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Let F be a pre-Hilbert field, K=F(,/ a) be a non-radical extension of F
(i.e. ag& R(F) where R(F) is Kaplansky’s radical of F)and N: K—F be the norm
map. In[2], we introduced topologies on the groups F/F2 and K/K? so that the
norm map N is continuous and R(F) is closed. We showed there that N™!(R(F))=
(F - R(K))~, where the bar means the topological closure of F - R(K).

In this paper we discuss the case where K =F(y/ a) is a radical extension of a
quasi-pythagorean field F. A field F is called quasi-pythagorean if R(F)=
Dg(1, 1> ={x e F; the form {1, 1) represents x}. The main purpose of this paper
is to give some properties of a quasi-pythagorean field F and show that N "1(R(F))=
F-R(K). In the last section of this paper, we shall give an example of a quasi-
pythagorean field F with dim R(F)/F2=n for any natural number n and dim F/
R(F)= 0.

§1. Preliminaries

In this section, we state some basic facts on Scharlau’s method of transfer.
By a field F, we shall always mean a field of characteristic different from two. Let
F denote the multiplicative group of F. For a quadratic form ¢y over F, we define
Di(p)={aeF; @y represents a} and Gy(p)={aeF; ap~¢}. Let K be an ex-
tension field of F, and ¢, be a form over F. We denote ¢;® K by ¢ for sim-
plicity.

Let K= F(\/a_) be a quadratic extension of F and x=b+c\/a (b, ce F) be an
element of K. We write Im(x)=c and X =b—c\/3. For any element yeK,
we define the map s,: K—F with s(x)=1Im(yX). It is clear that s, is a non-zero
F-linear functional, and for any non-zero functional s: K—F, there exists a unique
element y € K such that s=s,. For aform gy over K, we denote the transfer of
qx Wwith respect to s, by s¥(qg).

Lemma 1.1. Let K=F(\/a) be a quadratic extension of F. For yeK and
a form qg over K, the following statements are equivalent:

(1) s¥(qg) is isotropic.

(2) Dxla)nyF#¢.

Proor. We first assume that s¥(q) is isotopic. Then there exists x € Dx(qg)
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such that s,(x)=0. Thisimplies that x € Ker(s,) = yF and we have Dg(qg) N yE#¢.
Conversely let x be an element of Dg(qg) N yF. Then s,(x)=0 and s}(qk)
is isotropic. Q.E.D.

LEmMMA 1.2. Let K=F(\/E) be a quadratic extension of F. For y,zeK
and a form qg over K, we have

s3(z- qg) = s¥:(qk) -

PrROOF. Let V be the underlying quadratic space of gx. Then for any ele-
ment x € V, we have s¥(z- qg)(x)=s,(z- gx(x))=Im(y - Z- qx(x)) and s¥;(g)(x)=
$,:(@x(x))=Im(y-Z-qx(x)). It follows from these relations that s¥(z-gg)=
s¥:(qk). Q.E.D.

PrROPOSITION 1.3. Let K=F(\/E) be a quadratic extension of F. The for
x, y€ K, the following statements hold.

(1) If yexF (i.e. Im(yx)=0), then S¥Kx))=H=1, —1).

(2) If y&xF (i.e. Im(yXx#0), then s =Im(yx)<1, —N(xy)).

ProOOF. Case 1. We first consider the case x=1. The underlying quadratic
space of s*((1>) is K. If y&xF=F, then the 2x2 symmetric matrix of the
quadratic form s%({1}), relative to the F-basis {1, y} on K, is of the form

< Im(y) 0 )
0 —Im(y)N(y) )
Hence we have

s3K1)) = Im(y), —Im(Y)N(y)) = Im(y)<1, —N(y)).

If yexF=F, then Dg({1>) n yF#¢; therefore it follows from Lemma 1.1
that s¥({1)) is isotropic and s§({1>)=H.

Case 2. Next we consider the case x#1. By Lemma 1.2, we obtain s¥({x})
s*¥(¢1)). The result of Case 1 shows that if yx e F (i.e. y € xF), then s*({x))=~H
and if yXx&F (i.e. y&xF), then we have

sy({xD) = s3:(<1D) = Im(yx)<1, — N(yx)).

Since N(xy)=N(yX), s§({x}) is isometric to Im(yxX){1, —N(xy)). Q.E.D.

§2. Radical extensions of quasi-pythagorean fields

A field F is called pythagorean if the sum of two squares in F is always a
square. We shall now define the term in the title of this section.
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DerINITION 2.1. A field F is called quasi-pythagorean if R(F)=Dg1, 1),
where R(F) is Kaplansky’s radical of F.

It is clear that pythagorean fields are quasi-pythagorean fields. An important
example of quasi-pythagorean fields is a formally real pre-Hilbert field. In fact,
let F be a formally real pre-Hilbert field. Then —1& R(F) and it implies that
F2Dg{1, 1>2R(F). We have Dg{1, 1> =R(F) by the fact |F/R(F)|=2. So Fis
quasi-pythagorean.

LEMMA 2.2. Let F be a quasi-pythagorean field. Then R(F)=Dg(0).

PrRoOOF. Let x=x?+x3+x3 be any element of Dg(3)=Dy{1, 1, 1>. Since
x3+x% is an element of R(F), x belongs to the group Dg<{x}+x3, 1>=Dg{1, 1)
by [2], Proposition 2.1. It is easy to show that Dg(n)=Dg(n+1) for any n=>2
and we have Dg(2)=Dg(0). Q.E.D.

For a field F, we write W/(F) to denote the torsion subgroup of the Witt
group W(F).

PROPOSITION 2.3.  For a field F, the following statements are equaivalent:
(1) F is a quasi-pythagorean field.
(2) W(F)={1, —a)eW(F); aeR(F)}.

Moreover if F is a quasi-pythagorean field, then W(F)= R(F)/F2.

ProOF. (1)=>(2): If ae R(F)=Dg(2), then<a, ad=a{l, 1>={1, 1> and we
have 2{1, —a)=0€ W(F). On the other hand, let g be any torsion element
of W(F). We may assume that g is anisotropic. By [4], Satz 22, we can find
b;e F and a;€ Dg() (i=1,..., n) such that g~¥,_, ,b<1, —a;>. Lemma 2.2
shows that a;e R(F) and <1, —a;y is universal. So b<{l, —a )=, —a;
and, since g is anisotropic, n=1; therefore g=~<1, —a) for some a € R(F).

(2)=(1): Let b be an element of Dg(2). Then 2{1, —b)=0€ W(F) and
{1, —b) is a torsion element in W(F). Hence it follows from the assumption
that there exists a € R(F) such that {1, —b> =<1, —a) and we have b=a € R(F).
This shows R(F)=Dg(2) and F is quasi-pythagorean.

Finally we assume that F is a quasi-pythagorean field. We define the map
f: R(F)/F2—W{(F) by f(a)={1, —a), aeR(F). For any a, be R(F), we have
{1, —ad L1, =b>=1, —aby) LH and this shows that the map f is a group
homomorphism. We can readily see that f is injective and moreover f is surjective
by the statement (2). This settles our assertion. Q.E.D.

REMARK 2.4. It is well-known that if F is a pythagorean field, then W(F) is
torsion free. If F is quasi-pythagorean, then IF is torsion free by Proposition 2.3.

According to the definition in [2], we say that a quadratic extension K=
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F(\/Z) is a radical extension of F, if ae R(F). For x e F, we write Dp{1, —x)=
Ix(x) and for a subset B F, we write N3 D1, — x> =Ix(B).

PROPOSITION 2.5. Let K=(\/E) be a radical extension of F. Then for any
n-fold Pfister form p(n=1), we have Dg(pg) N F =Dg(pp).

PrOOF. It is clear that Dy(pg) N F2Dg(pr). Conversely we take an element
x € Dg(py) N F. Ttissufficient to show that the (n+ 1)-fold Pfister form pr® ¢ —x)
is isotropic. Suppose pp®{ —x) is anisotropic. Since (PFr@®{—xP)RK=
Pr®L —x) is isotropic, [3], p. 200, Lemma 3.1 implies that p®<{ —x}) contains
a subform b{l, —a) for some beF. Since aeR(F), b{l, —a)={1, —a)
is universal and the fact dim(p;®{ —x))) =4 implies that p,® < —x)) is isotropic.
This is a contradiction. Q.E.D.

PROPOSITION 2.6. Let F be a quasi-pythagorean field and K=F(\/—5) be a
radical extension of F. The for b, c € F, the following statements are equivalent:

(1) Te(b)sIg(o).

(2) Ix(b)=Ik(c).

PROOF. (2)=(1): For any xeF, it follows from Proposition 2.5 that
I(x) N F=Ig(x), and the assertion follows immediately.

(D)=>(2): Let x be an element of Ix(b). We must show that x e Ig(c).
Norm principle ([1], Proposition 2.13) shows that F.Ig(b)<SF -I(c), and so
there exists fe F such that fxelg(c). Thus, fexIg(c)nF<Iy(b) -Ix(c)nFc
Dy({ —b, —c)) N F, and by Proposition 2.5, we have fe Di({ —b, —c)). The
fact Ip(b) < I(c) implies —b € Dg<1l, —c)>=Gg{l, —c¢) and so

K=b, —cy =1, —c> L(=b)X1, —c>
~ (1, —e> L1, —e> = (1, 1> L(—eXK1, 1).

Since F is quasi-pythagorean, it follows from [2], Proposition 2.1 that D { —b,
—cy=Dp{l, —c). Hence fe D1, —c)=Ig(c)<Ik(c) and we have x e Ig(c).
Q.E.D.

COROLLARY 2.7. Let F be a quasi-pythagorean field and K=F(\/E) be a
radical extension of F. Then, Dg{1, 1> S I (F).

PrOOF. Forany x € F, we have R(F)=Dg{1, 1> =I(—1)=Ig(x). It follows
from Proposition 2.6 that D1, 1> =Ix(—1)SIx(x). So, Dg(l, 1> < Nyep Ix(x)
=I(F). Q.E.D.

DEFINITION 2.8. Let K=F (\/Zz) be a quadratic extension of F. We denote
by R(K) the set {xe K; F-Dg{1, —x)=K}.

It is clear that R(K)< R(K). In general R(K) is not a subgroup of K.
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LEMMA 2.9. Let K=F(\/a) be a quadratic extension of F. Then R(K)n
Ix(F)=R(K).

PrOOF. It is clear that R(K) n I(F)=2R(K). Conversely, suppose x € R(K)
NI (F). Since x € I(F), we have x € I(b) for any b € F and this implies b € I(x)
for any b e F by [2], Lemma 4.1; therefore we have F = I(x). On the other hand,
since x € R(K), F - Ix(x)=K and the assertion follows. Q.E.D.

PROPOSITION 2.10. Let K=F(\/E) be a quadratic extension of F. Then for
x € K, the following statements are equivalent:

(1) xeR(K).

(2) For any ye K—(F U xF), the form over F,

{1, =N©)> —Im(yx)/Im(y){1, —N(xy)>

is isotropic.

ProOOF. First we note that if y e K—(F U xF), then Im(y)#0 and Im(yx)#0.

(1)=(2): The fact F-Dg(l, —x>=K implies Dx{1, —x)> n yF# ¢ for any
ye K. Hence s*(<1, —x)) is isotropic for any ye K by Lemma 1.1. If ye K—
(F U xF), then Im(y)#0 and Im(yx)#0; therefore it follows from Proposition 1.3
that

SFL, —xp) = s¥(C1D) — s3(KxD)
= Im(y)}<1, —N(y)> — Im(yx)<1, —N(xy)) .

Thus Im(y){1, — N(»)) —Im(yx){1, — N(xy)) is isotropic and we obtain the
assertion (2).

(2)=(1): By Lemma 1.1, it is sufficient to show that for any yeK, s¥(1,
—x)) is isotropic. If ye F U xF, then s¥((1)) or s¥(<x)) is hyperbolic by Pro-
position 1.3; thus s¥(<1, —x)) is isotropic in this case. If ye K—(F U xF), then
we have Im(y)<{1, =N()) —Im(yx)<1, — N(xy)) =2s¥(1, —x>) and the
assumption (2) implies s}({1, —x)) is isotropic. Q.E.D.

Let K=F (\/Z) be a quadratic extension of F. Let y be an element of K—F;
then by using the F-basis {1, y} of K, any element x € K can be written as x=
b+cy (b, ce F). Here the element b is uniquely determined and so we put
b=f,(x). By a straightfoward computation, we have the following

LemMmA 2.11. In the above situation, we have f(x)=Im(yx)/Im(y).

LemMMA 2.12. Let K=F(\/E) be a quadratic extension of F and x be an

element of K. If f(x)e Dg(1, —N(»)> for any y e K—(F U xF), then x € R(K).
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ProoF.  Since Im(yx)/Im(y)=f,(x) € Dg{1, —N(y)>, the form {1, —N(y)>—
Im(yx)/Im(y)<1, — N(xy)», which is isometric to {1, —N(y))> —f,(x)<1, —N(xy)>,
is isotropic. By Proposition 2.9, we have x € R(K). Q.E.D.

THEOREM 2.13. Let F be a quasi-pythagorean field, and K=F(\/¢_1) be
a radical extension of F. Then we have N"'(R(F)=F - R(K), where N: K—F is
the norm map.

ProoOF. Norm principle ([1], Proposition 2.13) says that N~1(R(F))=
N-Y(Dg(1, 1>)=F-Dy{1, 1>. So it is sufficient to show that R(K)=Dg{1, 1.
By Corollary 2.7 and Lemma 2.9, we have only to show that Dg{1, 1> < R(K).
We take an element x e Dg{l, 1>. Then for any ye K—(FUxF), we can
write  x=(b,;+c1¥)?>+(by+c,)%(b;, c;e F). Then x=(b3+b3)+(c3+c3)y*+
2(bycy+byecy)y. By Lemma 2.11, we have f(y?)=Im(y - y2)/Im(y)=Ny)Im(y)/
Im(y)= — N(y), and this implies that there exists « € F such that y2= — N(y)+ay,
and hence there exists feF such that x=(b}+b3)+(c?+c3)(—N(y))+By.
Namely f(x)=(b}+b3)+(c?+c3)(—N(y)) € D(L1, —N(y)»). Since F is quasi-
pythagorean, we have Dp({1, —N(»)»)=Dy({1, —N(»)>) and xeR(K) by
Lemma 2.12. Q.E.D.

In the proof of Theorem 2.13, we have shown that Dg(1, 1) =R(K). Thus
any raidcal extension of a quasi-pythagorean field is also quasi-pythagorean.

§3. Application

Throughout this section, we assume that F is a quasi-pythagorean field with
a non-trivial radical (i.e. F2&R(F)&F), unless otherwise stated. Let K=F(\/a)
be a radical extension of F. By [2], Proposition 4.7, we have R(K) n F =R(F),
and this implies K=2 R(K). On the other hand, Theorem 2.13 says that N~1(R(F))
=F - R(K), and the norm map is surjective since K = F(,/a) is a radical extension.
It follows from the fact N-1(F2)=F.K?2 that F-R(K)#F K2, which implies
R(K)#K?. Namely K=F(,/ a) is a quasi-pythagorean field with a non-trivial
radical. Let Lbe a field and S be a multiplicative subgroup of L which contains
L2. Then S/L? has the structure of Z,-vector space, and we denote its dimension
by dim S/L2. In case when dim F/F2 < co, we have the following

LemMA 3.1. Let K=F(\/a) be a radical extension of F. If dim F/F? is
finite, then dim K/K2=2n—1 and dim R(K)/K?2=2m—1 where n=dim F/F?
and m=dim R(F)/F2.

Proor. Hilbert Theorem 90 (or [3], p. 202, Theorem 3.4) says that the
sequence
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1 — F[CF?, ay < RIR2 N PRz 1

is exact. This exactness implies dim K/K2=2n—1. As for dim R(K)/K2, we
have the exact sequence

1 — FJR(F) < K/R(K) -~ FIR(F) — 1

by Theorem 2.13 and [2], Proposition 5.3. Hence we have dim K/R(K)=2(n—m)
and dim R(K)/K2=Q2n—1)—2(n—m)=2m—1. Q.E.D.

Starting from the quasi-pythagorean field F, we define a sequence of fields
{Ki}i=0.1,2,... inductively as follows: Ko=F and K;,, is a radical extension of
K;. Note that each K; is a quasi-pythagorean field with a non-trivial radical.
We let K=ind lim K;= U K.

In the remainder of this paper, we use these notations unless otherwise
stated. It is clear that if i<j, then R(K;) n K;=R(K)).

PROPOSITION 3.2. K is a quasi-pythagorean field, and R(K)n K;=R(K;)
for any i.

Proor. Step 1. First we show that R(K)n K;2R(K;). It is sufficient to
show that y e Dg{1, —x) for any xe R(K,) and any ye K. There exists j(j=1)
such that ye K;. Since x € R(K;) S R(K ), we have y € Dg {1, —x) S D1, —x).

Step 2. Next we show that K is a quasi-pythagorean field. Let y be an
element of Dg<1, 1)>. There exist y,, y, € K such that y=y2+y3. We may
assume that y;, y, € K; for some j. Then the fact y e Dk, <1, 1>=R(K;) implies
y € R(K) by Step 1.

Step 3. Finally we show R(K) n K;=R(K;). Let x be an element of R(K) N
K;=Dx(1,1>nK;. We may assume that x=x}+x3, (x;, x,€K;) for some
jzi. Then xeDg(l, 1>=R(K;) and the fact R(K;)n K;=R(K;) implies xe
R(K;). Thus we have R(K) n K; < R(K)). Q.E.D.

REMARK 3.3. Proposition 3.2 shows that K is a quasi-pythagorean field and
K=22R(K). More strictly, we have dim K/R(K)=o0. In fact, R(K) n K;=R(K))
implies that the canonical homomorphism K;/R(K;)—K/R(K) is injective for any
i. Hence if dim F/R(F)=dim K,/R(K,)= oo, then it is clear that dim K/R(K)=
00. If dim F/R(F)=t<oo, then we have dim K;/R(K;)=2t by Lemma 3.1;
hence dim K/R(K)=2it for any i and we obtain dim K/R(K)= co.

PROPOSITION 3.4. If dim R(F)/F2=1, then R(K)=K?2.

Proor. We write K;,,=K(\/a;), a;e R(K;)— K3 Then K%, nK;=<K3
a;> for any i and dim R(K;)/K?=1 by Lemma 3.1. Hence we have R(K,=
(K2, a,> =K2,,, and this implies R(K)= U R(K;)= U K?=K2. Q.E.D.
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For any natural number n, K. Szymiczek ([5], p. 207) gave an example
of a formally real pre-Hilbert (hence quasi-pythagorean) field F such that
dim R(F)/F2=n. In the following proposition, we shall give an example of a
quasi-pythagorean field K such that dim K/R(K)=co and dim R(K)/K2=n for
any positive integer n. First we need a lemma.

LEMMA 3.5. Let L=k(\/x) be a quadratic extension of k. If {yy,-.., Y X}
ck is lenearly independent in kjk? (as a Z,-vector space), then {y,..., y,}
is linearly independent in L/L2.

ProOOF. Since the canonical injection e: k/(k2, x)—>L/L? is Z,-linear,
we have dim ({y;,..., Yp, L2)/L2)=dim ({yy,..., ¥, X, k2>/{x, k?))=n. This fact
implies that {y,..., y,} is linearly independent in L/L2. Q.E.D.

PROPOSITION 3.6. If dim R(F)/F22=2, then for any natural number n, we
can construct a suitable sequence of radical extensions {K;};=1,,... Such that
dim R(K)/K2=n.

PROOF. Since dim R(F)/F2>2, Lemma 3.1 shows that there exists i(1) such
that dim R(K;(1))/Ky1y>n. Let {by,..., by, Gi1)+ 15 Qi1y+25--+> di(2y} bE @ basis of
R(K1y)/K?4), where dim R(K;;))/K?q,=n+i(2)—i(1). We fix the field K; and
the set of elements {b,,..., b}, and we put K;y+; =K1,/ ai1)+1)> Kicy+2=
Kiy+1(v/ @ity + 20>+ Kiay=Ki2)-1(y/@s2)). Then we have a!eK,-z(z) for any
j=i(1)+1,i(1)+2,...,i(2) and its implies that <b,,..., b, K,)> =<{R(Kyy)),
K?,,>. Lemma 3.1 shows that dim R(K;,))/K%;>n, and Lemma 3.5 shows
that {b,..., b,} is linearly independent in R(K;(5))/K?,). Let {by,..., by, di2y+1»
Ayay+2s- i3y} be a basis of R(Kyz))/K¥z), where dim R(K;,))/K?, =
n+i(3)—i(2). “_’e_Pm Kiz)y+1 =Ki(2)(\/ai(2)+1)a Ki2y+2=Kiay+ 1(\/ai(2)+2)""’
Ki3y=Ki3)-1(\/ai3)). The sequence of fields K;zy+1s Kiayt s> Kicayo-or 18
defined similarly.

We shall now show that K=ind lim K; has the required property. First we
show that {b,..., b,} is linearly independent in R(K)/K2. Suppose {b;,..., b,}
is linearly dependent in R(K)/K2. Then there exists a partial product b of
{by,..., b,} such that be K2. Since K2= U K3, there exists j such that be K3,
and this means that {b,,..., b,} is linearly dependent in R(K;)/K3. This is a
contradiction, and hence {b,,..., b,} is linearly independent in R(K)/K?2.

Next we show that R(K)/K? is generated as a Z,-vector space by {b;,..., b,}.
Let x be an element of R(K). Thereexists j suchthatxe K;. Since R(K)NK;=
R(K)), we have x€ R(K;). Let i(s) be a number which is larger than j. Then
we have x € (R(Ki(), K¥s41)> =<byseees by K¥s11y> S <bys..., by, K2, and this
shows that {b,,..., b,} generates R(K)/K2. Thus we see that K is a quasi-
pythagorean field with dim K/R(K)= oo and dim R(K)/K2=n. Q.E.D.
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