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Introduction

In the previous paper [10] we discussed the existence and uniqueness of weak
solutions of the initial-boundary value problem for the Navier-Stokes equations
in a time dependent domain in Rn (n = 2, 3, 4), and proved the existence of a
periodic solution for an arbitrary external force under the assumption that the
domain moves periodically and the boundary data are small enough. In this
paper we shall give certain sufficient conditions for our periodic solutions to be
stable in the case n = 2, 3.

In [12] Serrin has given a condition in terms of the Reynolds number of the
flow, under which there exists a unique and universally stable periodic solution.
Here "universally stable" means that any other solution tends to this periodic
solution as t-+co. To obtain this result, he required that for any continuous
initial velocity the equation is solvable globally in ί, and that there exists a certain
solution which is equicontinuous in the space variables for any time t and has a
sufficiently small low Reynolds number. Though these requirements seem to
be rather restrictive mathematically, he offered these requirements because of their
plausibility on the ground of physical intuition.

Instead of the conditions stated above, we discuss a condition under which
our weak solutions including the periodic one are regular after some instant.
Then, it will be shown that if our periodic solution has a sufficiently low Reynolds
number, then it is stable among weak solutions with sufficiently small initial
velocities.

We begin with the formulation of the problem and state the theorem on the
existence of global weak solutions established in [10] in Section 1. In Section

2 we discuss the regularity of weak solutions. To do this we employ the method
of evolution equation in Hubert space which was first developed by Fujita and
Kato [2], [6] in the case of time independent domains and then applied by
Inoue and Wakimoto [4] to the case of time dependent domains. Using the
regularity result given in Section 2, we show in Section 3 that the same condition

as in [12] implies the stability of our periodic solution. Apart from this result,
in the case n = 2 we state another condition similar to the one in [5] for the uni-
versal stability and uniqueness of periodic solution.
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1. Reduction to the case of cylindrical domain

Let Ω(t)9 teR9 be bounded domains in Rn (n = 2, 3) with smooth boundaries
and let βoo = VΛeΛ Ω(t)x {t} be a noncylindrical domain in Rn+1=Rn x R. We
consider in Qoo the initial-boundary value problem for the Navier-Stokes equa-
tions :

dv/dt - Δv + (v, grad)t> = / - grad p9 x ε Ω(i), t > 0,

div Ό = 0, x e Ω(t\ t > 0,
(1.1)

v = β9 x e dΩ(t\ t > 0,

ι<jc, 0) • = ι>0(jc)i xeΩ(O).

Here v = {vj(x9 f)}tj=l9 p = p(x9 t) denote respectively unknown velocity and

pressure while /={/J(x, 0}"=ι> v0 = {v£(x, ί)}"=ι denote respectively given
external force and initial velocity; β = {βj(x9 0}J=ι is given on the boundary of
Qoo. As in [10] we impose on Q^ and β the following assumptions:

(A.I) There exist a cylindrical domain Q00 = ΩxR and a C00 diffeomor-

phism Φ: Qn->&*>\ (y, s) = Φ(x, 0 = (^1(^ 0,-., </>"(*, 0, 0 such that

(1.2) det [δφf(x, 0/θx^] = JίO"1 > 0 for (x, t) e g^.

(A.2) β is the restriction to the boundary of Q^ of a C2 vector field ι/f, which
is divergence-free on each Ω(t) and bounded on Q^ together with its first and
second derivatives.

We note that the condition (1.2) for the Jacobian is of no restriction; see [10].
Setting v = ψ + u, we obtain from (1.1),

du/dt - Au + (u, P)ψ + (ψ, Γ)u + (u9 Γ)u = F - Γp, x 6 Ω(ί), t > 0,

div u = 0, x e Ω(t\ t > 0,
(1.1)'

u = 0, x e dΩ(t\ t > 0,

u(x9 0) = α(x), xeΩ(O),

where F=f+Δψ — (ιj/9 P)ψ — dψ/dt and a(x)t=v0(x) — ψ(x9 0). If we regard M,
α, ψ and F as vector fields and p a scalar field on Ω(t)9 then by setting

uj(y9 s) = Σ2=ι (3y/3x*)ιιk(Φ~1(3;, 5)), and similarly for α, ψ, F9

(1.3)
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(1.1)' is transformed into the following problem in Q^ :

du/ds - Lu + Mu + Nvu + N2u = F - Pgp, ye&, s > 0,

div ύ = Σ"=ι duJ/dyJ = 0, ye&, s > 0,

u = 0, j eδjβ, ,? > 0,

where

?/ku\ (N2u)i =

* + (dyίdxk)(d2xk/dsdyJ)uJ\

= 2(dyk/dxl)(d2xl/dyidyJ).

Here and hereafter we use the summation convention. Note that F/ is the co vari-

ant differentiation with respect to the Riemannian connection { Γ j k } induced by

the metric # =(#*;)• From the assumption (A.I) it follows that

(1.4) (glί) = (3ιjrl, det^i7) = J(02.

This implies that the divergence operator is left unchanged under the change of
variables: x-+y. Further we note that du/ds + Mύ and Lύ correspond respectively
to du/dt and Δu under the coordinate transformation.

Let CQt0(&) be the space of all smooth divergence-free vector fields with
compact support in Ω. Let R and P be respectively the closures of 0 (̂0) in
(L\U)Y and in (Hl(&))n, where Hl(Ω) is the usual Sobolev space. For each
teR we denote by Ht the Hubert space H endowed with the inner product:

(1-5) <δ, v\ - ( gt{y, i)ύ\y)V(y)J(i)dy.
JΩ

The norm in Bt is denoted by | |f. Note that the norms | |f, t e R9 are mutually
equivalent in H. Further F is a Hubert space with respect to any of the inner
products :

(1.6) <P,fi, F,SX =ί ffc/y, t)gkl(y, t^
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For u E V we set \p r

gu\t~ (P r

gύ , Vgύ^\12. The following result was proved in [10]
(see [10, Th. 2.2] and its proof).

THEOREM 1.1. Fix T>Qand let V* be the dual o f V . Then for each defί
and each FeL2(0, T; V *) there exists a function ύ belonging to L2(0, T; V) Γ)
L°°(0, T; //) which satisfies (1.1)" in the following sense:

)9 v(φtdί

0.7) ° °

f Λ = <a, ί;(0)>o

A 6 CH[0, T]; J?), A(Γ) = 0 and w e K . Furthermore,
u satisfies the energy inequality:

(1.8) ί

/e[0, Γ] .

We call such a function ίί given in Theorem 1.1 a weak solution of (1.1)" with the
initial value a.

2. Regularity of weak solutions

In this section we denote functions #, α, F etc. simply by u, a, F etc. and
equip H with the usual inner product :

(2.1) (U,Ό)= (u^v^dy.
JΩ

we set |M|=(M, w)1 / 2. The norm of the Sobolev space (Ws>r(Ώ))n is denoted by
! |sF. Let P denote the orthogonal projection: (L2(Ω))"-*H associated with
the following decomposition ([7], [8]):

(L2(Ω))» = H®G;G = H^ = {grad q:qe Hl(Ω)}.

Multiplying the first equation in (1.1)" by the matrix 0 = (0/y), then applying the
projection P and using the fact that Pg defines a linear isomorphism of H ([4,
Lemma 3.3]), we obtain the. following evolution equation in H.

(2.2) du/dt + A(t)u •= Ψ(t) + Έ(t, w), t > 0,

ιι(0) = α,

where
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A(t) = -(PgΓlPg(L-M-NJ,

Ψ(t) = (Pg^PgF, E(t, u) = -(PgΓ1PgN2u.

LEMMA 2.1. For each ίe[0, T], T>0 fixed, and for A>0 large enough,
A λ( t) = A(t) + λ is a regularly accretive operator ([14, Chap. 2]) in Ht and
satisfies the estimate:

(2.4) Cj ' lwki < \Aλ(t)u\0t2 < Cλ\u\2,2 for ueV n (

In particular, A(i) is a closed operator in H defined on D(A(t)) = V Γ\(H2(Ω))n.

PROOF. Since

<υ, w>, = (gv, w)J(t} = (v, gw)J(t) for v,weH

and since P is the orthogonal projection onto H, we can easily see

- <(Pg)-ιpgLΌ9w)t = < P,ι?, F,w>, for i?, w 6 V n

Therefore we have for w e D(A(i))

<ΛA(ίjwvw> f = |F f fw|2 + AM? + <Mw, w>f + (Λ^w, w>f

(2.5) > |F,w|? •+ λ|w|? - C(|w|f + |Γgw| f)|w| f

This and the Poincare inequality show that for A > C + C2, ^4A(i) is regularly
accretive in //,. On the other hand the operator L is obtained from the Laplacian
A in the coordinates xeΩ(ί). Hence, according to the apriori estimate in [7,
Chap. 3] the estimate (2.4) with Aλ(f) replaced by -(Pg)~lPgL holds. Taking

account of the smoothness of # = (#;;), we can see that (2.4) holds for Aλ(t).

In what follows we denote Aλ(i) by A(t), so that A(t), t e [0, T], are invertible
in H. This causes no essential trouble in solving the equation (2.2); see [9, Sect.
4]. The results in the next lemma are well known in operator theory, so we omit
the proofs; see [14].

LEMMA 2.2. (i) For each ίe[0, T], —A(i) generates in Ht a holomorphic
semigroup of class C0.

(ii) If ψ is of class C3 on Qx=ΩxR, then A(t)~l is of class C2 in t with
respect to the norm topology of bounded operators in H.

(iii) There are constants C>0 and 0e(0, π/2) such that, for each ίe[0,

n
\\(άldf)(A(t)-μyι\\ < C / \ μ \ . whenever |argμ| > ,fl,

where || j| denotes the operator norm of bounded operators in H,
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According to [14, Chap. 5, Sect. 3], Lemma 2.2 implies the following.

THEOREM 2.3. (i) A(t), ίe[0, T], generates in R a parabolic evolution
operator, which we denote by {U(t, s); 0<s</<T}.

(ii) If s<t, the operator function U(t, s) is differentiate in t and s, and
satisfies

V(s, s) = /, U(t, r)l/(r, s) = U(t, s) for 0 < 5 < r < t < Γ,

dU(t, s)/dt + A(i)U(t, s) = 0 for s < t,

dU(t, s)/<9s - C7(ί, s)A(s) = 0 for s < t,

\\A(t)U(*> s)\\ < C(t-s)~\ ||I7(ί, sM(s)|| < Cίί-s)-1 /or 5 < t.

Since ^4(ί) is regularly accretive in /?„ its adjoint A(i)* in Hf is also regularly
accretive (see [14]), and therefore the fractional powers A(f)Λ, y4(f)*α = (/l(0α)*>
aeR, are defined in the usual manner. Let B— —PA be the Stokes operator in
fi defined on D(B) = V n (H2(fl))Λ. It is known that B is a positive definite self-
adjoint operator in H; see [2], [6]. Further, using the result of [3] and inter-
polation theory, one can easily show that the space D(BΛ) endowed with the graph
norm of BΛ is continuously imbedded into (/ί2α(Ω))π, αe[0, 1]. On the other
hand, since A(t) is regularly accretive, it follows from Kato's generalization of
Heinz inequality ([14, Chap. 2]) that D(A(t)*) = D(B"), α 6 [0, 1]. Also note that,
by the Poincare inequality we have

\A(t)v\t<C\(Pg}^PgLυ\t for veD(A(t)).

Then, by Heinz inequality, it also follows that

\A(tγ/2v\t < C\(-(Pg)-lPgL)lf2O\t = C\rgv\t for veD(B^2).

Hence, we have

LEMMA 2.4. D(A(f)Λ) is continuously imbedded into (H2*(Ω))n. In particu-
lar, for α = l/2 there is a constant CΩ>0 such that

for any veV and any ί, se[0, Γ].

The estimates in the lemma below are shown in [13, Sect. 1], so we omit the
proof.

LEMMA 2.5. The evolution operator given in Theorem 2.3 satisfies

(2.6) \\A(t)*U(t,sY*\\ <Caβ(t-sγ-«, for s < ί, 0 < β < α < 1,

(2.7) \\A(tγυ(t,s}A(sγ\\<CΛβ(t-sY*-t, for s < t, 0 < α, β < 1.
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Let us now construct a solution of (2.2); we rewrite it in the integral form:

(2.2)' ιι(0 = U(t, 0)fl + (' U(t9 s){Ψ(s) + E(s9 u(s»}ds,
)o

and consider the following iteration scheme :

ιι0(0 = U(t, 0)α + (' t/(ί, s)!P(s)ds,

(,2r
Wm-n(0 = «o(0 + \ l/(ί, s)£(s, um(s))ds, m = 0,1,2,...

JO

We put £(ί, ϋ, w) = -(PgYlPgN(υ9 w), N(ϋ, w^iyT W*, (/ = !,..., n). For a
while we restrict ourselves to the case n = 3. The following lemma is an immediate
consequence of [6, Lemma 3].

LEMMA 2.6. There is a constant M0>0 such that, for any 5, fe[0, Γ],

(2.8) \E(s9 v, w)| < M0\A(ty/2v\ |Λ(03/4w|, υ e D^1/2), w e /)(B3/4) .

Let aeD(B^4) and let <F(OeC((0, Γ]; H) be such that |¥>(0|=o(r3/4) as
ί-»0. Using (2.7) and (2.8), we can show by induction on m that each step of the
scheme defines um as an element in C([0, Γ]; H) n C((0, Γ]; D(5α)), α e [1/4, 1).
Furthermore, for T* e (0, T] and α e [1/4, 1) if we define a sequence {KΛtm}%=0 by

> /(ί, 0)α| + Cβ0B(l-α, 1/4)
(2.9)

x

(2.10) KΛim+ί = KΛi0 + Cα0MOJB(l-α, l/4)K1/2jmK3/4jm,

then we have |A(ί)αwm(OI < ̂ α,m^1/4~α on (0, Γ]. Here B(p, q) is the beta function.
If we set /cm = max{X1/2>m, K3/4>m}, C0 = max {C1/2>0, C3/4i0} and J50 =
1/4), then from (2. 10)

(2.11) km+ί<k0 + C

An elementary calculation shows that if

(2.12) fc0<l/(4C(

then, for all m

(2.13) km<K0 = {l~(l~4CoB0M0)
1/2}/(2COJBoMo) < 1/(2C0B0M0) .

From (2.6) and the assumption on a and Ψ(t) we can choose T*>0sothat(2.12)
holds. Hence we can show the following theorem in just same way as in [4]

or [6].
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THEOREM 2.7. Let π = 3. For each aeD(B^4) and Ψ(t) e C((0, T] H)

such that \Ψ(t)\=o(Γ3/4) as f-»0, there exist a T* e(0, Γ] and a unique function
u on [0, T*] such that

( i ) weC([0, T*];/?)nC((0, T*]; D(B«)) /or any αe[l/4, 1);
(ii) \A(i)*u(t)\ = o(t1/4-"} as f->0 /or αnj αe[l/4, 1);
(iii) u(t) satisfies the integral equation (2.2)' on [0, T*].

We now show the Holder continuity of the solution u given in the above
theorem. To do so we need the following

LEMMA 2.8. For any α, βe [0, 1], α<β, we have the estimate

(2.14) \\A(tnU(t,s)-I}A(sΓβ\\ <C'xβ(t-sy-«.

PROOF. By Theorem 2.3,

A(t)'{U(t, s)-I}A(s)~β = - Γ A(t)«(d/dσ)U(t, σ)A(sΓβdσ
J s

= - (' A(tyU(t, σ)A(σ)A(s)~βdσ = - Γ A(t)*U(t, σ)A(σγ-^A(σyA(sΓβdσ.
}s Js

Since ^(^(σ)^) = D(A(s)β), A(σ)βA(s)~β is bounded on H, and so the estimate
(2.14) follows from (2.7).

PROPOSITION 2.9. The solution u given in Theorem 2.7 is Holder continuous
on each [ε, T*] (0<e<T*) with values in D(B«)9 αe(0, 1).

PROOF. Set u(t) = w0(0 + v(t) with

υ(i) = Γ U(t, s)E(s9 u(s))ds.
Jo

For αe(0, 1) and h>Q we have

, s)Ψ(s)ds

o

Noting that A(t)*A(t + h)-« is bounded on //, by (2.6) and (2.14) we have

fί

| \
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/3 is estimated as follows: when 0<α<β<l,

|/3| < C\\A(t + /!)«{C/(r + fc, t)-I}A(t)-p\\ Γ \A(tyU(t, s)Ψ(s)\ds
Jo

On the other hand,

υ(t + h) - v(t) = Γ {C/(f + A, t)-I}U(t, s)£(s, u(s))ds
Jo

+ (t+hU(t + h, s)E(s, u(s))ds.

Using Lemmas 2.6 and 2.2 we have

\A(t) {υ(t + h)-υ(t)}\

, t)-l}A(t)-p\\
Jo

+ C. J'+" M(ί + ft)«l/(f + h, s)!| |£(s,

Since |£(s, u(s))| < M0K:gs-3/4 by Lemma 2.6, it follows that, when «</?<!,

f ί+Λ

which completes the proof.

From Lemma 2.6 and Proposition 2.9 we have

LEMMA 2.10. // u is the solution of (2.2') given in Theorem 2.7,
£(ί, w(0) is Holder continuous on each [ε, T*] (0<ε<T*).

This lemma implies the following theorem.

THEOREM 2.11. // in addition to the assumption in Theorem 2.1 Ψ(t) is
Holder continuous on each [ε, T] (0<ε<T), then the solution u of '(2.2)' given
in Theorem 2.7 satisfies :

(i) u e C((0, T*] D(B))9 u' e C((0, T*] H);
(ii) u is a solution of the evolution equation (2.2) on (0, T*].

When the initial value belongs to D(β1/2), we have
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PROPOSITION 2.12. Let a belong toD(Bl>2) and Ψ(i) be as in Theorem 2.11.
Then the solution u given in Theorem 2.11 belongs to C([0, T*]; D(Bl<2)\ and
hence u belongs to L4(0, T*; L6(Ω)).

PROOF. We have only to show the continuity at ί = 0 from the right. By
(2.2)' we have

, s) {Ψ(s) + E(s9 u(s))}ds.

Since, according to Lemmas 2.5 and 2.6, the integrand in the right hand side is
summable on (0, Γ*), and since A(i)λi2U(t, O)A(O)-1/2 converges to 7 as ί->0,
v4(ί)1/2w(0 tends to A(W2a in 7? as ί->0. This shows the continuity of u(f)
at ί = 0 in D(B1/2). The last assertion follows at once from the Sobolev imbedding
theorem.

Now, applying the argument of the uniqueness theorem in [7, Chap. 6, Sect. 2]
to our case with slight modification, we can show the following:

COROLLARY 2.13. Let n = 3and let the external force Ψ(t) be as in Theorem
2.11. If the initial value a belongs to D^β1/2), then the weak solution u given in
Theorem 1.1 is continuous with values in D(B1/2) on the interval [0, T*], where
T*>0 is the constant given in Theorem 2.7.

Let us proceed to the case n = 2, in which Lemma 2.6 is replaced by

LEMMA 2.6'. There is a constant M'0>0 such that, for any s, fe[0, T],

(2.8)' \A(s)-l/*E(s, v, w)| <

This is also an immediate consequence of [6, Lemma 3']. In the same way
as before, we can show the following :

THEOREM 2.14. Let n=2. Assume that Ψ(f) e C((0, T] 7f) satisfies
\A(t)-^4Ψ(t)\ =o(r3/4) as f->0 and is Holder continuous on each [ε, T](0<ε< T).
Then for an arbitrary ae/7, there exist a T'e(0, T] and a unique function u
on [0, T'] such that

(i) ιi6C([0, Γ']:fl)nC((0, Γ']; /)(£)), w'eC((0, Γ'];£f);
(ii) u is a solution of the evolution equation (2.2) on (0, T"], where T'

depends on a and Ψ(f).

When n = 2, we can show that our solutions of (2.2) exist on the whole interval
[0, T] under the following assumption :

(A.3) FeL2(0, Γ; 5); Ψ(t)eC((09 Γ];/f) is Holder continuous on each

[ε, T] and \A(tΓ1/4Ψ(t)\=o(Γ^4) as ί-+0; ψ is of class C3 onΩxR.
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LEMMA 2.15. I f u e C((0, T'] D(B)) and uf e C((0, T'] #), then

(d/dt)\rgu\ϊ = -2<W',Lw>, + Λ(ί),

where |£(OI < C| ̂ "(01? for some constant C independent of u.

PROOF. First we assume u e C^ίO, T] D(B)). Then

Obviously /ι+/ 2 = °(l^wl?) To calculate /3 we proceed as follows: Let Vt

be the co variant differentiation in the direction of t with respect to the Riemannian
connection on Ω x R induced by the diffeomorphism Φ. Since this is a flat con-
nection, we have

0(|Pfιι|) =

Hence

0(\r,u\*)

Since u' 6 C((0, T'] D(B)), an integration by parts shows that the first term in
the right hand side vanishes. Consequently,

73 = -2gik(duηdt)gl'»rlrmukJ(t)dy + 0(|Pftι|?)

Thus we have proved the assertion when ueC^O, T']; D(BJ). For general u
we have only to regularize it in t after defining u = 0 outside (0, T') and then to take
limit. This completes the proof.

THEOREM 2.16. Under the assumption (A.3) the solution u of (2.2) given
in Theorem 2.14 can be continued to the whole interval [0, T] as an element in

C([0, T]; #) n C'((0, T]; B) n C((0, T];

PROOF. Without loss of generality we may assume α = w(0)e D(B1/2).
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Since <t?, w>r = (#*;, w)J(ί), we obtain from (2.2-3)

<X + Mw, w> f - <Lw, w>, + (Nίu + N2u, u\ = <F, w> f, ίe(0, T].

Note that

2u9 u\ = <ΛΓ(ιι, tff) + ΛW, ιι) + JV(ιι, w), tι>r

As shown in [10], 2<w' + Mw, u\ = (d/dt)\u\*9 -<Lw, u\=\Fgu\2 and <ΛIΓ(t?, w),
H;> = 0 for v, we V. Therefore,

(2.15) (d/Λ)|M|? + 2|^u|? = 2<F, M>, - 2<N(M, ψ), u\.

The second term in the right hand side is estimated as follows :

\<N(u, ψ), uyt\ = \((ύ, Γ)$, ΰ)Ω(t)\

/ Λ^ < w « P
(2.16)

where ΰ = Φ( - , ί)*1" and ϊjj = Φ( - , ί)*ljA Here we have used the estimate:
|M|L4<2 1/ 4( |w|L 2 |Fw|L 2) 1/ 2for we(CJ(R2))2; see [7] or [8]. Thus by Schwarz's
inequality, we have

(d/Λ)M? + |Γ,tt|? < |F|2 + (l+2|Γ>|?)|ιι|?, ίe(0, Γ'] .

From this it follows easily that, for ίe(0, T'],

4-
Jo

(2.17)

To estimate \Vgu\t we return to the equation (1.1)". Using the orthogonal
decomposition: (L2(Ω))2 = Ht@Gt, Gt = {Pgq; qεH^Ώ)} with respect to the inner

product (1.5), and the associated projection Pt: (L
2(Ω))2->//,, we obtain from (1.1)"

<X, PtLu\ + <Mw, PtLuyt - \PtLu\ΐ + (N,u + N2u, PtLu\ = <F, PtLu^t.

Since <w', PίLw>ί = <M/, Lw>f, it follows from Lemma 2.15 that

(d/dt)\rgu\ΐ + 2\PtLu\2

< 2\F\t\PtLu\t + C,\Vgu\t\PtLu\t + C2\Fgu\2 +.C3 |u| \^\V gu\t\P tLu\^\

so that, by Young's inequality and (2.17),
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(dldt)\Fgu\* < C4|F|2 + C5(l + |P,ιι|?)|P.!i|?.

This implies that

(2.18) |pχθl? < C 6 e x p C 5 ( l + |Pχs)|J)ds, fe(0, T'] .

The estimates (2.17-18) bring us the bound of \Pgu(t)\t on (0, T'] independent of
T". So the assertion follows by a standard argument of evolution equations.
This completes the proof.

COROLLARY 2.17. Let n = 2, and assume (A.3). Then the weak solution

of (1.1)" given in Theorem 1 .1 fee/ongfs ίo C([0, T] H) n CH(0, Γ] #) n

C((0, Γ]

PROOF. By (2.15) and (2.17) the solution of (2.2) is a weak solution of (1.1)".
Since the weak solution of (1.1)" is unique for π=2 (see [10, Theorem 2.8]).
Theorem 2.16 implies the result.

REMARK 2.18. Bock [1] showed the global existence of a unique strong solu-
tion of (1.1)" by the Faedo-Galerkin method. However, the proof in [1] is com-
plicated compared with ours. Moreover, our assumptions on the data are weaker

than those of [1],

3. On stability of periodic solutions

In this section for each vector field v on Ω(t) ϋ will always mean a vector field
on Ω obtained by the transformation (1.3), and conversely. Note that, for each

teR,\υ\t= \\v\\, if ve(L2(Ω(t))Y and \Pgw\t=\\Pw\\t if we(Hί(Ω(t)))Λ

9 where

HI, and || P ||f denote the usual norm in (L2(Ω(ί)))π and (tf1^)))" respectively.
Let us assume that n = 2 or 3, and that the diffeomorphism Φ(x, i) and the
boundary data ι/^(x, t) are periodic with period T>0. The next lemma is due to
Serrin [11].

LEMMA 3.1. Put ί/ = max0<ί<Γβf(ί), where d(i) is the diameter of Ω(t).
Then, for each v e C^σ(Ω(t)) we have

(3.1) κd~2\\v\\ΐ < \\rv\\*.

Here K is equal to (l+21/2)π2 when n — 2 and is equal to (3 + 131/2)π2/2 when
n = 3.

In [10, Sect. 3] we proved

THEOREM 3.2. Let Φ and ψ(x9 t) be as above. Then there exists a constant
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Cί>0 such that, if K = ma,x0^τ \\Pψ(t)\\t<Cl9 there exists for each FeL2(Q,
T; H) a weak solution ύ of (1.1)" on [0, Γ] such that u(Q) = u(T) in H. The
constant Cv is equal to d~l(κj%)ll2 when rc=2, and is equal to κ1/4d~1/2/4 when

n = 3.

REMARK 3.3. The initial value of the periodic solution ύ given in the proof
of [10, Theorem 3.1] satisfies

(3.2)

Here C2=(l — CϊίK)κd~2 and C\ is the constant introduced in Theorem 3.2.

The results below (Theorems 3.6 and 3.7) are analogous to the one in [12].
Before proceeding, we show that, when n = 3, our weak solutions with sufficiently
small initial values belong to C([T, oo); D(β)), imposing on the forcing term
the following assumptions :

(A.4) Ψ(t) e C((0, oo); H) is periodic with period Tand is Holder continuous
on any finite subinterval in (0, oo).

(A.5)

Here we put C1/2 = max {C1/2>1/2, C3/4>1/2}; the constants C1/2>1/2, C3/4f l/2,
C0, B0, M0 and CΩ are those introduced in Section 2.

Setting p = (l-(exp(-C2Γ))-1κ-1ί/2 (T ]F(t)\fdt, we obtain
Jo

PROPOSITION 3.4. Let n = 3. Under the assumptions (A. 4-5), any weak

solution v of (l.ί)" whose initial value satisfies |#(0)|o<exp( — C2T)p belongs to
C([Γ, oo); D(B)) and satisfies the evolution equation (2.2) on [Γ, oo).

PROOF. First we note that, for a.e. t e [0, T],

(3.3) \v(t)\2

This follows from (1.8), by Schwarz's inequality and the estimate:

(3.4)

which is proved in the same way as (2.16) by making use of the estimate: M L 4<

21/2MI/24|Ft;|i/24 for v e (C&R3))3 . Then, by (A.5) and the assumption on the

initial value v(G). one can easily see that there is a point ί0

e(0, T) sucrl tnat

\v(t0)\2

0<pznd
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(3.5)

By (A. 5) we have

(3.6) sup0<(S2T {

< 1/(4C0B0M0).

for α=l/2, 3/4. Therefore, by Theorem 2.7 and Corollary 2.13, v belongs to
C(('o» ί0 + 2T]; D(B)) and satisfies (2.2) on (ί0, ί0 + 2T]. Further, as we have
deduced (2.15), we can deduce

(3.7) (d/df)|8|? + 2|F.8|? = 2<F, t>>, - 2<JV(8, #), £>„ ί0 < ί < ίc + 2T.

By (3.1) and (3.4), it follows from (3.7) that

exp(C2T)|t5(fo + Γ)|?0+τ < |δ(f0)l?0 + K-M2exp(C2Γ) Γ |ί (ί)|?Λ.
Jo

Then, from |δ(fo)l?0^P» il follows that |t5(ί0 + 70l?0 + τ^P Also (3 7) βίves

|δ(/0 4- Γ)|?0+r + κ-W (T \F(t)\}Λ.
to+T

Applying the same argument as above, we see that there is a t1 e(ί0 + T,
such that (3.5) holds with t0 replaced by il9 and then v belongs to C([tl9 ίt +2T]
D(B)). Successive use of this argument yields the result.

PROPOSITION 3.5. Let n = 3. Under the assumptions (A.4-5), the periodic
solution ύ given in Theorem 3.2 belongs to C([0, oo); D(BJ) and satisfies (2.2)
on [0, oo).

PROOF. This is proved in just the same way as Proposition 3.4, by noting
periodicity of M, (3.2) and (3.3) in which v is replaced by ύ. So we omit the details.

From this proposition and the Sobolev imbedding theorem, the periodic

solution w, given in Theorem 3.2 is continuous on Ω x [0, T].

THEOREM 3.6. Let ύ be the periodic solution given in Theorem 3.2 in the case
n = 3 and let V be the maximum of \(ψ + u)(x, t)\ on W0^ί<τ^(0x W Assume
(A.4-5) and

(3.8) Vd<κ^2.

Let v be any weak solution ό/(l.l)" such that ̂ £(0)|§<exp(-C2T)p. Then for
any θ>0 there is a Ti>T such that

\u(t)-ϋ(t)\t < ε for t > Γt.

PROOF. First note that for t>Tu satisfies
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for any φeV, and ί; also satisfies the corresponding equation. Hence w = w — ί

satisfies

Substituting w(f) for $, we obtain

where we have used the fact that <ΛΓ(w, £), w)^ — <W(#, w), ί;>f, which is valid

for w, ί;, weV. Since (d/dί)|w|? = 2<w'-hMw, w>ί5 by returning to Ω(ί), we have

Here ( , -)f denotes the usual inner product in (L2(Ω(t)))n. Then, by Schwarz's
inequality

I f 2 + 2 | |Fw| | f

2

From (3.1) and (3.8) we have

(d/dί)|| w||2 -h 2fcJ-2(l - Kdfc-1/2)!! w||2 < 0.

Hence, putting C' = 2κd~1(l — Fc/κ:~1/2)>0, we can easily deduce

MOII? < ec'(Γ-')||w(Γ)||^ for t > T.

From this the assertion follows immediately.

Next we state our results in the case n = 2, in which the assumptions on the
data can be relaxed compared with the case n = 3.

THEOREM 3.7. Let n=2. Under the assumption (A.4), suppose the periodic
solution u given in Theorem 3.2 satisfies (3.8). Then the periodic solution of

(1.1)" is unique and any other weak solution 0/(l.l)" tends to ύ as ί-»oo infi.

PROOF. Let v be any weak solution of (1.1)". According to Corollary

2.17 both u and v belong to C([0, oo); ft) Π Cx((0, oo); H) n C((0, oo); D(B)\
In just the same way as in the proof of Theorem 3.6, setting W = M — £, we have

for t > 0.
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From this the second assertion follows immediately. Suppose now that v is also
periodic with period T. Then by the above inequality ||w(0)||0=||w(T)||Γ = 0.
Since our weak solution is unique when rc = 2, the first assertion holds.

REMARK 3.8. In this paper we have treated the Navier-Stokes flow with
unit kinematic viscosity, so the condition (3.8) is the same as the one Serrin has
given in [12] in terms of the Reynolds number of the flow.

Finally we give another condition in the case n = 2 for our periodic solution to
be unique and stable. Note that here the forcing term is required only to belong
to L2(0, T; H).

THEOREM 3.9. Let rc = 2 and assume that the periodic solution u given in
Theorem 3.2 satisfies

(3.9) Γ ||-Γ(^ + ιι)(ί)ll?Λ < Tκd~2/2.
Jo

Then the periodic solution of (1.1)" is unique and any other weak solution of (1.1)"
defined on [0, oo) tends to ύ as ί->oo in H.

PROOF. Let v be any weak solution of (1.1)" defined on [0, oo). In this case
also vv = ύ — v satisfies

(dldt)\\w\\l + 2||Fw||? = 2((w, F)

= -2((w, DOA + w), w),,

see [10, Theorem 2.8] . Then, by (2.16), we have

Applying Schwarz's inequality and (3.1) to the right hand side, we obtain

(<//Λ)IMI? < CWIMI?, ζ(t) = 2||F(ψ + u)(ί)||? - κd-\

Hence

(3.10) ||w(ί)||?< WO)||δexp(ί'ζ(τ)dΛ for ί > 0.
\Jo /

If v is periodic with period T, then

Since (3.9) implies δ = exp(\ ζ(t)dt)<l, ||w(0)||0 vanishes. This shows the

uniqueness of the periodic solution w. To show the stability we note that, by
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G kT \
ζ(t)dt)=δk for any integer /c>0. So (3.10)

o /
gives

if

By letting /c-+oo, the result follows.

REMARK 3.10. From the proof of Proposition 3.4 we obtain

Γ ||
Jo

On account of this and (3.2), (3.9) holds when the forcing term and the boundary

data with their derivatives are sufficiently small.

REMARK 3.11. The last theorem is similar to the one in [5], where Kaniel
and Shinbrot, in the case of time independent domains, obtained a periodic
solution which is locally stable under the assumption that the given external force

is periodic and small enough.
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