Kaplansky's radical and Hilbert Theorem 90 II

Daiji Kijima and Mieo Nishi (Received May 19, 1982)

Let F be a pre-Hilbert field, $K = F(\sqrt{a})$ be a non-radical extension of F (i.e. $a \notin R(F)$ where R(F) is Kaplansky's radical of F) and $N: K \to F$ be the norm map. In [2], we introduced topologies on the groups \dot{F}/\dot{F}^2 and \dot{K}/\dot{K}^2 so that the norm map N is continuous and R(F) is closed. We showed there that $N^{-1}(R(F)) = (\dot{F} \cdot R(K))^-$, where the bar means the topological closure of $\dot{F} \cdot R(K)$.

In this paper we discuss the case where $K = F(\sqrt{a})$ is a radical extension of a quasi-pythagorean field F. A field F is called quasi-pythagorean if $R(F) = D_F \langle 1, 1 \rangle = \{x \in \dot{F}; \text{ the form } \langle 1, 1 \rangle \text{ represents } x\}$. The main purpose of this paper is to give some properties of a quasi-pythagorean field F and show that $N^{-1}(R(F)) = \dot{F} \cdot R(K)$. In the last section of this paper, we shall give an example of a quasi-pythagorean field F with dim $R(F)/\dot{F}^2 = n$ for any natural number n and dim $\dot{F}/R(F) = \infty$.

§ 1. Preliminaries

In this section, we state some basic facts on Scharlau's method of transfer. By a field F, we shall always mean a field of characteristic different from two. Let \dot{F} denote the multiplicative group of F. For a quadratic form φ_F over F, we define $D_F(\varphi) = \{a \in \dot{F}; \varphi_F \text{ represents } a\}$ and $G_F(\varphi) = \{a \in F; a\varphi \simeq \varphi\}$. Let K be an extension field of F, and φ_F be a form over F. We denote $\varphi_F \otimes K$ by φ_K for simplicity.

Let $K = F(\sqrt{a})$ be a quadratic extension of F and $x = b + c\sqrt{a}$ $(b, c \in F)$ be an element of K. We write Im(x) = c and $\bar{x} = b - c\sqrt{a}$. For any element $y \in \dot{K}$, we define the map $s_y \colon K \to F$ with $s_y(x) = Im(y\bar{x})$. It is clear that s_y is a non-zero F-linear functional, and for any non-zero functional $s \colon K \to F$, there exists a unique element $y \in \dot{K}$ such that $s = s_y$. For a form q_K over K, we denote the transfer of q_K with respect to s_y by $s_y^*(q_K)$.

LEMMA 1.1. Let $K = F(\sqrt{a})$ be a quadratic extension of F. For $y \in K$ and a form q_K over K, the following statements are equivalent:

- (1) $s_y^*(q_K)$ is isotropic.
- (2) $D_{\kappa}(q_{\kappa}) \cap y\dot{F} \neq \phi$.

PROOF. We first assume that $s_v^*(q_K)$ is isotopic. Then there exists $x \in D_K(q_K)$

such that $s_y(x) = 0$. This implies that $x \in Ker(s_y) = yF$ and we have $D_K(q_K) \cap y\dot{F} \neq \phi$. Conversely let x be an element of $D_K(q_K) \cap y\dot{F}$. Then $s_y(x) = 0$ and $s_y^*(q_K)$ is isotropic. Q. E. D.

Lemma 1.2. Let $K = F(\sqrt{a})$ be a quadratic extension of F. For $y, z \in K$ and a form q_K over K, we have

$$s_y^*(z \cdot q_K) \cong s_{y\bar{z}}^*(q_K)$$
.

PROOF. Let V be the underlying quadratic space of q_K . Then for any element $x \in V$, we have $s_y^*(z \cdot q_K)(x) = s_y(z \cdot q_K(x)) = Im(y \cdot \overline{z} \cdot \overline{q_K(x)})$ and $s_{y\overline{z}}^*(q_K)(x) = s_{y\overline{z}}(q_K(x)) = Im(y \cdot \overline{z} \cdot \overline{q_K(x)})$. It follows from these relations that $s_y^*(z \cdot q_K) \cong s_{y\overline{z}}^*(q_K)$. Q. E. D.

PROPOSITION 1.3. Let $K = F(\sqrt{a})$ be a quadratic extension of F. The for $x, y \in K$, the following statements hold.

- (1) If $y \in x\dot{F}$ (i.e. $Im(y\bar{x})=0$), then $s_v^*(\langle x \rangle) \cong H = \langle 1, -1 \rangle$.
- (2) If $y \in x\dot{F}$ (i.e. $Im(y\bar{x} \neq 0)$, then $s_v^*(\langle x \rangle) \cong Im(y\bar{x})\langle 1, -N(xy) \rangle$.

PROOF. Case 1. We first consider the case x = 1. The underlying quadratic space of $s_y^*(\langle 1 \rangle)$ is K. If $y \in x \dot{F} = \dot{F}$, then the 2×2 symmetric matrix of the quadratic form $s_y^*(\langle 1 \rangle)$, relative to the F-basis $\{1, y\}$ on K, is of the form

$$\left(\begin{array}{cc} Im(y) & 0 \\ 0 & -Im(y)N(y) \end{array}\right).$$

Hence we have

$$s_{\nu}^*(\langle 1 \rangle) \cong \langle Im(y), -Im(y)N(y) \rangle \cong Im(y)\langle 1, -N(y) \rangle.$$

If $y \in x\dot{F} = \dot{F}$, then $D_K(\langle 1 \rangle) \cap y\dot{F} \neq \phi$; therefore it follows from Lemma 1.1 that $s_y^*(\langle 1 \rangle)$ is isotropic and $s_y^*(\langle 1 \rangle) \cong H$.

Case 2. Next we consider the case $x \neq 1$. By Lemma 1.2, we obtain $s_y^*(\langle x \rangle)$ $s_{y\bar{x}}^*(\langle 1 \rangle)$. The result of Case 1 shows that if $y\bar{x} \in \dot{F}$ (i.e. $y \in x\dot{F}$), then $s_y^*(\langle x \rangle) \cong H$ and if $y\bar{x} \notin \dot{F}$ (i.e. $y \notin x\dot{F}$), then we have

$$s_{\nu}^*(\langle x \rangle) \cong s_{\nu\bar{x}}^*(\langle 1 \rangle) \cong Im(y\bar{x})\langle 1, -N(y\bar{x}) \rangle.$$

Since $N(xy) = N(y\bar{x})$, $s_y^*(\langle x \rangle)$ is isometric to $Im(y\bar{x})\langle 1, -N(xy) \rangle$. Q. E. D.

§ 2. Radical extensions of quasi-pythagorean fields

A field F is called *pythagorean* if the sum of two squares in F is always a square. We shall now define the term in the title of this section.

DEFINITION 2.1. A field F is called quasi-pythagorean if $R(F) = D_F \langle 1, 1 \rangle$, where R(F) is Kaplansky's radical of F.

It is clear that pythagorean fields are quasi-pythagorean fields. An important example of quasi-pythagorean fields is a formally real pre-Hilbert field. In fact, let F be a formally real pre-Hilbert field. Then $-1 \in R(F)$ and it implies that $\dot{F} \supseteq D_F \langle 1, 1 \rangle \supseteq R(F)$. We have $D_F \langle 1, 1 \rangle = R(F)$ by the fact $|\dot{F}/R(F)| = 2$. So F is quasi-pythagorean.

LEMMA 2.2. Let F be a quasi-pythagorean field. Then $R(F) = D_F(\infty)$.

PROOF. Let $x=x_1^2+x_2^2+x_3^2$ be any element of $D_F(3)=D_F\langle 1,1,1\rangle$. Since $x_1^2+x_2^2$ is an element of R(F), x belongs to the group $D_F\langle x_1^2+x_2^2,1\rangle=D_F\langle 1,1\rangle$ by [2], Proposition 2.1. It is easy to show that $D_F(n)=D_F(n+1)$ for any $n\geq 2$ and we have $D_F(2)=D_F(\infty)$. Q. E. D.

For a field F, we write $W_t(F)$ to denote the torsion subgroup of the Witt group W(F).

PROPOSITION 2.3. For a field F, the following statements are equaivalent:

- (1) F is a quasi-pythagorean field.
- (2) $W_t(F) = \{\langle 1, -a \rangle \in W(F); a \in R(F) \}$. Moreover if F is a quasi-pythagorean field, then $W_t(F) \cong R(F) / \dot{F}^2$.

PROOF. (1) \Rightarrow (2): If $a \in R(F) = D_F(2)$, then $\langle a, a \rangle \cong a \langle 1, 1 \rangle \cong \langle 1, 1 \rangle$ and we have $2\langle 1, -a \rangle = 0 \in W(F)$. On the other hand, let q_F be any torsion element of W(F). We may assume that q_F is anisotropic. By [4], Satz 22, we can find $b_i \in \dot{F}$ and $a_i \in D_F(\infty)$ (i=1,...,n) such that $q \sim \sum_{i=1,...,n} b_i \langle 1, -a_i \rangle$. Lemma 2.2 shows that $a_i \in R(F)$ and $\langle 1, -a_i \rangle$ is universal. So $b_i \langle 1, -a_i \rangle \cong \langle 1, -a_i \rangle$ and, since q is anisotropic, n=1; therefore $q \cong \langle 1, -a \rangle$ for some $a \in R(F)$.

 $(2)\Rightarrow(1)$: Let b be an element of $D_F(2)$. Then $2\langle 1, -b\rangle = 0 \in W(F)$ and $\langle 1, -b\rangle$ is a torsion element in W(F). Hence it follows from the assumption that there exists $a \in R(F)$ such that $\langle 1, -b\rangle \cong \langle 1, -a\rangle$ and we have $b = a \in R(F)$. This shows $R(F) = D_F(2)$ and F is quasi-pythagorean.

Finally we assume that F is a quasi-pythagorean field. We define the map $f: R(F)/\dot{F}^2 \to W_t(F)$ by $f(a) = \langle 1, -a \rangle$, $a \in R(F)$. For any $a, b \in R(F)$, we have $\langle 1, -a \rangle \perp \langle 1, -b \rangle \cong \langle 1, -ab \rangle \perp H$ and this shows that the map f is a group homomorphism. We can readily see that f is injective and moreover f is surjective by the statement (2). This settles our assertion. Q. E. D.

REMARK 2.4. It is well-known that if F is a pythagorean field, then W(F) is torsion free. If F is quasi-pythagorean, then I^2F is torsion free by Proposition 2.3.

According to the definition in [2], we say that a quadratic extension K=

 $F(\sqrt{a})$ is a radical extension of F, if $a \in R(F)$. For $x \in \dot{F}$, we write $D_F \langle 1, -x \rangle = I_F(x)$ and for a subset $B \subset \dot{F}$, we write $\bigcap_{x \in B} D_F \langle 1, -x \rangle = I_F(B)$.

PROPOSITION 2.5. Let $K = (\sqrt{a})$ be a radical extension of F. Then for any n-fold Pfister form $\rho_F(n \ge 1)$, we have $D_K(\rho_K) \cap \dot{F} = D_F(\rho_F)$.

PROOF. It is clear that $D_K(\rho_K) \cap \dot{F} \supseteq D_F(\rho_F)$. Conversely we take an element $x \in D_K(\rho_K) \cap \dot{F}$. It is sufficient to show that the (n+1)-fold Pfister form $\rho_F \otimes \langle -x \rangle$ is isotropic. Suppose $\rho_F \otimes \langle -x \rangle$ is anisotropic. Since $(\rho_F \otimes \langle -x \rangle) \otimes K \cong \rho_K \otimes \langle -x \rangle$ is isotropic, [3], p. 200, Lemma 3.1 implies that $\rho_F \otimes \langle -x \rangle$ contains a subform b < 1, -a > 0 for some $b \in \dot{F}$. Since $a \in R(F)$, b < 1, -a > 0 < 1, -a > 0 is universal and the fact $\dim(\rho_F \otimes \langle -x \rangle) \ge 0$ implies that $\rho_F \otimes \langle -x \rangle$ is isotropic. This is a contradiction. Q. E. D.

PROPOSITION 2.6. Let F be a quasi-pythagorean field and $K = F(\sqrt{a})$ be a radical extension of F. The for $b, c \in \dot{F}$, the following statements are equivalent:

- (1) $I_F(b) \subseteq I_F(c)$.
- (2) $I_{\mathbf{K}}(b) \subseteq I_{\mathbf{K}}(c)$.

PROOF. (2) \Rightarrow (1): For any $x \in \dot{F}$, it follows from Proposition 2.5 that $I_K(x) \cap \dot{F} = I_F(x)$, and the assertion follows immediately.

(1) \Rightarrow (2): Let x be an element of $I_K(b)$. We must show that $x \in I_K(c)$. Norm principle ([1], Proposition 2.13) shows that $\dot{F} \cdot I_K(b) \subseteq \dot{F} \cdot I_K(c)$, and so there exists $f \in \dot{F}$ such that $fx \in I_K(c)$. Thus, $f \in xI_K(c) \cap \dot{F} \subseteq I_K(b) \cdot I_K(c) \cap \dot{F} \subseteq D_K(\langle -b, -c \rangle) \cap \dot{F}$, and by Proposition 2.5, we have $f \in D_F(\langle -b, -c \rangle)$. The fact $I_F(b) \subseteq I_F(c)$ implies $-b \in D_F(\langle 1, -c \rangle) = G_F(\langle 1, -c \rangle)$ and so

Since F is quasi-pythagorean, it follows from [2], Proposition 2.1 that $D_F \langle -b, -c \rangle = D_F \langle 1, -c \rangle$. Hence $f \in D_F \langle 1, -c \rangle = I_F(c) \subseteq I_K(c)$ and we have $x \in I_K(c)$. Q. E. D.

COROLLARY 2.7. Let F be a quasi-pythagorean field and $K = F(\sqrt{a})$ be a radical extension of F. Then, $D_K(1, 1) \subseteq I_K(\dot{F})$.

PROOF. For any $x \in \dot{F}$, we have $R(F) = D_F \langle 1, 1 \rangle = I_F (-1) \subseteq I_F(x)$. It follows from Proposition 2.6 that $D_K \langle 1, 1 \rangle = I_K (-1) \subseteq I_K(x)$. So, $D_K \langle 1, 1 \rangle \subseteq \bigcap_{x \in \dot{F}} I_K(x) = I_K(\dot{F})$. Q. E. D.

DEFINITION 2.8. Let $K = F(\sqrt{a})$ be a quadratic extension of F. We denote by $\overline{R}(K)$ the set $\{x \in K'; F \cdot D_K(1, -x) = K'\}$.

It is clear that $R(K) \subseteq \overline{R}(K)$. In general $\overline{R}(K)$ is not a subgroup of \dot{K} .

LEMMA 2.9. Let $K = F(\sqrt{a})$ be a quadratic extension of F. Then $\overline{R}(K) \cap I_K(\dot{F}) = R(K)$.

PROOF. It is clear that $\overline{R}(K) \cap I_K(\dot{F}) \supseteq R(K)$. Conversely, suppose $x \in \overline{R}(K) \cap I_K(\dot{F})$. Since $x \in I_K(\dot{F})$, we have $x \in I_K(b)$ for any $b \in \dot{F}$ and this implies $b \in I_K(x)$ for any $b \in \dot{F}$ by [2], Lemma 4.1; therefore we have $\dot{F} \subseteq I_K(x)$. On the other hand, since $x \in \overline{R}(K)$, $\dot{F} \cdot I_K(x) = \dot{K}$ and the assertion follows. Q. E. D.

PROPOSITION 2.10. Let $K = F(\sqrt{a})$ be a quadratic extension of F. Then for $x \in K$, the following statements are equivalent:

- (1) $x \in \overline{R}(K)$.
- (2) For any $y \in \dot{K} (\dot{F} \cup x\dot{F})$, the form over F,

$$\langle 1, -N(y) \rangle - Im(y\bar{x})/Im(y)\langle 1, -N(xy) \rangle$$

is isotropic.

PROOF. First we note that if $y \in \dot{K} - (\dot{F} \cup x\dot{F})$, then $Im(y) \neq 0$ and $Im(y\bar{x}) \neq 0$. (1) \Rightarrow (2): The fact $\dot{F} \cdot D_K \langle 1, -x \rangle = \dot{K}$ implies $D_K \langle 1, -x \rangle \cap y\dot{F} \neq \phi$ for any $y \in \dot{K}$. Hence $s_y^*(\langle 1, -x \rangle)$ is isotropic for any $y \in \dot{K}$ by Lemma 1.1. If $y \in \dot{K} - (\dot{F} \cup x\dot{F})$, then $Im(y) \neq 0$ and $Im(y\bar{x}) \neq 0$; therefore it follows from Proposition 1.3 that

$$s_{y}^{*}(\langle 1, -x \rangle) \cong s_{y}^{*}(\langle 1 \rangle) - s_{y}^{*}(\langle x \rangle)$$

$$\cong Im(y)\langle 1, -N(y)\rangle - Im(y\overline{x})\langle 1, -N(xy)\rangle.$$

Thus $Im(y)\langle 1, -N(y)\rangle - Im(y\bar{x})\langle 1, -N(xy)\rangle$ is isotropic and we obtain the assertion (2).

(2) \Rightarrow (1): By Lemma 1.1, it is sufficient to show that for any $y \in \dot{K}$, $s_y^*(\langle 1, -x \rangle)$ is isotropic. If $y \in \dot{F} \cup x\dot{F}$, then $s_y^*(\langle 1 \rangle)$ or $s_y^*(\langle x \rangle)$ is hyperbolic by Proposition 1.3; thus $s_y^*(\langle 1, -x \rangle)$ is isotropic in this case. If $y \in \dot{K} - (\dot{F} \cup x\dot{F})$, then we have $Im(y)\langle 1, -N(y)\rangle - Im(y\bar{x})\langle 1, -N(xy)\rangle \cong s_y^*(\langle 1, -x \rangle)$ and the assumption (2) implies $s_y^*(\langle 1, -x \rangle)$ is isotropic. Q.E.D.

Let $K = F(\sqrt{a})$ be a quadratic extension of F. Let y be an element of K - F; then by using the F-basis $\{1, y\}$ of K, any element $x \in K$ can be written as x = b + cy $(b, c \in F)$. Here the element b is uniquely determined and so we put $b = f_y(x)$. By a straightforward computation, we have the following

LEMMA 2.11. In the above situation, we have $f_v(x) = Im(y\bar{x})/Im(y)$.

LEMMA 2.12. Let $K = F(\sqrt{a})$ be a quadratic extension of F and x be an element of \dot{K} . If $f_y(x) \in D_F(1, -N(y))$ for any $y \in \dot{K} - (\dot{F} \cup x\dot{F})$, then $x \in \overline{R}(K)$.

PROOF. Since $Im(y\bar{x})/Im(y) = f_y(x) \in D_F \langle 1, -N(y) \rangle$, the form $\langle 1, -N(y) \rangle - Im(y\bar{x})/Im(y) \langle 1, -N(xy) \rangle$, which is isometric to $\langle 1, -N(y) \rangle - f_y(x) \langle 1, -N(xy) \rangle$, is isotropic. By Proposition 2.9, we have $x \in \overline{R}(K)$. Q. E. D.

THEOREM 2.13. Let F be a quasi-pythagorean field, and $K = F(\sqrt{a})$ be a radical extension of F. Then we have $N^{-1}(R(F) = \dot{F} \cdot R(K))$, where $N : K \to F$ is the norm map.

PROOF. Norm principle ([1], Proposition 2.13) says that $N^{-1}(R(F)) = N^{-1}(D_F\langle 1, 1\rangle) = \dot{F} \cdot D_K\langle 1, 1\rangle$. So it is sufficient to show that $R(K) = D_K\langle 1, 1\rangle$. By Corollary 2.7 and Lemma 2.9, we have only to show that $D_K\langle 1, 1\rangle \subseteq \overline{R}(K)$. We take an element $x \in D_K\langle 1, 1\rangle$. Then for any $y \in \dot{K} - (\dot{F} \cup x\dot{F})$, we can write $x = (b_1 + c_1 y)^2 + (b_2 + c_2 y)^2(b_i, c_i \in F)$. Then $x = (b_1^2 + b_2^2) + (c_1^2 + c_2^2)y^2 + 2(b_1c_1 + b_2c_2)y$. By Lemma 2.11, we have $f_y(y^2) = Im(y \cdot \bar{y}^2)/Im(y) = N(y)Im(\bar{y})/Im(y) = -N(y)$, and this implies that there exists $\alpha \in F$ such that $y^2 = -N(y) + \alpha y$, and hence there exists $\beta \in F$ such that $x = (b_1^2 + b_2^2) + (c_1^2 + c_2^2)(-N(y)) + \beta y$. Namely $f_y(x) = (b_1^2 + b_2^2) + (c_1^2 + c_2^2)(-N(y)) \in D_F(\langle 1, -N(y) \rangle)$. Since F is quasipythagorean, we have $D_F(\langle 1, -N(y) \rangle) = D_F(\langle 1, -N(y) \rangle)$ and $x \in \overline{R}(K)$ by Lemma 2.12.

In the proof of Theorem 2.13, we have shown that $D_K\langle 1, 1\rangle = R(K)$. Thus any raidcal extension of a quasi-pythagorean field is also quasi-pythagorean.

§ 3. Application

Throughout this section, we assume that F is a quasi-pythagorean field with a non-trivial radical (i.e. $\dot{F}^2 \subsetneq R(F) \subsetneq \dot{F}$), unless otherwise stated. Let $K = F(\sqrt{a})$ be a radical extension of F. By [2], Proposition 4.7, we have $R(K) \cap \dot{F} = R(F)$, and this implies $K \supsetneq R(K)$. On the other hand, Theorem 2.13 says that $N^{-1}(R(F)) = \dot{F} \cdot R(K)$, and the norm map is surjective since $K = F(\sqrt{a})$ is a radical extension. It follows from the fact $N^{-1}(\dot{F}^2) = \dot{F} \cdot \dot{K}^2$ that $\dot{F} \cdot R(K) \neq \dot{F} \cdot \dot{K}^2$, which implies $R(K) \neq \dot{K}^2$. Namely $K = F(\sqrt{a})$ is a quasi-pythagorean field with a non-trivial radical. Let L be a field and S be a multiplicative subgroup of \dot{L} which contains \dot{L}^2 . Then S/\dot{L}^2 has the structure of Z_2 -vector space, and we denote its dimension by dim S/\dot{L}^2 . In case when dim $\dot{F}/\dot{F}^2 < \infty$, we have the following

LEMMA 3.1. Let $K = F(\sqrt{a})$ be a radical extension of F. If $\dim \dot{F}/\dot{F}^2$ is finite, then $\dim \dot{K}/\dot{K}^2 = 2n-1$ and $\dim R(K)/\dot{K}^2 = 2m-1$ where $n = \dim \dot{F}/\dot{F}^2$ and $m = \dim R(F)/\dot{F}^2$.

PROOF. Hilbert Theorem 90 (or [3], p. 202, Theorem 3.4) says that the sequence

$$1 \longrightarrow \dot{F}/\langle \dot{F}^2, a \rangle \xrightarrow{\varepsilon} \dot{K}/\dot{K}^2 \xrightarrow{N} \dot{F}/\dot{F}^2 \longrightarrow 1$$

is exact. This exactness implies dim $\dot{K}/\dot{K}^2 = 2n - 1$. As for dim $R(K)/\dot{K}^2$, we have the exact sequence

$$1 \longrightarrow \dot{F}/R(F) \stackrel{\bar{\varepsilon}}{\longrightarrow} \dot{K}/R(K) \stackrel{\bar{N}}{\longrightarrow} \dot{F}/R(F) \longrightarrow 1$$

by Theorem 2.13 and [2], Proposition 5.3. Hence we have dim $\dot{K}/R(K) = 2(n-m)$ and dim $R(K)/\dot{K}^2 = (2n-1)-2(n-m)=2m-1$. Q. E. D.

Starting from the quasi-pythagorean field F, we define a sequence of fields $\{K_i\}_{i=0,1,2,...}$ inductively as follows: $K_0 = F$ and K_{i+1} is a radical extension of K_i . Note that each K_i is a quasi-pythagorean field with a non-trivial radical. We let $K = \text{ind lim } K_i = \bigcup K_i$.

In the remainder of this paper, we use these notations unless otherwise stated. It is clear that if i < j, then $R(K_i) \cap K_i = R(K_i)$.

PROPOSITION 3.2. K is a quasi-pythagorean field, and $R(K) \cap K_i = R(K_i)$ for any i.

PROOF. Step 1. First we show that $R(K) \cap K_i \supseteq R(K_i)$. It is sufficient to show that $y \in D_K \langle 1, -x \rangle$ for any $x \in R(K_i)$ and any $y \in K$. There exists $j(j \ge i)$ such that $y \in K_j$. Since $x \in R(K_i) \subseteq R(K_j)$, we have $y \in D_{K_i} \langle 1, -x \rangle \subseteq D_K \langle 1, -x \rangle$.

Step 2. Next we show that K is a quasi-pythagorean field. Let y be an element of $D_K\langle 1, 1 \rangle$. There exist $y_1, y_2 \in K$ such that $y = y_1^2 + y_2^2$. We may assume that $y_1, y_2 \in K_j$ for some j. Then the fact $y \in D_{K_j}\langle 1, 1 \rangle = R(K_j)$ implies $y \in R(K)$ by Step 1.

Step 3. Finally we show $R(K) \cap K_i = R(K_i)$. Let x be an element of $R(K) \cap K_i = D_K \langle 1, 1 \rangle \cap K_i$. We may assume that $x = x_1^2 + x_2^2$, $(x_1, x_2 \in K_j)$ for some $j \ge i$. Then $x \in D_{K_j} \langle 1, 1 \rangle = R(K_j)$ and the fact $R(K_j) \cap K_i = R(K_i)$ implies $x \in R(K_i)$. Thus we have $R(K) \cap K_i \subseteq R(K_i)$. Q. E. D.

REMARK 3.3. Proposition 3.2 shows that K is a quasi-pythagorean field and $\dot{K} \supseteq R(K)$. More strictly, we have $\dim \dot{K}/R(K) = \infty$. In fact, $R(K) \cap K_i = R(K_i)$ implies that the canonical homomorphism $\dot{K}_i/R(K_i) \to \dot{K}/R(K)$ is injective for any i. Hence if $\dim \dot{F}/R(F) = \dim \dot{K}_0/R(K_0) = \infty$, then it is clear that $\dim \dot{K}/R(K) = \infty$. If $\dim \dot{F}/R(F) = t < \infty$, then we have $\dim \dot{K}_i/R(K_i) = 2^i t$ by Lemma 3.1; hence $\dim \dot{K}/R(K) \ge 2^i t$ for any i and we obtain $\dim \dot{K}/R(K) = \infty$.

PROPOSITION 3.4. If dim $R(F)/\dot{F}^2 = 1$, then $R(K) = \dot{K}^2$.

PROOF. We write $K_{i+1} = K_i(\sqrt{a_i})$, $a_i \in R(K_i) - \dot{K}_i^2$. Then $\dot{K}_{i+1}^2 \cap K_i = \langle \dot{K}_i^2, a_i \rangle$ for any i and dim $R(K_i)/\dot{K}_i^2 = 1$ by Lemma 3.1. Hence we have $R(K_i) = \langle \dot{K}_i^2, a_i \rangle \subseteq \dot{K}_{i+1}^2$, and this implies $R(K) = \bigcup R(K_i) = \bigcup \dot{K}_i^2 = \dot{K}^2$. Q. E. D.

For any natural number n, K. Szymiczek ([5], p. 207) gave an example of a formally real pre-Hilbert (hence quasi-pythagorean) field F such that $\dim R(F)/\dot{F}^2 = n$. In the following proposition, we shall give an example of a quasi-pythagorean field K such that $\dim \dot{K}/R(K) = \infty$ and $\dim R(K)/\dot{K}^2 = n$ for any positive integer n. First we need a lemma.

LEMMA 3.5. Let $L = k(\sqrt{x})$ be a quadratic extension of k. If $\{y_1, ..., y_n, x\}$ $\subset k$ is lenearly independent in k/k^2 (as a \mathbb{Z}_2 -vector space), then $\{y_1, ..., y_n\}$ is linearly independent in L/L^2 .

PROOF. Since the canonical injection ε : $k/\langle k^2, x \rangle \rightarrow L/L^2$ is \mathbb{Z}_2 -linear, we have dim $(\langle y_1, ..., y_n, L^2 \rangle / L^2) = \dim(\langle y_1, ..., y_n, x, k^2 \rangle / \langle x, k^2 \rangle) = n$. This fact implies that $\{y_1, ..., y_n\}$ is linearly independent in L/L^2 . Q. E. D.

PROPOSITION 3.6. If dim $R(F)/\dot{F}^2 \ge 2$, then for any natural number n, we can construct a suitable sequence of radical extensions $\{K_i\}_{i=1,2,3...}$ such that dim $R(K)/\dot{K}^2 = n$.

PROOF. Since dim $R(F)/\dot{F}^2 \ge 2$, Lemma 3.1 shows that there exists i(1) such that dim $R(K_{i(1)})/\dot{K}_{i(1)} > n$. Let $\{b_1, \dots, b_n, a_{i(1)+1}, a_{i(1)+2}, \dots, a_{i(2)}\}$ be a basis of $R(K_{i(1)})/\dot{K}_{i(1)}^2$, where dim $R(K_{i(1)})/\dot{K}_{i(1)}^2 = n + i(2) - i(1)$. We fix the field K_i and the set of elements $\{b_1, \dots, b_n\}$, and we put $K_{i(1)+1} = K_{i(1)}(\sqrt{a_{i(1)+1}}), K_{i(1)+2} = K_{i(1)+1}(\sqrt{a_{i(1)+2}}), \dots, K_{i(2)} = K_{i(2)-1}(\sqrt{a_{i(2)}})$. Then we have $a_j \in \dot{K}_{i(2)}^2$ for any $j = i(1)+1, i(1)+2, \dots, i(2)$ and its implies that $\langle b_1, \dots, b_n, \dot{K}_{i(2)}^2 \rangle = \langle R(K_{i(1)}), \dot{K}_{i(2)}^2 \rangle$. Lemma 3.1 shows that dim $R(K_{i(2)})/\dot{K}_{i(2)}^2 > n$, and Lemma 3.5 shows that $\{b_1, \dots, b_n\}$ is linearly independent in $R(K_{i(2)})/\dot{K}_{i(2)}^2$. Let $\{b_1, \dots, b_n, a_{i(2)+1}, a_{i(2)+2}, \dots, a_{i(3)}\}$ be a basis of $R(K_{i(2)})/\dot{K}_{i(2)}^2$, where dim $R(K_{i(2)})/\dot{K}_{i(2)}^2 = n+i(3)-i(2)$. We put $K_{i(2)+1}=K_{i(2)}(\sqrt{a_{i(2)+1}}), K_{i(2)+2}=K_{i(2)+1}(\sqrt{a_{i(2)+2}}), \dots$, $K_{i(3)}=K_{i(3)-1}(\sqrt{a_{i(3)}})$. The sequence of fields $K_{i(3)+1}, K_{i(3)+2}, \dots, K_{i(4)}, \dots$ is defined similarly.

We shall now show that K= ind $\lim K_i$ has the required property. First we show that $\{b_1,\ldots,b_n\}$ is linearly independent in $R(K)/\dot{K}^2$. Suppose $\{b_1,\ldots,b_n\}$ is linearly dependent in $R(K)/\dot{K}^2$. Then there exists a partial product b of $\{b_1,\ldots,b_n\}$ such that $b\in \dot{K}^2$. Since $\dot{K}^2=\cup \dot{K}^2_j$, there exists j such that $b\in \dot{K}^2_j$, and this means that $\{b_1,\ldots,b_n\}$ is linearly dependent in $R(K_j)/\dot{K}^2_j$. This is a contradiction, and hence $\{b_1,\ldots,b_n\}$ is linearly independent in $R(K)/\dot{K}^2$.

Next we show that $R(K)/\dot{K}^2$ is generated as $a \mathbb{Z}_2$ -vector space by $\{b_1, ..., b_n\}$. Let x be an element of R(K). There exists j such that $x \in K_j$. Since $R(K) \cap K_j = R(K_j)$, we have $x \in R(K_j)$. Let i(s) be a number which is larger than j. Then we have $x \in \langle R(K_{i(s)}), \dot{K}_{i(s+1)}^2 \rangle = \langle b_1, ..., b_n, \dot{K}_{i(s+1)}^2 \rangle = \langle b_1, ..., b_n, \dot{K}_i^2 \rangle$, and this shows that $\{b_1, ..., b_n\}$ generates $R(K)/\dot{K}^2$. Thus we see that K is a quasipythagorean field with dim $\dot{K}/R(K) = \infty$ and dim $R(K)/\dot{K}^2 = n$. Q. E. D.

References

- [1] R. Elman and T. Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
- [2] D. Kijima and M. Nishi, Kaplansky's radical and Hilbert Theorem 90, Hiroshima Math. J. 11 (1981), 443-456.
- [3] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Reading, Mass., 1973.
- [4] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.
- [5] K. Szymiczek, Quadratic forms over fields with finite square class number, Acta. Arith. **28** (1975), 195–221.

Department of Mathematics, Faculty of Science, Hiroshima University