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Introduction

In the previous paper [10] we discussed the existence and uniqueness of weak
solutions of the initial-boundary value problem for the Navier-Stokes equations
in a time dependent domain in R* (n=2, 3, 4), and proved the existence of a
periodic solution for an arbitrary external force under the assumption that the
domain moves periodically and the boundary data are small enough. In this
paper we shall give certain sufficient conditions for our periodic solutions to be
stable in the case n=2, 3.

In [12] Serrin has given a condition in terms of the Reynolds number of the
flow, under which there exists a unique and universally stable periodic solution.
Here “‘universally stable’” means that any other solution tends to this periodic
solution as t—oo. To obtain this result, he required that for any continuous
initial velocity the equation is solvable globally in ¢, and that there exists a certain
solution which is equicontinuous in the space variables for any time ¢ and has a
sufficiently small low Reynolds number. Though these requirements seem to
be rather restrictive mathematically, he offered these requirements because of their
plausibility on the ground of physical intuition.

Instead of the conditions stated above, we discuss a condition under which
our weak solutions including the periodic one are regular after some instant.
Then, it will be shown that if our periodic solution has a sufficiently low Reynolds
number, then it is stable among weak solutions with sufficiently small initial
velocities.

We begin with the formulation of the problem and state the theorem on the
existence of global weak solutions established in [10] in Section 1. In Section
2 we discuss the regularity of weak solutions. To do this we employ the method
of evolution equation in Hilbert space which was first developed by Fujita and
Kato [2], [6] in the case of time independent domains and then applied by
Inoue and Wakimoto [4] to the case of time dependent domains. Using the
regularity result given in Section 2, we show in Section 3 that the same condition
as in [12] implies the stability of our periodic solution. Apart from this result,
in the case n=2 we state another condition similar to the one in [5] for the uni-
versal stability and uniqueness of periodic solution.
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1. Reduction to the case of cylindrical domain

Let Q(1), t€ R, be bounded domains in R" (n=2, 3) with smooth boundaries
and let Q. =\U,g 2(t) x {t} be a noncylindrical domain in R*"*'=R"xR. We
consider in Q, the initial-boundary value problem for the Navier-Stokes equa-
tions:

dvfdt — Av + (v, grad)v = f — grad p, xeQ(t), >0,

diveo = 0, xeQt), t>0,
(1.1)
v=_,, xedQ(), t>0,
v(x, 0) = vy(x); x € Q(0).

Here v={v/(x, )}y, p=p(x, ) denote respectively unknown velocity and
pressure while f={f/(x, O)}1-;, vo={vi(x, t)}?=; denote respectively given
external force and initial velocity; f={p/(x, )}, is given on the boundary of
Q.. Asin [10] we impose on Q,, and f the following assumptions:

(A.1) There exist a cylindrical domain 0.=8xR and a C* diffeomor-
phism @: 0, —0,; (y, 5)=D(x, 1) =(d!(x, 1),..., ¢"(x, 1), t) such that

(1.2) det [di(x, 1)/0xi] = J(£)~t > 0 for (x, H)e0.

(A.2) P is the restriction to the boundary of Q,, of a C? vector field y, which
is divergence-free on each Q(f) and bounded on 0, together with its first and
second derivatives.

We note that the condition (1.2) for the Jacobian is of no restriction; see [10].
Setting v=y +u, we obtain from (1.1),
oulot — Au + (u, P + (W, Pyu + (u, Plu=F —Fp, xeQ), t>0,

divu = 0, xeQ), t=>0,

1.1y
u=20, xe o), t>0,

u(x, 0) = a(x), x e Q0),

where F=f+A4y—(), Py —0oy/ot and a(x)=ve(x)—(x, 0). If we regard u,
a, Y and F as vector fields and p a scalar field on Q(¢), then by setting

ai(y, s) = iy (07 |0x*)u*(D~1(y, 5)), and similarly for a, ¥, F,

(1.3)
Py, s) = p(P~(y, 5)),
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(1.1) is transformed into the following problem in J, :

0iijds — Lii + Ml + Nyl + N, = F—P,p, yeQ, s>0,

(1.1)" div i = ¥4, 0dl/dyi = 0, yef'z: s >0,
i =0, yedQ, s>0,
i(y,0) =d(y), ye@,
where

(l;ii)l = gjijVkﬁi, (Nziz)' = ﬁ’V,ﬁ’,

(Mii)t = (Oyl|ot)Va' + (0yiox*)(02x*[dsdy7)i/,

(Ny@)! = §ipsai + @V, (P,p) = g'10p|dy/,

gt = (0y*|0x*)(0y’[0x*), gi; = (0x*|0y*)(0x*[dy),

Vjﬁ' = 3!7‘/5y1 +Fj-kiik,

Vi (Pyat) = o(F;at)[oy* + T, (V;a*) — Ik (P,

2It; = g*(09../0y’ + 0g;,/0y* — 0g.;/0y")

= 2(0y*/0x")(0*x![dy‘dy’).

Here and hereafter we use the summation convention. Note that F; is the covari-
ant differentiation with respect to the Riemannian connection {I'};} induced by
the metric g=(g;;). From the assumption (A.1) it follows that
(1.4) (g¥) = (giy)™", det(gy)) = J(1)%.

This implies that the divergence operator is left unchanged under the change of
variables: x—y. Further we note that di/ds+ Mii and Lii correspond respectively
to 0u/dt and Au under the coordinate transformation.

Let C;’,",,(ﬁ) be the space of all smooth divergence-free vector fields with
compact support in . Let A and ¥ be respectively the closures of Cg,(3) in
(L%(@))* and in (H'(B))", where H'({) is the usual Sobolev space. For each
teR we denote by H, the Hilbert space A endowed with the inner product:

(1.5) <, 3, = | g0 D3I IOy,
The norm in H, is denoted by |-|,. Note that the norms |-|,, t € R, are mutually

equivalent in A. Further ¥ is a Hilbert space with respect to any of the inner
products:

(1.6) R =Sﬁgi,-(y, 0GE Y, DFE()P,5 (1) I(Ddy.
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For ii e V we set |7 i, =Py, P i>}2. The following result was proved in [10]
(see [10, Th. 2.2] and its proof).

THEOREM 1.1. Fix T>0and let V* be the dual of V. Then for each de H
and each Fe L0, T; V *) there exists a function ii belonging to L%0, T; V)n
120, T; H) which satisfies (1.1)" in the following sense:

_ SZ<a(z), B(1) + M), di + S:<N1ﬁ(z)+N2ﬁ(t), B(1)>,dt
(1.7)
+ S:<Vga(z), V,5(2)),dt = <a, 5(0)>, + SZ (F@), 5(2)),dt

for all &(t)=h(t)w such that he C{[0, T]; R), h(T)=0and weV. Furthermore,
i satisfies the energy inequality:

a1 +2{ 17a@ s+ 2 @@ PI), @@.dr
(1.8)
£|d|3+28;<17'(r), i(0)>.dr,  for ae. 1e[0,T].

We call such a function @& given in Theorem 1.1 a weak solution of (1.1)" with the
initial value 4.

2. Regularity of weak solutions

In this section we denote functions i, d, F etc. simply by u, a, F etc. and
equip H with the usual inner product:

@ (u, 0) = | w())dy.

we set |u|=(u, u)!/2. The norm of the Sobolev space (Wsr(Q))" is denoted by
[-],»~ Let P denote the orthogonal projection: (L%({))"—H associated with
the following decomposition ([7], [8]):

(LAQ)y =A@ G; G = A+ = {gradq: e H\(Q)}.

Multiplying the first equation in (1.1)" by the matrix g =(g,;), then applying the
projection P and using the fact that Pg defines a linear isomorphism of H ([4,
Lemma 3.3]), we obtain the following evolution equation in H.

2.2) du/dt + A(Hu = ¥Y(t) + E(t, u), t>0,
u(0) = a,

where
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A(t) = —(Pg)~'Pg(L—M—N,),
Y(t) = (Pg)~'PgF, E(t, u) = —(Pg)~"'PgN,u.

(2.3)

LEMMA 2.1. For each te[0, T], T>O0 fixed, and for .>0 large e:tough,
A,(t)=A(t)+ 2 is a regularly accretive operator ([14, Chap. 2]) in H, and
satisfies the estimate:

(2.4) C3'luly, < |Ax(Dulo,2 < Cluly, for ueV n (HX(Q)".
In particular, A(t) is a closed operator in H defined on D(A(1))=V n (H*Q))".

PRrOOF. Since

v, wh, = (gv, w)J(t) = (v, gw)J(t) for v,weH
and since P is the orthogonal projection onto H, we can easily see
—{(Pg)~"'PgLv, wy, = (P, Pwy,  for v,weV n (HAQ))".
Therefore we have for w e D(A(t))

(AW, Wy, = P2 + Aw[2 + (Mw, w), + (Nyw, w),
(2.5) > |Pwl2 + Awl2 — C(Iwl, + |7,wl)Iwl,
< 2"lll7‘,wl,2 + (A—C—C?)|w|2.

This and the Poincaré inequality show that for A>C+ C?, A,(t) is regularly
accretive in ,. On the other hand the operator L is obtained from the Laplacian
4 in the coordinates x € Q(f). Hence, according to the apriori estimate in [7,
Chap. 3] the estimate (2.4) with A,(t) replaced by —(Pg)~!'PgL holds. Taking
account of the smoothness of g=(g;;), we can see that (2.4) holds for A,(¢).

In what follows we denote A4,(f) by A(2), so that A(t), t e [0, T], are invertible
in A. This causes no essential trouble in solving the equation (2.2); see [9, Sect.
4]. The results in the next lemma are well known in operator theory, so we omit
the proofs; see [14].

LEMMA 2.2. (i) For each te[0, T], — A(t) generates in H, a holomorphic
semigroup of class C,.

(ii) If Y is of class C3 on ém=§~2x—R, then A(t)~! is of class C? in t with
respect to the norm topology of bounded operators in H.

(iii) There are constants C>0 and 0 € (0, n/2) such that, for each te [0,
T],

NI(d/de) (A(t) =)~ || < C[lul. ~ whenever |argu| > 6,

where | - || denotes the operator norm of bounded operators in H.
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According to [14, Chap. 5, Sect. 3], Lemma 2.2 implies the following.

THEOREM 2.3. (i) A(1), te[0, T], generates in H a parabolic evolution
operator, which we denote by {U(t, s); 0<s<t<T}.
(ii) If s<t, the operator function U(t, s) is differentiable in t and s, and
satisfies
U(s,s) =1, U(t, r)U(r,s)=U(t,s) for 0<s<r<t<T,
ou(t, s)lot + AU, s) =0  for s<t,
ou(t, s)los — U(t, s)A(s) =0  for s<t,
AU, 9l < Ct=s)7", U@, )AG)| < C(t—s)7'  for s<t.
Since A(1) is regularly accretive in H,, its adjoint A(¢)* in A, is also regularly
accretive (see [14]), and therefore the fractional powers A(1)*, A()**=(A(1)*)*,
o€ R, are defined in the usual manner. Let B= — P4 be the Stokes operator in
A defined on D(B)=V n(H2(3))". It is known that B is a positive definite self-
adjoint operator in H; see [2], [6]. Further, using the result of [3] and inter-
polartion theory, one can easily show that the space D(B*) endowed with the graph
norm of B* is continuously imbedded into (H2*(3))", [0, 1]. On the other
hand, since A(¢) is regularly accretive, it follows from Kato’s generalization of
Heinz inequality ([14, Chap. 2]) that D(A(t)*)=D(B%), € [0, 1]. Also note that,
by the Poincaré inequality we have

|A(t)v], < C|(Pg)~tPgLuv|, for ve D(A(Y)).
Then, by Heinz inequality, it also follows that
|[A()/20], < CI(—(Pg)~'PgL)"/?v|, = C|Ppl,  for wveD(B'/?).

Hence, we have

LEMMA 2.4. D(A(t)*) is continuously imbedded into (H**(Q))". In particu-
lar, for a=1/2 there is a constant C,>0 such that

CallVgDIt —<- IA(S)I/ZD‘ -—<— C!)IVyvln
for any veV and any t, se[0, T].

The estimates in the lemma below are shown in [13, Sect. 1], so we omit the
proof.

LEMMA 2.5. The evolution operator given in Theorem 2.3 satisfies
(2.6) |A()=U(t, )78 < Cup(t—s)P%,  for s<t,0<f<a<l,
2.7 A2 U(t, $)A(s)P| < Coplt—s)27F,  for s<t,0La, f< 1.
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Let us now construct a solution of (2.2); we rewrite it in the integral form:
2.2) u(?) = U(t, 0)a + S; U(t, s) {¥(s) + E(s, u(s))}ds,
and consider the following iteration scheme:

ug(t) = U(t, 0)a + S' UG, 5)¥(s)ds,
2 0

Uy (1) = ug() + S; U(t, )E(s, u,(s))ds, m =0, 1, 2,...

We put E(t, v, w)= —(Pg)"'PgN(v, w), N(v, w)'=viPjwi, (i=1,...,n). For a
while we restrict ourselves to the case n=3. The following lemma is an immediate
consequence of [6, Lemma 3].

LEMMA 2.6. There is a constant My>0 such that, for any s, te[0, T],
(2.8)  |E(s, v, w)| < MolA(2)!/20] |A(1)3*w|, veD(B'?), we D(B*).

Let a e D(B!/4) and let ¥(t)e C((0, T]; H) be such that |¥(f)] =o(t"3/4) as
t—0. Using (2.7) and (2.8), we can show by induction on m that each step of the
scheme defines u,, as an element in C([0, T]; ) n C((0, T]; D(B%)), ac[1/4, 1).
Furthermore, for T* € (0, T] and a € [1/4, 1) if we define a sequence {K,, ,,}7-o by
2.9) Ki0 = SUPg<cre 1274 AU, O)al + CooB(1—0, 1/4)

' X SuPo<,<rs 421,
(2.10) K,pm+1 = Ky + CooMoB(1 —a, 1/DK ;3 uK3/4,m

then we have |A()*u, ()| < K, ,t'/4"* on (0, T]. Here B(p, q) is the beta function.
If we set k,,,=maX {K1/2,m5 K3/4,m}, C0=max {CI/Z,O’ C3/4’0} and B0=B(1/4,
1/4), then from (2.10)

(2.11) kpiy < ko + CoBoMok2.

An elementary calculation shows that if

(2.12) ko < 1/(4CyBoM,),

then, for all m

(2.13) k, < Ky = {1-(1-4CyBoM,)'/2}/(2CyBoM,) < 1/(2CyByM,).

From (2.6) and the assumption on a and ¥(¢) we can choose T* >0 so that (2.12)

holds. Hence we can show the following theorem in just same way as in [4]
or [6].
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THEOREM 2.7. Let n=3. For each aeD(B'*) and ¥(t)e C((0, T]; H)
such that |¥(1)|=0(t73/%) as t—0, there exist a T*e (0, T] and a unique function
u on [0, T*] such that

(i) ueC([0, T*]; H)n C(O, T*]; D(B*))  for any ac[l/4,1);

(ii) [A@®*u(t)| = o(t'/4%) as t—-0  for any ae[1/4,1);

(iii) u(t) satisfies the integral equation (2.2)' on [0, T*].

We now show the Hoélder continuity of the solution u given in the above
theorem. To do so we need the following

LEMMA 2.8. For any a, B€[O0, 1], a<pf, we have the estimate
(2.14) 14@O*{U(1, $) =T} A() || < Coplt—s)P=.
Proor. By Theorem 2.3,
A*{U(t, s)—1}A(s) P = — S; A(H)*(d|do)U(t, 6)A(s) Pdo

- - S'A(t)"U(t, 0)A(6) A(s)-Pdo = — S'A(t)aU(t, 6)A(0)' -8 A(c)P A(s)-*do.

Since D(A(c)#)=D(A(s)?), A(6)PA(s)"# is bounded on H, and so the estimate
(2.14) follows from (2.7).

PROPOSITION 2.9. The solution u given in Theorem 2.7 is Holder continuous
on each [g, T*] (0<e<T*) with values in D(B%*), a € (0, 1).

PROOF. Set u(t)=uy(t)+ov(t) with
o) = S UL, 5)E(s, u(s))ds.
0
For 2 €(0, 1) and h>0 we have

A {uo(t+ h) —uo()}
— A(){U(t+h, ty— 1Y U(t, O)a + A(f) S:“’ U(t+h, 5)®(s)ds
+ A S; (U(t+h, )—TYU, )P(s)ds = 1, + I, + I,
Noting that A(r)*A(1+ h)~ is bounded on H, by (2.6) and (2.14) we have
4] + L] < ClAGt+h{U(t+h, )—I}A®D) || LA(DU(t, O)al
+C S:”’ IA(t+B)=U(t+h, 5)| | ¥(s)lds

+h
< Ch1=*1"1 + C sup,<icps I‘I’(s)lg (t+h—s)-*ds < Chi~=.
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I, is estimated as follows: when O0<a<fi<1,

3] < CllAt+h)*{U(t+h, n—I3A@®? S;IA(I)"U(L )¥(s)lds

< Ch#* supg .« cpe s3/4|qf(s)|8' (t—s)-Ps-3/4ds < ChP-=.,
0
On the other hand,
ot +h) — o(f) = So (U(t+h, )= U, )E(s, u(s))ds

+ S'“’ UGt +h, $)E(s, u(s))ds.
t
Using Lemmas 2.6 and 2.2 we have
[A(®)*{v(t+ h) —v(1)}|

< C A+ h)y*{U(t+h, t)—I1}A(t)"#| S; 1 A(EU(t, s)|| |E(s, u(s))|ds
+C, S'”’ LA+ YUt +h, 5)) |EGs, u(s))\ds.

Since |E(s, u(s))| < MoK3s™3/* by Lemma 2.6, it follows that, when a<f<1,
[A@®)*{o(t+ h) — u()}|
< C,CapCpoh?~*KiM, g; (t—5)-Ps~3*ds + C.M,K3 S:“’ (1+h—s)-*s5-3/4ds
< CopKEIMoB(1 — B, 1/4)e! /4 Php~= + C, MoK 3e™3/4h' 2,
which completes the proof.
From Lemma 2.6 and Proposition 2.9 we have

LemMMA 2.10. If u is the solution of (2.2') given in Theorem 2.7, then
E(t, u(t)) is Hélder continuous on each [s, T*] (0<e< T¥*).

This lemma implies the following theorem.

THEOREM 2.11. If in addition to the assumption in Theorem 2.7 Y(t) is
Holder continuous on each [e, T] (0<e<T), then the solution u of (2.2)' given
in Theorem 2.7 satisfies:

(i) ueC((0, T*]; D(B)), u’ € C((0, T*]; H);

(i1) u is a solution of the evolution equation (2.2) on (0, T*].

When the initial value belongs to D(B!/2), we have
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PROPOSITION 2.12. Let a belong to D(B'/?) and ¥(t) be as in Theorem 2.11.
Then the solution u given in Theorem 2.11 belongs to C([0, T*]; D(B'/?)), and
hence u belongs to L40, T*; L5()).

Proor. We have only to show the continuity at t=0 from the right. By
(2.2) we have

A 2u(t) — A0)2a = {A(H)2U(t, 0)A(0)~V/2 — I} A(0)!2a
+ S; AU, s) {P(s)+E(s, u(s))}ds.

Since, according to Lemmas 2.5 and 2.6, the integrand in the right hand side is
summable on (0, T*), and since A(#)!'/2U(t, 0)A(0)~1/2 converges to I as t—0,
A(1)!2u(t) tends to A(0)'/2a in A as t—0. This shows the continuity of u()
at t=01in D(B'/2). The last assertion follows at once from the Sobolev imbedding
theorem.

Now, applying the argument of the uniqueness theorem in [7, Chap. 6, Sect. 2]
to our case with slight modification, we can show the following:

COROLLARY 2.13. Let n=3 and let the external force ¥Y(t) be as in Theorem
2.11. Ifthe initial value a belongs to D(B'/2), then the weak solution u given in
Theorem 1.1 is continuous with values in D(B'/2) on the interval [0, T*], where
T*>0 is the constant given in Theorem 2.7.

Let us proceed to the case n=2, in which Lemma 2.6 is replaced by
LEMMA 2.6’. There is a constant My>0 such that, for any s, te[0, T],
(2.8)" |A(s)"V4E(s, v, w)| < M{|A(®) V4| |A()'/2w|, ve D(BY/*), we D(B'/?).

This is also an immediate consequence of [6, Lemma 3']. In the same way
as before, we can show the following:

THEOREM 2.14. Let n=2. Assume that ¥Y(1)e C((0, T]; H) satisfies
[A()~14P(t)] =0(t~3/%) as t—0 and is Hélder continuous on each [e, T1(0<e<T).
Then for an arbitrary a e H, there exist a T'e(0, T] and a unique function u
on [0, T'] such that

(i) ueC([0, T']: H)n C(0, T'1; D(B)), u’' € C((0, T']; H);

(ii) u is a solution of the evolution equation (2.2) on (0, T'], where T’
depends on a and ¥(¥).

When n=2, we can show that our solutions of (2.2) exist on the whole interval
[0, T] under the following assumption:

(A.3) Fel0, T; H); Y(t)e C((0, T]; H) is Holder continuous on each
[e, T] and |A()"1/*¥(t)| =o(t~3/4) as t—0; ¥ is of class C3 on @ x R.
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LemMA 2.15. If ue C((0, T']; D(B)) and u’ € C((0, T']; H), then
dldD|Pul} = —2<u’, Lu), + R(),
where |R(1)| < C|Pu(t)|? for some constant C independent of u.

ProOOF. First we assume u e C((0, T']; D(B)). Then
(d]d)|Vul? = 55 (949" Vyud Vit J (1) dy + Sﬁ 99"Vl Vot J' () dy
+ 2Sﬁgjkgl'"(V,uj)'VmukJ(t)dy = 11 + 12 + 13.

Obviously I, +1,=0(|7,u|?). To calculate I; we proceed as follows: Let P,
be the covariant differentiation in the direction of ¢ with respect to the Riemannian
connection on & x R induced by the diffeomorphism ¢. Since this is a flat con-
nection, we have

(Pudy =P Ful + 0(|Pul) =V, Ful + O(|F,ul)
=P (0u/[ot) + O(| P ul).

Hence
I = zga 409"V (01l [06) Ptk T (@) dy + O(| 7,u]2)
=2 Sﬁ P19 29 "™(0uu? |31) Fit®) J(t) dy
- 255 9 (0l |00)g P 7k Sty dy + O(| 7, ul?).

Since u’ € C((0, T']; D(B)), an integration by parts shows that the first term in
the right hand side vanishes. Consequently,

Iy

=2 gu@uw ja0g"7,7,ur 0y + 0 7,ul?)
=~ 2w, Lud, + O(Pul?).

Thus we have proved the assertion when u e C!((0, T']; D(B)). For general u
we have only to regularize it in ¢ after defining u =0 outside (0, T") and then to take
limit. This completes the proof.

THEOREM 2.16. Under the assumption (A.3) the solution u of (2.2) given
in Theorem 2.14 can be continued to the whole interval [0, T] as an element in
c([o, T1; H)n C((0, T]; H) n C((0, T]; D(B)).

Proor. Without loss of generality we may assume a=u(0)e D(B!/?).
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Since {v, w),=(gv, w)J(t), we obtain from (2.2-3)

u'+Mu, uy, — {Lu, uy, + {N,u+N,u, uy, = {(F, uy,, te(0, T].
Note that

(Nyu+Nayu, up, = {N(u, ¥) + N, u)+N(u, u), u),.

As shown in [10], 2<u’+Mu, uy,=(d/dt)lu|?, —{Lu, uy,=|Vu|? and {N(v, w),
w>=0 for v, we V. Therefore,

(2.15) (dldD|ul? 42| ul? = 2{F, u), — 2{N(u, ¥), u),.

The second term in the right hand side is estimated as follows:

KN u, ¥, wy | = (@, 7)Y, @)l
< i} s@unlP ¥z
< 2201 2oy 1P ¥ L2 | 7 i L2g2e))
= 212\ul [P | Pqul,,

where #=®( -, )z'u and y=&( -, t)z'y. Here we have used the estimate:
|u|ps <2Y4(Ju| 2| Pul2)1/? for ue(CH(R?))?; see [7] or [8]. Thus by Schwarz’s
inequality, we have

(dfanlul? + |Pul? < |FI7 + A+2IPy12)|ul?, te(0, T7].

From this it follows easily that, for t e (0, T'],

(2.16)

T T
jul? < (alg + | IF2ds exp | (1+217,412)ds.
T
2.17) S; \7,ul2ds < |al} + S |F |2ds
0

T T
+ (D 2arppastai+ || 1Fasyexs | 1 +207,012ds.
0

To estimate |F,u|, we return to the equation (1.1)". Using the orthogonal
decomposition: (L¥(2))?=H,®G,, G,={F,q; q € H'(Q)} with respect to the inner
product (1.5), and the associated projection P,: (L%(Q))2— H,, we obtain from (1.1)"

{u', P.Lu), + {Mu, P,Lu), — |P,Lu|? + {(Nu+ N,u, P.Lu), = {F, P,Lu),.
Since {u’, P,Lu),=<u’, Lu),, it follows from Lemma 2.15 that
(d/dt)|Pul? + 2|P,Lu|?
< 2|F||P,Lu|, + C,|V,ul,|P,Lu|, + C,|Ful? + Cs|u| }/?| P ul|P,Lu|}?,

so that, by Young’s inequality and (2.17),
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(d[dD|Pul} < ColFIF + Cs(1+|PulDIPuli.

This implies that
(2.18) [Pu(t)]? < Coexp Cs S; (I +1Pu(s)|2ds, te(0, T7].

The estimates (2.17-18) bring us the bound of |F,u(t)|, on (0, T'] independent of
T'. So the assertion follows by a standard argument of evolution equations.
This completes the proof.

COROLLARY 2.17. Let n=2, and assume (A.3). Then the weak solution
of (1.1)" given in Theorem 1.1 belongs to C([0, T]; H)n CY((0, T]; H)n
C((0, T]; D(B)).

PROOF. By (2.15) and (2.17) the solution of (2.2) is a weak solution of (1.1)".
Since the weak solution of (1.1)” is unique for n=2 (see [10, Theorem 2.8]).
Theorem 2.16 implies the result.

REMARK 2.18. Bock [1] showed the global existence of a unique strong solu-
tion of (1.1)” by the Faedo-Galerkin method. However, the proof in [1] is com-
plicated compared with ours. Moreover, our assumptions on the data are weaker
than those of [1].

3. On stability of periodic solutions

In this section for each vector field » on Q(¢) & will always mean a vector field
on  obtained by the transformation (1.3), and conversely. Note that, for.each
teR, |ol,=|vl, if ve(L2(Q®)))" and |FW|,=|Fwl, if we(H(Q(t))", where
|- Il; and ||7- ||, denote the usual norm in (L2(Q(¢)))" and (H(Q(t)))" respectively.
Let us assume that n=2 or 3, and that the diffeomorphism &(x, ) and the
boundary data y(x, t) are periodic with period T>0. The next lemma is due to
Serrin [11].

LEMMA 3.1. Put d=maxgg d(t), where d(t) is the diameter of Q(t).
Then, for each ve C3 (£(t)) we have

(3.1) kd=2|o]l? < [|Pol3.

Here Kk is equal to (142'/2)n2 when n=2 and is equal to (3+13'/2)n2/2 when
n=3.

In [10, Sect. 3] we proved

THEOREM 3.2. Let @ and Y(x, t) be as above. Then there exists a constant
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C,>0 such that, if K=maxy<r |FY(t)|,<C,, there exists for each Fe L0,
T; H) a weak solution i of (1.1)"on [0, T] such that @i(0)=#(T) in H. The
constant C, is equal to d~'(x/8)'/2 when n=2, and is equal to x'/*d~1/2/4 when
n=3.

REMARK 3.3. The initial value of the periodic solution @ given in the proof
of [10, Theorem 3.1] satisfies

(2) OB < (1=exp(=C,T))"x~d2 | exp (Coe=THIF@) 2at

Here C,=(1—C7'K)xd~2 and C, is the constant introduced in Theorem 3.2.

The results below (Theorems 3.6 and 3.7) are analogous to the one in [12].
Before proceeding, we show that, when n=3, our weak solutions with sufficiently
small initial values belong to C([T, c); D(B)), imposing on the forcing term
the following assumptions:

(A.4) P(t)e C((0, w); H)is periodic with period T and is Holder continuous
on any finite subinterval in (0, c0).

T
(A.5) So |F(0)|2dt < 2732T1/2(1 —exp (—C,T))C,/(8CoBoM(C,/,Co)?;
supo<i<r |P (D) < (2T)73/4/(8C3BIM,).

Here we put C,,,=max{Cy,z,1,2, C3a,1,2}; the constants Cy; 2, C3/4,1/25
Co, By, M, and C, are those introduced in Section 2.

Setting p=(1—(exp (—C,T))~'k-1d? ST |E(1)|2dt, we obtain
0

PROPOSITION 3.4. Let n=3. Under the assumptions (A. 4-5), any weak
solution ¥ of (1.1)" whose initial value satisfies |5(0)|3<exp(—C,T)p belongs to
C([T, o0); D(B)) and satisfies the evolution equation (2.2) on [T, ).

Proor. First we note that, for a.e. te [0, T],
3.3) [5(2)|?2 + Cx~1d? S; |P,0(t)|2dt < |5(0)|3 + x~1d? g; |F()|2dx.
This follows from (1.8), by Schwarz’s inequality and the estimate:
34 KN, §), 8, < 2x~14d'\2K|P,5)? = (2C,)1K|P,B|?

which is proved in the same way as (2.16) by making use of the estimate: |v]|, . <
212|p| 4P v} for ve (CY(R?))3. Then, by (A.5) and the assumption on the
initial value #(0). one can easily see that there is a point t,€(0, T) such that
|6(to)I2,< p and
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(3.5 [P 5(to)l, < RT)™14/(8CoBoM,C;,Co).
By (A.5) we have

(3.6)  SUPo<icor {12 VHA(t+1o)*U(t + 1o, 10)B(to)| + CoBot®/*|W(t+10)|}
< 1/(4CoBoM,).

for a=1/2, 3/4. Therefore, by Theorem 2.7 and Corollary 2.13, ¥ belongs to
C((to, to+2T]; D(B)) and satisfies (2.2) on (ty, to+2T]. Further, as we have
deduced (2.15), we can deduce

(7)) (ddD|B2+2\7,512 = 2(F, 55, — 2{N(B, ¥), By 1o < t < 1o + 2T.
By (3.1) and (3.4), it follows from (3.7) that
xp (C; DIilto+ Tl r < 13(t0)E, + x71dexp (C,T) || IF012dr.
Then, from |8(ty)|3<p, it follows that |5(to+T)|%7<p. Also (3.7) gives

to+2T T
sz‘ldzg |7, 5(0)|2dt < |5(to + T)I2er + x“dZS \F@)|2d1.
to+T 0
Applying the same argument as above, we see that there is a t; € (to+ T, to+2T)
such that (3.5) holds with ¢, replaced by t,, and then # belongs to C([¢t,, t; +2T];
D(B)). Successive use of this argument yields the result.

PROPOSITION 3.5. Let n=3. Under the assumptions (A.4-5), the periodic
solution ii given in Theorem 3.2 belongs to C([0, c0); D(B)) and satisfies (2.2)
on [0, o©).

ProOF. This is proved in just the same way as Proposition 3.4, by noting

periodicity of #, (3.2) and (3.3) in which 7 is replaced by éi. So we omit the details.

From this proposition and the Sobolev imbedding theorem, the periodic
solution i, given in Theorem 3.2 is continuous on @ x [0, T7].

THEOREM 3.6. Let ii be the periodic solution given in Theorem 3.2 in the case
n=3 and let V be the maximum of |(Y +u)(x, t)] on \Uo<,<rQ(t) X {t}. Assume
(A.4-5) and

3.9 Vd < k2.

Let © be any weak solution of (1.1)" such that |5(0)|3<exp(—C,T)p. Then for
any ¢>0 there is a Ty > T such that

la(® -, < ¢ for t>Ty.

PrOOF. First note that for t> T #i satisfies
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(1) + Mi(0), ¢, + <P, ii(2), 7, ). + N1+ No@) (@), ¢, = <F(), &>,

for any ¢ eV, and ¥ also satisfies the corresponding equation. Hence w=d —i
satisfies

<Wl(t) + MW(t), ($>t + <ng(t)’ Vg($>t + <N1W(t), ¢7>t
+ (N —N,d) (1), $), = 0.
Substituting W(t) for ¢, we obtain
KW' +MW®)(1), WO)Y, + | PO = =N, W)(0), @ +9) (D)),

where we have used the fact that (N(#@, ), w),= —<{N(ii, W), D),, which is valid
for &, 5, we V. Since (d/dt)|w|2=2{W' + MW, W),, by returning to Q(t), we have

(ddn)wli? + 21Fwii? = 2((w, 7w, ¥+ u),.
Here (-, -), denotes the usual inner product in (L2(2(¢)))". Then, by Schwarz’s
inequality
(danlwl? + 21FPwli? < V™' 2P wi? + k~12(Vd)™ SQ“) lwlly + ul*dx
< VA V2P w||2 + k12Vd w2
From (3.1) and (3.8) we have
(d/dt)||w||? + 2kd~*(1 = Vdx~V?)|w||?2 < 0.
Hence, putting C'=2xd~1(1 — Vdxk~1/2)>0, we can easily deduce
Iwll? < e T 0Iw(T)IF  for t>T.
From this the assertion follows immediately.

Next we state our results in the case n=2, in which the assumptions on the
data can be relaxed compared with the case n=3.

THEOREM 3.7. Let n=2. Under the assumption (A.4), suppose the periodic
solution i given in Theorem 3.2 satisfies (3.8). Then the periodic solution of
(1.1)" is unique and any other weak solution of (1.1)" tends to ii as t—oco in H.

PrOOF. Let ¥ be any weak solution of (1.1)". According to Corollary
2.17 both # and ¥ belong to C([0, 0); H)n C!((0, c0); H) n C((0, o0); D(B)).
In just the same way as in the proof of Theorem 3.6, setting w=1ii —#, we have
(C'=2kd2(1—Vdx~12)>0)

Iwll? < e“*[w(0)§  for ¢ >0.
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From this the second assertion follows immediately. Suppose now that # is also
periodic with period T. Then by the above inequality |w(0)||o=|w(T)|+=0.
Since our weak solution is unique when n=2, the first assertion holds.

REMARK 3.8. In this paper we have treated the Navier-Stokes flow with
unit kinematic viscosity, so the condition (3.8) is the same as the one Serrin has
given in [12] in terms of the Reynolds number of the flow.

Finally we give another condition in the case n=2 for our periodic solution to
be unique and stable. Note that here the forcing term is required only to belong
to L¥0, T; ).

THEOREM 3.9. Let n=2 and assume that the periodic solution ii given in
Theorem 3.2 satisfies

(3.9) SZ 1P +u) (8)[2dt < Tied2[2.

Then the periodic solution of (1.1)” is unique and any other weak solution of (1.1)”
defined on [0, ) tends to i as t—co in A.

Proor. Let § be any weak solution of (1.1)" defined on [0, o0). In this case
also w=1 — ¥ satisfies

dldnlwliz + 2[Fwl? = 2((w, P)w, Y +u),
= —'2((W) V)(!//+u)’ W)n
see [10, Theorem 2.8]. Then, by (2.16), we have
(djanlwl? + 217wl < 232|F @ +u)| 7wl liwl..
Applying Schwarz’s inequality and (3.1) to the right hand side, we obtain
d/dolwlz < {®lwlz, U =21FY+uw)OIF — kd=2.
Hence

(3.10) w2 < ||w(0)||(2)exp<g;§(r)d‘r>, for t> 0.

If & is periodic with period T, then
T
w13 = (D17 < wo3exp (| twar).

T
Since (3.9) implies d=exp (So C(t)dt><1, |[w(0)|lo vanishes. This shows the
uniqueness of the periodic solution #. To show the stability we note that, by
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periodicity of ¥ and u, exp (S”{(t)dt> —5* for any integer k>0. So (3.10)
0]

gives

Iw)l? < Iw36*  if te[kT, (k+1)T].

By letting k— o0, the result follows.

REMARK 3.10. From the proof of Proposition 3.4 we obtain

[ Iru@zar < c510ea2pu@13 + | 1FOI7 an.

On account of this and (3.2), (3.9) holds when the forcing term and the boundary

data

with their derivatives are sufficiently small.

REMARK 3.11. The last theorem is similar to the one in [5], where Kaniel

and

Shinbrot, in the case of time independent domains, obtained a periodic

solution which is locally stable under the assumption that the given external force
is periodic and small enough.
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