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Introduction

Let H be a hyperalgebra (i.e., a cocommutative irreducible Hopf algebra)
over a field k. Then for any cocommutative coalgebra C over k the set
Homcoαj(C, H) of all coalgebra homomorphisms of C into H has a group
structure. If p: H-*J is a homomorphism of hyperalgebras, then p induces a
group homomorphism of Homcoal (C, H) into Homcoαί (C, J). It is known that if

(*) k » G » H >J > fc

is an exact sequence of hyperalgebras, then the induced sequence

e > HomCOΛί (C, G) > Homcofl/ (C, H) > Homcoαί (C, J)

of groups is exact for any cocommutative coalgebra C ([13, Proposition 14.12]).
In [15] Yanagihara showed that if the exact sequence (*) is split, then the

induced sequence

(**) e > Homcoα/ (C, G) > Homcoflί (C, H) > Homcofl/ (C, J) > e

is exact and split for any C. On the other hand, it is proved by Dieudonne in
[1, Proposition 8, Chapter 2] that when H and J in (*) are of finite type and
reduced over a perfect field k, the sequence (**) is exact for any C if and only if
G is reduced. Moreover Takeuchi showed in [10, Theorem 1.8.1] that if the
homomorphism H-+ J is smooth in the sense of [10], then (**) is exact for any C.
(Actually, the smoothness of the homomorphism is stronger than the exactness of

(**)•)
In this paper we will generalize the above results and give several character-

izations for (**) to be exact.
Let G be a subhyperalgebra of a hyperalgebra H and J = H/HG+ the quotient

coalgebra. Consider the sequence

k > G > H > J » fc,

where G-*H is the inclusion and /ί-»J is the natural projection. We will prove
in Section 1 that the following conditions are equivalent: (1) The induced map

Homcoβί(C, ff)-»Homcofl/(C, J) is surjective for any cocommutative coalgebra
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C; (2) J has a coalgebra splitting; (3) G has a coalgebra retraction; (4) H is isomor-
phic as a coalgebra to J®G canonically (Proposition 1.2 and Theorem 1.3).

We will call a subhyperalgebra G of H relatively smooth if G has a coalgebra
retraction. This terminology could be justified if we show that every smooth
subhyperalgebra of any hyperalgebra is always relatively smooth, and that if
H is smooth then every relatively smooth subhyperalgebra of H is itself smooth.
These will be proved in the final section (Theorems 3.6, 3.8).

In Section 2 we consider sequences of divided powers in connection with
relative smoothness. We will prove a structure theorem (Theorem 2.14): When
H is a stable hyperalgebra over a perfect field, a subhyperalgebra G of H is relative-
ly smooth if and only if every primitive element of G has the same coheight in G
as in H.

Throughout this paper we fix a ground field k. All coalgebras and Hopf
algebras we consider and their tensor products are defined over k. We further
assume that all coalgebras in this paper are pointed, irreducible and cocommuta-
tive. For such a coalgebra C we denote the unique grouplike element of C by
lc (or simply by 1 if we have no confusion on C). Many other notations (e.g.,
the structure map of coalgebras, Σ-notation) will follow those in the book of
Sweedier [7].

Finally, the author wishes to take this opportunity of expressing his gratitude
to Prof. S. Togo for his valuable advices and continual encouragement.

1. Coalgebra splittings and retractions

We begin with the following proposition which will play an important role
in this paper with Proposition 1.2. However, the proof is so easy that we omit it.

PROPOSITION 1.1. Let C, D be coalgebras and p: C-+D a coalgebra map.
Then the following two conditions are equivalent:

(1) For each coalgebra F and each coalgebra map f: F—>D there is a
coalgebra map g: F—>C such that f—p^g-

(2) p has a coalgebra splitting, that is, there is a coalgebra map λ: D-+
C such that p°λ = idD.

Let p: C-+D be a coalgebra map. The h-kernel of p is defined as

/i-kerp = {c e C \(iάc®p)Δ(c) = c®\D].

/i-kerp is a subcoalgebra of C and it is the largest subcoalgebra contained in
fclc + ker p. It is easy to see that a subcoalgebra E of C is contained in ft-kerp
if and only if p(E) = klD or equivalently the restriction of p to E coincides with
the counit ε of E.
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For a coalgebra C we denote by P(C) the space of primitive elements of C:

P(C) = {ceC| Δ(c) = l®c + c®l}.

It is convenient to take notice of the following facts:

ker p n P(C) = Ti-ker p n P(C) = P(/?-ker p)

for any coalgebra map p of C into any coalgebra.

We say that a sequence

••'"' > Q-i —^ Cι~m+ Ci+ί ——>•••

of coalgebras and coalgebra maps is exact if pi(Cί-l} = h-kcr ρί+l for all. /. It is

easy to see that a sequence

k > C -£-* D (resp. C -̂  D > k)

is exact if and only if p is injective (resp. surjective).
Let p: C-»D be a coalgebra map. Then C has a natural D-comodule struc-

ture with the structure map p: C-*D®C given by p(c)=Σ p(c(1))®c(2). The
following proposition gives a (partial) generalization of Theorem 1.8.1 in [10].

PROPOSITION 1.2. Let p: C-+D be a surjective coalgebra map with h-kernel
E. Then the following conditions are equivalent:

(1) E has a coalgebra retraction in C (that is, there is a coalgebra map η:
C-*E which is identical on £), and C is injective as a D-comodule.

(2) There is a coalgebra isomorphism Θ: C->D®£ such that (idD®ε)0 = p.

PROOF. (1)=>(2). Let η be a retraction of E in C. It follows from the
UMP of the tensor product of coalgebras that there is a coalgebra map θ:
C-»D® E such that the diagram

is commutative. To prove that θ is injective we may verify that the restriction of
θ to P(C) is injective. Let x be any element of P(C) such that θ(χ) = 0. Then we
have p(x) = 0. Since x is a primitive element of C, it follows that x e /i-ker p — E.
Thus x = f/(x) = (ε®idE)0(x) = 0. This proves the injectivity of θ.

The surjectivity of θ is proved as in the proof of Theorem 1.8.1 in [10].
Since θ is a coalgebra map it is also a D-comodule map, where D®£ has a D-
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comodule structure via idD®ε. The assumption that C is injective implies that
there is a D-subcomodule Fof D®E such that

D®E = Θ(C)®V.

On the other hand, it is easily seen that the sequence

k _ >£-U£)® E idl)®£) D _ > f c

is exact, where c(x)=\D®x for all xeE. In particular, A-ker (idD®ε) = /clD®£.
We see that 0(£)c/?-ker (idD®ε) by (iάD®ε)θ = p. Therefore for xeE there is
yeE such that θ(x) = \.D®y. Applying ε®id£ to this, we have y = η(x) = x.
Thus we have θ(x) = lD®x for all xeE9 and in particular θ(E) = kiD®E. It
follows that klD®Edθ(C), and then we have

(/c!D®£) n V= 0.

From Lemma 1.8.3 in [10] it follows that K=0, so that 0(C) = D®£. This proves
the surjectivity of θ.

(2)=>(1). Since θ is a coalgebra isomorphism and (idD®ε)0 = p, we have

0(E) = θ(Λ-kerp) = ft-ker (idD®ε) = klD ® E.

Therefore θ induces an isomorphism θ \E: E-+klD®E. If we put

Θ:C - > £,

then η is a coalgebra map which is identical on E.

It is well known that if D®E is equipped with a D-comodule structure by
ΔD®ΊάE, then D®E is injective. Hence, to prove that C is an injective D-comodule
we have only to show that Θ is a D-comodule map, that is, the diagram

C - 2 - > D®C

0 I I idD®0
ψ Φ

e* D®D®E

is commutative. We have

(idD®Θ)ρ = (idD
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since θ is a coalgebra map. By the definition of the comultiplication of the tensor
product coalgebra we have

= ΔD ® id£.

Therefore we have

(idD®θ)p='(AD®idE)θ,

which proves the commutativity of the diagram. It follows that C is injective.
This completes the proof.

If C and D are coalgebras, we denote by Homcoα/ (C, D) the set of all coalgebra
maps of C into D.

A Hopf algebra is called a hyperalgebra if the underlying coalgebra is pointed,
irreducible and cocommutative. Let H be a hyperalgebra. Then, for any
coalgebra C, the set Homcoαl(C, //) has a group structure: the multiplication of
/and g in Homcoal (C, //) is given by f*g =μ(f®g)A, the unit element is ε and the
inverse of / is So/ where 5 is the antipode of H. If J is a hyperalgebra and
p: //->J is a hyperalgebra map, then p induces a group homomorphism pc:
Homcofl/(C, //)-»Homcoα/(C, J), Pc(/) = po/fOr each /eHomcoα/(C, H).

A sequence of hyperalgebras is said to be exact if it is exact as a sequence of
coalgebras.

The following fact is proved in [15, Lemma 6]: A sequence

k - »G--ύ //-£-» J

of hyperalgebras is exact if and only if the induced sequence

e - > Homcofl/ (C, G) -*U Homcoπ, (C, H) -&U Homcoα/ (C, J)

of groups is exact for all coalgebra C.
Proposition 1.1 asserts that ρc is surjective (for all C) if and only if p has a

coalgebra splitting.
In the following we give some characterizations for p to have a coalgebra

splitting. Let H be a hyperalgebra, / a left ideal coideal of H and p: H-+H/I
the natural map. Note that H/I has a left //-module structure and a coalgebra
structure, and p is an //-linear coalgebra map, that is, p is an //-module map as
well as a coalgebra map. Let G be the /7-kernel of p. Then G is a subhyperalgebra
of H and / = //G+, the left ideal generated by G+ =G n ker ε. The correspond-
ence /H->G gives a bijection between the set of all left ideal coideals and the set
of all subhyperalgebras ([5]). We denote by ////G the quotient (//-module)
coalgebra H/HG+.

The following result has been proved by Takeuchi (see [12, Theorem 4] and
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[11, Proposition A.2.2]): Let J = H//G be the quotient //-module coalgebra.

Then H is an injective J-comodule.

We now show the following as our main theorem.

THEOREM 1.3. Let H be a hyperalgebra, J a coalgebra with a left H-module

structure and p: H^J a surjective H-linear coalgebra map with h-kernel G.

Then the following conditions are equivalent:

(1) p has a coalgebra splitting.

(2) G has a coalgebra retraction in H.

(3) There is a coalgebra isomorphism Θ: //->J®G such that (idj®ε)θ = p.

PROOF. The implication (3)=>(1) is clear, and (2)=>(3) follows directly from

Takeuchi's result and Proposition 1.2.

(1)=>(2). Let A be a coalgebra splitting of p. Put η = Sλρ*idH. Since H is

cocommutative, it is easy to see that η is a coalgebra map of H into itself. We

first show that the image of η is actually contained in G. To see this, it suffices

to prove that Sη(H) c G because G is a subhyperalgebra and in particular G is

stable under S and S2 = iάH [7, Proposition 4.0.1]. Since G is the /i-kernel of p

and since Sη(H) is a subcoalgebra of H, it is enough to verify that p(Sη(Hy) = k.

Now let h be any element of H. Then we have

pSη(h) =

= Σ S(/ι(1))p/ίρ(/z(2)) (since p is H-linear)

η is identical on G. Indeed, since p = ε on G we have for any x in G

η(x) =

= x.

This completes the proof.

In the proof of (1)=>(2) of the above theorem η is furthermore a right G-

linear map. For any h e H , x e G we have

η(hx) = Σ Sλp(h(ί)x(i))h(2)x(2)

= ΣS^(/j(1)p(x(1)))/ι(2)x(2)

= Σ SA(Λ(1)β(x(1))p(l))ft(2)x(2) (since x(1) e G)
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= Σ Sλp(h(ί))h(2)x

= η(h)x.

If we put η' = SηS, then it follows that η' is a coalgebra map of H into G

which is left G-linear. As a consequence of Theorem 1.3 we have

COROLLARY 1.4. Let G be a subhyperalgebra of a hyperalgebra H. If

G has a coalgebra retraction, then there is also a right/left G-linear coalgebra

retraction.

REMARK 1.5. If G has a right G-linear coalgebra retraction, then it is easily
shown that H gives rise to a right G-Hopf module. And then with the aid of

Theorem 4.1.1 in [7] we can also prove that H is actually isomorphic to J®G as

coalgebras, where J = H//G.

DEFINITION 1.6. Let H be a hyperalgebra and G a subhyperalgebra of H.

We call G relatively smooth in H if G has a coalgebra retraction.

DEFINITION 1.7. We call an exact sequence

k —> G > H > J > k

of hyperalgebras strongly exact if the induced sequence

e > Homcoα/ (C, G) » Homcoflί (C, H) > HomCOΛ/ (C, J) > e

of groups is exact for every coalgebra C.

By Proposition 1.1 and Theorem 1.3 we have one of the main theorems of
this paper which generalizes Corollary to Lemma 6 in [15].

THEOREM 1.8. An exact sequence

k >G—*H >J > f c

of hyperalgebras is strongly exact if and only if G is relatively smooth in H.

We should notice that Theorem 1.3 has a similar form to Theorem 2.2 in [6].

And, in fact, we have some results which are analogous to those in [6, §2].

PROPOSITION 1.9. Consider a commutative diagram of hyperalgebras

Ίf . /7 7*1 „ U Pl ^ J k L-
K » LΓj > ΉI * J i > AC

l
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where the two rows are exact. Then:

(1) If the upper row is strongly exact and there is a coalgebra map y' : J2-+
J1 such that yy' = idj2, then the lower row is also strongly exact.

(2) If the lower row is strongly exact and there is a coalgebra map α': G2->
G1 such that α/α = idG1, then the upper row is also strongly exact.

PROOF. These follow from Theorems 1.3 and 1.8.

A subhyperalgebra N of H is said to be normal if HN+ =N+H or equivalently

if Σx(ί)yS(x(2)) e N for all x e H, y e N. In this case the left ideal coideal HN+

is a Hopf ideal (i.e., a two-sided ideal coideal) and so the quotient H//N' is a
hyperalgebra.

COROLLARY 1.10. Let N, G be normal subhy per algebras of a hyperalgebra
H such that NG = H. If N Π G is relatively smooth in N, then G is relatively
smooth in H.

PROOF. We have a commutative diagram with exact rows

k - > NΠG - > N - > N/I(N Π G) - > k

α
HUG

Then y is an isomorphism by Theorem 3 in [14]. The assertion follows from
Theorem 1.8 and Proposition 1.9.

COROLLARY 1.11. Let N, G be normal subhy per algebras of a hyperalgebra
H and N Π G. If G is relatively smooth in H, then G//N is relatively smooth in

H//N.

PROOF. The corollary follows from the isomorphism

mm. ̂  HUG
G//N ~ N

of [14, Corollary 1 to Theorem 2].

2. Coheight condition

In this section we use sequences of divided powers to give a necessary con-

dition for a subhyperalgebra to be relatively smooth. And we show that, under a
certain condition, it is also sufficient. Throughout this section h is a perfect

field of positive characteristic p.
Let C be a coalgebra. Then we have the F-map V of C defined by the equa-
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tion([2]):

<c*, F(c)> = <c*p, cyp

for each ceC and c* e C*, where C* is the dual algebra of C. F is a —-linear

coalgebra map of C into itself.

For a nonnegative integer r the iteration Vr of F by r times is a ί-^-linear j

coalgebra map and so its kernel ker Vr is a coideal. We denote by C(r) the /?-

kernel of the natural coalgebra map C-+C/ker Fr, and call it the r-th Frobenius

subcoalgebra of C.

LEMMA 2.1. Let C be a coalgebra. Then:

(1) C(0) = fcc:C(1)c:C(2)c...;C=yC(r).

(2) K(C ( r ))cC ( r_ 1 )/orr=l,2,....Γ

(3) // C is a subcoalgebra of C, then C'(r) = C' n Cίr) /or r = 0, 1, 2,....
(4) // D is a coalgebra and p: C-+D is a coalgebra map, then p(C(r))c

PROOF. Since, by definition, K° = idc, we have C(0) = fe. The inclusion
C(Γ)cιC(r+1) holds since ker K rc=ker Fr+1 for every r. Any element of C gen-

erates a finite-dimensional subcoalgebra C whose dual (commutative) algebra

contains a nilpotent maximal ideal m of codimension one. If m^r = 0, it can be
seen that C'c=A:lc + ker Vr. Hence we have C'cC^, which proves Ca\j C(r).

(2) follows directly from the definition of Frobenius subcoalgebras.

(3) and (4) follow from the fact that any coalgebra map commutes with the

K-maps [2, Proposition 4.1.5].

For a primitive element x of C a sequence

1 = °x x = *x 2x

of elements of C is called a sequence of divided powers over x if

A(nX) — ^~* ^—n *X (5ζ) "~*X

for n = 0, 1, 2,.... Then we know ([2, Proposition 4.1.9]) that

0 if p)(n
n_
px if p I n .

LEMMA 2.2. Let C be a coalgebra and l = °x, *x, 2x,... be a sequence of

divided powers over lx^Q. Then:

(1) "xeC ( |,M,| + 1), where \\n\\ is the integer such that pM<tn<p^ + ί.

(2) Prx<=C(r+ί) butPrx£C(r)for r = 0, 1, 2,....
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PROOF. By the above remark, if l<j<n, we have V^+ί(Jx) = Q. This
implies that nxeh-ker (C-»C/ker F l | w | l + 1), which proves (1).

(2) We see that prxeC(r+1) by (1) because ||pr||=r. Finally assume that
prxeC(rγ It follows that Vr(prx) = Q. On the other hand, since V(prx) = 1x
by the above remark, we have 1x = Q, which contradicts the assumption.

Note that if H is a hyperalgebra, then Frobenius subcoalgebras of H are

subhyperalgebras since the F-map of H is a ί — -linear J Hopf algebra map. More-

over we know by Theorem 1 in [8] that f/(1) is equal to the restricted enveloping

algebra of the restricted Lie algebra P(H).
A primitive element x of a hyperalgebra H is said to have coheight t if x be-

longs to F<(#), and to have infinite coheight if x belongs to F°°(/f) = Γ\n^0 Va(H).
We denote the (maximal) coheight of x by (max-)coh# x.

As for the connection between coheights and sequences of divided powers
we know some important results due to Sweedler ([8], [9]) and Newman ([3]).
We list them as a lemma.

LEMMA 2.3. Let H be a hyperalgebra.
(1) // l = °x, XΛ;,..., pn+i~1x is a sequence of divided powers over *x, then

1x has coheight n (n = 0, 1, 2,..., oo).
(2) // a primitive element x has coheight n(<oo), then there is a sequence

of divided powers over x of length pn+1 — 1.
(3) // F(F°°(/ί))=K00(H) and a primitive element x has infinite coheight,

then there is an infinite sequence of divided powers over x.
(4) // F(F*(#))=F°°(/f) and H has a Sweedler basis {xt}ier (see [3] for

the definition) with I ordered and if

is a sequence of divided powers over x{ for each ί, then the ordered mono-

mials

form a linear basis for H9 where il<i2<-'<ir in I and aj<ptij+1 for j —
l,2,...,r.

DEFINITION 2.4. Let H be a hyperalgebra and G a subhyperalgebra of H.
We say that G satisfies the coheight condition (in H) provided that for all prim-
itive elements x of G we have

max-cohGx = max-cohHx.

REMARK 2.5. To say that G satisfies the coheight condition is equivalent
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to saying that if x is a primitive elements of G then, for any integer t not
exceeding max-cohHx, there is a sequence of divided powers over x of length
pί+ι_ i lying in G.

PROPOSITION 2.6. Let G be a subhy per algebra of a hyperalgebra H.
If G is relatively smooth in H, then G satisfies the coheight condition.

PROOF. By definition there is a coalgebra map η: H-+G which is identical
on G. Let x be any primitive element of G. If 1 =°x, 1x = x,... is a sequence of
divided powers over x in H, then it is clear that their images 1=77(1), x = η(x),
η(2x),.. . under η form a sequence of divided powers over x lying in G with the same
length as the original one. Therefore x has the same maximal coheight in G as
in H. This proves the proposition.

A hyperalgebra is said to be bounded if the coheights of primitive elements
are bounded.

LEMMA 2.7. A hyperalgebra H is bounded if and only if jFί = /ί(r) for
some integer r.

PROOF. If H is bounded, then there is an integer r such that all sequences of
divided powers lie in H(r) by Lemma 2.2. In this case we have P(H) n Fr(H) = 0.
In fact, if x 5^0 belongs to P(H) n Vr(H), then by Lemma 2.3 (2) there is a sequence
of divided powers over x of length pr+ί — 1. However, Lemma 2.2 (2) asserts
prx^#(r), which contradicts the choice of r. It follows that V(H) = kl by
Corollary 11.0.2. in [7] since V(H)+ is a coideal of H. Therefore #cfcl +
ker FΓ, which implies H = H(r). The converse is clear.

The following theorems gives a partial converse to Proposition 2.6. The
proof is based on a theorem of Newman [5].

THEOREM 2.8. Let H be a bounded hyperalgebra. If a subhyperalgebra
G of H satisfies the coheight condition, then G is relatively smooth in H.

PROOF. By Lemma 1.1 in [5] H has a Sweedler basis B containing a Sweedler
basis Bf of G. For xαeJ5, let /ια = max-cohίfxα and select sequences of divided
powers over xα with maximal length:

i ..... 00 Y _ \a 2a P"α + 1-ι/τ in G (x eβ'ϊ1 — MOV Λα — ί/α> »α» 5 »α 1A1 *-* V ^α c ** )

and

l=θhβ,xβ = ihβ9

2hβ,...9P
nβ + ί-ihβ in H(xβeB-B').

Then by Theorem 1.3 in [5] the set of ordered products {Πb^Πα^} forms a
basis for H . And we see that the comultiplication A of H is given by the formula
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Δ(UbhUag)= Σ Ub'hU°'g®Ub"hU°"θ
b' + b" = b,a' +a" = a

Therefore the map η defined by Ylb h Πα 9 *-> ε(YIb h) Πfl 9 is easily seen to be a
coalgebra map of H into G which is identical on G. Hence G is relatively smooth
in#.

LEMMA 2.9. For x e P(H), we have

max-coh/ί(r) x = min {r— 1, max-coh// x}

forr=l,2,....

PROOF. Let t = min{r— 1, max-cohHx}. Then there is a sequence of
divided powers over x of length /?ί+1 — 1 in //, say,

\% x = ίχ9

 2jc,...? p f + 1 ~ l χ.

Since \\pt+1 —1|| =ί this sequence lies in //(r) by Lemma 2.2, whence we have
max-cohH(r) x>t. The inverse inequality is clear by Lemma 2.2. This proves
the lemma.

PROPOSITION 2.10. Let H be a hyper algebra and G a subhyperalgebra of H.

Then G satisfies the coheight condition in H if and only if, for every r, G(r)

satisfies the coheight condition in H(rγ

PROOF. Assume that G satisfies the coheight condition in H and let x be
any primitive element of G. Then by Lemma 2.9 and by the assumption we have
for each r

max-cohG(r) x = min {r — 1, max-cohc x]

= min {r — 1, max-cohH x}

= max-cohH(r) x.

Conversely assume that G(r) satisfies the coheight condition in //(r) for every

r. Let x be an element in P(G). If max-cohf/ x< oo, then we have

max-cohH x = max-cohW(r) x

for a sufficiently large r by Lemma 2.9. Thus by the assumption we have

max-cohtf(r) x = max-cohG(r) x

< max-cohG x.

Consequently we have

max-cohH x = max-cohσ x.
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On the other hand if max-cohH x = oo, we have, for any n>0,

max-cohG x > max-cohG(n) x

= max-cohίΓ(n) x

This implies that max-cohc x = oo. Therefore we have, in each case,
max-cohG x = max-cohwx,

which proves the proposition.

LEMMA 2.11. Let A, B be subhyperalgebras of a hyperalgebra H sat-

isfying the following conditions:
(1) AciB and A satisfies the coheight condition in B,
(2) P(A) = P(B).

Then we have A = B.

PROOF. It is sufficient to prove that A(r) = B(r) for all r. Since A^r) c= J5(r)

and A(r) satisfies the coheight condition in B(r) by Proposition 2.10 and since B(r}

is bounded, it follows from condition (2) and a simialr argument to that in the
proof of Theorem 2.8 that A(r} contains a linear basis for £(r). Hence A(r) = B(r).

PROPOSITION 2.12. Let G be a subhy per algebra of a hyperalgebra H.

Then G satisfies the coheight condition in H if and only if G ft Vr(H)=Vr(G)
for all r.

PROOF. (<=) Let x be a primitive element of G. Assume that cohHx>r
for a nonnegative integer r. Then we have

x e G n V(H)= F'(G),

which implies that max-cohG x > r. It follows that

max-cohG x = max-cohH x,

and this proves the coheight condition of G.
(=>) We may check that the conditions of Lemma 2.11 hold. First, it is clear

that Vr(G)c:GnVr(H). Take any x of P(GnVr(H)). Then we have max-
cohHx>r. Since G satisfies the coheight condition in H, it follows that

max-cohGx>r. We see by definition that xe V(G) n P(G) = P(Fr(G)). There-
fore we have

P(G n Vr(H)) = P(Vr(G)} .

Finally we show that Vr(G) satisfies the coheight condition in G Π Vr(H).
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Let x e P(Vr(G)) have the maximal coheight s in G Π V(H). Then we have

x e VS(G n Vr(H)) c Vr+s(H).

Thus x has coheight r + 5 in H, so that max-cohG x > r + s by the coheight condition
of G. Therefore there exists an element u in G such that x = Vr+s(u). Since
Vr(u) e Fr(G), it follows that

x= Vs(

which implies that max-cohFr(G) x>s. Hence max-cohFr(G) x = s. This com-
pletes the proof.

A hyperalgebra H is said to be stable if ther is an integer n0 such that Vn(H) =
V n Q ( H ) f o r n>n0.

LEMMA 2.13. Let H be a stable hyperalgebra and G a subhyperalgebra
of H satisfying the coheight condition. Then G is also stable and H has a
Sweedler basis which contains a Sweedler basis of G.

PROOF. Let n0 be an integer such that Vn(H) = Vn°(H) for n > n0. If n > n0,
then we have by Proposition 2.12 that

J/"(G) = G n Vn(H) = G n Vn°(H) = F'"(G).

It follows that G is stable.
To construct a Sweedler basis we first take a linear basis of P(F"°(G)). Extend

this to a basis of P(V"°(H)) and to a basis of P(Vn°~l(G)) independently. The
coheight condition of G implies that

P(F"°(#)) Π P(K"o-i(G)) = P(K»°(G)).

It follows that the union of the bases of P(Vn°(HJ) and of P(Vn°-l(G)) is linearly

independent, so that it forms a basis of the subspace P(Vn»(H)) + P(Vn*-*(G)).
Extend this to a basis of P(VnQ~l(H)\ Continuing this procedure, we finally
obtain a basis of P(H) which we desired.

Let H and G be as above. Then H and G have linear bases as in the proof
of Theorem 2.8. Thus we can conclude:

THEOREM 2.14. Let H be a stable hyperalgebra and G a subhyperalgebra
of H. The G is relatively smooth in H if and only if G satisfies the coheight
condition in H.

COROLLARY 2.15. Let G be a subhyperalgebra of a stable hyperalgebra
H. If there is a coalgebra map of H into G which is identical on P(G), then
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G has a right/left G-lίnear coalgebra retraction.

PROOF. If there is a coalgebra map of H into G which is identical on P(G),
then as is seen in the proof of Proposition 2.6 G satisfies the coheight condition

and so G is relatively smooth. Therefore the assertion follows from Corollary 1.4.

3. Smooth hyperalgebras

In this section we consider smooth hyperalgebras in connection with relative

smoothness. Following [10, 1.9.5] we say that a coalgebra is smooth if it is

isomorphic to #((/) for some vector space U. A hyperalgebra is said to be smooth

if it is smooth as a coalgebra.

Here, we briefly recall the cofree coalgebra B(U) ([7], Chapter 12). Let

U be a vector space. The cofree coalgebra B(U) on U is characterized by the
following UMP: For any coalgebra C and a linear map /: C+->(7, where C+

is the kernel of ε, there exists a unique coalgebra map F: C-*B(U) such that the
diagram

f\
U -̂ B(U)

is commutative, where πυ is the canonical projection.

If β: U-*V is a linear map of vector spaces, we have a uniquely determined

coalgebra map B(ρ): B(U)^>B(V) which makes the diagram

B(U) B(v^, B(V)

KV\ πv

u -J-+ v

commutative.

Now let C, D be coalgebras. if p: C->D is a coalgebra map, then it is easy
to see that the image of P(C) under p is contained P(D). We call p0: P(C)->P(D)

the restriction of p ot P(C). The following lemma is easily shown:

LEMMA 3.1. Let p: C-»D be a surjective coalgebra map. If p has a co-

algebra splitting, then p0: P(C)-»P(D) is surjective.

COROLLARY 3.2. // G is a relatively smooth subhy per algebra of a hyper-

algebra H, then we have p(P(#)) = P(#//G).

LEMMA 3.3. Let V, W be vector spaces, K0, W0 be subspaces of V, W re-
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spectively and p: V-> W a surjective linear map with p(K0)= W0. Let q: W-* W0

be a linear map such that q\Wo = idWo. Then there is a linear map p: V-+VQ

such that p\Vo = iάVo and qρ = ρ0p, where Po = ρ\v0'

The proof is easy and omitted.

PROPOSITION 3.4. Let

k ,A~1^B-^C >k

be an exact sequence of coalgebras. Let α, b and c be the spaces of primitive
elements of A, B and C respectively. Assume that the sequence

0 >α-A-»b-^Uc » 0

of vector spaces is exact. Then there are injective coalgebra maps α, β and
y which make the diagram

β(a) B(J°Ϊ > B(b)

commutative.

PROOF. Let h: C+->c be any linear map with / ι | c =id c . Then the UMP
of J5(c) implies that there is a unique coalgebra map γ: C-+B(t) which makes the
diagram

c — ί c

commutative. Since Λ is injective on c, y is injective.
By Lemma 3.3 there is a linear map g: B+-+b such that g | b = idb and hp\B+ =

ρ0g. The UMP of #(b) guarantees the existence of a coalgebra map β: B-+B(b)
such that the diagram

B+ ( — > B
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is commutative. By the same reason as y, we see that β is injective. Moreover
we have yp = B(ρ0)β by the UMP of #(c). In fact, we have

KcJP\B+= hp\B+ = p0g =

The existence of α is proved as follows. Since pj = £A we have

Po9J(A+) = hpj(A+) = 0.

This implies that gj(A + )^jQ(a). It follows that there is a linear map /: A+->
a such that Jof = g j \ A + . f satisfies an additional condition that /|α=idα. In
fact, let α e α . Then we have Jof(d) = gj(ά) = gJQ(a)=jQ(a) because j0(ά)eb.
Therefore /(α) = α. By the UMP of B(a) there is a coalgebra map α: A.-*B(a)
such that the diagram

Λ + c — > A

Ί I-

is commutative. We see as before that α is injective. Finally we must show that
βj = B(j0)x. This follows from the UMP of 5(b). Indeed we have

so that we have βj — B(j0)<x. This completes the proof.

PROPOSITION 3.5. Let the diagram

k - > A — =L> 5 — ̂ — > C

fee as in Proposition 3.4. // /? is an isomorphism, then both a and γ are iso-
morphisms.

PROOF. We have only to show the surjectivity of α and 7.
Since both B(p0) and β are surjective, it is clear that 7 is surjective.
Before proving the surfectivity of α we note that the sequence /c->β(α)->

B(c)-»fc is exact.
Let x be any element in B(a). Then there is an element b in B such that

= B(jΌ)(x). Since B( jQ) (x) e /i-ker U(p0)> we have be/t-kerp, and thus
b=j(a) for some α. It is easy to see that α(α) = x, which proves the surjectivity of

α.

THEOREM 3.6. If H is a smooth hyperalgebra, then every relatively smooth
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subhyperalgebra of H is smooth.

PROOF. By Corollary 3.2 the sequence

0 - > P(G) -*U P(H) J^U P(J) - > 0

of the spaces of primitive elements is exact. Therefore by Proposition 3.4 we
obtain a commutative diagram of coalgebras

I, T V-»

I-
c " B(P(G)) -=7

T M. M.

i>Ψ

7^ 2ί(P(fθ) -«?;

τ »/

J'
pr* Λ(P(/)) -

r 'v

-*A:

Since H is smooth and β(P(H)) = P(H) we have, by Theorem 12.2.6 in [7],
that β is an isomorphism. It follows from Proposition 3.5 that α is an isomor-
phism, which implies that G is smooth. This proves the theorem.

In the above proof, we notice that the smoothness of G is deduced from only
the fact that p0 is surjective. Therefore we may have

COROLLARY 3.7. Let H be a smooth hyperalgebra, G a subhyperalgebra of

H and p: H ^H//G the natural map. If ρ0: P(H)-+P(H//G) is surjective,
then G is smooth.

In comparison with Theorem 3.6, we may ask naturally whether a smooth
subhyperalgebra is always relatively smooth. The following theorem answers
this question :

THEOREM 3.8. Every smooth subhyperalgebra of any hyperalgebra is
relatively smooth.

PROOF. Let G be a smooth subhyperalgebra of a hyperalgebra H. We may
identify G with B($), where g = P(G). Let/: //+->g be a linear map extending
π

8 lc+ : G+-+$. Then there is a unique coalgebra map η: H->B(g) = G such that
the diagram

H+ <• — > H

is commutative. It is easy to see that η is a retraction of G. Thus G is relatively
smooth in H.

Combining Corollary 3.7 and Theorem 3.8 we have
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COROLLARY 3.9. Let H, G, p be as in Corollary 3.7. If p0: P(H)->P(H//G)

is surjective, then G is relatively smooth.

REMARK 3.10. In the above corollary the assumption that H is smooth
cannot be dropped. To see this we use an example due to Newman [5]: Let
k = Z/(2). Let H be a hyperalgebra over k defined as follows:

H = fc[X, 7, Z, W]/(X2, Y2, Z2, W2),

where

AX = 1 ® X + X® 1

AY = i ® y + x ® x + y ® i

ΛZ = ι ® z + *

It is easy to see that P(H) is the subspace of H spanned by x and y — w,
where small letters represent the cosets containing the corresponding capitals.
Put G = /c[x, w] and let p: H-+H//G be the natural map. Then it follows that
HJlG — k\_y, z], where y and z are the images of y and z respectively under p.
Thus P(HHG) = ky, so that p maps P(H) onto P(H//G). G does not satisfy the
coheight condition in H :

max-cohH x = 2 but max-cohG x = 1 .

Therefore, by Proposition 2.6, G is not relatively smooth in H.
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