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Introduction

Let M be a closed connected smooth manifold of dimension n and Rm the

m-dimensional Euclidean space. Denote by [M e #m] the set of regular homo-

topy classes of immersions of M in Rm and by [M c Km] the set of isotopy classes

of embeddings of M in Rm, and consider the commutative diagram

where Em and Im are the maps induced from the natural inclusion

and Jk is the one defined by regarding embeddings as immersions.

The set [M <Ξ#m] for 2w>3rc + l is an abelian group by taking 0 arbitrarily

if it is not empty, and the map Im is a homomorphism by taking /m(0) = 0 while

so are the set [Me Rm] and the maps Em and Jm for 2m>3(n 4- 1) (see J. C. Becker

[2]).
The purpose of this paper is to study the above commutative diagram when

m = 2n — 1 :

[M c R2»"\

/f

[Af c /^B-i]

(here we assume that the sets in consideration are not empty).

When n^4, the upper groups are determined by A. Haefliger and M. W.

Hirsch [3], [5], [6] and so is the group [M^R2n~l~\ by D. R. Bausum [1, Th. 37

and Prop. 41], L. L. Larmore and E. Thomas [10, Th. 5.1] and R. D. Rigdon

[11, Th. 10.4], and moreover it is proved by R. D. Rigdon [11, Th. 10.4] that /

is trivial for even n and is surjective for odd π, respectively. When n^6, [Mci

R2n~l~\ is an abelian group and Im E is determined by R. D. Rigdon [11, Th. 11.11

and Th. 11.26]. Together with these results, we have the following

MAIN THEOREM. Let M be a closed connected smooth manifold of dimension
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n with the i-th Stief el- Whitney class H^e/f^M; Z2), and let

Sql : H"-\M Z2) - > H"(M; Z2) ,

β2: H«-2(M; Z2) - > H»-\M; Z)

be the squaring operation and the Bockstein operator, respectively, and Hf(M;
Z ]̂) be the integral cohomology twisted by w^. Then in the diagram (*)
there hold the following properties (i)'s,..., (iv)'s, respectively, when

( i ) n is even and wί=0, (ii) n is even and w^ ^0,

(iii) n is odd and wί=Q, (iv) n is odd and w^ ̂ 0.

(1) Assume that n^ 4. Then

(i) [Me**-] = tf"-'(M Z2), [Mc=R2«]=Z, J2n = 0,

ί //--i(Af Z2) -i/ n = 0(4),
[Mcztf2"-1]^ 7 = 0;

if n =

KerS<?1+Z4 if u s 2(4),

[Afca^-i] = I ^ 2+ 2'

(iv) [MdK2/I] = Hn~1(M; Z2), [M^.R2/I] = Z2, J2π = 0,

(2) Assume that n^.6. Then

( i ) Im£ = [Me:/?2"],

ί H"~l(M; Z2) z/ n = 2(4) and w2(Kerβ2) = 0,

[ [MdjR2"-1] otherwise;

(ii) Im£ = KerS^ί1,

z/ n = 2(4) and w?
Im J2π_! =

KerSg1 otherwise

(iii) Im £ = Im β2,
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f .Imj8 2 + 0+.Z2 if n .= 1(4) and w2(Kerβ2) Φ 0,

ImJ2n-l =< Imj32 + Z2 if n = 3(4) and vv2(Kerβ2) ^ 0,

( Im β2 otherwise;

(iv) ImE = [McR2»], Im J2| |_, = Hn'l(M\ Z[wJ).

The group [Mczβ2""1] will be studied in the forthcoming paper [14].

In §1, the group structures and the filiations on [M^Rm~\ and
are recalled according to [1], [2], [8], [11] and [13], and the methods for com-
puting /m, £m and Jm are stated. The groups [Me #2*], [Mc#2"] and [Me

jR2"~ l] are restated in §2 and the results on J2n and / are proved. The map

J2n-ι is investigated in §§3-4, by using the results on the cohomology of (Λ2M,
AM) due to L. L. Larmore [7] together with the remarks given in §5. In §5,

the twisted integral cohomology groups Hl(Λ2M, AM\ Z[v]) for i^.2n — 3
(veH*(ΛM2-ΔM'9 Z2)) are treated.

§ 1. Preliminaries

Let M be a closed connected smooth manifold of dimension n. Then there
is a fixed point free involution on the tangent sphere bundle SM over M, which
is the antipodal map on each fibre S"~l. Thus, for an immersion /:M^Rm,
we have the Z2-equivariant map

πS(/): SM

where S(f) is the Z2-equi variant map induced from the derivation of / and π is

the projection.

THEOREM (Haefliger-Hirsch [4]). // 2m>3n + l, then the correspondence
which associates the Z2-equivariant homotopy class of πS(f) with a regular
homotopy class of an immersion f is a bijection between [M £#>"-] and the set

of Z2-equivariant homotopy classes of Z2-equivariant maps of SM to Sm~l.

On the other hand, let AM be the diagonal of M x M. Then there is a fixed
point free involution on M x M — AM defined by the interchange of factors.
Thus, for an embedding f:MaRm, we have the Z2-equivariant map

/': M x M - AM - > Sm~\

/'(*, jo = σw-/ω)/ιι/w-/ωιι (*, y EM, x*y).
THEOREM (Haefliger [3]). // 2m > 3(n H- 1), then the correspondence which

associates the Z2-equivariant homotopy class of f with an isotopy class of an
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embedding f is a bijection between [MaRm~] and the set of Z2-equivariant
homoΐopy classes of Z2-equivariant maps of MX M — AM to 5m-1.

Let PM = SM/Z2 and M* = (MxM-JM)/Z2 be the tangent projective
bundle over M and the reduced symmetric product of M, respectively. Moreover,
let

η:PM - »P°° and ξ : M* - > P°°

be the classifying maps of the double coverings SM->PM and M x M — AM-^M*9

respectively. Now, S00-^00 is the universal double covering and S°° x^S"1"1-*
P°° is homotopically equivalent to the natural inclusion p^-icp00. Therefore
the above theorems are restated as follows, where

[X, Pm~l α] = [X, S00 x Z2S
m-1 α] for α: X - > P°°

denotes the homotopy sets of liftings of α to S°° x Z2S
m~1 :

THEOREM 1.1. There exist bijectίons

A: [Mc#»] ̂  [PM, P™-1; η] if 2m > 3n + 1,

B: [M cjR«].^ [M*, P"1-1; ξ] if 2m

Each set of the right hand sides has the structure of an abelian group by [2]
if it is not empty, which induces those of [M^#m] and [Mc,Rm].

Now PM is a manifold of dimension 2n — 1 and M* has the homotopy type
of a CPF-complex of dimension less than 2n.

PROPOSITION 1.2 (Bausum [1, Prop. 5 and Prop. 6], Larmore-Rigdon [8,
Prop. 4.1], Yasui [13, Prop. 1.1]). Assume that X has the homotopy type of a
CW-complex of dimension less than 2n (n^4). Then for a map α: X— >P°°,
there exist decreasing filtrations

IX, P2"-1 α] = G0(α) .=> d(α) = 0, G0(α) = H2"~\X; Z)

[*, P2"-2; α] = F0(α) => Ft(α) = F2(α) = 0,

Fi(α) = Coker(Θ: H2"-3(JΪ; Z[«]) - > ί/2"'1^; Z2)),

w/iere H'(X; Z[υ}) is the integral cohomology of X twisted by t> = α*tt(ue
H\PX\ Z2) is the generator) and

(β2: H'(X; Z[v]')-+Hl(X; Z2) is the reduction mod 2).
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By the definitions of the maps /m, Em and Jm in the introduction and the
bijections A and B in Theorem 1.1, we have the commutative diagram

[Me Rm+^ < E™ [Me ft*] J" > [Me Rn] 7" > [Me ^m+i]

[M*, Pm; £] 4i- [M*, P™-1; ξ] -£-> [PM, P"'1; 17] -**-> [PM, P"1; fy]

for 2m>3(n + l)(cf. [8], [11]), where i: p«-ιcp
m is the natural inclusion and

j : PM - > M* is the embedding with ξj = η

induced from the Z2-equivariant map j: SM-+MxM — ΔM defined by j(u) =
(exp(w), exp(-w)).

PROPOSITION 1.3 (Larmore-Rigdon [8, Prop. 5.1 and Prop. 6.1]). Let
(X, α) represent (PM, η) or (M*, ξ), and consider the filtratίons of [X, Pm-1; α]
for m = 2n — \,2n given in Proposition 1.2. Then

(1) i s: [X, P2π~2; α]->[Z, P2"-1; α] preserves the filiations and the in-
duced homomorphίsm

if : Foί^/F^α) = H2-2(X; Z[ι?]) - > G0(α) = H2-1^; Z)

is just the multiplication by F=j52(l)e/f1(^; Z[t?]) (β2: Hl(Xi Z2)->Hi+1(X;
Z[t>]) is the twisted Bockstein operator);

(2) ;*: [M*, P"1"1; ξ]->[PM, Pm-1; ?/] preserves the filiations and ;*-:

GO({)-*GO(I/) and j*:Ftξ) IFi+l(ξ)-*Ffη)IFi+l(ή) are j* on the cohomology
groups and moreover j* for m — 2n — \ induces the map

g: Ker (j«: F0(ί)/Fι(ί) — F0(η)IFM) — » Coker(j«:

which is equal to the functional operation

Θf. Ker;*(c:H2"-2(M*; Z[t?])) - > H2n~\PM\ Z2)/(Im Θ + Imj*)

fey ί"1®!*"1 in ί/ie commutative diagram

])-^H2n~2(M*9 PM; Z[u])-^#2"

2)--+H2n(M*, PM; Z2)-->H2n(M*; Z2)(=0)

o/f/ze exact sequences of the pair (M*, PM), w/iere v = ξ*u and i: M*c:(M*,PM).

Furthermore, let Λ2M = (MxM)/Z2 be the 2-fold symmetric product of M,
the set of unordered pairs of M. Then Λ2M-AM = M* and PM -j(PM) bounds
a tubular neighborhood N of AM in Λ2M, and the natural inclusions
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(Λf*, PM) c: (A2M, N) z> (Λ2M, AM)

induce isomorphisms of cohomology groups (cf. [8, §5]). Thus we have the
following

LEMMA 1.4. The cohomology exact sequence of (M*, PM) with any coeffi-
cients (e.g., the one in the diagram in Proposition 1.3) can be replaced by the
exact sequence

••• > Ht-^M*) -£U W-^PM) -£-> Hl(Λ2M, AM)

_ί̂  H^M*) JL> Hl(PM)

Our study is based on these results. Moreover the cohomology of (Λ2M,
AM) is investigated by L. L. Larmore[7]. The notations Ax and A(x, y) and
the results stated in [7, pp. 908-915] are freely quoted hereafter. We also use

the following lemma and the results remarked in §5.

LEMMA 1.5. (1) βr(Ax) = A(ρrx) and pr(A(x, 3;)) = A(ρrx9 pry) for x,yε
H*(M\ Zs), where r\s, s^oo and pr9 βr are the reductions mod r.

(2) A(x, y) = Ax Ay + Λ(xy) for x,ye #*(M; Z2).

(3) δ(υix) = υί^Ax for xe#*(M;Z2), where f 'x^ V-π*^ (π: PM
->M is the projection).

PROOF. The relations (1) and (2) are easily obtained by chasing the con-
structions of Ax and A(x, y) given in [7]. The relation (3) follows from the
equality δx = vAx(δ: Hί-ί(M) = Hi-ί(AM)-*Hi(A2M, AM)) in [7, Lemma 6],
by noticing that the restriction of the projection N-+M on PM is equal to π and
the one on AM is the identity AM-+M. q.e.d.

§2. J2n9 /, £and [Ms«2»-i]

The following results are well-known :

(2.1) Let veH1(PM;Z2) be the first Stief el-Whitney class of the double
covering SM-+PM. Then 1, v,...,υn~l form a base of the H*(M; Z^-module
H*(PM; Z2) with the relation

(2.2) [McK2n] = //2n~1(PM; Z) in Theorem 1.1 and Proposition 1.2 is iso-
morphίc to Z if n is even and Z2 if n is odd.

(2.3) ([3], [5] and [11]) [McK2"] = //2»-i(M*; Z) in Theorem 1.1 αnrf
Proposition 1.2 is isomorphic to
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Hn~\M\ Z) i f n is odd and w1=0,

Z + K (K = Ker(Sql: Hn~\M\ Z2)->#"(M; Z2))) i f n is even and w^O,

Hn~\M\ Z2) otherwise.

PROOF OF MAIN THEOREM ON J2M. By the results stated in §1, we have a
commutative diagram

[Me: #2«] J2n > [Ms tf2"]

H2n-l(M*; Z) -£-> H2n~l(PM Z) -̂  H2n(Λ2M, AM; Z) - > 0,

where the lower sequence is exact by Lemma 1.4, while by Proposition 5.2(2),

ί Z if n is even and w, = 0,
H2n(Λ2M,

[ Z2 otherwise.

Thus if n is even and w^O then Im(j*: Z + X->Z) = 2Z, and if it is not then

7* = 0. q.e.d.

We now recall that the filtration

[MSΛ2"-1] = [PM, P2"-2; ιy] = F0 ID F, ^ 0 (Ff

satisfies

Fj = Coker (Θ: H2"~3(PM; Z[ι?]) - > H2n~\PM\ Z2))

where Θ = Sq2p2+(n — l)v2p2.
The twisted integral cohomology of PM is investigated by R. D. Rigdon and

is given as follows :

PROPOSITION 2.4 (Rigdon [11, Prop. 9.2 and 9.13]). Let MeHΛ(M;Z2)
be the generator. Then

(1) i f n is even, there exist isomorphisms

Z[t?]) = Z2,

θ: H'-HM Z2) s H2n~2(PM; Z[v\\ Θ(x) = ^2(^~2x) (x e Hn^(M; Z2))

(2) ϊ/n is oJd, ί/zere βxisί isomorphisms

J) -f HW(M; Z2) s H2n~2(PMι Z[ι?])s
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Θ(M) = 02(i7»-3M), p2θ(y) = (v»-ί + v»-2wί)p2y (y e //"-'(

Let M' eHn~l(M\ Z2) be the element with SqlM' = M when w^O and let
X = Ker(5^f1: 7f"-1(M;Z2)->//M(M;Z2)). Then H2n~2(PM\ Z[u]) is the fol-
lowing form by Proposition 2.4, (ZΓ<α> denotes the cyclic group of order r

generated by a):

(2.5) FO/F! = ΘHn~l(M\ Z2) if n is even and w1 = 0,

= ΘK + Z2<0M'> if n is even and \vί Φ 0,

= ΘH»-l(M\ Z[wJ) + Z2<0M> if n is odd.

Further, by studying (9, we have

{ H2n~\PM\ Z2) = Z2 i f n is odd and W j = 0,
(2.6) F1 = Coker Θ = | ' or n = 2(4),

[ 0 otherwise.

In case of Fί=Z2, the group extension φ2 of Q-+Fί-+F0-+F0/Fι^Q is

given by

', Z2)

which is proved by using [10, Th. 4.1] (cf. [9, Cor. 3.7]), and so we have the
following:

(2.7) The group extension φ2 is trivial except for

φ2(ΘM') = v^M if n s 2(4) αnrf W j ^ 0,

φ2(ΘM) = y"-1]^ ι/ n = 3(4) and W i = 0.

THEOREM 2.8 (Bausum [1, Th. 37 and Prop. 41], Larmore-Thomas [10,
Th. 5.1], Rigdon [11, Th. 10.4]). Let n = 4. Then the group [Mc/?2»-i] =

[PM, P2π~2; ή] is as follows:

lM^R2n~1'] = ΘHn-ί(MιZ2) if n = 0(4),

= θH»-l(M\ Z2) + Z2 // n = 2(4) and w, = 0,

= ΘK -f Z4 i/ n s 2(4) and w x ^ 0,

= ΘHn~l(Mι Z) + Z2 + Z2 if n = 1(4) and wί = 0,

= 0H"-1(M;Z) + Z4 ι/ / i s 3(4) and w t = 0,

= ΘHn-\M\ Z[wJ) + Z2 if n = 1(2) and w t ^ 0.

*) This relation is different from that of Rigdon [11], but his relation can be modified as
stated in the proposition by chasing his construction of β.
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PROOF OF MAIN THEOREM ON / AND £. By (2.2), (2.4) and Proposition

1.3(1), we see that

(2.9) ([11, Th. 10.4]) / is trivial if n is even.

Assume that n is odd and consider the homomorphism

p2ι fβ: H*-*(M\ Z[Wl]) + /P(M; Z2) s H2»-2(PM; ZM)( = F0/F,)

( = Z2) -£ι* H2n~l(PM\ Z2).

Then the relation p2it0(x, y) = vn~ly follows from Propositions 2.4, 1.3(1) and
(2.1). Therefore, by (2.6-8), we have the equalities

/(α, b,c) = b if n s 1(4) and \vx = 0,

/(α, fe) = ί>(2) if n Ξ 3(4) and HΊ = 0,

/(α, ft) = ί> if n s 1(2) and w1 φ 0.

These and (2.9) show the desired results on /. The results on E is proved by
R. D. Ridgon [11, Th. 11.11 and Th. 11.26]. q.e.d.

§ 3. ./< : F,(ί)/F<+ l(ξ)^FΛη)IFi+ ,(η) in Proposition 1.3

In this and next sections, we investigate the homomorphism

J2n-ιssί* [MczK2"-1] = [M*, P2"-2; ς] - > [McJR
2"-1] = [PM, P2"'2; η]

in Proposition 1.3(2), which preserves the filtrations

[M*, P2''-2; {] = F0«)=>F1«)=)0, [PM, P2-2; ̂ ^FoW^F^^O

given in Proposition 1.2.

LEMMA 3.1. / =./*: P1(f) = ̂ 2π~1(M*; Z2)->F1(ιy) = H2»-\PM\ Z2) is

PROOF. This is an immediate consequence of E. Thomas [12, Prop. 2.9(c)].
q.e.d.

Next, we study the homomorphism

7* =7*:

where the range H2n~2(PM; Z[t;]) is given in Proposition 2.4. Hereafter, we

use essentially Propositions 5.2-3 given in §5 below.
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LEMMA 3.2. (1) If n is even and w1=0, then j* is surjectίve.
(2) Jfn is even and W j /O, then Imj* = 0/?2H"-1(M; Z) = ΘK.
(3) Ifn is odd and w1=0, then Imj* = θβ2H"-2(M; Z2).

(4) Ifn is odd and w^O, then Imj* = ΘHn-l(M , Z[wJ).

PROOF. We prove the lemma by using the exact sequence

(3.3) ... - > H2n~2(M* Z[ι?]) -£U H2n~2(PM Z[υ~\)

-A* H2n~l(A2M, AM; Z[ι?]) -^ H2»~}(M*; Z[t>])

[Γ]) _!L» H2n(Λ2M, AM', Z[ι?]) - > 0

in Lemma 1.4. In this sequence, the following is given by R. D. Rigdon [11,
Prop. 11. 9 and Prop. 11.19]:

(3.4) H2*-\M*\ Z[υ]) ^ H»~l(M; Z) if n is even and w^O,

^ Z + K if n is odd and wί ^0,

^ Hn~l(M\ Z2) otherwise.

(1) Assume that n is even and w1=0. Then for any ze#/I~1(M; Z),
we have δβ2(vn~2zf) = β2δ(vn~2zf) = j32(t;"-Mz') = β2(Λz'Λz' + v"-2Λ(Sqlz')) =
β2p2A(z, z) = 0 (^27 = 7') by Lemma 1.5 and [7, Lemma 10]. Therefore the first
δ in (3.3) is trivial by Proposition 2.4 (1) and so (1) is shown.

(2) Assume that n is even and w^O. Then the exact sequence (3.3) is

equal to

#2«-2(M*; Z[v\) -^ ΘK + Z2 -^ K + Z'i—* K + Z2 - — > Z2 - , Z2 - > 0

by Proposition 2.4(1), (3.4) and Propositions 5.2-3, and so Iιrκ5 = Z2. Now
δθK = 0 is proved in the above case. Thus Im j * = Ker δ = ΘK.

(3) Assume that n is odd and w t =0. Then (3.3) induces an exact sequence

(3.5) H2n~2(M*; Z[ι?]) -£-+ ΘG + Z2</52(t;''-3M)>

-^G + Z2</]2(t;/'-2/lM)> -U-* K = p2G, (G^H"-l(M; Z)),

by Proposition 2.4(2), (3.4) and Propositions 5.2-3. Here the relation

holds by Lemma 1.5(3), and the relation

(3.6) <5(ΘG) c G

holds, because p2β2(vn-2ΛM) = vn~{ΛM in H2n~\A2M, AM; Z2) by [7, Lemma
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10] and ρ2δθG = δp2ΘG = Q by Lemma 1.5 and Proposition 2.4(2). Therefore
the sequence (3.5) induces an exact sequence

(3.5)' H 2"~2(M* Z[v\) θ~lj* > G -A G -*-» K - > 0, (f=δθ,g = /*) .

Here K = p2G = G/2G. Hence 0(2G) = 0 and # induces an epimorphism #': G/2G
— >K, which is isomorphism because G/2G is finite. Therefore 2G = Kerg =
Im/. Since rank G = ran'k 2G and 2G = Im/, we see that

Ker/d T and f ( T ) = 2T (Tis the torsion subgroup of G)

by noticing that the torsion subgroup of 2G is equal to 2T. Thus / determines
an epimorphism

/ |T: T - >2T.

If we can prove

(3.7) 2G ( = {xeG|2x = 0}) = β2H»-*(M 9 Z2) c Ker/ in (3.5)',

then 2T( = {xeT|2x = 0}) = 2Gc:Ker(/|T) an /| T induces an epimorphism
T/2T-»2T, which is isomorphic because the orders of the two groups are finite
and coincident with each other. Hence Ker/=2G and Lemma 3.2(3) is proved.

To show (3.7), we notice that Θ(β2H
n~2(M; Z2))c:β2H

2n-3(PM', Z2). For
any element Xeθ(Imjβ2), there is an element 7e//2"-3(PM; Z2) such that

7= λvn~3M +'υ»-2x + (υn~ly + v

for some λeZ2, xeH»-*(M; Z2) and yeHn~2(M'9 Z2) by (2.1). For
Z2), there is a relation p2β2(vn~3x) = vn~2x and so β2(v"~2x) = Q. Further the
relation δβ2(vn~ly + vn~3Sq2y) = Q for yeHn~2(M; Z2) follows from Lemma 1.5
and [7, Th. 11]. Thus ^ = (5j§2Y=/l^2(ί;"-2ylM) and so p2δX = λv"-lΛM.
This and (3.6) imply λ = 0 and so δX = 0. This completes the proof of (3.7).

(4) Assume that n is odd and \vl 7^0. Then p2: H2n~l(Λ2M9 AM\ Z[ι;])->
H2n~l(Λ2M, AM; Z2) is monomorphic by Proposition 5.3(iv). Further, by
Lemma 1.5 and Proposition 2.4, we see that

p2δβ2(v"-3M) = vn~lAM9 p2δθ(x) = 0 for x e Hn'\M\ Z[wJ) .

Therefore Ίm./* = Ker δ = ΘHn~l(M', Z[wj). q.e.d.

§4. .̂̂  [McΛ^-η-^ίMc^n-i]

This section is a continuation of §3 and we will determine Im J2n-\ by
using Proposition 1.3(2).
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If F1W = 0, then lmJ2n.^lm(j^.F^)/F^^F0(^/FM) and so by

Proposition 1.3(2), (2.6) and Lemma 3.2, we have the following

PROPOSITION 4.1. (1) If n = 0(4) and w1=0, then Im J2n-ί = [McR2n~ί'].
(2) //n = 0(4) and vv^O, ί/zen Im J^.j = 0p2//"-1(M; Z) = 0K.
(3) //Λ = l(2) am/ vv^O, ί/zen Im J2n.i=ΘHn~1(M Z[w,]).

In the rest of this section, we study ./2«-ι m case when rc==l(2) and \vί=Q9

or n = 2(4). In these cases, Fl(η) = H2n~1(PM; Z2) and we have to study the
homomorphism

78 : Ker (/ : FQ(ξ)IF,(ξ) - > FQ(η)IF,(η)) - > Coker (7* : F^ξ) - > F,(η))

induced from / : (F0«), ίΊ({))^(F0(ι;), F^iy)). By Lemma 3.1,

Coker (/: F^ξ) - > F^η)) = F,(η) = H^~l(PM'9 Z2) = Z2.

Further by the second half of Proposition 1.3(2),

(4.2) Im7g = Im^-1Θ

where

Θ = Sq2p2 + (n-l)t;2p2: H
2w-2(Λ2M, AM; Z[v\) - > 7/2w(/l2M, JM; Z2).

Because //2Λ(Λ2M, JM; Z2) =Z2,

(4.3) ί/ie homomorphism δ: H2n~\PM\ Z2)-+H2n(Λ2M, AM; Z2) in (4.2) is
an isomorphism.

We now assume that the integral cohomology groups H\M\ Z) for ί' = n,
n — 1 are given as in (5.1). Let Kt (/ = !,..., 4) be the subgroups of H2n~2(Λ2M,
AM; Z2) defined as follows:

Kί = {Λp2xΛp2y\x9yeH"-*(M;Z)},

K2 = {Λp2xΛM\xeHn-2(M;Z)}9 (M = p2M if w x =0),

f> if w^O.

LEMMA 4.4. W7//z ί/ie ίϊboi β notation, p2H
2n~2(A2M, AM\ Z[>]) zs

(1) Σ?=ι î z/ w ί5 e^n αn^ wι ^O?
(2) Σί=ι KI if n is even and wl ^0,
(3) X!+K2 ifnisoddandwi=0.

PROOF. (1) Assume that n is even and vv t =0, Then H2n~2(A2M, AM; Z2)
is given by [7, Th. 11] as follows:
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H2n~2(A2M9 AM; Z2) = K, + K2 + £3 +• K5,

where

By Lemma 1.5 and the relation ρ2β2 = Sql + v,vte have the relations

ρ2A(x, y) = Λp2xΛ/>2>< for x, ye//"'1^; Z),

p2 J(x, M) = Λp2xΛp2M = Λp2xΛM for x e //"-2(M Z) ,

= vn~2AM,

= jS2p24(j>,, pr(f)M) = ̂ (0/2)^0-, Pr(0M) ,

and so

K! + K2 + K3 c p2H
2"-2(Λ2M, AM; Z[υ\) .

On the other hand, (r(ί)/2)βr(i)A(yh pr(0M) for ct<i^β form a base of
β2H

2»-2(Λ2M, AM; Z2) by Proposition 5.3(i). This completes the proof of (1).
(2) Assume that n is even and W j ^ O . Then we have, in the same way as

the above proof,

H2»~2(Λ2M, AM; Z2) = Σί-i Kt + X6, K6 = {ΛM'Λx\xε H»~i(M; Z2)} ,

and

K! + X3 c p2H
2"-2(Λ2M, AM; Z[v]) .

Moreover, we have the relations

p2β2(Λp2xAM') = Λp2xΛM,

pJ2(AMfAp2yi) = ΛMΛp^^r^^AM'Λp^ for α < I ^ β,

and so K2 + K4c:p2H
2n-2(Λ2M, AM; Z|>]). On the other hand, we see that

dimzJ2H
2n-2(A2M9 AM;Z2) = β+l by Proposition 5. 3(ii) and dimZ2K6 =

β + 1. This implies (2).
(3) is obtained by the method similar to those of the above cases. q. e. d.

LEMMA 4.5. Imj^cH^-^PM; Z2) = Z2) is given as follows:
(1) When n = 2(4) and w^O, Imjg = 0 if and only if w2p2H

n~2(M; Z) = 0.
(2) When w=2(4) and w^O, Im7*S = 0 // and only ϊ /w 2 + wf = 0.
(3) When n = l(2) and w, =0, Im7§ = 0 if and only if w2p2H

n~2(M; Z) = 0.

PROOF. The (5g2 + (n-l)u2)-image of Kt (/ = !,..., 4) are easily obtained
by using [7, Lemmas 7 and 10] as follows:
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(Sq2 +(n - l)v2)K2 = {ΛSq2p2xAM \ x e Hn~2(M; Z)} ,

(Sq2+v2)

Using these relations and the well-known fact that Sg2x = (w2-f w2)x for xe

H"-2(M;Z2), we have

ΘH2n~2(A2M9 AM; Z[>]) = {A\v2p2xAM \ x e Hn~2(M; Z)}

in cases (1) and (3),

= {Λ(w2 + w2)xAM I x e Hn~2(M\ Z2)} in case (2).

This and (4.3) show the lemma. q. e. d.

We are now ready to determine Im J2n-ι f°Γ w = l(2) and wί = 0, or π = 2(4).

PROPOSITION 4.6. (1) Assume that n =2(4) αnrf w t =0. T/?^n

Ms/?2"-i] // w2p2H"-2(M; Z) ̂  0,
ImJ2»-ι —

1 ΘH"-l(M; Z2> otherwise.

(2) Assume that n = 2(4) and wt =^0. T/zβn

Z2 i/ w2 + w2 ^ 0,
Im J 2n~ι =

ΘK otherwise.

(3) Assume that rc = l(2) and w1=0. T//en

Im J2 / i_! = Θβ2H»-2(M; Z2) i/ w2p2H-2(M; Z) = 0,

= ^2H
n-2(M;Z2) + 0 + Z2 ι/ n==l(4) and w2p2H»

= Θβ2H"-2(M Z2) 4- Z2 otherwise.

PROOF. This is an immediate consequence of Lemmas 3.1, 3.2, 4.5 and

(2.7). q.e.d.

Propositions 4.1 and 4.6 give the results on J2n-ί in Main Theorem. Thus

Main Theorem in the introduction is proved.

§5. Appendix on Hl(A2M, AM; Z[ι?]) for i^2n-3

In the previous sections, the cohomology of (A2M, AM) plays an important

part. L. L. Larmore [7] investigated it but the author can not understand the

proof of [7, Th. 20]. Therefore we should like to try to describe the cohomology
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groups H2n(Λ2M, AM\ Z) and Hl(A2M, AM; Z[>]) for ί^2n-3 by using the
notations and the results stated in [7, pp. 908-915]. We note that Propositions
5.4-5 for i = 2n — 2, 2n — 3 are not used in this paper and are prepared for the
forthcoming paper [14].

Let M be a closed connected ^-manifold and assume that

(5.1) #"(M; Z) = Z<M> if w1 =05 = Z2<02M'> (SqlM' = M) if w t^0,

H-(M; Z) = U£f Zr(m^xm^ (direct sum) for m^n-1,

*m,i = βr(m,i)ym,i (JV'e//m~1(M; ZΓ(mfί)) for α(m)

where the order r(m, i) is infinite for l<Ξi<£α(w), a power of 2 for oc(
and a power of an odd prime for β(m) < i ̂ γ(m), and if a(m)<i<j then either
(r(m, 0, r(m, j))=\ or r(m, ι) | r(w, j) holds.

Furthermore, for the simplicity,

(5.1)' denote α(m), j8(m), y(m), r(m, /), xm,ί and ^m,, in C5-1) respectively by

α, jS, 7, r(/), x( and .yj when m = rc — 1,

α', ^7, γ r, rX/), x'f and ^j when m — n — 2.

Then we have the following propositions, where (i)'s,..., (iv)'s hold re-
spectively when

( i ) n is even and vv x =0, (ii) n is even and HΊ ̂ 0,

(iii) n is odd and wl =0, (iv) n is odd and M^ ̂ 0.

PROPOSITION 5.2. (1) H2"(Λ2M, AM; Z [ υ ] ) i s

(1) Z2<02(t>»-Mp2Λf)>, (ii) Z2<

(iii) Z<J(M, M)>, (iv) Z2<j

(2) H2»(Λ2M,AM;Z)is

(i) Z<ΛMΛM>, (ii) Z2(

(iii) Z2</>2(ι;»-Mp2M)>, (iv) Z2</?2(ι;»-MM)> -

PROPOSITION 5.3. //2"-1(/l2M, 2dM; Z|>]) is

(i) G, (ii) Z4<(l/2)j52(ι?--MM')> + X,

(iii) Z2<^2(ι;--Mp2Af)> + G,

(iv) Z2<^2(t;n-2ylM)> + X, and p2: H
2n~l(Λ2M, AM\ Z[υ]) -

AM\ Z2) ϊ's monomorphic,
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where

G=Σ?=ι Z<j(x,, Λf)> + Σί..+ι Zr(()<)5r(i)JO;f, pr(j)M)> (s#"-'(M; Z)),

', p2x,-)> (Slm(p2: H-'(Af; Z) — >

PROPOSITION 5.4. tf2"-2 (/12M, JM; Z[>]) is

( i ) Z2<j52(t>"-Mp2M)> + G! + G2 + G3 + G4 + G6,

(ii) Z2(β2(V-3ΛM)y + G! + G2 + G3 + G4 + G7)

(iii) G, + G3 + G5 + G6,

(iv) Z2</32(t>"-2/lM')> + G, + G3 + G5 + G7,

vv/iere

2-*\—\ ^2\P2\

^H"-2(M; Z)),

^//«-2(M;Z2)).

PROPOSITION 5.5. p2H
2"-3(A2M, AM; Z[v])lδH2n-\PM\ Z2) is isomor-

phic to

(i) H, (ii) H + H4, (iii) H + H5, (iv) H + #4 -h H5,

w/ιer^

H = HI + H2 + //3,

{Λp2xΛM I x 6 HW~3(M Z)} i/ w t ^ 0,

Γ Z), .yeH^HMiZ)},

To prove these propositions, we use the following results frequently:

(5.6) ([7, p. 914]) For any cyclic group G, there is an exact sequence

, AM; G) -̂  H\A2M, AM; G[>])

; G) > Hl(A2M9 AM; G) > •••,
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where π: (M2, AM)-+(Λ2M, AM) is the natural projection, v is the first Stiefel-
Whitney class of the double covering M2 — AM-+Λ2M — AM = M* and V—

(5.7) For any positive integer p, there is the Bockstein exact sequence

, AM', Zp[v]) -A, H\A2M, AM', Z[υ\)

, AM', Z[ι?]) -A> E\A2M, AM', Zp[v]) -A> •-• .

(5.8) ([7, Remark 13]) For any odd prime p, π*: H*(Λ2M, AM', ZP[Ό])-
#*(M2, AM', Zp) is monomorphίc and

Imπ* = {x\xeH*(M2, ΔM\ Zp\ t*x = -jc},

where t: (M2, AM)-+(M2, AM) is a map defined by ί(x, y) = (y, x).

(5.9) (cf. [7, p. 914]) For x e Hr(M; Z,) and y e HS(M; Zt) (ί ̂  oo) ,

(- l)rsy ® x and π*Λx = x ® l - l ® x ,

and moreover the order of A(x, y)for x^y is the greatest common factor of those
of x and y, and the order of Λx is equal to that of x.

We now sketch the proofs of Propositions 5.2-5.
By (5.6), the following relation holds:

rank H <*(/l2M, AM; Z[υ]) 4- rankH^M, AM', Z) = rank#''(M2, AM\ Z).

By using (5.9) and Lemma 1.5(1), we can choose generators (mod torsions) of
Hi(A2M, AM\ Z[>]) and H\A2M, AM; Z). In particular we have

LEMMA 5.10. There hold the following congruences mod torsions:

Z(ΛMΛMy if n is even and vv t = 0,
(1) H2n(Λ2M, ι

0 otherwise.

, M)> if n is odd and w t = 0,
(2) H2n(A2M9 AM 9 Z [ υ ] ) =

0 otherwise.

if W l = 0 ,
(3) H2"-l(Λ2M, AM', Z[ι?]) =

I 0 if wi Φ 0.

(4) H2n~2(A2M, AM', Z[ϋ]) is congruent mod torsion to the direct sum of

Gl and

G2 if n is even,

if W l = 0 .
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To determine the odd torsion subgroup of Hl(A2M, AM; Z[υ])9 let p be an
odd prime. Then the Zp-base of Hl(Λ2M, AM; Zp\v]) can be determined by
(5.8-9). Thus the p-primary component and its generators of Hl(A2M, AM;
Z[vJ) are determined by the exact sequence (5.7) for odd prime p and [7, Remark
16]. In particular we have

LEMMA 5.11. Denote by T'l0 the odd torsion subgroup of Hi(A2M9AM;

Z[>]). Then

(1) Γ5-=0;

if Wί = o,
(2) ,

0 if W l * 0;

(3) T2n~2 is the direct sum of

and

(G6)o = Σΐ=β> + ιZr,(k)(βr,(k)A(y'k, prWΛf)> if w, = 0.

The proof of (1) of Proposition 5.2 is given by using Lemmas 5.10-11,
(5.7) for p = 2 and [7, Th. 11], and that of (2) is given by using the ordinary
Bockstein exact sequence instead of (5.7).

In the rest of this section, we study the 2-primary components of Hl(A2M,
AM; Z[υ}) for 2n — 3^i^2n — l. First we consider the case (ii) n is even and
wi 7^0. By (5.7) for p = 2, Lemmas 5.10-11 and [7, Th. 11], we have

, AM; Z[ι>]) - K + Zs (K = Σ?=ι Z2(

p2Zs = Z2<ί;"-1yiM + AM' AM"), for some integer s ^ 2.

In the exact sequence (3.3), both groups H2n~2(PM; Z[>]) and H2n-\M*', Z[vJ)
are isomorphic to Hn~1(M; Z2) by Proposition 2.4 and (3.4) and so s^4. On

the other hand,

p2β2H
2"-2(Λ2M, AM; Z2)^vn~lΛM + AM' AM

follows briefly. Thus 5^4 and so 5 = 4. Moreover by (5.7) for p = 2, (5.9) and
Lemmas 1.5 and 5.10, we see that

Z. = Z4<(l/2)j52(ι;»-MM')>,

and
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H2n~2(Λ2M9 AM; Z[t?]) Ξ Z2</52(ι?"-3ΛM)> + G t + G2 + G7

mod odd torsion,

where s(j) is the order of A(xj9 Xj). As for the element A(xj9 xf), if ϊV./ then
π*βr(J)A(yj9 prU}xt) = π*A(xj, xj by (5.9) and hence

βr(j)A(yj9 PrU}χύ = Λ(x, , xf) + KY, f l for some *,v e H2n~\Λ2M9 AM; Z)

by (5.6). Further we see easily that

0

by Lemma 1.5. Therefore we can replace A(xj9 x{) by βr(j}A(yj9 pr(j^i) If
ί =j and r(j) = 2, then

P2jMO./> P2^j) = Λp2XjΛp2Xj = p2Λ(xp Xj)

by Lemma 1.5, and so s(j) = 2 and Λ(xy, x7) can be replaced by β2A(yp p2Xj).
If i —j and r(7) ̂  4, then we see easily that

, AM; Z))

by (5.6) and (5.9), and that

β2(Λρ2yjΛρ2Xj) * 0

by (5.7) for p = 2. Using Lemma 1.5 and the relation j52p2=:

Hi-\A2M9 AM; Zr[ι;])->//I'(/l2M, AM Z[υ])9 we see that

(r(j)/2)βr(j)A(yp pr(jΊXj) = β2p2A(yj9 prU)Xj) .

The above three relations imply that s(j) = r(j) and A(xj9 Xj) can be replaced by

βr(j)A(yj9 Pr(j)Xj) This completes the proofs of (ii)'s of Propositions 5.3-4.
The proof of Proposition 5.5(ii) is given by Lemma 1.5(3) and (5.7) for p = 2
immediately.

The proofs of (i)'s, (iii)'s and (iv)'s of Propositions 5.3-5 are similar to, but
simpler than, those of (ii)'s except the results concerning H5 of Proposition 5.5

for odd n.
Let n be odd. By simple calculations, using Lemma 1.5, Proposition 5.4

and (5.9), we see that

2xj) e Ker π* (dH2n~2(Λ2M9 AM; Z[>]))

and

Ker π* = [β2(vn-2Λx) \ x e H*~l(M\ Z2)} .
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This implies that there is an element Xj eHn~1(M:> Z2) such that

p2.

Using this result, Lemma 1.5(3) and (5.7) for p = 2, we have Proposition 5.5(iii)-
(iv) completely.
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