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1. Introduction

Here we continue the investigation begun in [9] of the asymptotic behavior of

solutions of the equation

(1) Lnu + Fu = 0,

where Ln is the general disconjugate operator

/">\ T \ d \ Id. / M V A\

Pn at pn-x pί at p0

with pi>0 and PieC[a, oo), OZiZn. Although we did not make specific as-

sumptions in [9] on the form of the functional F in (1), we restrict our attention

here to the case where (1) is of the form

(3) Lnu + F(ί, Lou,...9 Ln-^) = 0,

with

(4) Lox = -^-; LΓx = -i-(LΓ_1xy, \ΔτΔn.
PO Pr

Nevertheless, for convenience we abbreviate (3) as in (1), and write

We say that u is a solution of (3) if Low,..., Lnu exist and satisfy (3) on a half

line [ί0, oo) for some to\a. We seek conditions which imply that (3) has a solu-

tion u which behaves for large positive t like a given solution q of the unperturbed

equation

(5) Lnx = 0,

in a sense defined below. We believe that our results are new even in the case

where

(6) Po = Pi = " • = £ » = 1>
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so that (3) and (5) reduce to the standard equations

u<"> + F(t9u9...9u<n-V) = 0

and

x<"> = 0,

because our integral conditions on F permit conditional convergence of some of

the improper integrals in question. This continues a theme that we have devel-

oped in several previous papers; for examples, see [6], [8], [9], [10], [11], [12],

and [13].

Here we give results which are more specific than those in [9], and our main

theorem is obtained by means of the Schauder-Tychonov theorem, rather than the

more restrictive contraction mapping principle used in [9]. Our estimates are

also sharper than those in [9]. For this we are in considerable debt to a recent

paper of Fink and Kusano [1], as explained in Section 2.

2. Preliminary considerations

We assume throughout that Ln in (2) is in canonical form at infinity; i.e.,

(7) ^ Pj(t)dt = oo, l Z j Z n - 1 .

It was shown in [7] that this involves no loss in generality. We continue to use

the notation employed in [9] (which is basically from [15]), summarized here for

the reader's convenience.

If ql9 q2,-" are locally integrable on [α, oo), let / 0 = l and

Ij(t, s; qj9...9 qx) = \ qffllj-^λ, s; qj-l9...9 qjdλ, s, t \ a, j X 1.

The following identities are by now well known [15]:

(8) // ί , s; qj9...9 qx) = ( - I ) ' / / * , t\ ql9...9 qj)9

(9) Ij(t, τ ; < ? ; , . . . , q t ) = Σ / = o J / - Λ A s ; q j 9 . . . 9 q r + 1 ) I r ( s , τ; q r 9 . . . 9 q x ) .

The functions

(10) xj(t) = Poiήlj-ίit, a; pl9..., Pj.γ\ 1 Zj Z n,

form a fundamental system for (5) on [α, oĉ ), and the functions

(11) yj(t) = Pn(t)In-j(t, a; p H - l 9 . . . 9 pj)9 1 Δ j Z n,

are likewise related to the formal adjoint equation
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r* _ 1 d 1 1 d y _ π

"y p0 dt pγ pn_x dt~p~n~

From (4) and (10),

(12) Lrxj(t) = Ij-r-.it, a; p Γ + 1 , . . . , Pj-,% O Z r Z j - 1 ,

a n d

( 1 3 ) Lrxj(t) = 0, j Δr Δ n.

Moreover, from Lemma 2 of [9]

(14) (LrXjLrXj)' > 0 on (a, oo) and l i m ^ {Lrxk{t)jLrXj{t)) = oo,

r <j < k Δ n,

and

(15) (.V//>'fc)' > 0 on (α, oo) and l i r n , ^ Cy/O/^W) = <*>>

1 Z j < k Δ n.

When (6) holds, then Lrx = x^r\

(16) *;W = 4 f 4 ^

and (12), (13), (14), and (15) reduce to familiar properties of these functions.

Throughout this paper i and m are fixed integers,

(17) 1 Z i Δm Z n,

and

(18)

is a given solution of (5). In [9] we gave conditions implying that (1) has a

solution u such that

[ Lrq + O ( L Λ ) , O Z r Z i - 1 ,
(19) Lrw =

[ Lrq + o(yr+1lyi), ί Δ r Δ n - 1.

(We use " o " and " 0 " in the standard way to refer to behavior as ί-»oo.) There-

fore, from (13),(14),and (15), Lru — Lrq is small compared with Lrxt (0ΔrΔn — l)

as f->oo. For example, if "(6) holds, then (18) becomes

and (19) is equivalent to
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ue\t) = q(')(t) + o^-'-1), O Z r Z n - 1 .

Fink and Kusano [1] considered only the case where i = m, and all their

integral smallness conditions require absolute convergence; nevertheless, their

results are a distinct improvement over ours in [9] in an important sense. In

order to compare the results and to show how their work motivated the sharper

estimates obtained below, we consider the special case where f = m in (18), so that

= axi(t).

Then (19) becomes

, O Z r Z i - 1 ,
(20) Lru =

I o(yr+ilyi\ ί Z r Z n - 1.

However, the results of Fink and Kusano imply the existence of a solution u of

(3) such that

f aLrxι + o(J}-i), O Z r Z i - 1 ,
(21) Lru =

[ o{Jι

r-% iΔrΔn-l,

where

ί LrXi(t), O Z r Z n - 1 ,
(22) Ji'Kt) =

[ l//r_ί+1(f, α; pΓ,...,p f), ί Z r Z n - 1.

It is easy to show that (20) and (21) are equivalent if (6) holds; however, in other

cases (21) may be better for IΔrΔn — 2 by orders of magnitude, since

Λ + i / j ^ Γ 1 ^ 1, i Z r Z n - 1 ,

and some or all (except for r = n - l ) of these ratios may be unbounded as ί-»oo,

for suitably chosen pί9..., pn-1. Of course, in such cases the estimates of Fink and

Kusano are better than (20). This motivated the author to reexamine the proof

of the crucial Lemma 5 of [9], and to discover that it could be improved so as

to yield the estimates of Fink and Kusano and, in some cases, to improve on

them.

Before proceeding to our main results, we need a definition and two lemmas.

The proofs of the lemmas are in Section 5.

DEFINITION 1. Let φ be positive, continuous, and nondecreasing on {a, oo),

and suppose ie{l,...,n}. Define the asymptotic deviation functions φi0,...,

Φi,n-ι associated with φ as follows:

(23) <ftir(O = \™Φ(s)\jf / γ - i ^ ^ / " - i ' ^ ' y ) |<fo, i-lZrZn-2,
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(24) φ^.^t) = 2φ(0//M-f(ί, α; A _ l v . . , Pi)9

(25) 0M-2(O =/iθ, fl;ft-Ai-i) 0/ i^

(26) φ ί r(0 = / ,- r . 1 ( ί , α; p r + 1 , . . . , p ,- 2 , p , - A , - i ) , 0ZrZi-3 (if i

The motivation for this definition will become clear in the following lemma

and its applications.

Here we state a convention which applies throughout the paper: when we

write an improper integral in stating an assumption, we are assuming that it con-

verges, and the convergence may be conditional unless the integrand is necessarily

sign-constant for large t.

LEMMA 1. Suppose QeC[t0, oo), where to\a, and

(27) supτχt IJJ yi(s)Q(s)ds | Z φ(t), t \ tθ9

where y{ is as defined in (11) and φ is as in Definition 1. Then the integral

(28) Λ(ί; Q) = j * pn{s)ln-£t, s; p,,..., p»

converges for t\t0. Now define

(29) Jti,to;Q) = po{t)J{t;Q) if i = 1;

(30) J,(ί, ί0 β) = Po(0/i(ί,ίo; PiJiί Q)) ίf * = 2;

(31) Jf(ί, ίo; Q) = po(ί)/i-i(ί ίo; Pi. - Pι-2. A-iΛ( 5 6)) ίf 3 Z i Z n.

T/?en LrJf(ί, ίo; 6) ί'5 defined on [ί0, oo)/or OZrZn,

(32) IMί(ί,ίo;β)UΦιX0, O Z r Z n - 1 ,

and

(33) LπJf(ί, ί o ; β ) =

The following lemma relates our asymptotic deviation functions to the

functions J j" 1 of Fink and Kusano [1].

LEMMA 2. Let λiθ9..., λ^-γ be the asymptotic deviation functions associated

with A=l . Then

(34) 4 ( 0 = L Λ ( 0 = Jl'Kt), OZrZi-1;

(35) 4 ( 0 Z 2//r. ιV1(ί, α; Λ , . . . , pf) = 2JrKt), i Z r Z n - 2;

(36) V - ^ O = Σ/Z.-Λf, α; A . l v . . , P i) = 2J^L\{f).



174 William F. TRENCH

If φ is any function which is positive, continuous, and nondecreasing on \_a, oo),

then

(37) φir(t) Z φ(t)λir(t), i - l Z r Z n - 1 ;

moreover, if

(38) Um^ooί/r(0 = 0,

then

(39) ^ . r ( 0 = o ( 4 ( 0 ) , O Z r Z n - 1 .

3. The main theorems

The next two theorems are our main results.

THEOREM 1. Let φ be positive, continuous, and nonincreasing on {a, oo).

Suppose there are constants T\a and M > 0 such that the function F = F(t, y0,...,

yn-ι) is continuous on the set

(40) Ω={(t,yo,...,yn^)\t±T; \yr-

where q is as in (18). Suppose further that

(41) \F(t, y0,..., yn^)-(Fq)(t)\ Z w(t, \yo-LQq(t)\,..., \yn-1-Lm.1q(t)\)

on Ω, where w = w(t, ξ0,..., ζn-ι) is continuous on the set

(42) S = {(t, ίo,- , ξn-ΰ\t±T, 0ZξrZMφir(t), OZrZn-l}

and nondecreasing with respect to ξ0,..., ζn-ι Finally, suppose that

(43) ΪEi,^ (φ(t))-! JJ yt(s)w(s, Mφi0(s),..., Mψ^^ds = ΘM,

where O Z 0 < 1 , and

(44) Π S ^ x OK*))"' IJ" ^ s ) ( ί " « ) i s ) * I = α < (1 -Θ)M.

T/ien (3) has a solution u on some interval [ί0, oo) (ί 0X Γ) such that

(45) |L>«(0-Irf(OI ^ MφM, t X ί0) 0 Z r Z n - 1,

(46) Π H , ^ (^ 1 > (0)- 1 |L r u(0-L^(0l Z α + Aίβ, i - 1 Z r Z π - 1,

and
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(47) Lru(t) = Lrq(t) + o(λir(t))9 0 Z r Z n - 1.

PROOF. Define

(48) μ(t) = I \^ yι(s)(Fq)(s)ds\ + j " y£s)φ, Mφir(s\...9

From (43) and (44),

(49) Π n ^ (φ(t))~ V(0 Z α + M0,

and therefore we can choose t0 \ T so that

(50) μ(t) Z Mφ(t), t \ t 0 .

Let ^n-ilto, oo) be the set of functions i; such that Lov,..., L,,.^ are continuous

on [ί0, oo), with the topology of uniform convergence on finite subintervals; i.e.,

if {vk} is a sequence in &n-γ\t^ oo), we write

(51) vk >υ

i[limk^aoLrΌk(t) = Lrv(t)9 t\tθ9 O Z r Z n - 1 , and all limits are uniform on [ί0, ί j

for every ^ M o Let P/^_1(ί0, f̂, φ) be the closed convex subset of 3?n-\{t0, oo)

consisting of functions v such that

(52) \Lrυ{t)-Lrq(t)\ΔMφir(t\ t \ t0, 0 Z r Z n - 1.

Our continuity assumptions on F imply that Fv is continuous on [ί0, oo)

whenever ve ^ ^ ( ί o , q9 φ); moreover, since

yi(s)(Fυ)(s)ds = ̂  yi(s)(Fq)(s)ds + ̂  yi(s)l(Fυ)(s)-(Fq)(s)-]ds,

(41), (50), (52), and our integrability assumptions imply that J00 yt(t) (Fv) (ήdt

converges, and that

I £ I Z μ(ί) Z(53) I £ vf(s) (Fv) (s)ds I

whenever t e K,.^^, q, φ). Now define the transformation 3Γ by

(54) (^t;)(0

with Ji as in Lemma 1. We will show that ^ satisfies the hypotheses of the

Schauder-Tychonov theorem on Vn-λ{t0, q, φ). This will imply that there is a

function u in this set such that

(55) uW
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and it will be easy to show that u satisfies the stated conclusions.

Because of (53) and Lemma 1 with φ = Mψ, &"v is well defined and satisfies

the inequalities

(56) \Lr(fv){t)-Lrq(t)\ = I W , to; Fv)\ Z Mψir(ή9

t\tθ9 O Z r Z n - 1 .

This and the definition (52) of Vn-.x(tQ9 q, Φ) imply that

iito, q,Ψ)) <= Vn.x{tOi q9ψ).

We now show that F is continuous on Vn_ 1(ί 0, q, ψ); i.e., if {vk} is a sequence

in this set which satisfies (51), then

(57) &Όk > Γv.

If ίXί0, then

(58) IJJyfc)[(Fvk)(s)-(Fv)(s)-]ds| Z J*yfc)\(Fvύ(s)-(Fυ)(s)\ds9

where the integral on the right converges because of (43), since

-(Fi;)(5)| Z \(Fvk)(s)-(Fq)(s)\ 4- \(Fυ)(s)-(Fq)(s)\

Z w(s9 \Lovk(s)-Loq(s)\,..., IL

4- w(s9 \Loφ)-Loq(s)\,...,

Z 2w(s, MφiO(s)9...9

where the first inequality follows from (41), and the second from (52). Moreover,

since the integrand on the right of (58) converges pointwise to zero, Lebesgue's

dominated convergence theorem implies that the integral approaches zero as k-+co.

Therefore, for each ε > 0 there is a K such that

(59) \^yi(s)l(Fυk)(s)-(Fv)(s^ds\<89 t \ tθ9 k \ K.

From (54),

= Ut, to; Fvk-Fv)

therefore, (59) and Lemma 1 with Q=Fvk — Fv and φ = ε imply that

Z ελir(t)9 t\t09 O Z r Z n - 1 , k \ K .

This implies (57).

If veVn-ίito, q9 ψ)9 then (56) implies that
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(60) \L£<rυ){f)\ Δ \Lrq{i)\ + M ψ i r ( t ) , t ± tθ9 O Z r Z n - 1 ,

and (33) with Q = Fv implies that

(61) \Ln(fv)(t)\ = |(FtO(OI ^ \{FΌ)(t)-{Fq)(t)\ + |(Fβ)(ί)|

Z w(ί, MψiO(t)9...9 Mφ^t)) + |(Fβ)(0l,

where we have used (41) and (52). With (60) and (61) it is straightforward to

verify that the families

{L^vlveV^^to^q,^)}, O Z r Z n - 1 ,

are equibounded and uniformly equicontinuous on finite subintervals of [ίo» oo).

This is more than enough to imply (via the Arzela-Ascoli theorem) that ^"{Yn-xit^

q, φ)) is relatively compact.

Now the Schauder-Tychonov theorem implies that there is a function u in

Ki-i(*o> 4> Ψ) s u ς h that «̂ "w = u; i.e., u satisfies (45) and (55). Differentiating

(55) and recalling (33) shows that u satisfies (3), since Lnq = 0. If ε>0, then (49)

and (53) (with v = ύ) imply that there is a ίx \t0 such that

yi(s)(Fu)(s)dsI Z (μ + MΘ + εyψ(t), t X t±.

Applying Lemma 1 with Q = Fu, ψ=(α+MΘ + ε)ψ, and to = tί9 we see from this

that

(62) \LrJi(t, ti\ Fu)\ Z (α + M0 + ε)^ir(O> t X tl9 O Z r Z n - 1 .

From (55),

(63) L r u { t ) - L r q ( t ) = LrJt{t, to; F u ) , O Z r Z n - 1 .

Since

L r J i ( t , ί x F u ) = L r J i ( t , to; F u ) , i - l Z r Z n - 1 ,

(62) and (63) imply that

\ L r u ( t ) - L r q ( t ) \ Z ((x + MΘ + ε)\l/ir(t), t X tl9 i - l Z r Z n - 1 ,

Since ε is an arbitrary positive number, this implies (46).

To prove (47), define

Pif) = s u p τ J Γ yis){Fu){s)ds

and let pi0,..., p ί > w -i be the associated asymptotic deviation functions. From

(63) and Lemma 1 with Q=Fw and φ=ρ,
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\Lru{i)-Lrq(i)\ Z pir(t\ t ± t0, O Z r Z n - 1.

Since lim^^ p(O=O, (39) with φ=p implies (47). This completes the proof.
If lim^^ ψ(t)>0, then obviously 0 = α = O in (43) and (44), and we may as

well take ψ = \. It is convenient to state this special case separately, as follows.

THEOREM 2. Suppose there are constants T\a and M>0 such that the
function F is continuous on the set

(64) Ω = {(t, y0,..., y n _ x ) | iXT; \yr-Lrq(t)\ZMλir(t), OZrZn-1},

and there satisfies (41), where w is continuous on the set

(65) S = {(t9 ξθ9...9ξn.ί)\t\T;0ZξrZMλir(tl0ZrZn-l}i

and nondecreasing with respect to ξ0,..., ξn-i. Suppose also that S™y£t)(Fq)'
(t)dt converges and

(66) J yi(t)w(t, Mλi0(t),...9 Mλ^.^dt < a).

Then (3) has a solution u which is defined on [ί0, oo)for some to\Tand satisfies
the inequalities

\Lru(i)-Lrq{t)\ΔMλir{t\ t \ t0, 0 Z r Z n - 1.

Moreover,

Lru(t) = Lrq(t) + o{λir(i)\ OZrZn-1.

Theorem 2 implies Theorem 2 of Fink and Kusano [1], which deals with the
special case where i — m in (18). In checking this, the reader should recall the
first paragraph of Lemma 2.

REMARK 1. If the function u whose existence is guaranteed by Theorem 2
happens also to satisfy the condition

where lim^^ ψ(t) = O, then an argument like that in the last paragraph of the proof
of Theorem 1 shows that u actually satisfies the conditions

L r u ( t ) = L r q ( t ) + O ( φ i r ( t ) l O Z r Z n - 1 .

Since this is essentially the conclusion of Theorem 1, one might erroneously
conclude that Theorem 1 is only a trivial extension of Theorem 2. The fallacy
in this conclusion is that if lim^^ \j/(t) = O, then the assumptions of Theorem 1 do
not imply those of Theorem 2, for the following reasons:
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(a) The sets Ω and S in (40) and (42) are smaller than the sets Ω and S in

(64) and (65).

(b) The integrability condition (43), even if 0 = 0, does not imply (66).

Put another way, the hypotheses of Theorem 1 in this case imply the hypoth-

eses of the Schauder-Tychonov theorem on Vn^x(tθ9 q, φ), but not on the larger

set Fn-1(ί0» 4, 1) with which one must deal in proving Theorem 2. Therefore, it

is quite possible for Theorem 1 to be applicable in situations where Theorem 2

is not, even though the conclusions of the former are stronger than those of the

latter. We will point this out more specifically in the next section.

4. Applications

In this section we consider the equation

(67) Lnu + Σ^o1 Pn-XLru)y = f(t),

under the following assumption.

ASSUMPTION A. The functions /, P1,...,Pn are continuous on [a, oo), φ is

continuous, nonάecreasing, and positive on (a, oo), and limf.^ ι/f(f) = O. The

exponents ym,.. , yn-ι a r e positive ratίonals with odd denominators, while y0,...,

ym-ι can be arbitrary real numbers', am>0 in (18).

THEOREM 3. Suppose Assumption A holds and

(68)

( 6 9 ) J y i ( S ) P π _ r ( s ) ( L Λ ( s ) ) v ^ s = 0(«Kί)) , O Z r Z m - l ,

(70) i iS ,-^ GKO)-1 £ >' ί(S)|Pπ_r(s)KLrxm(s))vr-^.r(s) ί/s = Cr < oo,

O Z r Z m - l ,

and, if m<n — ί,

(71)

Finally, suppose that

(72) Σ!Γo1Cl7,|βi'-1 = fl<l

Then (67) has a solution u, defined for t sufficiently large, such that

(73) Lru(t) = Lrq(t) + o(Aίr(ί)), O Z r Z n - 1 ,
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and

(74) I * i ι ( 0 = 1*9(0 + <KΨM), O Z r Z n - l .

Moreover, if

(75) c o = = c m = O

and (68) and (69) hold with " 0 " replaced by ' V ίλen

(76) I*ιι(0 = ί*β(0 + <#*>(')), i - U r Z n - l .

PROOF. Equation (67) has the form (3), with

(77) F(ί, Jo- . , yn~i) =/(0 ~ Σr^o1 ^-r(0Λ\

which is real-valued and continuous on the set

(78) {(ί,^θ5 . . , Λ - i ) U ^ α ; Λ > 0 , 0 Z r Z m - l ; -co<yr<co9 mZrZn-1}.

(Recall the restrictions on ym,..., yn-i ) Since αm>0 in (18), Loq,...,
are positive on some interval [To, cx>), and the function

is continous there.
Because of (69),

(79) J" j^P^XsίίL^ίs))^^ = 0(^(0), 0 Z r Z m - 1.

To see this, let

rewrite the integrand in (79) as

integrate by parts, and invoke (14) and (69). Now (68) and (79) imply that

(80) ^^(φit))-^yi(s)(Fq)(s)ds = α < oo.

Since iAm and lim^^ ιA(0 = 0, (14), (34), (35), (36) and (39) imply that

(81) l i π w (Lrq(t)±Mψir(t))ILrxm(t) = am > 0, 0 Z r Z m - 1,

for any constant M. Therefore, we can choose M so that
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Λf >α/(l-0)

(see (72) and (80)), and then choose Tso that T\T0 and

Lrq{t) - Mφir(t) > 0, t\T, 0 Z r Δ m - 1.

Then the set Ω in (40) is contained in the set (78). Therefore, F as defined in (77)

is continuous on Ω, and there satisfies (41), with

(82) w(ί, ξ09..., ξn.x) = Σ^Γo1 \yrP

where the plus sign applies in the r-th term of the first sum if yr\ 1, the minus if

yr< 1. Now (70), (71), and (81) imply (43), with θ as in (72), so Theorem 1 implies

that (67) has a solution u which satisfies (73) and (74). Moreover, it is easy to

show that if (68) and (69) hold with " 0 " replaced by " o , " then α = 0 in (80).

Since (75) implies that 0 = 0, (46) implies (76). This completes the proof.

The next theorem is an analog of Theorem 3 for the case where ψ = l.

THEOREM 4. Suppose Assumption A holds and the integrals

(83)

and

(84) ^ yi(t)Pn_χt)(Lrxm(t)yrdt, O Z r Z m - 1 ,

converge. Suppose also that

(85) J00 y^t)\Pn-M\(Lrxm(t))yr-nir(t)dt < co, 0 Z r Z m - 1,

and, if m < n — l,

(86) ^ yi(t)\Pn-r(t)\(λir(t))yrdt < oo, mΔr Z n - 1 .

Then ( 6 7 ) has a solution u which satisfies ( 7 3 ) .

PROOF. AS in the proof of Theorem 3, (83) and (84) imply that f °° yit) {Fq)

(t)dt converges (with F as in (77)). With To as in the proof of Theorem 3 and M

such that 0 < M < am, choose T \ To so that

Lrq(t) - Mλir(t) > 0, t \ Γ, O Z r Z m - 1 ,

With w as in (82) (with φir = λir\ (85) and (86) imply (66). Hence, Theorem 2

implies the conclusion.
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If (6) holds, then (67) reduces to

(87) *<»> + Σ?=<1 Pn-r(t)(u^y'

This equation and its special cases have been studied by many authors (e.g., see

Hallam [3] and Waltman [14]). Except in the most recent literature, the ex-

ponents γ0,..., 7«-i have been required to be positive. Recently, however, results

on the special case

=/(ί)

have appeared in which γ is permitted to be negative (e.g., see [2], [4], [5], [11],

and [12].) The following theorems, as well as Theorems 3 and 4, are therefore

unusual not only because of the extent to which their integral smallness conditions

permit conditional convergence, but also because both positive and negative

exponents may occur in the same equation.

THEOREM 5. Let f, P 1 ? . . . , Pn be continuous on [0, oo), and suppose yo> 5

yn-ί are as in Assumption A. Let

fj-l

q(t) = Σ7=i*j ( ; - ! )? >

where am>0 and (17) holds. Suppose α>0 and, if ί\2, assume also that α<l .

Suppose also that

(88)

(89) Γsn-i+(m-r-w>'Pn-r(s)ds = 0 ( r α ) , O Z r Z / M - 1 ,

(90) Urn,-*, t" ί°° sn-m-*+(m-r-Vy'\Pn_r(s)\ds = Cr < oo, 0 Z r Z m - 1,

and, if m<n — l,

(91) (°° sn-i+V-'-o-Vy^P^ris)]ds = tf(rα), m Z r Z Λ - 1.

77ien ί/iβre are positive constants Bo,..., Bm_1, which do not depend on Co,...,

Q - i ^ «m> such thai if

(92) Σ^o^Cra^-1=θ<l,

ί/ien (87) has a solution u which satisfies

uC\t) = qW(t) + OCί1-"-*-1), 0 Z r Z n - 1.

Moreover, if
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and (88) and (89) hold with " 0 " replaced by " o , "

(93) n<'>(i) = 4<')(0 + o ί ί ' 1 ^ " 1 ) , - O Z r Z n - 1 .

PROOF. It is straightforward to verify from our assumptions on α that if

ψ(t) = t~ιx, then the associated asymptotic deviation functions satisfy

φir(t) = O^-'-*-1), 0 Z r Z n - 1.

Since (6) implies (16), (88) through (92) are the appropriate specializations of (68)

through (72), with suitable constants Bo,..., Bm in (92). Therefore, Theorem 3

implies the stated conclusions, except for one detail: (76) implies (93) only for

/ — l Z r Z n - 1 . However, since α < l if i\2, Lemma 2 of [11] implies (93) for

O Z r Z i - 2 .

Theorem 4 implies the following result for α = 0.

THEOREM 6. Suppose the conditions in the first sentence of Theorem 5 hold,

and the integrals

(94)

(95) Γ tn-i+(m-r-Vy-Pn_r(t)dt, 0 Z r Z m - 1,

(96) Γ ίw"m +^-'-1)^|PM_Γ(0lΛ, 0 Z r Z m - 1,

αnrf, if m<n — l,

(97) J00 ί»-'+( '" '- 1)^|P l l . r(0|Λ, m Z /• Z n - 1,

converge. Then (87) /ifls α solution u such that

u(r)(t) = 0(r)(f) + o(i'---i), 0 Z r Z π - 1.

REMARK 2. Even though the conclusions of Theorem 5 are obviously

sharper than those of Theorem 6, either may apply in situations where the other

does not. To see this, we observe that the existence of (94) and (95) does not

imply (88) and (89), while (90) and (91) do not imply the existence of (96) and

(97). This illustrates the point raised in Remark 1.

An argument similar to (but simpler than) the proof of Theorem 4 yields the

following result for the linear equation

(98) Lnu + ΣUPn
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THEOREM 7. Suppose f, P1,...,Pn and φ satisfy Assumption A. Suppose
also that (68) holds,

(99) \ yi(s)Pn-r(s)Lrxm(s)ds = O(φ(t)), 0 Z r Z m — 1,

and

Then (98) has α solution u which satisfies (73) and (74). Moreover, if 0 = 0 and

(68) ana7 (99) fto/d wiίft " 0 " replaced by " o , " ί/ien u satisfies (76).

Obviously, we do not have to assume in Theorem 7 that α m > 0 in (18). This

remark also applies to the following analog of Theorem 6.

THEOREM 8. Supposef, Pl9..., Pn are continuous on [a, oo) and the integrals

(83) and

yi(t)Pn-r(t)Lrxm(t)dt, 0 Z r Z m - 1,

converge. Suppose also that

r(0l4(ί)* < oo, 0 Z r Z n - 1.

Then (98) Λαs α solution u which satisfies (73).

Theorem 8 implies and improves on Theorem 3 of [9].

5. Proofs of the lemmas

We need the following preliminary lemma.

LEMMA 3. Suppose qί9 g2 ί... are positive and continuous on [α, oo), and

(100) ^qfa)ds= oo, i = l , 2 , . . . .

Then

d ΓIj(s,h:qu...,qj)Ί
ds llk(s9 a;qu...9 qk) J

has exactly one zero on (b, oo) if a<b and lZj<k.

PROOF. For convenience, let

Fk(s) = h(s> a\ <?!,..., qk), Gj(s) = Ij(s, b\ qu..., qj),
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iis) = h-iis, a; q2,..., qk), gj-^s) = Ij-^s, b; q2,..., qj).

Then

(101) n
where

Jk-1

and

(102) h'Jk =

Since lZjZfc, GjjFk vanishes at b and oo (the latter because of (100) and

LΉospitaΓs rule); hence, (Gy/Ffc)' has at least one zero on (b, oo). From (101),

the zeros of (GjlFk)
f coincide with those of hjk. We proceed by induction on j .

Since g^ — l, (102) implies that /?ik(s)<0, s>b; hence, Rolle's theorem implies

that hίk cannot have more than one zero on [fc, oo). This implies the conclusion

for j = 1. Now suppose / \ 2 and assume the conclusion with j replaced by j — 1.

Then (gj-ιlfk-ιY has exactly one zero on (b9 oo), and (102) implies the same for

hjk. Since hjk(b) = O if j\29 Rolle's theorem now implies that hjk has at most

one zero on (b, oo); hence (101) implies the same for (GjlFk)', which completes

the proof.

PROOF OF LEMMA 2. Recall that Aί0,..., λUn_λ are obtained by taking φ = l

in Definition 1. Therefore, from (23),

(103) λir(t) = Γ J- V 1 ! ^ ^ ' " 1 V ds9 i - 1 Z r Z n - 2.

The partial derivative here is positive if r = ί — 1 ([9], Lemma 3), and

because of (7) and LΉospitaΓs rule. Therefore,

(104) A w -i(0 = l,

which verifies (34) for r = ΐ — 1.

If iZrZn — 2, then (103) and Lemma 3 imply that

χ ίf\ _ 2 7w-r-l(^^ ^ Pn-li '"> Pr+l)

where 5 is the unique zero of the partial derivative in (103) on [ί, oo). This and
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(9) imply the inequality in (35). Simply recalling (12), (22), and (104) now makes

it trivial to complete the verification of (34), (35), and (36).

Recalling that ψi0,..., ψi>r-ι are obtained by taking φ = φ in Definition 1

makes (37) obvious. If (38) holds, then (37) implies (39) for i-lZrZn-1.

Also, from (37) and (104), ιAM-i(0^*K0, so (25) and (26) with φ = ψ imply (39)

for OZrZi — 2, because of (7) and LΉospitaΓs rule. This completes the proof

of Lemma 2.

PROOF OF LEMMA 1. Let

(105) c(t) = \^ yi(s)Q(s)ds,

so that

(106) \c(t)\Zφ(t),

from (27). If i-lZrZn- 1, let

n(β)ln-τ-i(U s; pr+{9..;9 pn-i)Q(s)ds,

p^I^^s, t; pn_u..., Pr+ί)Q(s)ds (see (8))

= (-ly-Λ™ c'(s) 7 " - / - ^ ^ t\Pn-u-,Pr+\) d s (see (11) and (105)).

Integrating this by parts yields

(107) Qir(t) = (-l)»-'c(s) 'nγ-iis, t\ pn-u..., pr+t)
l ( s a;p p)

4A In-r-l(S9t;pn.u...9pr+ί) "U
ds L In-i(s9a;pn-ί9...9pi) Jφ) 4A
ds

Since l i m , ^ c(t) = O, (106) and (107) imply that

(108) I G i r C O l d ΦiXt), t \ t 0 , / - 1 Z r Z n - 1 .

(Recall (23) and (24).) Since J f(ί, Q) = Qi,i-i(t), it now follows that the improper

integral in (28) converges, and so J t (ί, to; Q) is well defined on [ί0, oo) by (29),

(30), or (31). Moreover, on recalling (4), it is routine to verify (33) and that

M i C , Ό ; Q) = QιXt)9 i - l Z r Z n - l ,

which, with (108), implies (32) for i — \ZrZn — \. Since

Li-2Ji(t,t0; Q) = Ix(t9t0; Λ-iβ,,,-!) •
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if i\2, and

o\ Q) = li-r-^t, to; p r + ί , . . . , P i - 2 , Pi-ιQUi-ι\ O Z r Z i - 3 ,

if i X 3, (25), (26), and (108) with r = ί -1 imply (32) with 0 Z r Z i - 2. This com-

pletes the proof of Lemma 1.
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