Supplement to "Compact transformation groups on Z_{2}-cohomology spheres with orbit of codimension 1 "

Tohl ASOH
(Received May 24, 1982)

§ 1. Introduction

In the main theorem of the previous paper [1], we have proved the following
(1.1) Let (G, M) be a smooth action of a compact connected Lie group G on a connected closed smooth manifold M with orbit of codimension 1 . If M is a Z_{2}-cohomology sphere, then (G, M) is (essentially) isomorphic to
(a) the linear action on the sphere S^{n} via a representation $G \rightarrow S O(n+1)$,
(b) the standard action on the Brieskorn manifold $W^{2 m-1}(r)$ for odd $r \geqq 1$, given in [1; Ex. 1.2], or
(c) the action (SO(4), M) with $\operatorname{dim} M=7$, given in [1; Ex. 1.3], which exists for each relatively prime integers l_{s} and $m_{s}(s=1,2)$ with

$$
l_{s} \equiv m_{s} \equiv 1 \bmod 4, \quad 0<l_{1}-m_{1} \equiv 4 \bmod 8, \quad l_{2}-m_{2} \equiv 0 \bmod 8
$$

The purpose of this supplement is to prove the following (1.2) whose sufficiency is asserted in [1; Ex. 1.3]:
(1.2) Among the actions (SO(4), M) in (c) of (1.1), M is a homotopy sphere if and only if $\left(l_{1}, m_{1}, l_{2}, m_{2}\right)=(1,-3,1,1)$, and then $M=S^{7}$ and the action is linear.

By virtue of (1.2), the following theorem is an immediate consequence of (1.1), because it is well-known that $W^{2 m-1}(r)$ in (b) is a homotopy sphere if and only if both m and r are odd (cf. [2; Satz 1]).

Theorbm 1.3. If M is a homotopy sphere in addition, then (G, M) in (1.1) is (essentially) isomorphic to a linear action in (a) or the action on $W^{2 m-1}(r)$ in (b) for odd m and odd $r \geqq 1$.

We prepare some lemmas on the cohomology of certain coset spaces of $S^{3} \times S^{3}$ in $\S 2$, and prove (1.2) in § 3 .

§2. Preliminaries

Let $G=S^{3} \times S^{3}$ and consider its subgroups

$$
\begin{align*}
& D=D^{*}(8)=\left\{(p, p) ; p \in D^{\prime}\right\} \quad\left(D^{\prime}=\left\{z, z \boldsymbol{j} ; z \in S^{1}(\subset C), z^{4}=1\right\} \subset S^{3}\right), \\
& S=S^{1}(l, m)=\left\{\left(z^{l}, z^{m}\right) ; z \in S^{1}\right\}, \quad U=U(l, m)=S \cup S(\boldsymbol{j}, \boldsymbol{j}), \tag{2.1}
\end{align*}
$$

given in $[1 ; \S 9.7]$, where l and m are given integers such that
(2.2) l and m are relatively prime and $l \equiv m \equiv 1 \bmod 4$.

Then we have the following lemmas on the integral cohomology (its coefficient Z is omitted throughout this note) of $G / D, G / S$ and G / U.

Lemma 2.3. (i) $S^{3} \times\left(S^{3} / D^{\prime}\right) \approx G / D$ by sending $\quad(p,[q])$ to $[p q, q]$ ($p, q \in S^{3}$).
(ii) $H^{*}(G / D) \cong H^{*}\left(S^{3}\right) \otimes H^{*}\left(S^{3} / D^{\prime}\right)$ and

$$
H^{i}\left(S^{3} / D^{\prime}\right) \cong Z \text { if } i=0,3, \cong Z_{2} \oplus Z_{2} \text { if } i=2, \cong 0 \text { otherwise. }
$$

Proof. (i) The inverse is given by sending $[p, q]$ to ($p q^{-1},[q]$).
(ii) The first half is a consequence of (i). The second half holds, since S^{3} / D^{\prime} is orientable and $H^{i}\left(S^{3} / D^{\prime}\right) \cong H^{i}\left(D^{\prime}\right)$ for $i=1,2$ (cf. [3; 12-7]).
q.e.d.

Lemma 2.4. (i) $H^{*}(G / S) \cong H^{*}\left(S^{2}\right) \otimes H^{*}\left(S^{3}\right)$.
(ii) Let j be the involution of G / S given by $j([p, q])=[p \mathbf{j}, q j]$. Then the induced automorphism j^{*} of $H^{i}(G / S)$ is -1 if $i=2$ or 5 , and 1 otherwise.
(iii) G / U is the orbit space of the free involution j in (ii).
(iv) $H^{i}(G / U) \cong H^{i}\left(P_{2}(R) \times S^{3}\right) \quad\left(P_{2}(R)\right.$ is the real projective plane $)$.
(v) The projection $\theta: G / S \rightarrow G / U$ induces the isomorphism $\theta^{*}: H^{3}(G / U) \cong$ $H^{3}(G / S)$.

Proof. (i) We see immediately (i) from the Gysin sequence of the circle bundle s : $G \rightarrow G / S$ for the projection s.
(ii) Put $T=S^{1} \times S^{1}(\supset S)$, and let j^{\prime} and $j^{\prime \prime}$ be the free involutions of S^{3} and S^{3} / S^{1} given by $j^{\prime}(p)=p j$ and $j^{\prime \prime}([p])=[p j]$, respectively. Then we have the commutative diagrams

$H^{2}(G / T) \xrightarrow{\left(j^{\prime \prime} \times j^{\prime \prime}\right)^{*}} H^{2}(G / T), \quad H^{3}(G) \xrightarrow{\left(j^{\prime} \times j^{\prime}\right)^{*}} H^{3}(G)$,
where v is the projection. In these diagrams, we see that v^{*} is epimorphic and s^{*}
is monomorphic by the Gysin sequence of the circle bundles $v: G / S \rightarrow G / T$ and $s: G \rightarrow G / S$, respectively. Furthermore, $\left(j^{\prime \prime} \times j^{\prime \prime}\right)^{*}=-1$ and $\left(j^{\prime} \times j^{\prime}\right)^{*}=1$ because $j^{\prime \prime}$ reverses the orientations and j^{\prime} preserves them. Thus we see (ii).
(iii) The definition (2.1) shows (iii).
(iv), (v) By (iii) and [3;12-2, Th. 2], there is a spectral sequence $\left\{E_{i, j}^{r}, d^{r}\right\}$ such that $E_{i, j}^{2} \cong H^{i}\left(Z_{2} ; H^{j}(G / S)\right)$ and E^{∞} is the associated graded group of $H^{*}(G / U)$. By (i), (ii) and [3; 3-7], we have
(*) $\quad E_{i, j}^{2} \cong \begin{cases}H^{3}(G / S) \cong Z \quad \text { if } i=0 \text { and } j=3, \\ Z_{2} & \text { if } i \text { is odd }>0 \text { and } j=2,5, \text { or } i \text { is even }>0 \text { and } j=0,3, \\ 0 & \text { otherwise. }\end{cases}$
Then it is clear that $H^{1}(G / U)=0$ and $H^{2}(G / U) \cong Z_{2}$. On the other hand, $H^{5}(G / U)$ $\cong Z_{2}$ and $H^{i}(G / U)=0(i \geqq 6)$ because G / U is a non-orientable 5 -manifold.

We now show that
(**) the differential d $d^{3}: E_{1,2}^{3}\left(=E_{1,2}^{2} \cong Z_{2}\right) \longrightarrow E_{4,0}^{3}\left(=E_{4,0}^{2} \cong Z_{2}\right)$ is isomorphic. Assume the contrary. Then $E_{4,0}^{4}=E_{4,0}^{3}$, and (*) implies that $H^{4}(G / U) \cong Z_{2}$ or $H^{3}(G / U) \cong Z \oplus Z_{2}$ according as $d^{4}: E_{0,3}^{4}\left(=E_{0,3}^{2}\right) \rightarrow E_{4,0}^{4}$ is trivial or non-trivial. Hence $H^{4}\left(G / U ; Z_{2}\right) \cong Z_{2} \oplus Z_{2}$ (since $H^{5}(G / U) \cong Z_{2}$) or $H^{3}\left(G / U ; Z_{2}\right) \supset Z_{2} \oplus Z_{2}$ by the universal coefficient theorem. This contradicts that $H^{i}\left(G / U ; Z_{2}\right) \cong Z_{2}$ for $0 \leqq i \leqq 5$ ([1; Lemma 9.7.1 (i)]). Thus (**) holds.

By (*) and (**), we see that $H^{4}(G / U)=E_{4,0}^{4}=0$ and $H^{3}(G / U)=E_{0,3}^{\infty}=$ $E_{0,3}^{2} \cong Z$. Thus (iv) holds. Furthermore (v) holds, because θ^{*} is the composition of $H^{3}(G / U)=E_{0,3}^{2} \cong H^{3}(G / S)$.
q.e.d.

Lemma 2.5. Consider the commutative diagram

where $i_{t}(t=1,2)$ is the inclusion into the t-th factor, Δ is the diagonal map, d and d^{\prime} are the projections, $i_{t}^{\prime}=d i_{t}$ and $\Delta^{\prime}([p])=[p, p]$. Further consider the projections s: $G \rightarrow G / S$ and $u: G / D \rightarrow G / U$. Then the homomorphisms induced from these maps on H^{3} satisfy

$$
\begin{align*}
& i_{1}^{*} s^{*}(\delta)=m^{2} v, \quad i_{2}^{*} s^{*}(\delta)=-l^{2} v, \quad \Delta^{*} s^{*}(\delta)=\left(m^{2}-l^{2}\right) v, \tag{2.6}\\
& i_{1}^{\prime *} u^{*}\left(\delta^{\prime}\right)=m^{2} v, \quad \Delta^{\prime *} u^{*}\left(\delta^{\prime}\right)=\left(\left(m^{2}-l^{2}\right) / 8\right) v^{\prime}, \tag{2.7}
\end{align*}
$$

for some generators $\delta \in H^{3}(G / S), \delta^{\prime} \in H^{3}(G / U), v \in H^{3}\left(S^{3}\right)$ and $v^{\prime} \in H^{3}\left(S^{3} / D^{\prime}\right)$ of the infinite cyclic groups.

Proof. Take the subgroup $L=S^{3} \times S^{1}(\supset S)$ of G. Then $S^{3} / Z_{m} \approx L / S$ by the map induced by i_{1}, because $i_{1}^{-1}(S)=Z_{m}$ by (2.1). Thus we have the fibering $S^{3} / Z_{m} \xrightarrow{i_{1}} G / S \rightarrow G / L$ with $G / L \approx S^{3} / S^{1} \approx S^{2}$, and its Wang exact sequence is in the commutative diagram

$\left(H^{4}(G / S)=0\right.$ by Lemma 2.4 (i)), where $g: S^{3} \rightarrow S^{3} / Z_{m}$ is the projection of the m fold covering. Therefore

$$
i_{1}^{*} s^{*}(\delta)=g^{*} i_{1}^{*}(\delta)=m^{2} v \quad \text { for some generators } \delta \in H^{3}(G / S) \text { and } v \in H^{3}\left(S^{3}\right) .
$$

By interchanging the factors of $G=S^{3} \times S^{3}$ in the above proof, we have

$$
\begin{equation*}
i_{2}^{*} s^{*}(\delta)=\varepsilon l^{2} v(\varepsilon= \pm 1), \quad \text { and hence } \quad \Delta^{*} s^{*}(\delta)=\left(m^{2}+\varepsilon l^{2}\right) v \tag{*}
\end{equation*}
$$

Now put $n=|l-m|$. Then we can define a map $\Delta_{0}: S^{3} / Z_{n} \rightarrow G / S$ by $\Delta_{0}([p])=$ $[\Delta(p)]$, because $\Delta^{-1}(S)=Z_{n}$ by (2.1). Therefore we have the commutative diagram

where h is the projection of the n-fold covering. By this diagram, the last equality in (*) implies that $m^{2}+\varepsilon l^{2}$ is a multiple of $n=|l-m|$. On the other hand, the assumption (2.2) implies that $l-m \equiv 0$ and $l^{2}+m^{2} \equiv 2 \bmod 4$. Therefore $\varepsilon=-1$, and (2.6) is proved.

Set $\delta^{\prime}=\theta^{*-1}(\delta) \in H^{3}(G / U)$, where θ^{*} is isomorphic by Lemma $2.4(\mathrm{v})$. Since $u i_{1}^{\prime}=u d i_{1}=\theta s i_{1}$, the first equality in (2.7) follows from the one in (2.6). Since $u \Delta^{\prime} d^{\prime}=u d \Delta=\theta s \Delta$, the last equality in (2.6) implies $d^{*} \Delta^{\prime *} u^{*}\left(\delta^{\prime}\right)=\left(m^{2}-l^{2}\right) v$. This implies the second equality in (2.7), because $d^{\prime}: S^{3} \rightarrow S^{3} / D^{\prime}$ is an 8 -fold covering. q.e.d.

§3. Proof of (1.2)

Let l_{s} and $m_{s}(s=1,2)$ be given integers such that
(3.1) $\quad l_{s}$ and m_{s} are relatively prime and $l_{s} \equiv m_{s} \equiv 1 \bmod 4(s=1,2)$,
and by using the subgroups in (2.1), set

$$
\begin{array}{ll}
G=S^{3} \times S^{3}, & K_{s}=U\left(l_{s}, m_{s}\right)\left(\supset K_{s}^{\circ}=S^{1}\left(l_{s}, m_{s}\right)\right) \quad \text { for } \quad s=1,2, \\
K_{2}^{\prime}=\beta^{-1} K_{2} \beta & \left(\beta=\left(\beta^{\prime}, \beta^{\prime}\right), \beta^{\prime}=(1+i+j+k) / 2\right), \quad K=D^{*}(8) . \tag{3.2}
\end{array}
$$

Then [1; Ex. 1.3, Prop. 9.4 .2 (o), § 9.7, (3.2-6)] shows the following
(3.3) The simply connected closed 7-manifold M in (1.1)(c) is given by

$$
\begin{equation*}
M=X_{1} \cup X_{2}^{\prime}, \quad X_{1} \cap X_{2}^{\prime}=G / K \tag{3.4}
\end{equation*}
$$

where X_{1} and X_{2}^{\prime} are the mapping cones of the projections $f_{1}: G / K \rightarrow G / K_{1}$ and $f_{2}^{\prime}: G / K \rightarrow G / K_{2}^{\prime}$, respectively.

Now we can prove (1.2) by the following
Proposition 3.5. Let $A=\left(a_{s, t}\right)$ be the 2×2 matrix given by

$$
\begin{equation*}
a_{s, 1}=(-1)^{s+1} m_{s}^{2}, \quad a_{s, 2}=(-1)^{s+1}\left(m_{s}^{2}-l_{s}^{2}\right) / 8 \quad(s=1,2) . \tag{3.6}
\end{equation*}
$$

Then the integral cohomology of M in (3.4) satisfies the following (i) and (ii):
(i) $H^{i}(M) \cong H^{i}\left(S^{7}\right)$ if $i \neq 3,4$.
(ii) If $i=3,4$, then the rank of $H^{i}(M)$ is equal to $2-\operatorname{rank} A$. Furthermore, if $\operatorname{det} A \neq 0$, then $H^{3}(M)=0$ and $H^{4}(M)$ is a finite group of order $|\operatorname{det} A|=$ $\left|l_{1}^{2} m_{2}^{2}-l_{2}^{2} m_{1}^{2}\right| / 8$.

Proof of (1.2) by Proposition 3.5. If M is a homotopy sphere, then Proposition 3.5 shows that

$$
\left(l_{1} m_{2}-l_{2} m_{1}\right)\left(l_{1} m_{2}+l_{2} m_{1}\right)= \pm 8
$$

Since $l_{1} m_{2} \equiv l_{2} m_{1} \equiv 1 \bmod 4$ by (3.1), this implies that $l_{1} m_{2}-l_{2} m_{1}= \pm 4$ and $l_{1} m_{2}+l_{2} m_{1}= \pm 2$, and hence $\left(l_{1} m_{2}, l_{2} m_{1}\right)=(-3,1)$ or $(1,-3)$. Therefore $\left(l_{1}, m_{1}, l_{2}, m_{2}\right)=(1,-3,1,1)$ by (3.1) and the assumption $l_{1}>m_{1}$ in (1.1) (c), and (1.2) is proved.
q.e.d.

Rbmark 3.7. Proposition 3.5 implies also the fact in [1; p.613] that M is a Z_{2}-cohomology sphere if and only if $\left(l_{1}-m_{1}+l_{2}-m_{2}\right) / 4$ is odd, because $l_{1}^{2} m_{2}^{2}-$ $l_{2}^{2} m_{1}^{2} \equiv 2\left(l_{1}-m_{1}+l_{2}-m_{2}\right) \bmod 16$ by (3.1).

Proof of Proposition 3.5. Since M is a simply connected 7 -manifold, (i) holds for $i=0,1,6,7$. Consider the Mayer-Vietoris exact sequence of (M, X_{1}, X_{2}^{\prime}) in (3.4). Then, by noticing that X_{1} and X_{2}^{\prime} are homotopy equivalent to G / K_{1} and $G / K_{2}^{\prime} \approx G / K_{2}$ respectively, and by using Lemmas 2.3 (ii) and 2.4 (iv), we see (i) for $i=5$, and hence for $i=2$; and furthermore we have the exact sequence

$$
\begin{equation*}
0 \rightarrow H^{3}(M) \rightarrow H^{3}\left(G / K_{1}\right) \oplus H^{3}\left(G / K_{2}^{\prime}\right) \xrightarrow{f_{1}^{*}-f_{2}^{*}} H^{3}(G / K) \rightarrow H^{4}(M) \rightarrow 0 . \tag{3.7}
\end{equation*}
$$

In this sequence, we see that $H^{3}\left(G / K_{s}\right) \cong H^{3}\left(G / K_{2}^{\prime}\right) \cong Z(s=1,2), H^{3}(G / K) \cong$ $Z \oplus Z$ and

$$
\begin{align*}
& f_{s}\left(\delta_{s}\right)=m_{s}^{2} v+\left(\left(m_{s}^{2}-l_{s}^{2}\right) / 8\right) v^{\prime} \tag{3.8}\\
& \quad \text { for some generators } \delta_{s} \in H^{3}\left(G / K_{s}\right) \text { and } v, v^{\prime} \in H^{3}(G / K),
\end{align*}
$$

by (3.2), Lemmas 2.4 (iv), 2.3 and (2.7), ($f_{s}: G / K \rightarrow G / K_{s}$ is the projection).
On the other hand, we have the commutative diagram

where $c_{\beta}([x])=\left[\beta^{-1} x \beta\right](x \in G), c_{\beta^{\prime}}(p)=\beta^{\prime-1} p \beta^{\prime}, c_{\beta^{\prime}}([p])=\left[\beta^{\prime-1} p \beta^{\prime}\right]\left(p \in S^{3}\right)$, and the homeomorphism is the one given in Lemma 2.3 (i). It is easy to see that the two c_{β}, preserve the orientations. Thus this diagram shows that $c_{\beta}^{*}=1: H^{3}(G / K)$ $\rightarrow H^{3}(G / K)$ and

$$
\begin{align*}
f_{2}^{\prime *}\left(\delta_{2}^{\prime}\right)=m_{2}^{2} v+ & \left(\left(m_{2}^{2}-l_{2}^{2}\right) / 8\right) v^{\prime} \tag{3.9}\\
& \quad \text { for a generator } \delta_{2}^{\prime}=c_{\beta}^{*-1}\left(\delta_{2}\right) \in H^{3}\left(G / K_{2}^{\prime}\right)(\cong Z),
\end{align*}
$$

by (3.8) for $s=2$.
Now (3.8) and (3.9) show that the homomorphism $f_{1}^{*}-f_{2}^{\prime *}: Z \oplus Z \rightarrow Z \oplus Z$ in (3.7) is represented by the matrix $A=\left(a_{s, t}\right)$ given by (3.6). Thus we see (ii) by the exact sequence (3.7), and the proof of the proposition is completed. q.e.d.

References

[1] T. Asoh: Compact transformation groups on Z_{2}-cohomology spheres with orbit of codimension 1, Hiroshima Math. J. 11 (1981), 571-616.
[2] E. Brieskorn: Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 1-14.
[3] H. Cartan: Séminaire de cohomologie des groupes, suite spectrale, faisceaux, E. N. S., III, 1950/51.

Department of Mathematics, College of General Education, Tohoku University

