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Introduction

Let M be a closed connected smooth manifold of dimension n and R™ the
m-dimensional Euclidean space. Denote by [M < R™] the set of regular homo-
topy classes of immersions of M in R™ and by [M = R™] the set of isotopy classes
of embeddings of M in R™, and consider the commutative diagram

[M < R™1] Jmt1 [M < R™1]

E,,,‘[ 1,,'[

[Mc R"] —J=_, [M < R"],

where E,, and I,, are the maps induced from the natural inclusion R™< R™*!
and J, is the one defined by regarding embeddings as immersions.

The set [M = R™] for 2m>3n+1 is an abelian group by taking 0 arbitrarily
if it is not empty, and the map I,, is a homomorphism by taking I,,(0)=0; while
so are the set [M < R™] and the maps E,, and J,, for 2m>3(n+1) (see J. C. Becker
2D).

The purpose of this paper is to study the above commutative diagram when
m=2n-1:

[Mc R*] —J», [Mc R
(*) EI II (E=E2n——1’ I=12n-1)’
[M [t R2n—l] J2n-1 [M c R2n—1]

(here we assume that the sets in consideration are not empty).

When n=4, the upper groups are determined by A. Haefliger and M. W.
Hirsch [3], [5], [6] and so is the group [M = R?"~1] by D. R. Bausum [1, Th. 37
and Prop. 41], L. L. Larmore and E. Thomas [10, Th. 5.1] and R. D. Rigdon
[11, Th. 10.4], and moreover it is proved by R. D. Rigdon [11, Th. 10.4] that I
is trivial for even n and is surjective for odd n, respectively. When n=6, [M c
R27-17 is an abelian group and Im E is determined by R. D. Rigdon [11, Th. 11.11
and Th. 11.26]. Togeth.er with these results, we have the following

MAIN THEOREM. Let M be a closed connected smooth manifold of dimension
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n with the i-th Stiefel-Whitney class w;e H(M; Z,), and let
Sq': H""Y(M; Z;) — H"(M; Z,),
B2 H'2(M; Z,) — H""Y(M; Z)

be the squaring operation and the Bockstein operator, respectively, and H'(M ;
Z[w.]) be the integral cohomology twisted by w,. Then in the diagram (x)

there hold the following properties (i)’s,..., (iv)’s, respectively, when
(i) niseven and w,; =0, (ii) n is even and w,;#0,
(iii) n is odd and w, =0, (iv) nis odd and w,#0.
(1) Assume that n=4. Then
(i) [McR™]=H"(M;Z,), [MSR*] =2, J,, =0,
H""Y(M; Z5) if n=00),
[McR-1] = =0
HY(M; Z,)+Z, if n=24),
(ii) [McR?"] =Z + KerSq!, [McR**] =2, J,(a, b)="2a,

H™WM;Zy)  if n=04),
[McR*1] =

Ker Sq'+2Z, if n=24),
(iii) [McR?"] =H"'(M;Z), [McSR*™] =12, J,, =0,

H"'\(\M;Z2)+Z,+Z,, I(a,b,c)=b if n=1(4),

[McR* '] =

H"\(M;Z2)+Z,, I(a, b)=b(2) if n=3(4);

(iv) [McR™] =H"'M;Z,), [McR*™]=2,, J,,=0,
[McR?>" '} = H*Y(M; Z[w,])+Z,, I(a, b)=b.
(2) Assume that n=6. Then
(i) ImE =[McR?"],
H"'Y(M; Z,) if n=24) and w,y(Kerg,) =0,
ImJ;,-, =
[Mc R?-1] otherwise;
(ii) ImE = Ker Sq?,
Ker Sq'+Z, if n=24) and w}+w,#0,
Im J2n—1 =

Ker Sq! otherwise;

(iii) ImE = ImpB,,
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ImpB,+0+2, if n=1(4) and wy(Kerf,) # 0,
Im Jzn_.1 = Im Bz +Zz l_f n= 3(4) and Wz(Kerﬁz) # 0,
Im g, otherwise;

(iv) ImE = [McR?*"], ImJ,,_, = H"Y(M; Z[w,]).
The group [M < R?"~'] will be studied in the forthcoming paper [14].

In §1, the group structures and the filtrations on [M =< R™] and [M <R™]
are recalled according to [1], [2], [8], [11] and [13], and the methods for com-
puting I, E,, and J, are stated. The groups [M = R?"], [M=R?"] and [Mc
R?"~17 are restated in §2 and the results on J,, and I are proved. The map
J,.—1 1s investigated in §§3-4, by using the results on the cohomology of (42M,
AM) due to L. L. Larmore [7] together with the remarks given in §5. In §5,
the twisted integral cohomology groups H(A*M, AM; Z[v]) for i=2n—3
(ve H(AM?—AM; Z,)) are treated.

§1. Preliminaries

Let M be a closed connected smooth manifold of dimension n. Then there
is a fixed point free involution on the tangent sphere bundle SM over M, which
is the antipodal map on each fibre S»~'. Thus, for an immersion f: M < R™,
we have the Z,-equivariant map

7S(f): SM S, Rm x gm-1 7, gm-1,

where S(f) is the Z,-equivariant map induced from the derivation of f and = is
the projection.

THeoREM (Haefliger-Hirsch [4]). If 2m>3n+1, then the correspondence
which associates the Z,-equivariant homotopy class of nS(f) with a regular
homotopy class of an immersion f is a bijection between [M = R™] and the set
of Z,-equivariant homotopy classes of Z,-equivariant maps of SM to S™1.

On the other hand, let AM be the diagonal of M x M. Then there is a fixed
point free involution on M x M —AM defined by the interchange of factors.
Thus, for an embedding f :M <= R™, we have the Z,-equivariant map

ff*M x M — AM — S™1,
J'&x9) =) =fONf) =W (x, yeM, x#Y).

THeorReM (Haefliger [3]). If 2m>3(n+1), then the correspondence which
associates the Z,-equivariant homotopy class of f' with an isotopy class of an
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embedding f is a bijection between [M<—R™] and the set of Z,-equivariant
homotopy classes of Z,-equivariant maps of M x M —AM to S™~1.

Let PM=SM|Z, and M*=(M xM—A4AM)/Z, be the tangent projective
bundle over M and the reduced symmetric product of M, respectively. Moreover,
let

n: PM — P® and ¢: M* — P®

be the classifying maps of the double coverings SM—PM and M x M —AM — M¥*,
respectively. Now, S®— P® is the universal double covering and S x  S" 1—
P® is homotopically equivalent to the natural inclusion Pm~!<P®. Therefore
the above theorems are restated as follows, where

[X, Pm 1 0] =[X, S® x 5,8™1; o] for a: X — P*
denotes the homotopy sets of liftings of « to S* x ,,S™1:
THEOREM 1.1. There exist bijections
A:[McSR™] ~ [PM, P" ;5] if 2m>3n+1,
B: [McR™] =~ [M*, P 1; £] if 2m > 3(n+1).

Each set of the right hand sides has the structure of an abelian group by [2]
if it is not empty, which induces those of [M c R™] and [M =R™].

Now PM is a manifold of dimension 2n—1 and M* has the homotopy type
of a CW-complex of dimension less than 2n.

ProPOSITION 1.2 (Bausum [1, Prop.5 and Prop. 6], Larmore-Rigdon [8,
Prop. 4.1], Yasui [13, Prop. 1.1]). Assume that X has the homotopy type of a
CW-complex of dimension less than 2n (n=4). Then for a map a: X— P>,
there exist decreasing filtrations

[X, P2715 0] = Go(@) ® G4() = 0, Gole) = H*1(X; Z) ;
[X, P?2n=2; 4] = Fo(a) © F(ex) o Fy(a) = 0,
Fo(a)/F,(e) = H?>"2(X; Z[v]),
F(a) = Coker (@: H?>"~3(X; Z[v]) — H?**"Y(X; Z,)),
where H'(X; Z[v]) is the integral cohomology of X twisted by v=0*u (ue
HY(P*; Z,) is the generator) and
O = Sq*p, + an_ 1)”2/72

(P,: H(X; Z[v])>H (X ; Z,) is the reduction mod 2).
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By the definitions of the maps I,,, E,, and J,, in the introduction and the
bijections A and B in Theorem 1.1, we have the commutative diagram

[Mc R En  (Mc R o, [Mc R"] =, [Mc R™1]
Bl’é BJ’:” Als Als
[M*, Pm; €] Lo [M*, Pr=t; €] L [PM, Pt ] 2 [PM, P73 1]
for 2m>3(n+1) (cf. [8], [11]), where i: P" ! < P™ is the natural inclusion and
j: PM — M* is the embedding with ¢j =g
induced from the Z,-equivariant map j: SM—>M x M —AM defined by j(u)=
(exp (u), exp (—u)).

ProrposiTiON 1.3 (Larmore-Rigdon [8, Prop. 5.1 and Prop. 6.1]). Let
(X, a) represent (PM, n) or (M*, £), and consider the filtrations of [X, P™!; o]
for m=2n—1,2n given in Proposition 1.2. Then

(1) iy [X, P?"2; a]>[X, P?"~1; a] preserves the filtrations and the in-
duced homomorphism

iy: Fo(@)/Fy(a) = H22(X; Z[5]) —> Go(@) = H2*1(X; Z)

is just the multiplication by V=Ff,(1)e H(X; Z[v]) (B,: H(X; Z,)-»H*(X;
Z[v]) is the twisted Bockstein operator);

2) j¥: [M*, P L, £]1-[PM, P™1; n] preserves the filtrations and j*:
Go(&)—=Go(n) and j*: F&)/F;1(§)—Fin)/F;y1(n) are j* on the cohomology
groups and moreover j* for m=2n—1 induces the map

J§: Ker (j*: Fo(&)/F (&) — Fo(n)/F1(n)) —> Coker (j*: F (&) — Fi(n)),
which is equal to the functional operation
0;: Ker j*(c H2""2(M*; Z[v])) — H?>""Y(PM; Z,)/(Im O +Im j¥*)

given by 6~1@i*~! in the commutative diagram

I a3 (PM; Z[j*0]) =20 HE2(M*, PM; Z[v])-25 Hov2(M* ; Z[0])25

g J! ol
I B2\ (PM; Z,) O H2Y(M*, PM; Z,) - H2n(M*; Z,)(=0)

of the exact sequences of the pair (M*, PM), where v=¢E*u and i: M* c(M*,PM).

Furthermore, let A2M=(M x M)/Z, be the 2-fold symmetric product of M,
the set of unordered pairs of M. Then A2M — AM = M* and PM = j(PM) bounds
a tubular neighborhood N of 4M in A2M, and the natural inclusions
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(M*, PM) < (A2M, N) > (A2M, AM)

induce isomorphisms of cohomology groups (cf. [8, §5]). Thus we have the
following

LEMMA 1.4. The cohomology exact sequence of (M*, PM) with any coeffi-
cients (e.g., the one in the diagram in Proposition 1.3) can be replaced by the
exact sequence

o — HiY(M*) L5 HiSW(PM) —2 HI(A2M, AM)
L HiWM*) L Hi(PM) — -

Our study is based on these results. Moreover the cohomology of (A2M,
4M) is investigated by L. L. Larmore[7]. The notations Ax and 4(x, y) and
the results stated in [7, pp. 908-915] are freely quoted hereafter. We also use
the following lemma and the results remarked in §5.

LemMA 15, (1) (AX)=A(p,x) and p(A(x, y)=A(p,x, p,y) for x,ye
H*(M; Z,), where r|s, sS oo and p,, p, are the reductions mod r.

(2) A(x, y) = AxAy + A(xy) for x,yeH*M; Z,).

(3) o(wix) =vi*'Ax for xeH*(M; Z,), where vix=j*v'.n*x (n: PM
—M is the projection).

Proor. The relations (1) and (2) are easily obtained by chasing the con-
structions of Ax and A4(x, y) given in [7]. The relation (3) follows from the
equality dx=vAx(6: H~Y(M)=H"1(AM)->H!(A?M, AM)) in [7, Lemma 6],
by noticing that the restriction of the projection N—M on PM is equal to = and
the one on AM is the identity AM— M. q.e.d.

§2. J,, I, E and [M <R 1]

The following results are well-known:

(2.1) Let ve H(PM; Z,) be the first Stiefel-Whitney class of the double
covering SM—PM. Then 1, v,...,v""! form a base of the H¥(M; Z,)-module
H*(PM; Z,) with the relation

vt = T 0w (W = wi(M)).

(2.2) [McR?"]=H?*""Y(PM; Z) in Theorem 1.1 and Proposition 1.2 is iso-
morphic to Z if n is even and Z, if n is odd.

(2.3) ([3], [5] and [11]) [McR?"]=H?*""Y(M*; Z) in Theorem 1.1 and
Proposition 1.2 is isomorphic to
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H*Y(M; Z) if n is odd and w; =0,
Z+K (K=Ker (Sq': H""Y(M; Z,)-»H"(M; Z,))) if n is even and w,#0,
H*\(M; Z,) otherwise.

PROOF OF MAIN THEOREM ON J,,. By the results stated in §1, we have a
commutative diagram

[Mc R] —T», [M< R

| |

H2 Y (M*; Z) L5 H2=1(PM; Z) -5 H?"(A2M, AM; Z) — 0,

where the lower sequence is exact by Lemma 1.4, while by Proposition 5.2(2),

Z if n is even and w, =0,
H?*"(A2M, AM; Z) =
Z, otherwise.

Thus if n is even and w;#0 then Im (j*: Z+ K—Z)=2Z, and if it is not then
j*=0. g.e.d.

We now recall that the filtration
[McR* '] =[PM, P""2;n] =F,> F; 20 (F,=F(n)
satisfies
Fo/Fy = H*""%(PM; Z[v]),
F, = Coker (©: H?"~3(PM; Z[v]) — H?*"~Y(PM; Z,))

where @ =Sq2p,+(n—1)v2g,.
The twisted integral cohomology of PM is investigated by R. D. Rigdon and
is given as follows:

ProrosiTiON 2.4 (Rigdon [11, Prop. 9.2 and 9.13]). Let Me HYM; Z,)
be the generator. Then
(1) if n is even, there exist isomorphisms

H?>"=Y(PM; Z[v]) = Z,,
9: H\(M; Z,) = H?>*%(PM; Z[v]), 0(x) = B,(v"2x) (xe H"\(M; Z,));
(2) if nis odd, there exist isomorphisms
H2»=Y(PM; Z[v]) = Z,
0: H='(M; Z[w,]) + H"(M; Z,) = H>""%(PM; Z[v)),
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(M) = B,(v"3M), p,0(y) = (0" +v""2w,)p,y (y € H" (M Z[v])).*)

Let M' e H*"Y(M; Z,) be the element with Sq!M’'=M when w;#0 and let
K=Ker(Sq!: H""\(M; Z,)»H"(M; Z,)). Then H?""2(PM; Z[v]) is the fol-
lowing form by Proposition 2.4, (Z,{a) denotes the cyclic group of order r
generated by a):

2.5) Fo/F, = 6H"Y(M; Z,) if n is even and wy = 0,
= 0K + Z,{6M") if n is even and wy # 0,
= 0H""Y{(M; Z[w,]) + Z,{6M) if n is odd.

Further, by studying ®, we have

H*~Y(PM;Z,) =2, ifnisoddand w, =0,
(2.6) F, = Coker@ = orn =24,
0 otherwise.

In case of F,=Z,, the group extension ¢, of 0—F,—»F,—F,/F;—0 is
given by
b2 = Sg*B3' + (n—1)v2f3! + Sq'f,: {z€ Fo/ F1|22=0} = B,H*""3(PM; Z,)
— Fy, = H*(PM; Z),
which is proved by using [10, Th. 4.1] (cf. [9, Cor. 3.7]), and so we have the
following:
(2.7) The group extension ¢, is trivial except for
¢,(0M") = v M if n=24) and w, #0,
¢,(0M) = v" M if n=34) and w, =0.
THEOREM 2.8 (Bausum [1, Th. 37 and Prop. 41], Larmore-Thomas [10,

Th. 5.1], Rigdon [11, Th. 10.4]). Let n=4. Then the group [M<R?*"1]=
[PM, P?"2; n] is as follows:

[McR?~1] = 0H"Y(M; Z,) if n=04),
= 0H"'(M; Z,) + Z, if n=24) and w,=0,
=0K + Z, if n=24) and w, #0,
=0H"‘M;Z2)+Z, + 2, if n=14) and w, =0,
=0H""YM; Z) + Z, if n=34) and w; =0,
= 0H""\(M; Z[w,])) + Z, if n=12) and w; #0.

*) This relation is different from that of Rigdon [11], but his relation can be modified as
stated in the proposition by chasing his construction of 4.
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PrOOF OF MAIN THEOREM ON | AND E. By (2.2), (2.4) and Proposition
1.3(1), we see that

(2.9) ([11, Th. 10.4]) I is trivial if n is even.
Assume that n is odd and consider the homomorphism
pais0: H'"Y(M; Z[w,]) + H"(M; Z,) = H?>""2(PM; Z[v])(=Fo/ Fy)
s, H2-y(PM; Z)(= Z,) L H21(PM; Z,).

Then the relation p,i,0(x, y)=v""'y follows from Propositions 2.4, 1.3(1) and
(2.1). Therefore, by (2.6-8), we have the equalities

I(a, b,c)=0b if n=14) and w, =0,
I(a, b) = b(2) if n=34) and w, =0,
I(a, b)) =b if n=12) and w; #0.

These and (2.9) show the desired results on I. The results on E is proved by
R. D. Ridgon [11, Th. 11.11 and Th. 11.26]. q.e.d.

§3. j*: F(O/F;. (&)= F{n)/F;.(n) in Proposition 1.3
In this and next sections, we investigate the homomorphism
Jan-1=j%: [McR"=1]=[M*, P22 ¢] — [M S R#"-1]=[PM, P¥"~2; y]
in Proposition 1.3(2), which preserves the filtrations
[M*, P2n=2; £]1=F(¢)> F(§)=0, [PM, P>""2; n]=Fo(n)=Fy(n)>0
given in Proposition 1.2.

LemMMA 3.1. j*=j*: F (&)= H?*""\(M*; Z,)> F,(n)= H**"Y(PM; Z,) s
trivial.

Proor. This is an immediate consequence of E. Thomas [12, Prop. 2.9(c)].
q.e.d.

Next, we study the homomorphism
JE=j*: Fo(O)[F (&)= H?*"">(M*; Z[v])
— Fo(n)/F(n)=H?*""%(PM; Z[v]),

where the range H?""2(PM; Z[v]) is given in Proposition 2.4. Hereafter, we
use essentially Propositions 5.2-3 given in §5 below.
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LemmaA 3.2. (1) If nis even and w,; =0, then j* is surjective.
(2) If niseven and w;#0, then Im j*=0p,H"'(M; Z)=0K.
(3) If nisodd and wy=0, then Im j*=08,H"2(M; Z,).

(4) If nisodd and w,#0, then Im j*=0H""'(M; Z[w,]).

PrOOF. We prove the lemma by using the exact sequence

(3.3) - —— HP X (M*; Z[v]) L5 H22(PM; Z[v])
2, H2\(A2M, AM; Z[v]) -5 H2Y(M*; Z[v])
I, H(PM; Z[v]) <2 H2M(A2M, AM; Z[v]) — O

in Lemma 1.4. In this sequence, the following is given by R. D. Rigdon [11,
Prop. 11.9 and Prop. 11.19]:

(3.4) H2"~Y(M*; Z[v]) =~ H"" (M Z) if n is even and w; =0,
Z+K if nis odd and wy #0,
~ H"Y(M; Z,) otherwise.

(1) Assume that n is even and w,;=0. Then for any ze H* {(M; Z),
we have f,(v"2z') = f,0(v"22") = f,(v"" 1 Az") = f(Az’ Az’ +v""2A(Sq'z")) =
B,p,4(z, 2)=0 (p,z=2z") by Lemma 1.5 and [7, Lemma 10]. Therefore the first
d in (3.3) is trivial by Proposition 2.4 (1) and so (1) is shown.

(2) Assume that n is even and w,;#0. Then the exact sequence (3.3) is
equal to

H2=2(M*; Z[v]) 2 0K+Z, O  K+Zy — K+Zy — Zy —> Zy — 0

by Proposition 2.4(1), (3.4) and Propositions 5.2-3, and so Imd=Z,. Now
00K =0 is proved in the above case. Thus Im j*=Ker §=0K.
(3) Assume that n is odd and w, =0. Then (3.3) induces an exact sequence

(3.5) H?2(M*; Z[v]) L5 6G + Z,(B,(v"3M)>
G+ Z B0 2AM)Y L K = p,G, (G H"™(M; Z)),
by Proposition 2.4(2), (3.4) and Propositions 5.2-3. Here the relation
8B (0" 3M) = By(v"~2AM)
holds by Lemma 1.5(3), and the relation
(3.6) 0(6G) = G
holds, because §,f3,(v"2AM)=v""'AM in H?"=Y(A2M, AM; Z,) by [7, Lemma
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10] and $,60G=0p,0G=0 by Lemma 1.5 and Proposition 2.4(2). Therefore
the sequence (3.5) induces an exact sequence

(3.5 HrrM* Z[v]) -2 6 L, G2, K —0, (f=00,g=i%).

Here K=p,G=G/2G. Hence g(2G)=0 and g induces an epimorphism g': G/2G
—K, which is isomorphism because G/2G is finite. Therefore 2G=Kerg=
Imf. Since rank G=rank 2G and 2G=Imf, we see that

Kerf< T and f(T)=2T (T is the torsion subgroup of G)

by noticing that the torsion subgroup of 2G is equal to 2T. Thus f determines
an epimorphism

fIT: T— 2T.

If we can prove
3.7 ,G (={xeG|2x=0}) = B,H"2(M; Z,) = Kerf in (3.5),

then ,T(={xeT|2x=0})=,G<Ker(f|T) an f|T induces an epimorphism
T/,T-2T, which is isomorphic because the orders of the two groups are finite
and coincident with each other. Hence Ker f=,G and Lemma 3.2(3) is proved.

To show (3.7), we notice that O(B,H"2(M; Z,))< p,H?*""3(PM; Z,). For
any element X €6(Im §,), there is an element Ye H2"~3(PM; Z,) such that
B,Y=X and

Y= A"3M + 0" 2x 4+ (0" 'y + 0""3Sq%y)

for some AeZ,, xe H* Y (M; Z,) and ye H""%(M; Z,) by (2.1). For xeH" (M ;
Z,), there is a relation §,8,(v"3x)=v""2x and so B,(v""2x)=0. Further the
relation &f,(v" "'y +v"3Sq2y)=0 for ye H""%(M; Z,) follows from Lemma 1.5
and [7, Th. 11]. Thus 6X=68,Y=A8,(v""2AM) and so p,0X=Av""'AM.
This and (3.6) imply 2=0and so X =0. This completes the proof of (3.7).

(4) Assume that n is odd and w; #0. Then g,: H2""1(A2M, AM; Z[v])—
H?"~Y(A2M, AM ; Z,) is monomorphic by Proposition 5.3(iv). Further, by
Lemma 1.5 and Proposition 2.4, we see that

P20B,("3M) = v"'AM, j,00(x) =0  for xeH" '(M; Z[w,]).
Therefore Im j*=Ker §=0H""'(M; Z[w,]). q.e.d.

§4. J,,_;: [McR ]5[Mc R 1]

This section is a continuation of §3 and we will determine ImJ,,_, by
using Proposition 1.3(2).
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If Fi(n)=0, then ImJ,,_,=Im(j*: Fo(&)/F (&)~ Fo(m)/Fy(n)) and so by
Proposition 1.3(2), (2.6) and Lemma 3.2, we have the following

ProposITION 4.1. (1) If n=0(4) and w, =0, then Im J,,_,=[M < R?*""1].
(2) If n=0(4) and w,#0, then ImJ,,_,=0p,H* (M ; Z)=6K.
(3) If n=1(Q2) and w,#0, then Im J,,_,=0H""Y(M; Z[w,]).

In the rest of this section, we study J,,., in case when n=1(2) and w; =0,
or n=2(4). In these cases, F,(n)=H?""Y(PM; Z,) and we have to study the

homomorphism
J§: Ker (j*: Fo(8)/F (&) — Fo(m)/F (1)) —> Coker (j*: F(§) — Fy(n)
induced from j#: (Fo(&), F1(€))—(Fo(n), F1(n)). By Lemma 3.1,
Coker (j*: F{(¢§) — F,(n)) = F{(n) = H*""Y(PM; Z,) = Z,.
Further by the second half of Proposition 1.3(2),
4.2 Imj} =Imd1O
where
O = Sq%p, + (n—1?j,: H**2(A2M, AM; Z[v]) —> H?**(A?M, AM; Z,).
Because H2"(A2M, AM; Z,) =Z,,

(4.3) the homomorphism 6: H**~Y(PM; Z,)>H?*"(A*M, AM; Z,) in (4.2) is
an isomorphism.

We now assume that the integral cohomology groups H{(M; Z) for i=n,
n—1 are given as in (5.1). Let K; (i=1,..., 4) be the subgroups of H2""2(A2M,
4AM; Z,) defined as follows:

K, = {ApyxAp,y|x, ye H""(M; Z2)},

K, = {Ap,xAM |xe H""*(M; Z)}, (M = p,M if w; = 0),
K3 = Zz(U"_ZAM>,

Ky = a1 Zo{AM AP,y +(r(D)[2)AM' Ap,x;) if wy #0.

LeEMMA 4.4.  With the above notation, j,H?*""2(A2M, AM; Z[v]) is

1) X3, K if n is even and w; =0,

(2 Y%K, ifniseven and w;#0,
3) K,+K, if n is odd and w, =0.

ProOF. (1) Assume that nisevenand w, =0. Then H2"~2(A2M, AM; Z,)
is given by [7, Th. 11] as follows:
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H?"2(A2M, AM; Z,) = K, + K, + K5 + Ky,
where
Ks = Thai1 Z:{ApyAM) .
By Lemma 1.5 and the relation §,f,=Sq! + v, we have the relations

P2A(x, y) = ApyxApyy  for x, ye H"'(M; 2),

p24(x, M) = Ap,xAp,M = Ap,xAM for xeH" *(M; Z),

Paf (v 3AM) = v"2AM,

Bz(Apz)’iAM) = B1524(y;, prixM) = (r(i)/z)ﬁr(i)d(yi’ PrvM),
and so

K, + K, + K5 < p,H*""2(A2M, AM; Z[v])).

On the other hand, (r(i)/Z)B,(,-)A(y,-, priyM) for a<i<p form a base of
B,H?""2(A2M, AM; Z,) by Proposition 5.3(i). This completes the proof of (1).

(2) Assume that n is even and w, #0. Then we have, in the same way as
the above proof,

H?"2(A2M, AM; Z,) = Y4, K; + K¢, K¢ = {AM'Ax|xe H""\(M; Z,)},
and
K, + K5 < p,H?>""2(A2M, AM; Z[v]).

Moreover, we have the relations

P2B2(AprxAM’) = Ap,xAM,

P2BA(AM Ap,y) = AMAp,y;+(r(i)[2)AM' Ap,x; for a<izB,
and so K,+K,<p,H?*""2(A2M, AM; Z[v]). On the other hand, we see that
dim gz, B,H*"2(A2M, AM; Z,)=B+1 by Proposition 5.3(ii) and dimz, K¢ =

B+1. This implies (2).
(3) is obtained by the method similar to those of the above cases. q.e.d.

LEMMA 4.5. Imj§(<H?""Y(PM; Z,)=2Z,) is given as follows:

(1) When n=2(4) and w,=0, Im j§=0 if and only if w,p,H"2(M; Z)=0.
(2) When n=2(4) and w,#0, Im j§=0 if and only if w,+w?=0.

(3) When n=1(2) and w, =0, Im j§=0 if and only if wyp,H"2(M; Z)=0.

ProoF. The (Sq?+(n—1)v?)-image of K; (i=1,...,4) are easily obtained
by using [7, Lemmas 7 and 10] as follows:
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(S¢*+(n—1)?) (K, +K3) =0,
(8¢? +(n—Dv)K,={ASq*p,xAM | xe H""*(M ; Z)},
(8q% +v2) (AMAp,y;+(r(D)DAM ' Ap,x;) = AMASGp,y; (x<i=P).

Using these relations and the well-known fact that Sq?x=(w,+w})x for xe
H"*(M; Z,), we have

OH2""2(A2M, AM; Z[v]) = {Aw,p,xAM |xe H""2(M ; Z)}
in cases (1) and (3),
= {A(w,+w}xAM | x e H" (M ; Z,)} in case (2).
This and (4.3) show the lemma. q.e.d.
We are now ready to determine Im J,,_, for n=1(2) and w; =0, or n=2(4).
ProPOSITION 4.6. (1) Assume that n=2(4) and w,;=0. Then
ImJ, ;= [ [M < R2m1] if wapH"™2(M; Z) # 0,
O0H""\(M ; Z,) otherwise.
(2) Assume that n=2(4) and w,;#0. Then

0K + Z, if w,+w?#0,

Im J2n— 1 =
60K otherwise.

(3) Assume that n=1(2) and w;=0. Then

ImJ,,_y = 0B, H"2(M; Z,) if wyp,H™(M; Z)=0,
= 0B,H"2(M; Z,)+0+2Z, if n=1(4) and w,p,H"2(M; Z)#0,
= 0B,H"2(M; Z,)+Z, otherwise.

Proor. This is an immediate consequence of Lemmas 3.1, 3.2, 4.5 and
2.7. q.e.d.

Propositions 4.1 and 4.6 give the results on J,,_, in Main Theorem. Thus
Main Theorem in the introduction is proved.

§5. Appendix on Hi(A*M, AM; Z[v]) for i=2n—3

In the previous sections, the cohomology of (42M, 4AM) plays an important
part. L.L. Larmore [7] investigated it but the author can not understand the
proof of [7, Th. 20]. Therefore we should like to try to describe the cohomology
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groups H?"(A*M, AM; Z) and H¥(A2M, 4AM; Z[v]) for i=2n—3 by using the
notations and the results stated in [7, pp. 908-915].. We note that Propositions
5.4-5 for i=2n—2, 2n—3 are not used in this paper and are prepared for the
forthcoming paper [14].

Let M be a closed connected n-manifold and assume that
(5.1) H"(M; Z) = Z{M) if w; =0, = Z,{B,M"> (Sqg'M’'=M) if w;#0,
H™M; Z) = 21 Z, . Xpm..> (direct sum) for m<n—1,
Xmi = BromiyVmi (Ymi € H"" UM Z, ) for a(m)<i=<y(m),

where the order r(m, i) is infinite for 1 <i<a(m), a power of 2 for a(m)<i< f(m)
and a power of an odd prime for f(m)<i=<y(m), and if a(m)<i<j then either
(r(m, i), r(m, j))=1 or r(m, i)| r(m, j) holds.

Furthermore, for the simplicity,
(5.1) denote a(m), f(m), y(m), r(m, i), x,,; and y,, ; in (5.1) respectively by

o, B, v, r(i), x; and y; when m=n-—1,
o, By, r'(i), x; and y; when m=n-2.

Then we have the following propositions, where (i)’s,..., (iv)’s hold re-
spectively when

(i) niseven and w; =0, (ii) niseven and w, #0,

(iii)) nis odd and w, =0, (iv) nis odd and w, #0.
ProposiTION 5.2. (1) H?*"(A*M, AM; Z[v]) is

(1) Zy (B 1 Ap, M)y, (i) Z,(B,(v" ' AM)),

(iii) Z<AM, M)}, (iv)  Z,(B(AM'AM)) .
(2) H2(A2M, AM; Z) is
(i) Z{AMAM), (i)  Z,{B(AM'AM)},

(ili) Z,{B(v" ' Ap, M)y, (iv) Zy{B(v" " AM)) .

PROPOSITION 5.3. H2""Y(A2M, AM; Z[v]) is

(i) G, (i) Z4((1/2)B2(0 1AM + K,

(i)  Z,<B,(v"2Ap, M)y +G,

(iv)  Z,{B,(v"2AM)> +K, and j,: H2""Y(A2M, AM ; Z[v]) - H*"~1(A2M,

AM; Z,) is monomorphic,
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where
G=3 11 Z{Ax M) + T leoi1 ZuoXBrn (s pryM)> (= HY(M; 2)),
K=31%1 Zo (B AM, p2x)) (2Im (py: H™"Y(M; Z) — H""\(M; Z,))).
PROPOSITION 5.4. H2"2 (A2M, AM; Z[v)) is
(i) Z,<B,(v"34p,M)) + Gy + G, + Gy + G4 + G,
(ii) Z,{B,(v"3AM)) + G, + G, + G3 + G, + G,
(ili) G; + G3 + G5 + Gy,
(iv) Z,{B,(v"2AM")) + G, + G5 + G5 + G,
where
Gy = Xisi<jsa Z<A(x; X)), Gy = iy Z{A(x;, X)),
Gy = (Xisisa<jsy T Za<j<i_s_y)Zr(j)<ﬂr(j)A(yj’ Pr(iy*D)Y >
Gy = Yieg+1 Zr(i)<ﬁr(i)A(yb PriyXi)s Gs = X0, Z,(B(v24p,x)),
Ge = Xioy Z<A(Xis M) + i s1 ZraolBraAWis PraM)> (XH™XM; 2)),
Gy = 8Ly ZXBAM’, p2x0)) + Theni1 Zo(B2AM, poy)> (ZHXM; Z,)).
PROPOSITION 5.5. p,H?*"3(A2M, AM; Z[v])/6H?*"~4(PM; Z,) is isomor-
phic to
(i) H, (i) H+H, (i) H+Hs, (ivv H+ H,+ Hs,
where
H=H, + H, + Hj,
{ApxAp,M|xe H3(M; Z);  if w, =0,
{Ap,xAM |xe H"3(M; Z)} if w #0,
H, = {Ap,xAp,y|xe H"*(M; Z), ye H*"\(M; Z)},
Hy = Xocicjsp Z2{Ap2xidpay+(r(D/r@D)Ap2yidpax;)
Hy = 38l s1 2o APy AM +(r'(K)[2)Ap 3, AM”S
Hs = 3qs12:{Ap2yidpox) .

To prove these propositions, we use the following results frequently:

1=

(5.6) ([7, p. 914]) For any cyclic group G, there is an exact sequence
o — Hi"Y(A2M, AM; G) X H{(A2M, AM ; G[v])
22, H(M?, AM; G) — HYA2M, AM; G) — ---,
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where n: (M2, AM)—(A2M, AM) is the natural projection, v is the first Stiefel-
Whitney class of the double covering M?—AM—>A*M —AM=M* and V=
B(1) e H'(M*; Z[]).

(5.7) For any positive integer p, there is the Bockstein exact sequence

s —— HiZW(A2M, AM; Z,[v]) P2y HI(A2M, AM; Z[v])
2P, Hi(A2M, AM; Z[v]) P25 HY(A2M, AM;; Z,[v]) -2,

(5.8) ([7, Remark 13]) For any odd prime p, n*: H¥(A*M, AM; Z [v])—
H*(M?, AM ; Z,) is monomorphic and

Imn* = {x|xe H¥(M?, AM; Z)), t*x = —x},
where t: (M?, AM)—(M?, AM) is a map defined by t(x, y)=(y, x).
(5.9) (cf. [7, p. 914]) For xe H'(M; Z,) and ye H\(M; Z,) (1< 0),
*A(x, V) =xQ@y —(=1)sy® x and n*Ax=x®1 - 1Q x,

and moreover the order of A(x, y) for x#y is the greatest common factor of those
of x and y, and the order of Ax is equal to that of x.

We now sketch the proofs of Propositions 5.2-5.
By (5.6), the following relation holds:

rank H{(A2M, AM; Z[v]) + rank H¥(A2M, AM ; Z) = rank H(M?2, AM ; Z).

By using (5.9) and Lemma 1.5(1), we can choose generators (mod torsions) of
Hi{(A2M, AM; Z[v]) and H{(A?M, AM ; Z). In particular we have

LeMMA 5.10. There hold the following congruences mod torsions:

[ Z{AMAM) if n is even and w, = 0,

otherwise.

(1) H*"(A2M, AM; Z) =

Z{AM, M if n is odd and w, = 0,
() Hz"(AzM,AM;Z[v])E[ <A > ifnisodd and w,

otherwise.
1 Z<{A(x;, M)) if w =0,
if w, #0.

(4) H?"2(A2M, AM; Z[v]) is congruent mod torsion to the direct sum of
G, and

(3) H2"(A2M, AM; Z[v]) = [ .

G, if n is even,
T, Z{AG, M)y if wy =0



474 Tsutomu Y Asul

To determine the odd torsion subgroup of H{(A2M, AM; Z[v]), let p be an
odd prime. Then the Z,-base of H'(A2M, AM; Z,[v]) can be determined by
(5.8-9). Thus the p-primary component and its generators of H(A?M, AM,
Z[v]) are determined by the exact sequence (5.7) for odd prime p and [7, Remark
16]. In particular we have

LEMMA 5.11. Denote by T} the odd torsion subgroup of HYA2M, AM,
Z[v]). Then

(1) T2 =0;
(@),= Z¥=ﬂ+1 Zr(i)<ﬁr(i)A(yia Pr(i)M)> if w; =0,
0 if wy#0;

(3) T?2"2 is the direct sum of

() T3 =

(G3)o = (Zisisap<isy+ Zp<i<isVZrinBriiyAVis Priiy*d)d
and
(Gy)y = Z;?=13+1 Zr(i)<Br(i)A(yi9 pr(i)xi)> if n is even,
(Ge)o = Zi=p+1 ZrawBraydWis PraM)>  if wy =0.
The proof of (1) of Proposition 5.2 is given by using Lemmas 5.10-11,

(5.7) for p=2 and [7, Th. 11], and that of (2) is given by using the ordinary
Bockstein exact sequence instead of (5.7).

In the rest of this section, we study the 2-primary components of Hi(A2M,
AM; Z[v]) for 2n—3=<i<2n—1. First we consider the case (ii) n is even and
w,;#0. By (5.7) for p=2, Lemmas 5.10-11 and [7, Th. 11], we have

H2Y(A2M, AM; Z[v]) = K + Z, (K = T8 Z,XBA(M', pyx))),
P22y = Z,{v" 'AM + AM'AM), for some integer s = 2.
In the exact sequence (3.3), both groups H2"~2(PM; Z[v]) and H2"~1(M*; Z[v])
are isomorphic to H*"Y(M; Z,) by Proposition 2.4 and (3.4) and so s<4. On
the other hand,
PaBH""H(A2M, AM; Z;)$v" 1AM + AM'AM

follows briefly. Thus s=4 and so s=4. Moreover by (5.7) for p=2, (5.9) and
Lemmas 1.5 and 5.10, we see that

Z, = ZL(1/2)B (0" AM"))

and



On the map defined by regarding embeddings as immersions 475

H2""%(A2M, AM; Z[v]) = Z,{fr(v"3AM)) + G + G, + G,
+ (Zl§i§a<j§ﬁ+ Za<j<i§ﬁ)zr(j)<A(xja X)) + Z§=a+1 Zs(j)<A(xj9 xj)>
mod odd torsion,

where s(j) is the order of A(x;, x;). As for the element A(x;, x;), if i#j then
n?“ﬂ,(j)A(yj, Priy*i) =m*A(x;, x;) by (5.9) and hence

Brin Ay puiyXi) = A(xj, x;) + VX ;; for some X ;e H*""3(A2M, AM; Z)
by (5.6). Further we see easily that
ﬁzﬁr(j)A(yj’ PriiyXd) = Apax;jApyx; + vp,X;; # 0
by Lemma 1.5. Therefore we can replace 4(x;, x;) by ﬁ,( HWYjs pryxd).  If
i=j and r(j)=2, then
ﬁzﬁzA()’j, pax;) = Apyx;Apyx; = prA(xj, x;)
by Lemma 1.5, and so s(j)=2 and A4(x;, x;) can be replaced by ﬁZA(yj, P2X;).
If i=j and r(j)=4, then we see easily that
BrnyA(yjs pripyXy) = A(x, X)) + VY, (Y;€ H"3(A2M, AM; Z))
by (5.6) and (5.9), and that
ﬁZ(APZyjAPZXj) #0

by (5.7) for p=2. Using Lemma 1.5 and the relation f,5,=(r/2)8,:
Hi=Y(A2M, AM; Z,[v])> H{(A2M, AM ; Z[v]), we see that

(r(j)/z)ﬁr(j)A(yja pr(j)xj) = ﬁzﬁzA(Yj’ pr(j)xj)-

The above three relations imply that s(j)=r(j) and A(x;, x;) can be replaced by
,3,( »A(Vjs Pryx;).- This completes the proofs of (ii)’s of Propositions 5.3-4.
The proof of Proposition 5.5(ii) is given by Lemma 1.5(3) and (5.7) for p=2
immediately.

The proofs of (i)’s, (iii)’s and (iv)’s of Propositions 5.3-5 are similar to, but
simpler than, those of (ii)’s except the results concerning Hs of Proposition 5.5
for odd n.

Let n be odd. By simple calculations, using Lemma 1.5, Proposition 5.4
and (5.9), we see that

Ba(Ap,y;Ap,x;) € Ker n* (= H?"=2(A2M, AM; Z[v]))
and

Ker n* = {B,(v"24x)| xe H" (M Z,)}.
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This implies that there is an element X ;e H""'(M; Z,) such that

ApryiApyx;+ v" 24X ;e Im p,.

Using this result, Lemma 1.5(3) and (5.7) for p=2, we have Proposition 5.5(iii)-
(iv) completely.
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