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1. Introduction

We consider a connection problem for the differential equation

(1.1) z " / w ) = Σ?=i

where q is a complex number and the ah bx are complex constants. This differ-

ential equation has only two singularities at the origin and infinity in the whole

complex z-plane, and so, it may be assumed without loss of generality that

Reg^O. In [3] we dealt with a case in which &, = 0 (ί = 0, 1,..., n — 1). In this

case (1.1) is of just the extended form of the classical Bessel equation. By solving

the connection problem for it and investigating global behaviors of such solutions,

we could obtain the extension of the Airy function and the Bessel function. In

this paper we shall treat a general case in which bt = 0 (/ = 1, 2,..., v — 1) and bvφ0

for l ^ v < n . As is well-known, (1.1) can be reduced to a generalized hypergeo-

metric equation. In fact, let us denote

where brackets imply the Pochhammer notation, i.e.,

Then (1.1) can be written in the form

ΠΊ3-1 &-Pj)ly = M«[Π?=ϊ {D-%)~]y (D = zd/dz).

The change of variables z = ta yields

UΊj«i {&-*Pjϊ\y = M v*β β[Π5-ϊ (β -*h)~\y {β = td/dt).

Putting

α = v/q, fcvα
v = A

pj = ocβj O' = l, 2,...,n), yy = αfy (; = 1, 2,..., n - v ) ,

we thus obtain a general form of non-Fuchsian generalized hypergeometric equa-

tion
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(1.2) [Π3=

which has a regular singularity at the origin and an irregular singularity of rank

1 at infinity in the whole complex ί-plane.

For reference for the comparison with the Bessel system stated in [3] we here

write down the system of differential equations which is equivalent to (1.2) as

follows:

tY' = (A0 + tA1)Y,

where

*0 =

Pii
Pi 1 0

Pn-l 1
A -v+1 0

0
\ o

(o o
0

0

o o
0 1

β 0
\ 1
...o

This can be easily obtained by putting x1 = y, xt= [Πj=i (β — Pjϊly O' = 2, 3,..., ή)

and applying the shearing transformation Y=S(t)X, where S(t) = t~~v+1In-v+1®

diag(ί" v + 2 , ί"v+3,..., Γ1, 1), Ip being the p by p identity matrix.

Now we consider the differential equation (1.2) and deal with, for simplicity,

a non-logarithmic case in which it is assumed that the characteristic constants

pj are mutually distinct and their differences are not ingegers. We can then

find a fundamental set of convergent power series solutions of the form

(1.3) = ί" Σ£Σ£=o (i = 1, 2,..., ή),

where the coefficients G^m) are given by particular solutions of the linear difference

equations

) = βΠJ]=ί ( m -(1.4) [Π;=i

with the initial conditions

(1.5) Gf(0) Φ 0, = 0 (r = - 1 , -2, . . . , - v + 1).

From (1.4), when the G^m) are regarded as functions of integral variable m, it can

be immediately seen that G/(m) = 0for mΦm'v, m! being a positive integer and for

all negative integers m. In later considerations we need explicit forms of the

Gi(m) as functions of complex variable m. To seek them, we put Gi(m) = Gi(mv)

in (1.4) and then obtain
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We also see that the G^m) = όi{mjv)p{m), p(m) being a periodic function with

period v, satisfy (1.4). So, in order to obtain the desired solutions G^m) with

properties stated above, we have only to determine p(m). From the initila con-

ditions (1.5) we can take p(m) as

(1.7) p(m) = Πμl {eiπm/v sin π (^j1)} •

In the above and hereafter it is also assumed that for each i, Pi — yjΦinteger

t/ = l ,2 , . . . ,n-v) .

We have thus obtained a fundamental set of solutions expressed in terms

of so-called generalized hypergeometric series:

(1.8) yt(t) = {ΠJ=1 sin (y/v)}/"

In the paper [1] B. J. L. Braaksma has investigated asymptotic behaviors

of such generalized hypergeometric series by means of Barnes-integrals in a great

detail. The purpose of this paper is to obtain more explicit results than those of

[1], that is, to clarify the global relations between the solutions y^t) and n formal

solutions derived in §2.

2. Formal solutions and Stokes multipliers

We shall now seek formal solutions of (1.2) at the irregular singularity.

For simplicity in later consideration, we assume in (1.2) that the yj are mutually

distinct and y7- φ yk mod v (j Φ k). Then we can easily verify that there exist (n — v)

linearly independent formal solutions of the algebraic form

j)fe(ί) = ty* £ « 0 Hk(s)r° (k = 1, 2,..., n - v).

In fact, substituting above series into (1.2) and euqating coefficients of like powers
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of t in both sides, we have

with the initial considions

ί?*(0) φ 0, β\r) = 0 (r < 0).

From this it follows that fϊk(s) = 0 for sΦs'v, s' being a positive integer and βk(sv)
can be expressed in terms of gamma functions as follows:

1

Π
n

where we have taken the initial value

βk(0)

We have thus determined (n — v) algebraic formal solutions

τ-τn
1 l./=i(2.1)

On the other hand, there exist v formal solutions of the exponential type

(2.2) y«(t) = e*"t«* Σ?=o H^s)Γ' (H*(0) = 1 fc = 1, 2,..., v).

To see this, putting

(2.3)
δ Π ( ) β C L Σ f - ί

we rewrite (1.2) in the form

(2.4) y<») + ΣF-i α,ry-<> = )?/"-v> + Σ?=i
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As explained in [2], we here use the following device:

y(P)(t) = e"P Σΐ=o HP(s)Γs (p = 0, 1,..., n),

where H0(s) = H(s). Substituting these series into (2.4) and identifying coefficients

of like powers of t in both sides, we have the recurrence formula

(2.5) Hn(s) + Σ?=i OLtH^is-l) = βHn.v(s) + Σ?=iv ftH.-v-^s- 0 .

Moreover, from the relation of differentiation J(P) = (J(P~ 1 ) ) / we obtain another

recurrence formulas

(2.6) Hp(s) = λH^^s) + (μ-s + 1 ) ^ (p = 1, 2,..., n)

which in turn yield

(2.7) Hp(s) = λPH(s) + pλP-\μ-s + \)H(s-\) + Σί=2M(p: I: s)H(s-l)

Cp=l, 2,..., n),

where the M(p: I: s) are functions of s. From (2.5) and (2.7) we therefore

obtain the formula satisfied by H(s):

(λn-λn~vβ)H(s)

-2),..., H(s-ή))

the right hand member of which is linear in H(s — 2),...9 H(s — ή). We now put

s = 0 and then have the characteristic equation

χn _ λn-vβ = 0

whose non-trivial roots are given by

(2.8) λk = jS^ω*" 1 (ω = exp(2πι7v); fe=l, 2,..., v).

Next we put s = 1 and then have the relation of determining μk

(nλΓ1-(n-'v)λΓv-ίβ)μk + M r 1 - /MΓ*""1 = 0,

thereby obtaining

(2.9) μk = (βilβ-*i)lv (fe = l,2,...,v).

After the determination of the characteristic constants λk and μfc, the above for-

mula is reduced to the form

(2.10) -vλΓ^H^s) = R(s+l: Hk(s-1\...9 Hk(s-n + l)) (fc=l, 2,..., v).

Then it is easy to see that the coefficient Hk(s) can be determined successively
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from the initial conditions Hk(0) = l, Hk(r) = 0 (r<0). Thus we have obtained

v formal solutions of the form (2.2).

We here show an identity called the Fuchs relation between characteristic

constants which express the multi-valuedness of solutions of the differential

equation (1.2). From (2.3) we have

Σj^Pj = n(n-l)/2 - α l 9 Σ5=Ϊ7y = (n-v)(«-v- l )/2 - βjβ.

Combining these with (2.9), we therefore obtain

(2.11) Σl=iμk + ΣZ=Ϊ7* = ΣUiPj - v{n-(v +

This will play an important role in the calculation of the Stokes multipliers to

follow.

Now we introduce the linear difference equations

(2.12) (m + p-μjg*(m) = λkg\m-\) (fc = l, 2,..., v)

and take their particular solutions of the form

(2.13)

Let us define

fk

P(m) = Σΐ=o Hk

p(s)gk(m + s) (p = 0, 1,..., n)

and denote /g(m) by fk(m). The well-definedness of these functions of complex

variable m can be proved by exactly the same way as in [2]. In fact, the series

are absolutely convergent under the strongest condition |Afc|-<:|Aj — Afc| (jφk).

Multiplying both sides of (2.5) and (2.6) by gk(m + s) and summing them over s,

we have

(2.14) fi(m) + Σj

and

(2.15) fk(m) =

respectively. Then the substitution of (2.15) into (2.14) yields

+ Σ?=i

which implies from (2.3) that
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This difference equation, replaced p by ph is just the same one satisfied by

Hence, for each ι, v functions f\(m) (fc = l, 2,..., v) are particular solutions of

(1.4) and moreover it can be proved that they form a fundamental set of solutions

of (1.4). We here summarize above results in the following

PROPOSITION 1. Under the condition that \λk\<\λj-λk\ (jφk\j9 fc=l,

2,..., v) the functions f\(m) (fc = l, 2,..., v) are well-defined and have the prop-

erties as follows:

(i) For any real w, let us take the integer σ> — w —Re(p t —μk) — 1 . Then

the functions

RΊ(m; σ) =(2.16)

are analytic and bounded in the right half-plane Re m^vv. From this it follows

that there hold the asymptotic relations

(2.17) g\{m) {1 + O(m"1)} (m oo)

in the right half m-plane.

(ii) For each i, the functions f\(m) form a fundamental set of solutions of

(1.4). The Casorati determinant ^ ( m ) constructed from them is given by

(2.18) J17=1

where V{λu λ2,.. , λv) is the Vandermonde determinant of λί9 A2> , K-

The detailed proof of this proposition is referred to [2].

Now, according to the theory of linear difference equations, the G^m) can be

written in the form

(2.19) Gt(m) = O' = l, 2,..., n),

where the T\(m) are periodic functions with period 1. In order to determine the

periodic functions explicitly, we solve the linear equation

(r = 0, 1,..., v-1)(2.20) Glm + r) = ΣUi T\{m)Γi(m +

by the Cramer rule, obtaining

Gi(m) f}(m)
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k

Mm +

fKm +

1)

v-1)

/Km)

fHm+l)

f\(m + v- 1) -

fϊ(nt)

Mm +

/?(« +

1)

v-1)

and investigate their behaviors in some period strip lying far in the right half-
plane, say, Λ/vrgRe m<iVv-f-l, N being a sufficiently large positive integer. We
can easily see that the T\{m) are analytic in the entire finite part of the strip,
since the numerator is analytic and the denominator, which is the Casorati deter-
minant, has no zeros in the right half-plane. We now investigate the T\(m) at
the ends of the strip. From (2.13) and (2.17) we have

fj{m + r)

and from (1.6) we also have

(/• = 1, 2,..., v-1)

for sufficiently large values of m in the right half-plane. Taking account of these
asymptotic behaviors, we have

(2.21) T
9Ϊ(m)

p(m) 1

, λi,..., λv)

at both ends of the strip. The first member in the right hand side of (2.21) behaves
like

π ^ - v r ( m + P i ~ y Λ
)

(tί
g\(nί) \ v I

(2π)<*
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vPi-μk+ί/2 e-2πi(k-ί)m/v

X m(Σj=i Pi-Σnj=iyj)/v-μk-n+(v+ί)/2

where we have used Gauss' multiplication formula of the gamma function and
the Fuchs relation (2.11). From this and considering (1.7), we see that the
Tf(m) behave like 0(e-2iei(fc-i)m/v) m t h e u p p e r e n ( } o f t h e s t r j p a n ( j o(β2jci(v-*)m/v)

in the lower end of the strip. We here consider the transformation z = e2πim,

which maps the unit strip in the m-plane on the entire z-plane, both ends of the

strip corresponding to z = 0, oo. Then we see that the T\{m) = T\{z) are holo-

morphic at every point of the z-plane except possibly at z = 0, oo, where T\(z) =

O(z-ίv~1)/v) as z-»0 and TKz) = O(z ( v~ 1 ) / v) as z-»oo. This implies that the

singularities at z = 0 and z = oo are removable and hence the T\(z) must be con-

stant. In order to evaluate explicit values of such constants, we put m = Nv in

(2.21) and let N tend to infinity. Since

p(Nv) = ΠJ=1 sin(π//v), p(Nv + r) = 0 (r = l, 2,..., v -

from (2.21) and (2.22) we have

which implies that

(2 23) THrrί) = Π j Y Ξ ί s ί n (πj'v) (^L)pi-μk (k-\ 2 v)

We have thus obtained

PROPOSITION 2. For each i (i = l, 2,..., n), Gi{m) = όi{mjv)p{m) can be

expressed in the form

(2.24)

where the constants T\ are given by (2.23).

This proposition, together with Proposition 1, corresponds to Lemmas 2, 3

in [1]. The constants T\ become the Stokes multipliers.

3. Barnes9 integral representation

We are now in a position to investigate global behaviors of the convergent
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power series solutions y£t) (i = 1, 2,..., n). It is readily verified from the behavior

of G (ra) and the theorem of residues that there holds

(3.1) yit) = ί" Σ S = o ^ ( m ) r ( - π < a r g ί = π)

where G^z) reminds us of the form

(3.2) Gt{z) = O

s i n

and the path of integration C is a Barnes-contour running from z = co — ia to

z = oo + /α such that the points z = m (m = 0, 1,...) lie to the right of C and the

points z = yj — pi — vs 0 = 1, 2,..., n — v; 5 = 0, 1,...) lie to the left of C. The

constant a is taken as α>|Im(y J —pf)| 0 = 1, 2,..., n —v).

In order to analyze y^t) in the large, we first replace the contour C by the

rectilinear contour L which runs first from co — ia to w — ίa, next from w — ίa to

w + ia and finally from w + iα to oo + ia. Here w is an arbitrary negative number

such that the positive integers Nk(k=l, 2,..., n — v) and ΛΓ can be taken as

-v(Nk+l) < w + Re(p f-y f c) < -vNk (k = 1, 2,..., n - v),
(3.3)

[ - 1 < w < _JV.

Since Gf(z) vanishes at z = — s(s = 1,2,...) and hence the integral in (3.1)has simple

poles only at z = yk—pi — vs (/c = l, 2,..., n — v; s = 0, 1,...,), we have from the

theorem of residues

Using Euler's formula

(3.4) Γ(z)Γ(l - z) = π/sin πz,

we calculate the residue at z = γk — p{ — vs:
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x ^ π

sin π(γk-Pi-vs) z- ϊ k-P I-vS | s i n π

» ' \ v

sin

sin π(γk-Pι) U]=\j*k sin π

Therefore for — π<arg ( ί π w e have

(3.5) yi(t) = Σ2=ϊ ίϊ{Σt*o £*

where we have put

(fc = 1, 2,..., R - v).

From the relation yi(f) = e2πilpiyι(te~2πil)9 I being some integer, it can be seen that

if t lies in the sector

S{e~lπilY -π < arg t - 2πl ^ π,

then in (3.5) the Stokes multipliers t\ must be replaced by f\e2ni{pi-yk)l.

Next we investigate the integral in (3.5). Taking account of Proposition 1

and 2, we replace G^z) by

z; σ)}9

σ being some positive integer, and obtain
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+ Σϊ-i ϊ

In the above, considering (3.3), we carried out the residue calculus. We then

have to investigate the behavior of functions appearing in (3.7), which are of the

form

with the coefficient

It is easy to see that x(t, s) is a particular solution of the first order nonhomo-

geneous linear differential equation

tx'(t, s) = {λt + μ-s}x(t, s) + λg(s-l)to

and hence it can be expressed in terms of the integral

(3.8) x(t, s) = Γ exp {λt(l-τ)}τs+p-»-ιdτ[tί>λg(s-iy\ .
Jo

From this we have the following

PROPOSITION 3. The function x(t, s) admits the asymptotic behavior

(3.9) X(t, S) - e2πt(p-μ)leλttμ-8 _ fP £oo= i g (S - r)r*

as t tends to infinity in the sector

(3.10) S(λe~2«iι): |argAί-2π/| ^ 3π/2 - ε.

where I is any integer and ε is an arbitrarily small positive number.

PROOF. First we consider the case when t lies in S(λ). We put η = tτ in (3.8),

and deform the path of integration from 0 to t into the straight line Re/lf/ = 0

from 0 to infinity and the so-called Friedrichs path which consists of the following

parts: For π g |arg (λt)\ g 3π/2 - ε, t' denoting t' = - Re (λt),

( i ) the straight line Re λη = — t' from t to — t'jλ

(ii) the semi-circle \λη\ = t' from -t'/λ to t'\λ

(iii) the straight line Reλf/ = 0 from t'jλ to oo,

and for 05^|argΛ,ί^π, f denoting t' = \λt\9 (ii) the above semi-circle from t to
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t'/λ and (iii).
Then we can rewrite (3.8) in the form

(3.11) x(t, s) = eλttfi-

\

Here the last integral is carried out along the Friedrichs path and it can be proved
to be bounded for sufficiently large values of t in S(λ). (See [2].) Consequently,
we obtain

x(t, s) ~

Moreover, since for any positive integer p there holds

x(t, s) = t~Pχ(t, s-p)- tP-PΣ^hg(m

we apply the above result to x(t, s — p), obtaining

x(ί, s) - eλtt^s - fp Σ?=i g(s-r)Γr

as ί-» oo in S(λ). This just implies (3.9) for / = 0. In the sector S(λe~2πil) we use
the identity

x(U s) = e2πit>1 x(te~2nil

9 s)

and apply the above result to the right hand side. This completes the proof of
Proposition 3.

We also have to investigate the behavior of the integral of the form

(3.12) /(,; σ ) = - έ

2πί )LΓ( + + + l ) \HFj l "
π \

wHFj

Taking account of the fact that R(z σ) is bounded in the right half-plane, we have,
putting z — w = \z — w\eiθ and α = w + σ + p — μ,

Rjz σ) ί
Γ( l ) V

π \ ι-
s i n π z ; | Z

x exp[-|z-w|{(log|z-w|-l+log|τ|)cosθ + (±π-θ + argτ)sinθ}]O(l).

So if π-0 + argτ>O for Ogθ^π/2 and if -π-0 + argτ<O for -π/2^θ^0,
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then the integrand of (3.12) tends to zero as z-*oo in Rez^w and | I m z | ^ α .

From this, for |argτ|<π/2 we can deform the contour L into the straight line

Re z = w from z = w — ioo to z = w + zoo and, using Euler's formula (3.4), we obtain

(3.13) /(/; σ) = 2 ^

sinπ(z-w
2π/ }w-ioo sin πz [z-fα —

We here consider the identity

(3.14) Γ(2 + w - α - z ) τ z = τ 2 + w~α ί £!+"-«-* exp(-τξ)dξ9

Jo

which is valid for Rez = w and |argτ|<π/2 under the condition that 2 > R e α > l ,

that is, in the above and hereafter the positive integer σ is taken so that

(3.15) 1 - Re(p-μ) - σ < w < 2 - Re(p-μ) - σ.

Substituting (3.14) into (3.13) and inverting the order of integration, we con-

sequently obtain

(3.16) I(t; σ) = -χ*+P-μtPτ2+»-* Γ r(ξ) exp(-τξ)dξ,
Jo

where

(3.17) r(ξ) = --^-j- K V ^ K dz.
2π/ )w-ioo [z + α - w ] 2

The detailed verification of the above calculation is referred to [1]. From (3.17)

it immediately follows that

(3.18) r{ξ) = O(ξi-«) (ξ^O).

Moreover, as for the behavior of r(ξ), we have for ξ^ 1

ΠIQ^ r(£Λ- s i n ( α ~ w ) î+w-« ycx) R(m; σ)ξ~m

( 3 1 9 ) Γ { ξ ) π ζ Σ w = - N [ m + α - M ; ] 2

In fact, we integrate the integrand of (3.17) along the closed contour which con-

sists of the straight line Re z = w from w — ίR to w + iR and the right hand semi-

circle |z — W| = JR. Then, since the integrand has the growth order O[(z — w)"2

exp{ —Re (z — w) log ̂ }] on the semi-circle \z — w\=R, R not being an integer,

we can conclude that r(ξ) is equal to the sum of residues at the poles lying in
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Re z^vv, which yields the above result (3.19). From the boundedness of R(z; σ),

r(ξ) can be estimated as

lsin(α-w)| w . g + N |fl-»

where the series is convergent and bounded for | £ | ^ 1 . Hence the function

r(ξ) for ξ^ 1 can be continued analytically for \ξ\^l and

(3.20)

Returning to (3.16), we put

Γ Γ° r(£) exp ( -

We immediately see from (3.18) that /1(τ) = O(β"τ) + O(l) as |τ|-*oo. On the other

hand, by the change of variables η = τξ and from (3.20) we can rewrite J2(τ) in the

form

(3.21) 72(τ) = e-* JJ ( i ) 2 + W ~ * Λ * ( i ) exp (τ -η)*jL (|arg τ| < π/2),j

where r*(ί) = ί " ( 1 + w " β + N ) K ί ) is analytic and bounded for |ξ|2>l and the path

of integration is the Friedrichs path. The integral in (3.21) is exactly the same

form as in (3.11) and hence application of the same consideration in (3.11) yields

that the integral can be continued analytically for |arg τ| ^ 3π/2 — ε and it is bounded

there. So we have /2(τ) = O(e~τ) for |argτ |^3π/2 — ε. Consequently, we have

obtained

(3.22) J(ί; σ) = 0{eλtt^2~σ) + O(t^+2~σ)

as ί->oo in the sector | a rgΛί-π |^3π/2-ε . Since I(t; σ) = e2πipll(te~2πil σ), we

have the same result (3.22) for | arg λt - (21 + l)π| S 3π/2 - ε.

So far we have exclusively followed the analysis by B. L. J. Braaksma [1].

However, from the residue calculus of the integral (3.12) we immediately obtain

J(ί; σ) = t^Σm=-Nd(rn + σ)R(m; σ)tm

and, applying the consideration of Proposition 3, to the last series, we can arrive

at the same conclusion as above.

Now, all preparations having been made, we return to (3.7). Let t tend to

infinity in the sector
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where the lk are integers and S(λe~2πil) denotes the sector (3.10). Then from

Proposition 3 and (3.22) we have

xi(t9 s-N)ΓN + ΣΣ=i TkIk(t; σ)

Σl=i Tke2πi^~^1^ Σs=oHk(s){eλkttμk-s+N + O(t»)}ΓN

+ Σl=i Tk{O(eλ*Ψk+2-°) + O(ί^+2~σ)}

Since (3.3) and (3.15) imply that

w + Re Pi < Re μk + 2 - σ < w + 1 + Re pt < Re y,- - viV,- + 1,

w + Re Pi < Re pt - N < w + 1 + Re pt < Re ys — vNj + 1

( = 1, 2,..., n - v),

the last two O-terms can be replaced by o(tyJ~vNJ+1)(j = ί, 29..., n-v). Com-

bining the above result with (3.5), we obtain the final result that when t tends to

infinity in the sector

(3.23)

the solution y^i) admits the asymptotic expansion

(3.24) yt(t) - ΣZ=

where the series are exactly formal series derived in §2. This is the required con-

nection formula between the solution ^(ί) and the formal solutions $k(t)(k =

l,2,...,n-v)and^(0(fc=l,2,...,v).

We here restate our main result in the following

THEOREM. Assume that

( i ) PiΦpjimoάl) (iΦj\ i,j = l,29...,ή)9

( ϋ ) yiΦyjimodv) ( i # j ; i9j = l9 2,..., n - v ) ,

(iii) p ^ y ^ m o d l ) ( Ϊ = 1, 2,..., n;j = ί9 2,..., n - v ) ,
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(iv) |A,| < |Λf - Ay| ( ι V ; ; U = l , 2 , . . . , v ) .

Then the convergent solution yt(t) (i = l, 2,..., M) 0/ the form (1.8) αdmίί f/ie

asymptotic expansion

(3.25) >>;(/) - Σ2=ϊ f ^2«'^'-^>^*(0 + Σϊ=i Γ^2"1^'-^)'^*^)

as ί-»oo in ί/iβ sector (3.23), where the $k(t) and the yk(t) are formal solutions of

the form (2.1) and (2.2), respectively. The Stokes multipliers ΐ\ and T\ are given

explicitly by (3.6) and (2.23), respectively.

It is remarked that all conditions (i)—(iv) are not essential. Without (i) and

(ii), there appear convergent solutions and formal solutions involving logarithmic

terms. By a slight modification of above investigations we can solve connection

problems for such cases. Also the conditions (iii) and (iv) can be relaxed by a

little more detailed analysis. (See [4].)

The above theorem, as a matter of course, gives the behavior of y^t) on the

Riemann surface of logarithm. For example, the asymptotic expansion (3.25)

on the sheet |arg t\ ̂ π can be read as follows: Assume, for simplicity, that arg

(βι/v)=zQ and let N be such an integer that v/4+l>iV^v/4. Then it can be seen

from (2.8) and (3.10) that the above sheet is included in the sector S(λk) for k —

1, 2,..., N and S(λk) U S(λke~2πi) for fc = N + l , N + 2,..., v. Then we have

0 (~π < arg t < -π/2 + 2π/v),

- ΣZ=Ϊ n$\t) + ΣKί T\y\t) + Σί-v-i+i T\eW»-»*y*{t)

{-nil + (2π/v)/ ^ arg / < -π/2 + (2π/v)(/+l); / = 1, 2,..., v - # ) ,

- Σ2=ϊ fkyk(t) + Σfci n^*(0 + Σl=N+i TieW*-»*ψ(t)

(3π/2 - (2π/v)N ^ arg / ^ π ) .

Also, using the above theorem, we can take out interesting solutions of the

generalized hypergeometric equation (1.2), for instance, particular solutions which

have algebraic behaviors in some sectors.
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