HIROSHIMA MATH. J. 13 (1983), 53–63

Mean values and associated measures of superharmonic functions

David H. ARMITAGE (Received January 5, 1982) (Revised June 14, 1982)

1. Introduction

Throughout this paper Ω will denote a non-empty open subset of the Euclidean space \mathbb{R}^n $(n \ge 2)$. For each point x of \mathbb{R}^n and each positive number r, let B(x, r) and S(x, r) denote, respectively, the open ball and the sphere of centre x and radius r. We shall use v to denote a superharmonic function in Ω .

If the closure $\overline{B}(x, r)$ of B(x, r) is contained in Ω , then $v(x) \ge \mathcal{M}(v, x, r)$, where $\mathcal{M}(v, x, r)$ is the spherical mean value of v given by

$$\mathscr{M}(v, x, r) = (s_n r^{n-1})^{-1} \int_{S(x, r)} v ds$$

Here s denotes surface area measure on S(x, r) and s_n is the surface area of the unit sphere in \mathbb{R}^n . It is well known that if $B(x, R) \subseteq \Omega$, then $\mathcal{M}(v, x, \cdot)$ is decreasing on (0, R) and $\mathcal{M}(v, x, r) \rightarrow v(x)$ as $r \rightarrow 0+$.

The measure v associated to v is a non-negative (Radon) measure in Ω such that

$$\int_{\Omega} \phi dv = -(p_n s_n)^{-1} \int_{\Omega} v(x) \Delta \phi(x) dx$$

for each infinitely differentiable function ϕ with compact support in Ω . Here Δ is the *n*-dimensional Laplacian operator and $p_n = \max\{1, n-2\}$.

We are concerned here with a comparison of the behaviour of $\mathcal{M}(u, x, r)/\mathcal{M}(v, x, r)$ and $\mu(\overline{B}(x, r))/\nu(\overline{B}(x, r))$ as $r \to 0+$, where u is a superharmonic function in Ω with associated measure μ and x is a point of Ω such that $\nu(x) = +\infty$. As applications, we shall obtain results which restrict the size of the set of points at which, for example,

$$\limsup_{r \to 0^+} r^{\alpha} \mathcal{M}(u, x, r) > 0 \qquad (n \ge 3, 0 < \alpha \le n-2)$$

and we shall improve some recent results of Kuran [6] on superharmonic and harmonic extensions.

For the latter application, we shall need to work, more generally, with the case where u is δ -superharmonic in an open subset ω of Ω . Recall that u is said to be δ -superharmonic in ω if there exist superharmonic functions u_1 and u_2 in

ω such that $u(x) = u_1(x) - u_2(x)$ whenever $x \in ω$ and $u_1(x)$ and $u_2(x)$ are not both + ∞. Notice that the equation $u = u_1 - u_2$ holds q.p. (that is, except on a polar set) in ω. A fortiori, it holds a.e. (s) on every sphere in ω (see [4; Theorem 7.5]). Hence, if $\overline{B}(x, r) \subset ω$, then u is integrable on S(x, r) and $\mathscr{M}(u, x, r) =$ $\mathscr{M}(u_1, x, r) - \mathscr{M}(u_2, x, r)$. Now let μ_1 and μ_2 be the measures associated to u_1 and u_2 . Since $\mu_1(ω)$ and $\mu_2(ω)$ may both be +∞, it is not generally the case that $\mu_1 - \mu_2$ defines a signed measure on ω. However, if we write $\mu(F) = \mu_1(F) \mu_2(F)$ for each Borel subset F of ω for which the difference is well-defined, then the restriction of µ to any compact subset of ω is a finite signed measure. Throughout the paper u will be a δ -superharmonic (sometimes superharmonic) function in Ω or in some open subset of Ω, and we shall use µ to denote the setfunction defined above. We call µ the measure associated to u. Clearly, if uis δ -superharmonic in ω, the superharmonic functions u_1 and u_2 such that u = $u_1 - u_2 q.p.$ in ω will not be unique. However, we have the following easy result.

LEMMA 1. If u is δ -superharmonic in ω , then $\mu(F)$ is uniquely defined for any Borel set F whose closure is compact and is contained in ω .

2. Main results

THEOREM 1. Let u be δ -superharmonic in Ω . If $x \in \Omega$ and $v(x) = +\infty$, then

$$\lim \inf_{r \to 0^+} \frac{\mu(\overline{B}(x, r))}{\nu(\overline{B}(x, r))} \le \lim \inf_{r \to 0^+} \frac{\mathscr{M}(u, x, r)}{\mathscr{M}(v, x, r)}$$
$$\le \lim \sup_{r \to 0^+} \frac{\mathscr{M}(u, x, r)}{\mathscr{M}(v, x, r)} \le \limsup_{r \to 0^+} \frac{\mu(\overline{B}(x, r))}{\nu(\overline{B}(x, r))}.$$
(1)

By making suitable choices of v in Theorem 1, we obtain the following.

THEOREM 2. Let α be a positive real number and let f be a non-negative, continuous, increasing (in the wide sense) function on $[0, \alpha]$ such that f is differentiable on $(0, \alpha)$ and

$$\int_0^{\alpha} t^{1-n} f(t) dt = +\infty.$$

Put

$$\hat{f}(r) = p_n \int_r^{\alpha} t^{1-n} f(t) dt \qquad (0 < r < \alpha).$$

If u is δ -superharmonic in Ω and if $x \in \Omega$, then

$$\begin{split} \lim \inf_{r \to 0^+} \left\{ \mu(\bar{B}(x, r))/f(r) \right\} &\leq \lim \inf_{r \to 0^+} \left\{ \mathscr{M}(u, x, r)/\hat{f}(r) \right\} \\ &\leq \limsup_{r \to 0^+} \left\{ \mathscr{M}(u, x, r)/\hat{f}(r) \right\} \leq \limsup_{r \to 0^+} \left\{ \mu(\bar{B}(x, r))/f(r) \right\} \end{split}$$

COROLLARY. Let u and x be as in Theorem 2. If $n \ge 3$ and $0 \le q < n-2$, then

$$(n-2)\liminf_{r\to 0+} r^{-q}\mu(\overline{B}(x,r)) \le (n-q-2)\liminf_{r\to 0+} r^{n-q-2}\mathscr{M}(u,x,r)$$

$$\leq (n-q-2)\limsup_{r\to 0+} r^{n-q-2}\mathscr{M}(u, x, r) \leq (n-2)\limsup_{r\to 0+} r^{-q}\mu(B(x, r)).$$

Further (corresponding to the case q=n-2), if $n \ge 2$,

$$p_n \liminf_{r \to 0^+} r^{2-n} \mu(\overline{B}(x, r)) \le \liminf_{r \to 0^+} \{\mathscr{M}(u, x, r) / \log(1/r)\}$$

$$\le \limsup_{r \to 0^+} \{\mathscr{M}(u, x, r) / \log(1/r)\} \le p_n \limsup_{r \to 0^+} r^{2-n} \mu(\overline{B}(x, r)).$$

We come now to the first application of these results. Applying a technique of Watson [8] to the above corollary, we obtain the following.

THEOREM 3. Suppose that $n \ge 3$ and that $0 < \beta \le n-2$. If u is superharmonic in Ω and

$$S_{\beta} = \{x \in \Omega: \limsup_{r \to 0^+} r^{\beta} \mathscr{M}(u, x, r) = +\infty\}$$

and

$$T_{\beta} = \{ x \in \Omega \colon \limsup_{r \to 0+} r^{\beta} \mathscr{M}(u, x, r) > 0 \},\$$

then $m_{n-2-\beta}(S_{\beta})=0$ and $m_{\gamma}(T_{\beta})=0$ for all $\gamma > n-2-\beta$, where m_{γ} denotes γ -dimensional Hausdorff measure.

Finally, we come to the results on superharmonic and harmonic extensions. Some preliminary explanations are necessary. We shall use E to denote a polar set, closed in the topology of Ω . If u is superharmonic in $\Omega \setminus E$ and $\overline{B}(x, r) \subset \Omega$, then u is defined a.e. (s) on S(x, r) and is measurable, but not necessarily integrable, on S(x, r). If such a function u possesses a (possibly infinite) integral over S(x, r), we shall continue to denote its mean value over S(x, r) by $\mathscr{M}(u, x, r)$. In forming the quotient of two extended real-valued functions ϕ and ψ , both defined at x, we adopt the convention that $\phi(x)/\psi(x)=0$ if $\phi(x) > -\infty$ and $\psi(x)= +\infty$. With these understandings, we have the following lemma, whose proof is left to the reader.

LEMMA 2. Suppose that v > 0 on E and let u be superharmonic in $\Omega \setminus E$. If $y \in E$ and

$$\liminf_{x \to v, x \in \Omega \setminus E} \{u(x)/v(x)\} = k > -\infty$$

then $\mathcal{M}(u, y, r)$ exists for all sufficiently small r and

$$\lim \inf_{r \to 0^+} \frac{\mathscr{M}(u, y, r)}{\mathscr{M}(v, y, r)} \ge k.$$

The main result on superharmonic extensions is as follows. Its proof

depends on Theorem 1, a result of Kuran [6; Theorem 1] (quoted as Theorem A in \$8), and a measure theoretic result of Watson [9; Theorem 1] (quoted as Theorem B in \$8).

THEOREM 4. Suppose that v > 0 on E and let u be superharmonic in $\Omega \setminus E$. If

$$\liminf_{x \to y, x \in \Omega \setminus E} \{ u(x) / v(x) \} > -\infty$$
(2)

for each y in E and if

$$\limsup_{r \to 0^+} \frac{\mathscr{M}(u, y, r)}{\mathscr{M}(v, y, r)} \ge 0$$
(3)

for v-almost all y in E, then u has a superharmonic extension to Ω .

COROLLARY. Suppose that v > 0 on E and that u is superharmonic in $\Omega \setminus E$. If

 $\liminf_{x \to v, x \in \Omega \setminus E} \{u(x)/v(x)\}$

is greater than $-\infty$ for each y in E and is non-negative for v-almost all y in E, then u has a superharmonic extension to Ω .

I am grateful to Professor F-Y. Maeda for pointing out that this corollary is essentially contained in a recent result of Brelot [2; Theorem 5] and for mentioning that Brelot's assumption that $v(E \cap \omega) > 0$ for every open set ω such that $E \cap \omega$ is non-empty is superfluous.

As an application of Theorem 4, we obtain the following results on harmonic continuation.

THEOREM 5. Suppose v > 0 on E and let h be harmonic in $\Omega \setminus E$. If

$$\limsup_{x \to v, x \in \Omega \setminus E} \{ |h(x)| / v(x) \} < +\infty$$
(4)

for each y in E and if

$$\liminf_{r \to 0+} \frac{\mathscr{M}(h, y, r)}{\mathscr{M}(v, y, r)} \le 0 \le \limsup_{r \to 0+} \frac{\mathscr{M}(h, y, r)}{\mathscr{M}(v, y, r)}$$

for v-almost all y in E, then h has a harmonic continuation to Ω .

COROLLARY. Suppose that v > 0 on E and let h be harmonic in $\Omega \setminus E$. If (4) holds for each y in E and if

$$\lim_{x \to v, x \in \Omega \setminus E} \left\{ h(x) / v(x) \right\} = 0$$

for v-almost all y in E, then h has a harmonic continuation to Ω .

This corollary improves [6; Theorem 2]. For a good account of the main

56

applications of extension results, we refer to [6].

3. Proof of Lemma 1

Let u be δ -superharmonic in ω and let u_1 , u_2 , u_3 , u_4 be superharmonic functions in ω such that $u = u_1 - u_2 = u_3 - u_4$ wherever the differences are welldefined. Then $u_1 + u_4 = u_2 + u_3 q.p.$ in ω . Since superharmonic functions which are equal q.p. are identical, the last written equation holds throughout ω . Hence if μ_j (j=1, 2, 3, 4) is the measure associated to u_j , then $\mu_1 + \mu_4 = \mu_2 + \mu_3$, so that $\mu_1(F) - \mu_2(F) = \mu_3(F) - \mu_4(F)$ whenever $\mu_3(F) + \mu_4(F) < +\infty$ and, in particular, whenever F is a Borel set whose closure is a compact subset of ω .

4. A preliminary result

The following is the key result in our proof of Theorem 1. It is essentially well-known and leads easily to other known results which we give below as corollaries.

LEMMA 3. Let u be δ -superharmonic in Ω . If $0 < r \le R$ and $\overline{B}(x, R) \subset \Omega$, then

$$\mathscr{M}(u, x, r) = \mathscr{M}(u, x, R) + p_n \int_r^R t^{1-n} \mu(\overline{B}(x, t)) dt.$$
(5)

Clearly it is enough to prove the result in the case where u is superharmonic in Ω . In this case we have

$$u(x) = \mathscr{M}(u, x, r) + p_n \int_0^r t^{1-n} \mu(\overline{B}(x, t)) dt$$
$$= \mathscr{M}(u, x, R) + p_n \int_0^R t^{1-n} \mu(\overline{B}(x, t)) dt$$

(see [3, pp. 126–127]). If $u(x) < +\infty$, (5) follows immediately by subtraction. If $u(x) = +\infty$, then we replace u in B(x, r) by the Poisson integral of the function $u|_{S(x,r)}$. The resulting function u', say, is superharmonic in Ω and $u'(x) < +\infty$. Hence if μ' is the measure associated to u', (5) holds with u replaced by u' and μ replaced by μ' . The equation (5) itself follows from the facts that u=u' in $\Omega \setminus \overline{B}(x, r)$ and $\mu(\overline{B}(x, t)) = \mu'(\overline{B}(x, t))$ when r < t < R. Although the latter fact is well-known, I know of no convenient reference; it can be proved as follows. Let G^{μ} and $G^{\mu'}$ denote the Green's potentials in B(x, R) of the restrictions of the measures μ and μ' to $\overline{B}(x, t)$. It is easy to see that $G^{\mu} = G^{\mu'}$ in $B(x, R) \setminus \overline{B}(x, t)$. Suppose that $t < \rho < R$. The balayage in B(x, R) of the characteristic function of $B(x, \rho)$ is equal to 1 in $B(x, \rho)$ and is the Green's potential of a measure λ supported on $S(x, \rho)$. Hence

$$\mu(\overline{B}(x, t)) = \int_{\overline{B}(x, t)} G^{\lambda} d\mu = \int_{S(x, \rho)} G^{\mu} d\lambda$$
$$= \int_{S(x, \rho)} G^{\mu'} d\lambda = \int_{\overline{B}(x, t)} G^{\lambda} d\mu' = \mu'(\overline{B}(x, t)).$$

Now define σ on the interval $[0, +\infty)$ by $\sigma(0) = +\infty$ and

$$\sigma(r) = \begin{cases} -\log r & (n = 2, r > 0) \\ r^{2-n} & (n \ge 3, r > 0), \end{cases}$$

so that, if $|\cdot|$ denotes the Euclidean norm on \mathbb{R}^n and if $y \in \mathbb{R}^n$, the function $x \to \sigma(|x-y|)$ is the fundamental superharmonic function of \mathbb{R}^n with pole y.

COROLLARY 1. Let u be superharmonic in Ω and suppose that $x \in \Omega$. Then $\mu(\{x\})=0$ if and only if $\mathcal{M}(u, x, r)=o(\sigma(r))$ as $r \to 0+$. In particular, if $u(x) < +\infty$ (so that $\mathcal{M}(u, x, r)=O(1)$ as $r \to 0+$), then $\mu(\{x\})=0$.

A simple proof of the particular case has been given by Kuran [5]. To prove this corollary, suppose that $\overline{B}(x, R) \subset \Omega$, so that, by (5),

$$\mathscr{M}(u, x, r) = p_n \int_r^R t^{1-n} \mu(\overline{B}(x, t)) dt + O(1) \qquad (r \longrightarrow 0+).$$
(6)

Since $\mu(\overline{B}(x, t))$ is increasing on (0, R], it is easy to see that the integral in (6) is $o(\sigma(r))$ as $r \to 0+$ if and only if $\mu(\overline{B}(x, t)) \to 0$ as $t \to 0+$. Since $\mu(\{x\}) = \lim_{t \to 0+} \mu(\overline{B}(x, t))$, the result follows.

COROLLARY 2. If u is non-negative and superharmonic in \mathbb{R}^n $(n \ge 3)$, then

$$\mu(\overline{B}(x, r)) \leq r^{n-2} \mathscr{M}(u, x, r).$$

From (5), we have

$$\mathscr{M}(u, x, r) \ge (n-2) \int_{r}^{R} t^{1-n} \mu(\overline{B}(x, t)) dt,$$

for each number R > r. Hence

$$\mathcal{M}(u, x, r) \ge \mu(\overline{B}(x, r))(n-2) \int_{r}^{\infty} t^{1-n} dt$$
$$= r^{2-n} \mu(\overline{B}(x, r)).$$

Corollary 2 has been proved by Kuran [5; Theorem 4] who also gives the analogue for a disc in \mathbb{R}^2 .

5. Proof of Theorem 1

It is enough to show that the last inequality in Theorem 1 holds, for the first inequality will then follow by working with -u instead of u.

If the last expression in (1) is $+\infty$, the required inequality is trivial. Suppose now that this expression has the value λ and that $\lambda < \Lambda < +\infty$. Let R be a positive number such that

$$\mu(\overline{B}(x, r)) < \Lambda \nu(\overline{B}(x, r))$$

whenever $0 < r \le R$. By Lemma 3, if $0 < r \le R$, then

$$\mathcal{M}(u, x, r) = p_n \int_r^R t^{1-n} \mu(\overline{B}(x, t)) dt + O(1) \qquad (r \longrightarrow 0+)$$
$$\leq \Lambda p_n \int_r^R t^{1-n} \nu(\overline{B}(x, t)) dt + O(1)$$
$$= \Lambda \mathcal{M}(v, x, r) + O(1).$$

Since

$$\lim_{r\to 0+} \mathcal{M}(v, x, r) = v(x) = +\infty,$$

we obtain

$$\limsup_{r\to 0^+} \frac{\mathscr{M}(u, x, r)}{\mathscr{M}(v, x, r)} \leq \Lambda,$$

and the theorem follows.

6. Proof of Theorem 2

Consider first the case of Theorem 2 in which f(0)=0. Let R be such that $\overline{B}(x, R) \subset \Omega$ and $0 < R \le \alpha$. Put g(0)=0, $g(t)=t^{1-n}f'(t)$ (0 < t < R), g(t)=0 $(t \ge R)$, and define a measure v on Ω by writing dv(y)=g(|x-y|)dy. Then, if 0 < r < R,

$$\begin{aligned} v(\bar{B}(x, r)) &= \int_{B(x, r)} |x - y|^{1 - n} f'(|x - y|) dy \\ &= s_n \int_0^r f'(t) dt = s_n f(r) \,, \end{aligned}$$

and, by Lemma 3, if v is the Green's potential in Ω associated to v, then

$$\mathcal{M}(v, x, r) = s_n p_n \int_r^R t^{1-n} f(t) dt + O(1)$$
$$= s_n \hat{f}(r) + O(1).$$

Since

$$v(x) = \lim_{r \to 0^+} \mathscr{M}(v, x, r) = s_n p_n \int_0^R t^{1-n} f(t) dt = +\infty,$$

the result now follows from Theorem 1.

If $f(0) \neq 0$, put $v = f(0)\delta_x$, where δ_x is the Dirac measure concentrated at x, and let v be given by $v(y) = f(0)\sigma(|x-y|)$. Then $v(\overline{B}(x, r)) = f(0)$ for each positive r and $\mathcal{M}(v, x, r) = \sigma(r)f(0) \sim \hat{f}(r)$ as $r \to 0+$. Hence, the result again follows from Theorem 1.

To prove the Corollary, take $\alpha = 1$ and $f(t) = t^q$ in Theorem 2. Then

$$\hat{f}(r) = \begin{cases} \frac{n-2}{n-q-2} r^{q+2-n} (1+o(1)) & (0 \le q < n-2) \\ p_n \log(1/r) & (q=n-2). \end{cases}$$

7. Proof of Theorem 3

This proof is borrowed from Watson [7]. By the Corollary of Theorem 2, $S_{\beta} \subseteq S'_{\beta}$, where

$$S'_{\beta} = \{x \in \Omega \colon \limsup_{r \to 0^+} r^{\beta + 2 - n} \mu(\overline{B}(x, r)) = +\infty\}.$$

Now

$$\limsup_{r\to 0+} r^{\beta+2-n}\mu(\overline{B}(x, r)) \leq \limsup_{r\to 0+} r^{\beta+2-n}\mu(J(x, r)),$$

where J(x, r) is the closed cube of centre x and side 2r with edges parallel to the coordinate axes. Hence

$$\limsup_{r \to 0+} r^{\beta+2-n} \mu(\overline{B}(x, r))$$

 $\leq (2\sqrt{n})^{n-\beta-2} \lim_{\varepsilon \to 0+} \left[\sup_{J} \left\{ \mu(J)(d(J))^{\beta+2-n} \colon x \in J, d(J) < \varepsilon \right\} \right],$

where J is any non-degenerate *n*-dimensional interval and d(J) is the diameter of J. Hence $S_{\beta} \subseteq Z$, where Z is the set of points x in Ω for which the last written limit is $+\infty$. By a result of Rogers and Taylor [7, Lemma 4], $m_{n-2-\beta}(Z)=0$, and therefore $m_{n-2-\beta}(S_{\beta})=0$.

If, now, $0 < \gamma' < \beta \le n-2$, then $T_{\beta} \subseteq S_{\gamma'}$. Hence $m_{n-2-\gamma'}(T_{\beta}) = 0$ for all such γ' , so that $m_{\gamma}(T_{\beta}) = 0$ whenever $\gamma > n-2-\beta$.

8. Proofs of Theorems 4 and 5

We start by quoting two results which we shall need in the proof of Theorem 4.

60

THEOREM A. Suppose that $v = +\infty$ on E and that u is superharmonic in $\Omega \setminus E$. If

$$\liminf_{x \to v, x \in \Omega \setminus E} \{u(x)/v(x)\} \ge 0$$

for all $y \in E$, then u has a superharmonic extension to Ω .

THEOREM B. Let μ and ν be measures on a ball B(z, R) such that $\nu(B(y, r)) > 0$ whenever $B(y, r) \subseteq B(z, R)$. If

$$\limsup_{r \to 0^+} \frac{\mu(\overline{B}(x, r))}{\nu(\overline{B}(x, r))}$$

is greater than $-\infty$ for all $x \in B(z, R)$ and is non-negative for v-almost all $x \in B(z, R)$, then μ is a non-negative measure.

Theorem A is due to Kuran [6, Theorem 1]. Notice that the Corollary of Theorem 4 is an improvement of Theorem A.

Theorem B is due to Watson [9; Theorem 1]. Its proof depends on a result of Besicovitch [1; Theorem 3].

Suppose now that the hypotheses of Theorem 4 are satisfied. It is enough to prove that if $\overline{B}(z, R) \subset \Omega$, then *u* has a superharmonic extension to B(z, R). Now there exists a positive superharmonic function v_1 in B(z, 2R), with associated measure v_1 such that $v_1 = +\infty$ on $E \cap B(z, 2R)$ and $v_1(E)=0$. (To construct such a function v_1 , take *w* to be a positive superharmonic function in B(z, 2R)such that $w = +\infty$ on $E \cap B(z, 2R)$ and put $v = \sum_{m=1}^{\infty} m^{-2} \min(w, m)$.) In order to be able to apply Theorems A and B we put $\Omega' = B(z, 2R) \cap \Omega$ and work with the function v^* , defined in Ω' by

$$v^*(x) = v(x) + v_1(x) - |x|^2,$$

instead of v. The following properties of v^* and its associated measure v^* are easily verified: (i) v^* is superharmonic in Ω' , (ii) $v^*(B(y, r)) > 0$ whenever $B(y, r) \subseteq \Omega'$, (iii) $v^* = v$ on $\Omega' \cap E$, (iv) $v^* = +\infty$ on $\Omega' \cap E$, (v) condition (2) is satisfied with v^* replacing v for each y in $\overline{B}(z, R) \cap E$, (vi) condition (3) is satisfied with v^* replacing v for v-almost all y in $\overline{B}(z, R) \cap E$. Define a function Φ on $\overline{B}(z, R) \cap E$ by

$$\Phi(y) = \liminf_{x \to y, x \in \Omega \setminus E} \{u(x)/v^*(x)\}.$$

Clearly Φ is lower semi-continuous on *E*. Also $\Phi > -\infty$ on *E*. Hence Φ is bounded below on the compact set $\overline{B}(z, R) \cap E$. Let κ be a non-positive lower bound of Φ on $\overline{B}(z, R) \cap E$. Then

$$\liminf_{x \to y, x \in \Omega \setminus E} \left\{ (u(x) - \kappa v^*(x)) / v^*(x) \right\} \ge 0 \qquad (y \in B(z, R) \cap E).$$

Applying Theorem A to the superharmonic function $u - \kappa v^*$ in $B(z, R) \cap E$, we find that $u - \kappa v^*$ has a superharmonic extension to B(z, R). Hence u has a δ -superharmonic extension, \bar{u} say, to B(z, R). Let $\bar{\mu}$ be the measure on B(z, R) associated to \bar{u} . By Theorem 1,

$$\limsup_{r \to 0^+} \frac{\overline{\mu}(\overline{B}(y, r))}{v^*(\overline{B}(y, r))} \ge \limsup_{r \to 0^+} \frac{\mathscr{M}(\overline{u}, y, r)}{\mathscr{M}(v^*, y, r)}$$
$$= \limsup_{r \to 0^+} \frac{\mathscr{M}(u, y, r)}{\mathscr{M}(v^*, y, r)} \ge 0$$

for v-almost all $y \in B(z, R) \cap E$. Also, by Lemma 2,

$$\limsup_{r \to 0^+} \frac{\overline{\mu}(\overline{B}(y, r))}{v^*(\overline{B}(y, r))} \ge \liminf_{r \to 0^+} \frac{\mathscr{M}(u, y, r)}{\mathscr{M}(v^*, y, r)}$$
$$\ge \liminf_{x \to y, x \in \Omega \setminus E} \{u(x)/v^*(x)\} > -\infty$$

for each $y \in B(z, R) \cap E$. Finally, since $\overline{\mu} = \mu$ in $B(z, r) \setminus E$ and μ is a non-negative measure, we have

$$\limsup_{r\to 0^+} \frac{\bar{\mu}(\bar{B}(y, r))}{v^*(\bar{B}(y, r))} \ge 0$$

for each y in $B(z, R) \setminus E$. Hence $\overline{\mu}$ and ν^* satisfy the hypotheses of Theorem B and therefore $\overline{\mu}$ is non-negative. It follows easily that \overline{u} is superharmonic in B(z, R), and the proof is complete.

The Corollary is an immediate consequence of the theorem and Lemma 2.

If the hypotheses of Theorem 5 are satisfied then Theorem 4 is applicable to both h and -h, so that h has a superharmonic extension h_1 and a subharmonic extension h_2 to Ω ; but since E is polar, $h_1 = h_2$ everywhere in Ω , so that they are harmonic.

References

- A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions II, Proc. Cambridge Philos. Soc. 41 (1945), 1–10.
- [2] M. Brelot, Refinements on the superharmonic continuation, Hokkaido Math. J. 10 (1981), Special Issue, 68–88.
- [3] W. K. Hayman and P. B. Kennedy, Subharmonic functions, vol. I, Academic Press, London New York, 1976.
- [4] L. L. Helms, Introduction to potential theory, Wiley Interscience, New York, 1969.
- [5] Ü. Kuran, On measures associated to superharmonic functions, Proc. Amer. Math. Soc. 36 (1972), 179–186.
- [6] Ü. Kuran, Some extension theorems for harmonic, superharmonic and holomorphic

functions, J. London Math. Soc. (2) 22 (1980), 269-284.

- [7] C. A. Rogers and S. J. Taylor, Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8 (1961), 1-31.
- [8] N. A. Watson, Initial singularities of Gauss-Weierstrass integrals and their relations to Laplace transforms and Hausdorff measures, J. London Math. Soc. (2) 21 (1980), 336– 350.
- [9] N. A. Watson, Initial and relative limiting behaviour of temperatures on a strip, J. Austral. Math. Soc., (Ser A) 33 (1982), 213-228.

Department of Pure Mathematics, The Queen's University, Belfast BT7 1NN, Northern Ireland.