
HIROSHIMA MATH. J.

13 (1983), 29-37

Kaplansky's radical and Hubert Theorem 90 II

Daiji KuiMA and Mieo NISHI

(Received May 19, 1982)

Let F be a pre-Hilbert field, K = F(yJa) be a non-radical extension of F

(i.e. a&R(F) where R(F) is Kaplansky's radical of F)and N: K->F be the norm

map. In [2], we introduced topologies on the groups F/F2 and KjK2 so that the

norm map N is continuous and R(F) is closed. We showed there that N~\R(F)) =

(F R(K))~, where the bar means the topological closure of F R(K).

In this paper we discuss the case where K = F(^/a) is a radical extension of a

quasi-pythagorean field F. A field F is called quasi-pythagorean if R(F) =

D i?<l, 1> = {x e F; the form <1, 1> represents x}. The main purpose of this paper

is to give some properties of a quasi-pythagorean field F and show that N1(R(F))=

F R(K). In the last section of this paper, we shall give an example of a quasi-

pythagorean field F with dim R(F)/F2 = n for any natural number n and dim Fj

R(F) = oo.

§1. Preliminaries

In this section, we state some basic facts on Scharlau's method of transfer.

By a field F, we shall always mean a field of characteristic different from two. Let

F denote the multiplicative group of F. For a quadratic form φF over F, we define

DF(φ) = {aeF; φF represents a} and GF(φ) = {aeF; aφ~φ}. Let K be an ex-

tension field of F, and φF be a form over F. We denote φF®K by φκ for sim-

plicity.

Let K = F{^a) be a quadratic extension of F and x = b + c^Ja (b, c G F) be an

element of K. We write Im(x) = c and x = b — c^ja. For any element ye/C,

we define the map s/. K-^F with sy(x) = /m(j;3c). It is clear that sy is a non-zero

F-linear functional, and for any non-zero functional s: K^F, there exists a unique

element y e K such that s = sy. For a form qκ over K, we denote the transfer of

qκ with respect to sy by s*(qκ).

LEMMA 1.1. Let K = F(^/a) be a quadratic extension of F. For yeK and

a form qκ over K, the following statements are equivalent:

(.1) s*(qκ) is isotropic.

(2)

PROOF. We first assume that s*(qκ) is isotopic. Then there exists x e Dκ(qκ)
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such that sy(x) = 0. This implies that x e Ker(sy) = yF and we have Dκ(qκ)

Conversely let x be an element of Dκ(qκ) n yF. Then sy(x) = 0 and s*(qκ)

is isotropic. Q. E. D.

LEMMA 1.2. Let K = F(yJά) be a quadratic extension of F. For y, zeK

and a form qκ over K, we have

PROOF. Let V be the underlying quadratic space of qκ. Then for any ele-

ment x e V, we have s*(z qκ) (x) = sy(z qκ(x)) = Im(y z qκ(x)) and s^(qκ) (x) =

) — Im{y>z>qκ{x)). It follows from these relations that s*(z-qκ)^

s*-z(4κ). Q E.D.

PROPOSITION 1.3. Let K = F(^Ja) be a quadratic extension of F. The for

x, yeK, the following statements hold.

(1) If ye xF (i.e. Im(yx) = 0), then 5 * « x » ^ # = <l5 -1>.

(2) IfyέξxF (i.e. Im(yx^O), then s*«x»^Jm(>x)<l, -JV(x^)>.

PROOF. Case 1. We first consider the case x = 1. The underlying quadratic

space of s * « l » is K. If y^xF = F, then the 2 x 2 symmetric matrix of the

quadratic form s * « l » , relative to the F-basis {1, y} on K9 is of the form

lm(y) 0

0 -Im(y)N(y)

Hence we have

5*«1» a? (lm(y\ -Im(y)N(y)> s Im(yKl, -

If yexF = F, then D χ « l » Π yFΦφ\ therefore it follows from Lemma 1.1

that s*«l» is isotropic and s * « l » ^ # .

Case 2. Next we consider the case xφ 1. By Lemma 1.2, we obtain s*«x»

s*x«X>) τ h e r e s u l t o f C a s e ! shows that if yx e F (i.e. y e xf\ then s * « x » ^ #

and if ^ x ^ F (i.e. y^xF), then we have

s «x» S

Since ΛΓ(xj ) = N(yjc), s j «x» is isometric to 7m(yx)<l, -N(xy)}. Q.E. D.

§ 2. Radical extensions of quasi-pythagorean fields

A field F is called pythagorean if the sum of two squares in F is always a

square. We shall now define the term in the title of this section.
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DEFINITION 2.1. A field F is called quasi-pythagorean if #(F) = DF<1, 1>,

where R(F) is Kaplansky's radical of F.

It is clear that pythagorean fields are quasi-pythagorean fields. An important

example of quasi-pythagorean fields is a formally real pre-Hilbert field. In fact,

let F be a formally real pre-Hilbert field. Then -i^R(F) and it implies that

F^Z>F<1, l > 2 Λ ( f ) . We have £ F <1, l} = R(F)by the fact \F/R(F)\=2. So F is

quasi-pythagorean.

LEMMA 2.2. Let F be a quasi-pythagorean field. Then R(F) = DF(co).

PROOF. Let x = x{ + x | + x | be any element of DF(3) = DF<1, 1, 1>. Since

x\ + x\ is an element of R(F)9 x belongs to the group DF(xl + x%, 1> = DF<1, 1>

by [2], Proposition 2.1. It is easy to show that DF(n) = DF(n + l) for any n ^ 2

and we have DF(2) = DF(oo). Q. E. D.

For a field F, we write Wt(F) to denote the torsion subgroup of the Witt

group W{F).

PROPOSITION 2.3. For a field F, the following statements are equaivalent:

(1) F is a quasi-pythagorean field.

(2) Wt(F) = {<\, -a>eW(F);aeR(F)}.

Moreover if F is a quasi-pythagorean field, then Wt(F)^R(F)/F2.

PROOF. (1)=>(2): If a e R(F) = DF(2), then <α, α > ^ α < l , 1>£<1, 1> and we

have 2<1, — ay=0eW(F). On the other hand, let qF be any torsion element

of W(F). We may assume that qF is anisotropic. By [4], Satz 22, we can find

bt e F and at eDF{oo) (ι = l,..., n) such that ^ ^ Σ ι = i R **<!» -ai>- Lemma 2.2

shows that a^RiF) and <1, — a>/ is universal. So fof<l, — α f > ^ < l , — αf>

and, since q is anisotropic, n = l ; therefore g = <l, — α> for some aeR(F).

(2)=>(1): Let b be an element of DF(2). Then 2<1, -b>=0eW(F) and

<1, — by is a torsion element in W(F). Hence it follows from the assumption

that there exists aeR(F) such that <1, - 6 > ^ < 1 , - α > and we have b = aeR(F).

This shows R(F) = DF(2) and F is quasi-pythagorean.

Finally we assume that F is a quasi-pythagorean field. We define the map

/: R(F)/F2->Wt(F) by /(α) = <l, - α > , aeR(F). For any α, beR(F), we have

<1, — α > ± < l , — 6>^<1, —ab}±H and this shows that the m a p / is a group

homomorphism. We can readily see that/is injective and moreover/is surjective

by the statement (2). This settles our assertion. Q. E. D.

REMARK 2.4. It is well-known that if F is a pythagorean field, then W(F) is

torsion free. If F is quasi-pythagorean, then I2F is torsion free by Proposition 2.3.

According to the definition in [2], we say that a quadratic extension K —
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F(yja) is a radical extension of F, if a e R(F). For xeF, we write DF<1, — x) =

IF(x) and for a subset BczF, we write Λ x e B DF<1, - x > = /F(J3).

PROPOSITION 2.5. Lei K = (y/a) be a radical extension of F. Then for any

n-fold Pfister form pF(n^l), we have Dκ(ρκ) Π F = DF(pF).

PROOF. It is clear that Dκ(ρκ) n F^DF(pF). Conversely we take an element

x e Dκ(pκ) OF. It is sufficient to show that the (n + l)-fold Pfister form pF ® C — *)>

is isotropic. Suppose pF(8K — x^ is anisotropic. Since ( p F ® ^ — x » ® K ^

P K ® C - ~ * ^ i s isotropic, [3], p. 200, Lemma 3.1 implies that pF®<ζ — xy contains

a subform 6<1, — α> for some beF. Since aeR(F), fc<l, — α > ^ < l , — α>

is universal and the fact άim(pF®^ — x » ^ 4 implies that p F ® C ~ ^ is isotropic.

This is a contradiction. Q. E. D.

PROPOSITION 2.6. Lei F be a quasi-pythagorean field and K — F{sfa) be a

radical extension of F. The for b9 CG F, the following statements are equivalent:

(1) IF(b)^IF(c).

(2) Iκ(b)c:lκ(c).

PROOF. (2)=>(1): For any xeF, it follows from Proposition 2.5 that

Iκ(x) Π F = IF(x)9 and the assertion follows immediately.

(1)=>(2): Let x be an element of Iκ(b). We must show that xelκ(c).

Norm principle ([1], Proposition 2.13) shows that FΊκ(b)^FΊκ(c), and so

there exists fe F such that fx e Iκ(c). Thus, fe xlκ(c) Π F ^ / x(b) Iκ(c) Π F c
DκK~b> - c » Π F, and by Proposition 2.5, we have feDF(<ζ-b9 - c » . The

fact/F(6) c/F(c) implies — foeDF<l, — c> = GF<l, — c} and so

Since F is quasi-pythagorean, it follows from [2], Proposition 2.1 that DF<ζ — b,

- c » = DF<l, - c > . Hence / e D F < l , - c > = 7 F (c)cI κ ( c ) and we have xe/ x (c) .

Q.E.D.

COROLLARY 2.7. Let F be a quasi-pythagorean field and K = F(yJa) be a

radical extension of F. Then, DX<1, 1>^/ K (F).

PROOF. For any x e F, we have £(F) = DF<1, 1> = / F ( - 1)^/F(x). It follows

from Proposition 2.6 that DX<1, l ) = / κ ( - l ) c / J ( ( χ ) . So, DK<1, l > ^ Λ Λ e F /x(x)

Q.E.D.

DEFINITION 2.8. Let X = F(λ/α) be a quadratic extension of F. We denote

by £ ( £ ) the set {xeK; F DX<1, - * > = £ } .

It is clear that R(K) c ^(X). In general .R(iC) is not a subgroup of K.
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LEMMA 2.9. Let K = F(yJa) be a quadratic extension of F. Then R(K) Π

PROOF. It is clear that R(K) Π IK(F) Ώ R(K). Conversely, suppose x e R(K)

Π IK(F) Since x e IK(F), we have x e Iκ(b) for any b e F and this implies b e Iκ(x)

for any b e F by [2], Lemma 4.1 therefore we have F ^ Iκ(x). On the other hand,

since x e R(K), F Iκ(x) = K and the assertion follows. Q. E. D.

PROPOSITION 2.10. Let K = FQ~a) be a quadratic extension of F. Then for

xeK, the following statements are equivalent:

(1) xeR(K).

(2) For any y e K — (F U xF), the form over F,

<1, -N(y)y-Im(yx)IIm(yXί, -N(xy)}

is isotropic.

PROOF. First we note that if y e K - (F u xF), then Im(y) Φ 0 and Im(yx) Φ 0.

(1)=>(2): The fact F DX<1, -x} = K implies DK<1, -x> Π yFφφ for any

y e K. Hence s*«l, — x » is isotropic for any y e K by Lemma 1.1. If y e K —

(F U xF), then 7m(y)^0 and Im(yx)Φθ; therefore it follows from Proposition 1.3

that

s*«l, - x » s

Thus Im{y)(\, —N(y)} — Im(yx)(l, —N(xy)} is isotropic and we obtain the

assertion (2).

(2)=>(1): By Lemma 1.1, it is sufficient to show that for any yeK9 s*«l,

— x}) is isotropic. If yeF\j xF, then s * « l » or s*«x» is hyperbolic by Pro-

position 1.3; thus s*«l, — x » is isotropic in this case. If y eK — (F U xF), then

we have Im{y)(\9 -N(y)> - Im(yx)<\, - N(xy)} ^ s*«l, - x » and the

assumption (2) implies s*«l, — x » is isotropic. Q.E. D.

Let K=F(^fa) be a quadratic extension of F. Let y be an element of K — F;

then by using the F-basis {1, y} of K, any element xeK can be written as x =

b + cy (b, ceF). Here the element b is uniquely determined and so we put

b =fy(x). By a straightfoward computation, we have the following

LEMMA 2.11. In the above situation, we have fy{x) = lm{yx)jlm{y).

LEMMA 2.12. Let K = F(^fa) be a quadratic extension of F and x be an

element of K. / / / / x ) e D f ( l , -N(y)}for any yeK-(F[jxf), then xeR(K).
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PROOF. Since Im(yx)/Im(y) =fy(x) e D f < l , - N(y)}, the form < 1, -N(y)} -

Im(yx)IIm(yKl, -N(xy)}, which is isometric to <1, -N(y)>-fy(xχi, -N(xy)},

is isotropic. By Proposition 2.9, we have x e R(K). Q. E. D.

THEOREM 2.13. Let F be a quasi-pythagorean field, and K = F(yfa) be

a radical extension ofF. Then we have N~ί(R(F) = F R(K), where N: K-+F is

the norm map.

PROOF. Norm principle ([1], Proposition 2.13) says that N~1(R(F)) =

N~\DF(U 1 » = F DK<1, 1>. So it is sufficient to show that R(K) = Dκζl9 1>.

By Corollary 2.7 and Lemma 2.9, we have only to show that Dκ(l, 1}^R(K).

We take an element xeDκ(l, 1>. Then for any yeK — (F{JxF), we can

write x = (bί + c1y)2 + (b2 + c2y)2(bi, c^F). Then x = (b2

1 + bj) + (c2

ί + c%)y2 +

2(bίcί + b2c2)y. By Lemma 2.11, we have fy(y2) = Im(y y2)IIm(y) = N(y)Im(y)/

Im(y) = — N(y), and this implies that there exists α e F such that y2 = — N(y) + ocy,

and hence there exists βeF such that x = (b\ + bl) + (cl + cl)(-N(y)) + βy.

Namely fy(x) = (fef + bl) + (c? + c|) ( - iV(y)) e DF(«1, - iV(y)»). Since F is quasi-

pythagorean, we have DJXh -N(y)y) = DF«l, -N(y)» and xeR(K) by

Lemma 2.12. Q.E.D.

In the proof of Theorem 2.13, we have shown that Dκ(\, 1}=R(K). Thus

any raidcal extension of a quasi-pythagorean field is also quasi-pythagorean.

§ 3. Application

Throughout this section, we assume that F is a quasi-pythagorean field with

a non-trivial radical (i.e. F2^R(F)^F), unless otherwise stated. Let K = F(^Ja)

be a radical extension of F. By [2], Proposition 4.7, we have R(K) Π F = R(F),

and this implies K^R(K). On the other hand, Theorem 2.13 says that N'^RiF))

= F R(K), and the norm map is surjective since K = F(yJa) is a radical extension.

It follows from the fact N~1(F2) = FK2 that F-R(K)^F-K2, which implies

R(K)φK2. Namely K = F(^Ja) is a quasi-pythagorean field with a non-trivial

radical. Let Lbe a field and S be a multiplicative subgroup of L which contains

L 2 . Then S/L2 has the structure of Z2-vector space, and we denote its dimension

by dim S/L2. In case when dim FjF2< oo, we have the following

LEMMA 3.1. Let K = F(^/a) be a radical extension of F. If άimtjF2 is

finite, then dim KjK2 = In -1 and dim R(K)/K2 = 2m-1 where n = dim F/F2

and m = dim R(F)/F2.

PROOF. Hubert Theorem 90 (or [3], p. 202, Theorem 3.4) says that the

sequence
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1 > FKF2, a} -JU K/K2 JL> FjF2 > 1

is exact. This exactness implies dim it/it 2 = 2n — 1. As for dim R(K)/K2, we

have the exact sequence

1 > F/R(F) JU K/R(K) -ΪL F/R(F) > 1

by Theorem 2.13 and [2], Proposition 5.3. Hence we have dim K/R(K) = 2(n - m)

(2n- l )-2(n-m) = 2 m - l . Q.E.D.

Starting from the quasi-pythagorean field F, we define a sequence of fields

{£j}i=o,i,2,... inductively as follows: K0 = F and Ki+ί is a radical extension of

Kt. Note that each Kt is a quasi-pythagorean field with a non-trivial radical.

We let X = ind lim Kt= U Kt.

In the remainder of this paper, we use these notations unless otherwise

stated. It is clear that if i<j, then R(Kj) n Kf =

PROPOSITION 3.2. K is a quasi-pythagorean field, and R(K)Γ\ K^

for any i.

PROOF. Step 1. First we show that R(K) ΓiK^R^). It is sufficient to

show that yeD x <l, — x> for any xeR(Kι) and any yeK. There exists j(j^i)

such that yeKj. Since x e R(Ki)c#(£;), we have yeD x .<l, -x> cD x < 1, -x>.

Step 2. Next we show that K is a quasi-pythagorean field. Let y be an

element of Dκ(l, 1>. There exist yu y 2

e ^ s u c n t n a t ^ = ̂ 1 + ̂ 2- We may

assume that yu y2εKj for some j. Then the fact yeDKj(l9 iy = R(Kj) implies

yeR(K) by Step 1.
Step 3. Finally we show R(K) nKt = R(Ki). Let x be an element of R(K) n

^ = ̂ ( 1 , 1 ) 0 ^ . We may assume that x = xf + x ,̂ (x l s x2eK3) for some

^ΐ. Then xeDκ.<\, \S) = R(KJ) and the fact R(Kj) n Xf = jR(Kf) implies xe

Thus we have R(K) fl^c,R(X.). Q. E.D.

REMARK 3.3. Proposition 3.2 shows that K is a quasi-pythagorean field and

K ^ R(K). More strictly, we have dim K/R(K) = 00. In fact, £(£) Π Xf = £(1^)

implies that the canonical homomorphism KJR^K^KIR^K) is injective for any

i. Hence if dim F/£(F) = dim K0IR(K0) = oo, then it is clear that dim K/R(K) =

00. If dim FIR(F) = t<oo, then we have άimKi/R(Ki) = 2it by Lemma 3.1;

hence dim K/jR(K)^2iί for any i and we obtain dim K/R(K) = 00.

PROPOSITION 3.4. // dim #(F)/F2 = 1, then R(K) = i t 2

PROOF. We write Ki+1=K£y/ad, Λ, e Λ(K,)-^ i T h e n £? + 1 nX f = <£?,
αf> for any i and dim R{K^K2 = 1 by Lemma 3.1. Hence we have R(Ki) =
<X2, αf> c £2+ 1, and this implies i^(X) = U ̂ (Xi) =UK? = it 2 . Q. E. D.



36 Daiji KIJIMA and Mieo NISHI

For any natural number n, K. Szymiczek ([5], p. 207) gave an example

of a formally real pre-Hilbert (hence quasi-pythagorean) field F such that

dim R(F)/F2 = n. In the following proposition, we shall give an example of a

quasi-pythagorean field K such that άimK/R(K)=co and dim R(K)/K2 = n for

any positive integer n. First we need a lemma.

LEMMA 3.5. Let L = k(-s/x) be a quadratic extension of k. If {yί9...9 yn9 x}

czk is lenearly independent in k\k2 (as a Z2-vector space), then {y1,...9yn}

is linearly independent in L/L2.

PROOF. Since the canonical injection ε: k/(k2

9 x)^>LjL2 is Z2-linear,

wehavedim(θ ! , . . . ,Λ, L2>/L2) = d i m « j l 5 . . . , yn9 x, &2>/<x, k2}) = n. This fact

implies that {ji,..., yn} is linearly independent in L/ίA Q. E. D.

PROPOSITION 3.6. If dimR(F)/F2^29 then for any natural number n,we

can construct a suitable sequence of radical extensions {Ki}i=ίί2,3... such that

dim R(K)/K2 = n.

PROOF. Since dim R(F)/F2 ^ 2, Lemma 3.1 shows that there exists i(l) such

that dimR(Ki(1))IKi(1)>n. Let {bί9..., bn9 ai(1)+l9 α / ( 1 ) + 2,..., ai(2)} be a basis of

R(Ki(ί))IKf(ί)9 where dim^(X ί ( 1 ))/X 2

( 1 ) = n + i(2)-z(l). We fix the field Kt and

the set of elements {bί9...9bn}9 and we put Ki(1) + i = Ki(1)(yJai(l)+1), Ki(ί) + 2 =

Then we have a. eKhn for

j = i(l) + l, i(l) + 2,..., i(2) and its implies that <6 l f . . . , 6B,

Kf(2)}. Lemma 3.1 shows that dim R(Ki(2))IK2

(2) > n, and Lemma 3.5 shows

that {&!,..., 6Λ} is linearly independent in R(Ki(2))/K2

(2y Let {bl9..., bn, ai(2) + ί,

<*ιm+2>-><*i(3)} b e a b a s i s o f R(Ki(2))IKΪ(2), where
n + ί(3)-i(2). We put ( ) ( ) ( ) J ( )

^ί(3) = ̂ /(3)-i(\/αi(3)) T h e sequence of fields Ki(3) + U X ί ( 3 ) + 2,..., HCi(4),... is

defined similarly.

We shall now show that K = indlimX i has the required property. First we

show that {bu...9 bn} is linearly independent in R(K)jK2. Suppose {fcl5..., bn}

is linearly dependent in R(K)IK2. Then there exists a partial product b of

{!>!,..., bn} such that fteit2. Since K2= UX], there exists such that beK2

j9

and this means that {bl9...9 bn} is linearly dependent in R(Kj)IKj. This is a

contradiction, and hence {fc1?..., feM} is linearly independent in R(K)jK2.

Next we show that R(K)jK2 is generated asαZ2-vector space by {bl9...9 bn}.

Let x be an element of R(K). There exists j such that x e Kj. Since i^(X) Π Kj =

R(Kj)9 we have x e R(Kj). Let Ϊ(S) be a number which is larger than j . Then

we have xe<R(Km)9 K2

(s+ί)> = (bl9...9 bn9 K2

{s+ί)>^(bί9...9 bn9 K2>9 and this

shows that {bί9...9 bn} generates R(K)/K2. Thus we see that K is a quasi-

pythagorean field with dim K/R(K) = oo and dim R(K)IK2 = n. Q. E. D.
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