)} \sigma_{k}^{(m+1)}\right| & =\left|\sum_{k=1}^{2 m} \varepsilon_{j k}^{(m)} \sigma_{k}^{(m+1)}+\sum_{k=1}^{2 m} \varepsilon_{j k}^{(m)} \sigma_{2 m+k}^{(m+1)}\right| \\
& =2^{1 / 2}\left|\sum_{k=1}^{2 m} \varepsilon_{j k}^{(m)} \sigma_{k}^{(m+1)}\right| \\
& =\left|\sum_{k=1}^{2 m} \varepsilon_{j k}^{(m)} \sigma_{k}^{(m)}\right|=1:
\end{aligned}
$$

The proof for $j=2^{m}+1, \ldots, 2^{m+1}$ is immediate from this. On the other hand, $\left\|\sigma^{(n)}\right\|_{u}=\left(2^{n}\right)^{1 / u-1 / 2}$. Consequently, we have $\left\|A_{2^{n}} \sigma^{(n)}\right\|_{v}=\left(2^{n}\right)^{1 / u^{\prime}+1 / v-1 / 2}\left\|\sigma^{(n)}\right\|_{u}$. In the second and last cases, the vectors $(1,0, \ldots, 0)$ and $(1, \ldots, 1) \in \ell_{u}^{2 n}$ satisfy the equation $\left\|A_{2^{n}} \xi\right\|_{v}=2^{n \lambda(u, v)}\|\xi\|_{u}$, respectively. Thus, we obtain (22). [Note: Combined with the computations of (5) and (5*) in [20], the inequality

$$
\left\|A_{2^{n}}: \ell_{u}^{2^{n}} \longrightarrow \ell_{v}^{2^{n}}\right\| \mathbf{N}_{1}\left(A_{2^{n}}: \ell_{v}^{2^{n}} \longrightarrow \ell_{u}^{2^{n}}\right) \geq \operatorname{trace}\left(2^{n} E_{2^{n}}\right)=2^{2 n}
$$

(cf. the proof of Lemma 12 in [20]) also yields (22) except the case $2 \leq u \leq \infty$, $1 \leq v \leq 2$, in which it yields only

$$
c_{G}^{-1} 2^{n \lambda(u, v)} \leq\left\|A_{2^{n}}: \ell_{u}^{2^{n}} \longrightarrow \ell_{v}^{2^{n}}\right\| \leq 2^{n \lambda(u, v)},
$$

$c_{G}(>1)$ being the Grothendieck constant. Here \mathbf{N}_{1} is the nuclear norm (see (33) in §7).]

Now, let $B_{2^{n}}$ be arbitrary $2^{n} \times 2^{n}$ matrices ($n \in N_{0}$) and put

$$
B:=\sum_{n=0}^{\infty} \oplus B_{2^{n}}=\left[\begin{array}{ccccc}
B_{2^{0}} & & & & \\
& B_{2^{1}} & & & 0 \\
& & \ddots & & \\
& & & B_{2^{n}} & \\
& & & & \\
& & & \ddots
\end{array}\right]
$$

We write $\left\|B_{2^{n}}\right\|_{s, t}$ for $\left\|B_{2^{n}}: \ell_{s}^{2^{n}} \longrightarrow \ell_{t}^{2^{n}}\right\|, 1 \leq s, t \leq \infty$. In the next theorem we introduce another limit order $\mu(\mathfrak{l l})$.

Theorem 8. Let $1 \leq u, v \leq \infty$. Let $\kappa(t)=\min \left(1 / t, 1 / t^{\prime}\right)$ for $1 \leq t \leq \infty$, where $1 / t+1 / t^{\prime}=1$.
(i) If $\sup _{n \in N_{0}}\left(2^{n}\right)^{\lambda-\kappa(t)}\left\|B_{2^{n}}\right\|_{t, t}<\infty$ for $t=u$ or v with some $\lambda>\lambda_{L}(\mathfrak{A}, u, v)$, then

$$
B=\sum_{n=0}^{\infty} \oplus B_{2^{n}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)
$$

(ii) Let

$$
\begin{aligned}
& \mu(\mathfrak{A}, u, v):=\inf \left\{\mu>0 ; \sup _{n \in \boldsymbol{N}_{0}}\left(2^{n}\right)^{u}\left\|B_{2^{n}}\right\|_{t, t}<\right. \infty(t=u \text { or } v) \\
&\left.\Longrightarrow B \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)\right\} .
\end{aligned}
$$

Then,

$$
\begin{equation*}
\lambda(\mathfrak{A}, u, v) \leq \mu(\mathfrak{A}, u, v) \leq \lambda_{L}(\mathfrak{A}, u, v)-\max \{\kappa(u), \kappa(v)\} . \tag{23}
\end{equation*}
$$

Proof. (i) Let us assume that $\sup _{n \in N_{0}}\left(2^{n}\right)^{\lambda-\kappa(u)}\left\|B_{2^{n}}\right\|_{u, u}<\infty$. (The proof for $t=v$ is similar.) Put

$$
C:=\sum_{n=0}^{\infty} \oplus 2^{(\lambda-1) n} A_{2^{n}} B_{2^{n}}
$$

Then, $C \in \mathcal{L}\left(\ell_{u}, \ell_{u}\right)$ because by Lemma 4

$$
\begin{aligned}
\sup _{n}\left\|2^{(\lambda-1) n} A_{2^{n}} B_{2^{n}}\right\|_{u, u} & \leq \sup _{n} 2^{(\lambda-1) n}\left\|A_{2^{n}}\right\|_{u, u}\left\|B_{2^{n}}\right\|_{u, u} \\
& =\sup _{n}\left(2^{n}\right)^{\lambda-1}\left(2^{n}\right)^{\max \left(1 / u, 1 / u^{\prime}\right)}\left\|B_{2^{n}}\right\|_{u, u} \\
& =\sup _{n}\left(2^{n}\right)^{\lambda-\kappa(u)}\left\|B_{2^{n}}\right\|_{u, u}<\infty .
\end{aligned}
$$

(Note that C is block diagonal.) On the other hand,

$$
A_{\lambda}=\sum_{n=0}^{\infty} \oplus 2^{-\lambda n} A_{2^{n}} \in \mathfrak{H}\left(\ell_{u}, \ell_{v}\right)
$$

by the assumption $\lambda>\lambda_{L}(\mathfrak{U}, u, v)$. Since $A_{2^{n}}^{2}=2^{n} E_{2^{n}}$, we have

$$
A_{\lambda} C=\sum_{n=0}^{\infty} \oplus 2^{-n} A_{2^{n}}^{2} B_{2^{n}}=\sum_{n=0}^{\infty} \oplus B_{2^{n}}=B
$$

and consequently, $B \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$.
(ii) From (i) it immediately follows that

$$
\mu(\mathfrak{A}, u, v) \leq \lambda_{L}(\mathfrak{H}, u, v)-\kappa(t) \quad \text { for } \quad t=u \text { and } v
$$

or the second inequality of (23). Let us suppose that $\sup _{n \in N_{0}}\left(2^{n}\right)^{n}\left\|B_{2^{n}}\right\|_{t, t}<\infty$ for $t=u$ or v implies $B \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$. Put

$$
B_{2^{n}}:=\left[\begin{array}{ccccc}
\left(2^{n}\right)^{-\mu} & & & & \\
& \left(2^{n}+1\right)^{-\mu} & & & 0 \\
& & \ddots & & \\
& & \ddots & & \\
& & & \ddots & \\
& & & \ddots & \\
& & & \ddots & \\
& & & & \left(2^{n+1}-1\right)^{-\mu}
\end{array}\right]
$$

Then, $\quad D_{\mu}=\sum_{n=0}^{\infty} \oplus B_{2^{n}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$ since $\sup _{n \in N_{0}}\left(2^{n}\right)^{\mu}\left\|B_{2^{n}}\right\|_{t, t}<\infty$. Consequently, we have

$$
\lambda(\mathfrak{A}, u, v) \leq \mu,
$$

which implies the first inequality of (23).

In Theorem 10 in the next section we shall show

$$
\begin{align*}
\lambda(\mathfrak{A}, u, v)+\max \{\kappa(u), \kappa(v)\} & \leq \lambda_{L}(\mathfrak{H}, u, v) \tag{24}\\
& \leq \lambda(\mathfrak{H}, u, v)+1-\max \{\kappa(u), \kappa(v)\} .
\end{align*}
$$

Combined with this, Theorem 8 yields
Corollary 1. Let $1 \leq u, v \leq \infty$. Then, we have

$$
\begin{align*}
\lambda_{L}(\mathfrak{H}, u, v)-1+\max \{\kappa(u), \kappa(v)\} & \leq \mu(\mathfrak{H}, u, v) \tag{25}\\
& \leq \lambda_{L}(\mathfrak{H}, u, v)-\max \{\kappa(u), \kappa(v)\}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda(\mathfrak{H}, u, v) \leq \mu(\mathfrak{H}, u, v) \leq \lambda(\mathfrak{A}, u, v)+1-2 \max \{\kappa(u), \kappa(v)\} . \tag{26}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\mu(\mathfrak{H}, u, v)=\lambda(\mathfrak{A}, u, v)=\lambda_{L}(\mathfrak{A}, u, v)-\frac{1}{2} \quad \text { if } u=2 \text { or } v=2 . \tag{27}
\end{equation*}
$$

Combined with (24), (26) and (27), Theorems 6,7 and 8 yield criteria by $\lambda(\mathfrak{H}, u, v)$ such that a block diagonal matrix operator belongs to $\mathfrak{A}\left(\ell_{u}, \ell_{v}\right)$. Taking account of the fact that the limit order $\lambda(\mathcal{H}, u, v)$ is extensively calculated for various special ideals \mathfrak{Y} (cf. [23], 14.4 and 22.4-6; [2]), these inequalities and identities would be useful. In particular, by Theorem 8 with (26) and (25) we obtain

Corollary 2. Let $1 \leq u, v \leq \infty$. Let

$$
\sup _{n \in N_{0}}\left(2^{n}\right)^{\mu}\left\|B_{2^{n}}\right\|_{t, t}<\infty \quad(t=u \quad \text { or } \quad v)
$$

for some μ with

$$
\mu>\lambda(\mathfrak{A}, u, v)+1-2 \max \{\kappa(u), \kappa(v)\}
$$

or

$$
\mu>\lambda_{L}(\mathfrak{U}, u, v)-\max \{\kappa(u), \kappa(v)\} .
$$

Then,

$$
B=\sum_{n=0}^{\infty} \oplus B_{2^{n}} \in \mathfrak{A}\left(\ell_{u}, \ell_{v}\right) .
$$

This result may be compared with the following one given by Pietsch [24] recently.

Proposition B ([24], Theorem 1). Let $0<p<\infty$ and $S \in \mathfrak{L}(E, F)$. Then,
$S \in \mathfrak{A}_{p}$ if and only if there exists a sequence $\left\{S_{n}\right\}$ in $\mathfrak{L}(E, F)$ with rank $\left(S_{n}\right) \leq 2^{n}$ and $\sum_{n=0}^{\infty} 2^{n}\left\|S_{n}\right\|^{p}<\infty$ such that $S=\sum_{n=0}^{\infty} S_{n}$.

Combining Corollary 2 and Proposition B, we have
Corollary 3. Let $1 \leq u, v \leq \infty$. Let $0<p<\infty$ and

$$
\frac{1}{p}>\lambda(\mathfrak{K}, u, v)+1-2 \max \{\kappa(u), \kappa(v)\}
$$

or

$$
\frac{1}{p}>\lambda_{L}(\mathfrak{H}, u, v)-\max \{\kappa(u), \kappa(v)\} .
$$

Assume that

$$
\sum_{n=0}^{\infty} 2^{n}\left\|B_{2^{n}}\right\|_{s, t}^{p}<\infty,
$$

where $(s, t)=(u, u)$ or (v, v) if $u \leq v$ and $(s, t)=(u, v)$ if $u \geq v$. Then,

$$
B=\sum_{n=0}^{\infty} \oplus B_{2^{n}} \in\left(\mathfrak{A} \cap \mathfrak{A}_{p}\right)\left(\ell_{u}, \ell_{v}\right)
$$

The proof is immediate by observing that

$$
\left\|B_{2^{n}}\right\|_{u, v} \leq\left\|B_{2^{n}}\right\|_{u, u},\left\|B_{2^{n}}\right\|_{v, v} \quad \text { if } u \leq v
$$

and

$$
\left\|B_{2^{n}}\right\|_{u, u},\left\|B_{2^{n}}\right\|_{v, v} \leq\left\|B_{2^{n}}\right\|_{u, v} \quad \text { if } \quad u \geq v
$$

Now, we show that $\lambda_{L}(\mathfrak{Q}, u, v)$ gives the same criteria as in Theorem 6 or its Corollary, and Theorem 7 for (block diagonal matrix) operators between Lorentz sequence spaces $\ell_{u, s}$ and $\ell_{v, t}$. Some results of this type for $\lambda(\mathfrak{A}, u, v)$ are obtained in [17] and [8].

The following lemma is easily derived from the property $\left(\mathrm{QN}_{3}\right)$ of quasinormed operator ideals (cf. (1.4) in [10]).

Lemma 5. For $1 \leq u_{1}, u_{2}, v_{1}, v_{2} \leq \infty$,

$$
\left|\lambda_{L}\left(\mathfrak{H}, u_{1}, v_{1}\right)-\lambda_{L}\left(\mathfrak{H}, u_{2}, v_{2}\right)\right| \leq\left|\frac{1}{u_{1}}-\frac{1}{u_{2}}\right|+\left|\frac{1}{v_{1}}-\frac{1}{v_{2}}\right| .
$$

Theorem 6'. Let $1 \leq u, v, s, t \leq \infty$. Then,

$$
\begin{equation*}
\lambda_{L}(\mathfrak{A}, u, v)=\inf \left\{\lambda>0 ; A_{\lambda} \in \mathfrak{H}\left(\ell_{u, s}, \ell_{v, t}\right)\right\} \tag{28}
\end{equation*}
$$

Proof. Let us show the inequality " \leq ". If $1<u \leq \infty$ and $1 \leq v<\infty$, take arbitrary u_{1} and v_{1} with $1<u_{1}<u$ and $v<v_{1}<\infty$. Then, the inclusion maps $\ell_{u_{1}} \hookrightarrow \ell_{u, s}$ and $\ell_{v, t} \hookrightarrow \ell_{v_{1}}$ are continuous by Lemma C. Hence, $A_{\lambda} \in \mathfrak{A}\left(\ell_{u, s}, \ell_{v, t}\right)$
implies $A_{\lambda} \in \mathfrak{A}\left(\ell_{u_{1}}, \ell_{v_{1}}\right)$. By Theorem 6 this implies

$$
\begin{equation*}
\lambda_{L}\left(\mathfrak{A}, u_{1}, v_{1}\right) \leq \inf \left\{\lambda>0 ; A_{\lambda} \in \mathfrak{A}\left(\ell_{u, s}, \ell_{v, t}\right)\right\} \tag{29}
\end{equation*}
$$

Letting $u_{1} \rightarrow u$ and $v_{1} \rightarrow v$, we have the desired inequality by Lemma 5. If $u=1$ or $v=\infty$, we have only to put $u_{1}=u=1$ or $v_{1}=v=\infty$.

In a similar way, we obtain the converse inequality of (29) for any u_{1} and v_{1} with $1 \leq u \leq u_{1} \leq \infty$ and $1 \leq v_{1} \leq v \leq \infty$, and hence the inequality " \geq " of (28).

Corollary. Let $1 \leq u, v, s, t \leq \infty$. If $\lambda>\lambda_{L}(\mathfrak{A}, u, v)\left(\right.$ resp. $\left.\lambda<\lambda_{L}(\mathfrak{H}, u, v)\right)$, then $A_{\lambda} \in \mathfrak{A}\left(\ell_{u, s}, \ell_{v, t}\right)\left(\right.$ resp. $\left.A_{\lambda} \notin \mathfrak{Y}\left(\ell_{u, s}, \ell_{v, t}\right)\right)$.

By Theorem 6' we have easily
Theorem 7'. Let $1 \leq u, v, s, t \leq \infty$. Then,

$$
\lambda_{L}(\mathfrak{A l}, u, v)=\inf \left\{1 / r \geq 0 ; \sigma \in \ell_{r, \infty}^{0}\left(\left\{2^{n}\right\}\right) \Longrightarrow A_{\sigma} \in \mathfrak{A}\left(\ell_{u, s}, \ell_{v, t}\right)\right\}
$$

In the rest of this section, we give a representation of $\lambda_{L}(\mathcal{L}, u, v)$ which is closely related with Clarkson's inequalities. Let $\mathscr{L}_{p}=\mathscr{L}_{p}(X, \mathscr{M}, \mu)$ be the usual (complex) \mathscr{L}_{p}-space, $1 \leq p<\infty$, on an arbitrary but fixed measure space (X, \mathscr{M}, μ). Let $\ell_{u}^{n}\left(\mathscr{L}_{p}\right), 1 \leq u \leq \infty$, denote the direct sum of n copies of \mathscr{L}_{p} with the norm

$$
\|\boldsymbol{f}\|_{u(p)}= \begin{cases}\left(\sum_{j=1}^{n}\left\|f_{j}\right\|_{p}^{u}\right)^{1 / u} & (1 \leq u<\infty) \\ \max _{1 \leq j \leq n}\left\|f_{j}\right\|_{p} & (u=\infty)\end{cases}
$$

for $\boldsymbol{f}=\left\{f_{j}\right\} \in \ell_{u}^{n}\left(\mathscr{L}_{p}\right)$. In [9] the author showed the following
Theorem 9 ([9], Theorems 1 and 3). (i) Let $1<p<\infty$ and $1 \leq u, v \leq \infty$. Assume that \mathscr{M} contains infinitely many (countable) mutually disjoint sets of finite positive measure. Then, for every $n \in N_{0}$

$$
\begin{equation*}
\left\|A_{2^{n}}: \ell_{u}^{2 n}\left(\mathscr{L}_{p}\right) \longrightarrow \ell_{v}^{2^{n}}\left(\mathscr{L}_{p}\right)\right\|=2^{n c(u, v ; p)}, \tag{30}
\end{equation*}
$$

where

$$
c(u, v ; p)= \begin{cases}\frac{1}{u^{\prime}}+\frac{1}{v}-\min \left(\frac{1}{p}, \frac{1}{p^{\prime}}\right) & \text { if } \min \left(p, p^{\prime}\right) \leq u \leq \infty \\ 1 \leq v \leq \max \left(p, p^{\prime}\right) \\ \frac{1}{v} & \text { if } 1 \leq u \leq \min \left(p, p^{\prime}\right), 1 \leq v \leq u^{\prime} \\ \frac{1}{u^{\prime}} & \text { if } v^{\prime} \leq u \leq \infty, \max \left(p, p^{\prime}\right) \leq v \leq \infty\end{cases}
$$

$1 / p+1 / p^{\prime}=1 / u+1 / u^{\prime}=1 / v+1 / v^{\prime}=1$. In particular,

$$
\begin{equation*}
\left\|A_{2^{n}}: \ell_{u}^{2^{n}}\left(\mathscr{L}_{2}\right) \longrightarrow \ell_{v}^{2^{n}}\left(\mathscr{L}_{2}\right)\right\|=2^{n \lambda(u, v)}, \tag{31}
\end{equation*}
$$

$\lambda(u, v)$ being as in Lemma 4.
(ii) Let $1 \leq q \leq p<\infty$. Assume that $\mu(X)<\infty$. Then,

$$
\begin{equation*}
\left\|A_{2^{n}}: \ell_{p}^{2^{n}}\left(\mathscr{L}_{p}\right) \longrightarrow \ell_{q}^{2^{n}}\left(\mathscr{L}_{q}\right)\right\|=\mu(X)^{1 / q-1 / p} 2^{n \lambda(p, q)} \tag{32}
\end{equation*}
$$

To compare the norms (22) and (30) of $A_{2^{n}}$ in $\ell_{u}^{2^{n}-}$ and $\ell_{u}^{2^{n}}\left(\mathscr{L}_{p}\right)$-spaces, it is convenient to express $\lambda(u, v)$ and $c(u, v ; p)$ graphically in the unit squares with the coordinates $1 / u$ and $1 / v$ as follows.

By (30)-(32) and Lemma 4, we have
Corollary. (i) Let $1<p<\infty$ and $1 \leq u$, $v \leq \infty$. Assume that \mathscr{M} contains
infinitely many (countable) mutually disjoint sets of finite positive measure. Then,

$$
\begin{aligned}
& \lambda_{L}(\mathscr{L}, u, v)+\delta(u, v ; p) \\
& \quad=\inf \left\{\lambda>0 ;{ }^{3} c=c(u, v, \lambda) \text { s.t. }\left\|A_{2^{n}}: \ell_{u}^{2 n}\left(\mathscr{L}_{p}\right) \rightarrow \ell_{v}^{2^{n}}\left(\mathscr{L}_{p}\right)\right\| \leq c\left(2^{n}\right)^{\lambda} \quad\left({ }^{\forall} n \in N_{0}\right)\right\},
\end{aligned}
$$

where

$$
\delta(u, v ; p)= \begin{cases}\frac{1}{2}-\kappa(p) & \text { if } 1 \leq v \leq 2 \leq u \leq \infty \\ \frac{1}{u^{\prime}}-\kappa(p) & \text { if } \min \left(p, p^{\prime}\right) \leq u \leq 2,1 \leq v \leq u^{\prime}, \\ \frac{1}{v}-\kappa(p) & \text { if } v^{\prime} \leq u \leq \infty, 2 \leq v \leq \max \left(p, p^{\prime}\right), \\ 0 & \text { if } 1 \leq u \leq \min \left(p, p^{\prime}\right) \text { or } \max \left(p, p^{\prime}\right) \leq v \leq \infty,\end{cases}
$$

$\kappa(p)=\min \left(1 / p, 1 / p^{\prime}\right) . \quad$ In particular,

$$
\begin{aligned}
& \lambda_{L}(\mathscr{L}, u, v) \\
& \quad=\inf \left\{\lambda>0 ;{ }^{\exists} c=c(u, v, \lambda) \text { s.t. }\left\|A_{2^{n}}: \ell_{u}^{2 n}\left(\mathscr{L}_{2}\right) \rightarrow \ell_{v}^{2 n}\left(\mathscr{L}_{2}\right)\right\| \leq c\left(2^{n}\right)^{\lambda} \quad\left({ }^{\forall} n \in N_{0}\right)\right\} .
\end{aligned}
$$

(ii) Let $1 \leq v \leq u<\infty$. Assume that $\mu(X)<\infty$. Then,

$$
\begin{aligned}
& \lambda_{L}(\mathscr{L}, u, v) \\
& \quad=\inf \left\{\lambda>0 ;{ }^{3} c=c(u, v, \lambda) \text { s.t. }\left\|A_{2^{n}}: \ell_{u}^{2^{n}}\left(\mathscr{L}_{u}\right) \rightarrow \ell_{v}^{2 n}\left(\mathscr{L}_{v}\right)\right\| \leq c\left(2^{n}\right)^{\lambda} \quad\left({ }^{\forall} n \in N_{0}\right)\right\} .
\end{aligned}
$$

For (i), observe that

$$
\left\|A_{2^{n}}: \ell_{u}^{2^{n}}\left(\mathscr{L}_{p}\right) \longrightarrow \ell_{v}^{2^{n}}\left(\mathscr{L}_{p}\right)\right\|=2^{n \delta(u, v ; p)}\left\|A_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{v}^{2^{n}}\right\| .
$$

Remark 3. We write $A_{2^{n}}=\left[\varepsilon_{i j}\right]$. Then, (30) in Theorem 9 yields the inequality

$$
\left(\sum_{i=1}^{2^{n}}\left\|\sum_{j=1}^{2 n} \varepsilon_{i j} f_{j}\right\|_{p}^{v}\right)^{1 / v} \leq 2^{n c(u, v ; p)}\left(\sum_{j=1}^{2^{n}}\left\|f_{j}\right\|_{p}^{u}\right)^{1 / u} \quad\left({ }_{1}, \ldots, f_{2^{n}} \in \mathscr{L}_{p}\right)
$$

(the usual modification is required if $u=\infty$ or $v=\infty$). This includes as special cases all the following well-known inequalities given by J. A. Clarkson [3] and R. P. Boas [1]: For all f and g in \mathscr{L}_{p},

$$
\begin{aligned}
& \left(\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p}\right)^{1 / p} \leq\left\{\begin{array}{lll}
2^{1 / p}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)^{1 / p} & \text { if } \quad 1<p<2 ; \\
2^{1 / p^{\prime}}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)^{1 / p} & \text { if } \quad 2 \leq p<\infty ; ~
\end{array}\right. \\
& \left(\|f+g\|_{p}^{p^{\prime}}+\|f-g\|_{p}^{p^{\prime}}\right)^{1 / p^{\prime}} \leq 2^{1 / p^{\prime}}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)^{1 / p} \quad \text { if } \quad 1<p<2 \text {; } \\
& \left(\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p}\right)^{1 / p} \leq 2^{1 / p}\left(\|f\|_{p}^{p \prime}+\|g\|_{p}^{p \prime}\right)^{1 / p^{\prime}} \quad \text { if } \quad 2 \leq p<\infty \text {, }
\end{aligned}
$$

where $1 / p+1 / p^{\prime}=1$ (Clarkson [3], Theorem 2; see also E. Hewitt and K. Stromberg [5], §15); and including them except the first inequality for $1<p<2$,

$$
\left(\|f+g\|_{p}^{v}+\|f-g\|_{p}^{v}\right)^{1 / v} \leq 2^{1 / u^{\prime}}\left(\|f\|_{p}^{u}+\|g\|_{p}^{u}\right)^{1 / u}
$$

holds for $1<u \leq p \leq v<\infty$ and $u^{\prime} \leq v, 1 / u+1 / u^{\prime}=1$ (Boas [1], Theorem 1).

§7. A relation between $\lambda_{L}(\mathfrak{H})$ and $\lambda(\mathfrak{H})$

Theorem 10. Let $1 \leq u, v \leq \infty$. Let $\kappa(t)=\min \left(1 / t, 1 / t^{\prime}\right), 1 \leq t \leq \infty$, where $1 / t+1 / t^{\prime}=1$. Then,

$$
\begin{align*}
\lambda(\mathfrak{H}, u, v)+\max \{\kappa(u), \kappa(v)\} & \leq \lambda_{L}(\mathfrak{H}, u, v) \tag{24}\\
& \leq \lambda(\mathfrak{A}, u, v)+1-\max \{\kappa(u), \kappa(v)\}
\end{align*}
$$

In particular,

$$
\lambda_{L}(\mathfrak{A}, u, v)=\lambda(\mathfrak{A}, u, v)+\frac{1}{2} \quad \text { if } \quad u=2 \quad \text { or } \quad v=2 .
$$

Proof. Let us first show the second inequality. Suppose that $\mathbf{A}\left(I_{n}: \ell_{u}^{n} \rightarrow \ell_{v}^{n}\right) \leq c n^{\lambda}\left({ }^{\forall} n \in N\right)$ with some c. Then, by Lemma 4

$$
\begin{aligned}
\mathbf{A}\left(A_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{v}^{2 n}\right) & \leq\left\{\begin{array}{l}
\left\|A_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{u}^{2^{n}}\right\| \mathbf{A}\left(I_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{v}^{2^{n}}\right), \\
\mathbf{A}\left(I_{2^{n}}: \ell_{u}^{2 n} \longrightarrow \ell_{v}^{2 n}\right)\left\|A_{2^{n}}: \ell_{v}^{2 n} \longrightarrow \ell_{v}^{2^{n}}\right\|
\end{array}\right. \\
& \leq\left\{\begin{array}{l}
c\left(2^{n}\right)^{\lambda+\max \left(1 / u, 1 / u^{\prime}\right)}, \\
c\left(2^{n}\right)^{\lambda+\max \left(1 / v, 1 / v^{\prime}\right)} .
\end{array}\right.
\end{aligned}
$$

for all $n \in N_{0}$. Since $\max \left(1 / t, 1 / t^{\prime}\right)=1-\kappa(t)$, we obtain the desired inequality.
The first inequality in (24) has already been obtained in Theorem 8; it can be also shown directly as follows. Let $\mathbf{A}\left(A_{2^{n}}: \ell_{u}^{2 n} \rightarrow \ell_{v}^{2^{n}}\right) \leq c\left(2^{n}\right)^{\lambda}\left({ }^{\forall} n \in N_{0}\right)$. Then, using the identity $A_{2^{n}}^{2}=2^{n} E_{2^{n}}$ and Lemma 4, we have

$$
\mathbf{A}\left(I_{2^{n}}: \ell_{u}^{2^{n}} \longrightarrow \ell_{v}^{2^{n}}\right) \leq c\left(2^{n}\right)^{\lambda-\kappa(t)} \quad \text { for } t=u \text { and } v
$$

Consequently, by $\left(\mathrm{QN}_{3}\right)$,

$$
\begin{aligned}
\lambda(\mathfrak{H}, u, v)=\inf \left\{\lambda>0 ;{ }^{3} c\right. & \left.=c(u, v, \lambda) \text { s.t. } \mathbf{A}\left(I_{2^{n}}: \ell_{u}^{2^{n}} \rightarrow \ell_{v}^{2^{n}}\right) \leq c\left(2^{n}\right)^{\lambda}\left({ }^{\forall} n \in N_{0}\right)\right\} \\
& \leq \lambda-\max \{\kappa(u), \kappa(v)\} .
\end{aligned}
$$

By Theorem 10 and (19) we have

Corollary. If $[\mathfrak{A}, \mathbf{A}]$ is a normed operator ideal, then

$$
\max \{\kappa(u), \kappa(v)\} \leq \lambda_{L}(\mathfrak{A}, u, v) \leq 2-\max \{\kappa(u), \kappa(v)\}
$$

for $1 \leq u, v \leq \infty$.
We finally observe that (24) in Theorem 10 is best possible for most values of u and v in the sense that equality occurs in each inequality of (24) with suitable ideals. Let us first recall the definitions of the ideals \mathfrak{N}_{p} and $\mathfrak{P}_{p}(1 \leq p<\infty)$ of p-nuclear and absolutely p-summing operators respectively. An operator $S \in \mathcal{Q}(E, F)$ is called p-nuclear ([18]; [23], 18.2.1) if it is represented as

$$
S x=\sum_{n=1}^{\infty}\left\langle x, a_{n}\right\rangle y_{n} \quad \text { for all } \quad x \in E
$$

with $\left\{a_{n}\right\} \subset E^{\prime}$ and $\left\{y_{n}\right\} \subset F$ such that

$$
\left(\sum_{n=1}^{\infty}\left\|a_{n}\right\|^{p}\right)^{1 / p}<\infty
$$

and

$$
\sup \left\{\left(\sum_{n=1}^{\infty}\left|\left\langle y_{n}, b\right\rangle\right|^{p^{\prime}}\right)^{1 / p^{\prime}} ;\|b\| \leq 1, b \in F^{\prime}\right\}<\infty
$$

Put

$$
\begin{equation*}
\mathbf{N}_{p}(S):=\inf \left[\left(\sum_{n=1}^{\infty}\left\|a_{n}\right\|^{p}\right)^{1 / p} \sup _{\|b\| \leq 1}\left(\sum_{n=1}^{\infty}\left|\left\langle y_{n}, b\right\rangle\right|^{p^{\prime}}\right)^{1 / p^{\prime}}\right] \tag{33}
\end{equation*}
$$

where the infimum is taken over all such representations of S as above. An operator $S \in \mathfrak{L}(E, F)$ is called absolutely p-summing ([19]; [23], 17.3.1) if there exists a constant $\rho \geq 0$ such that for every finite system of elements $x_{1}, x_{2}, \ldots, x_{n} \in$ E,

$$
\left(\sum_{i=1}^{n}\left\|S x_{i}\right\|^{p}\right)^{1 / p} \leq \rho \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle x_{i}, a\right\rangle\right|^{p}\right)^{1 / p} ;\|a\| \leq 1, a \in E^{\prime}\right\} .
$$

The infimum of all such ρ is denoted by $\pi_{p}(S) . \quad\left[\mathfrak{N}_{p}, \mathbf{N}_{p}\right]$ and $\left[\mathfrak{P}_{p}, \pi_{p}\right]$ are normed operator ideals.

Remark 4. In the inequalities of (24) in Theorem 10, equality is attained as in the following table:

	left	right
$1 \leq u, v \leq 2$	\mathfrak{N}_{1}	\mathfrak{L}
$1 \leq u \leq 2 \leq v \leq \infty$	\mathfrak{Q}	
$1 \leq v \leq 2 \leq u \leq \infty$		$\mathfrak{N}_{1}, \mathfrak{P}_{1}$
$2 \leq u, v \leq \infty$	$\mathfrak{N}_{1}, \mathfrak{P}_{1}$	\mathfrak{Q}

In fact, $\lambda(\mathfrak{H}, u, v)$ and $\lambda_{L}(\mathfrak{A}, u, v)$ are calculated for $\mathfrak{A}=\mathfrak{L}, \mathfrak{N}_{p}$, and \mathfrak{P}_{p} in Pietsch [20] (see also [23], 22.4), from which we obtain the following.

$$
\lambda_{L}(\mathfrak{L}, u, v)=\lambda(\mathfrak{L}, u, v)+\left\{\begin{array}{lll}
\frac{1}{v^{\prime}} & \text { if (i) } 0 \leq \frac{1}{u} \leq \frac{1}{v} \leq \frac{1}{2} \tag{34}\\
\frac{1}{2} & \text { if } & \text { (ii) } 0 \leq \frac{1}{u} \leq \frac{1}{2} \leq \frac{1}{v} \leq 1 \\
\frac{1}{u^{\prime}} & \text { if } & \text { (iii) } 0 \leq \frac{1}{v} \leq \min \left(\frac{1}{u}, \frac{1}{u^{\prime}}\right) \\
\frac{1}{v} & \text { if } & \text { (iv) } \frac{1}{2} \leq \frac{1}{u} \leq 1, \frac{1}{u^{\prime}} \leq \frac{1}{v} \leq \frac{1}{u} \\
\frac{1}{u} & \text { if } & \text { (v) } \frac{1}{2} \leq \frac{1}{u} \leq 1, \frac{1}{u} \leq \frac{1}{v} \leq 1
\end{array}\right.
$$

The classification in (34) is graphically expressed as

(35) $\lambda_{L}\left(\mathfrak{N}_{1}, u, v\right)=\lambda\left(\mathfrak{N}_{1}, u, v\right)+\left\{\begin{array}{lll}\frac{1}{u} & \text { if } & \text { (i) } 0 \leq \frac{1}{v} \leq \frac{1}{u} \leq \frac{1}{2}, \\ \frac{1}{v} & \text { if } & \text { (ii) } 0 \leq \frac{1}{u} \leq \frac{1}{2}, \frac{1}{u} \leq \frac{1}{v} \leq \frac{1}{u^{\prime}}, \\ \frac{1}{2} & \text { if } & \text { (iii) } 0 \leq \frac{1}{v} \leq \frac{1}{2} \leq \frac{1}{u} \leq 1, \\ \frac{1}{v^{\prime}} & \text { if } & \text { (iv) } \frac{1}{2} \leq \frac{1}{v} \leq \frac{1}{u} \leq 1, \\ \frac{1}{u^{\prime}} & \text { if } & \text { (v) } \max \left(\frac{1}{u}, \frac{1}{u^{\prime}}\right) \leq \frac{1}{v} \leq 1:\end{array}\right.$

(36) $\lambda_{L}\left(\mathfrak{P}_{1}, u, v\right)=\lambda\left(\mathfrak{P}_{1}, u, v\right)+ \begin{cases}\frac{1}{u} & \text { if } \quad \text { (i) } 0 \leq \frac{1}{v} \leq \frac{1}{u} \leq \frac{1}{2}, \\ \frac{1}{v} & \text { if } \quad \text { (ii) } 0 \leq \frac{1}{u} \leq \frac{1}{2}, \frac{1}{u} \leq \frac{1}{v} \leq \frac{1}{u^{\prime}}, \\ \frac{1}{u^{\prime}} & \text { if } \quad \text { (iii) } 0 \leq \frac{1}{u} \leq \frac{1}{2}, \frac{1}{u^{\prime}} \leq \frac{1}{v} \leq 1, \\ \frac{1}{2} & \text { if } \quad \text { (iv) } \frac{1}{2} \leq \frac{1}{u} \leq 1:\end{cases}$

Now, let $0 \leq 1 / u, 1 / v \leq 1 / 2$. Then, the inequalities (24) are precisely

$$
\begin{equation*}
\lambda(\mathfrak{H}, u, v)+\frac{1}{u} \leq \lambda_{L}(\mathfrak{A}, u, v) \leq \lambda(\mathfrak{A}, u, v)+\frac{1}{u^{\prime}} \quad \text { if } \quad 0 \leq \frac{1}{v} \leq \frac{1}{u} \leq \frac{1}{2} \tag{37}
\end{equation*}
$$

and
(38) $\lambda(\mathfrak{A}, u, v)+\frac{1}{v} \leq \lambda_{L}(\mathfrak{H}, u, v) \leq \lambda(\mathfrak{H}, u, v)+\frac{1}{v^{\prime}} \quad$ if $0 \leq \frac{1}{u} \leq \frac{1}{v} \leq \frac{1}{2}$.

From (34)-(36) we conclude that both in (37) and (38), equality is attained on the left with $\mathfrak{H}=\mathfrak{N}_{1}$ and \mathfrak{P}_{1}, and on the right with $\mathfrak{A}=\mathfrak{L}$. This proves the assertion of Remark 4 for $2 \leq u, v \leq \infty$. The desired conclusion for the other cases is also derived from (34)-(36) in a similar way.

References

[1] R. P. Boas, Jr., Some uniformly convex spaces, Bull. Amer. Math. Soc. 46 (1940), 304-311.
[2] B. Carl and A. Pietsch, Some contributions to the theory of s-numbers, Comment. Math. Prace Mat. 21 (1978), 65-76.
[3] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[4] Y. Gordon, D. R. Lewis, and J. R. Retherford, Banach ideals of operators with applications, J. Functional Analysis 14 (1973), 85-129.
[5] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer, New York-Heidelberg-Berlin, 1965.
[6] C. V. Hutton, Approximation numbers of bounded linear operators, Dissertation, The Louisiana State University, 1973.
[7] M. Kato, On Lorentz spaces $\ell_{p, q}\{E\}$, Hiroshima Math. J. 6 (1976), 73-93.
[8] M. Kato, A note on limit orders of operator ideals II, Bull. Kyushu Inst. Tech. (M. \& N. S.) 28 (1981), 11-13.
[9] M. Kato, Generalized Clarkson's inequalities and the norms of the Littlewood matrices, to appear in Math. Nachr.
[10] H. König, Grenzordnungen von Operatorenidealen (I), Math. Ann. 212 (1974), 51-64.
[11] H. König, Grenzordnungen von Operatorenidealen (II), ibidem, 65-77.
[12] H. König, Diagonal convolution operators as elements of operator ideals, Math. Ann. 218 (1975), 97-106.
[13] H. König, s-numbers, eigenvalues and the trace theorem in Banach spaces, Studia Math. 67 (1980), 157-172.
[14] W. Linde and A. Pietsch, Mappings of Gaussian cylindrical measures in Banach spaces, Theor. Probability Appl. 19 (1974), 445-460.
[15] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. 1 (1930), 164-174.
[16] K. Miyazaki, (p, q)-nuclear operators in case of $0<p<1$, Hiroshima Math. J. 6 (1976), 555-572.
[17] K. Miyazaki and M. Kato, A note on limit orders of operator ideals, Bull. Kyushu Inst. Tech. (M. \& N. S.) 27 (1980), 11-16.
[18] A. Persson and A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19-62.
[19] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353.
[20] A. Pietsch, Absolutely p-summing operators in L_{r}-spaces II, Sem. Goulaouic-Schwartz, Paris, 1970/71.
[21] A. Pietsch, r-nukleare Sobolevsche Einbettungsoperatoren, Schr. Inst. Math. Deutsch Akad. Wissensch. Berlin, Reihe A', 8 (1971), 203-215.
[22] A. Pietsch, Theorie der Operatorenideale (Zusammenfassung), Jena, 1972.
[23] A. Pietsch, Operator ideals, Deutscher Verlag der Wissenschaften and North-Holland, Berlin/Amsterdam-New York-Oxford, 1978/80.
[24] A. Pietsch, Factorization theorems for some scales of operator ideals, Math. Nachr. 97 (1980), 15-19.

> Department of Mathematics, Kyushu Institute of Technology

[^0]: *) This research is partially supported by the Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science and Culture.

