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1. Introduction and notations

The aim of this paper is to clarify the relation between energy forms on a
self-adjoint harmonic space (X, ##) studied by Maeda in [7] (cf. also [6]) and
Dirichlet forms on L2(X; m) in the sense of Fukushima [5] and Silverstein [11].
Here X denotes a locally compact Hausdorff space with a countable base, con-
nected and locally connected, s# the harmonic sheaf and m a positive Radon
measure on X. More precisely: we determine the set of all positive Radon
measures m on X such that Maeda’s energy form E with domain &, can be
considered as an ,,extended Dirichlet space with reference measure m‘ as defined
in [5] und [11].

Let us recall the basic definitions and notations and give a brief . review of
Maeda’s construction of energy forms.

Let (X, o#) be a self-adjoint harmonic space as defined in [6] §1.2. In
particular we assume that the constant function 1 is superharmonic (Axiom 4
in [6]). Let G denote the symmetric (up to a multiplicative constant unique)
Green function of X. Let *5#*(X) denote the set of all positive hyperharmonic
functions on X. (X, *s#%(X)) is a standard balayage space in the sense of [2].
Let 7, denote the *s#*(X)-fine topology on X i.e., the coarsest topology on X
such that each function in *s#*(X) is continuous with respect to 7,. Notations
with respect to 7, will be designated by the prefix ,,fine(ly)-“. For a numerical
function g on X let § denote the greatest lower semi-continuous minorant of g.
Define for ue *#*(X) and AcX

Ri:=inf{ve*#*(X):v>u on A},
then R4 is the so-called balayage of u on A. Let .# denote the set of all Radon
measures on X and #* :={ue.#: u>0}. We define for pe.#+*
Gu: = | G, duty)
and for pe # and xe {Gu* <o} U {Gu_‘ <o}

Gu(x) = Gu*(x) — Gu~(x),
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where u* :=sup(y, 0), 4~ :=—inf(y, 0) in the lattice vector space .#. If p
is a potential on X, then S(p) shall denote the smallest closed subset of X such
that p is harmonic on its complement. For every potential p on X there exists a
unique pe.#* such that p=Gu and S(p)=supp u (i.e., the support of the
measure u). Let 2 denote the set of all real continuous potentials on X and let

A:={pe#*: [ pdu<oo for every pe 2 with S(p) compact}.

For pe A the balayaged measure of u on 4, AcX, is denoted by u4 (cf.
[3] §7.1). We define the set of measures of bounded energy on X by

My = {#.evf?:SGI/tldlul < oo},

where |u|:=p*t+u~, and let 4} :={ue 4y n>0}. Clearly #f=A and Gpu
is a potential for every ue .#%. Let for u, ve #;

Cus vy = (Gud,

then (4, <, Dg) is a pre-Hilbert space (cf. [8] Cor. 4.5 and Theorem 4.2). Let
(H, {, Yg) denote its (abstract) completion and set || ||z: =<, DL/2.
In [7] §5.3 Maeda considers a symmetric bilinear form E* on

Pc . ={Gu—Gv: u, ve #*; Gu, Gv bounded and continuous; u(X), v(X)< 0}

which is the restriction of a symmetric bilinear form defined on the larger space
By (for the definition see [6] §2.1). By [7] Lemma 5.11 and the following
corollary we have

E*(f, 9) = iy — B2 V1 — V25,
if f:=Gu,—Gu,, g:=Gv;—Gv,ePg.. E* is strictly positive definite. Define

&% ={f: X>RU {£ o0} :there exists an E*-Cauchy sequence (f,,),enx I Pgc
such that lim,, ., f, =f quasi-everywhere on X},

where ,,quasi-everywhere*, abbreviated ,,q.e.“, means ,,except for a polar set*.
Extending E* to £§ and identifying functions in £¥, which are equal q.e., we get a
real Hilbert space (&, E), where E denotes the scalar product (cf. [7] Theorem
5.1, and the following corollary). Let =, denote the canonical quotient map
from &§ to &, and let C be the capacity introduced in [7] §5.1. By Prop. 5.3 in
[7] each element of &3 is quasi-continuous with respect to C (cf. [7] §5.2).

By [7] Lemma 5.11 we know that Gue &, if pe .#3% and by [7] Lemma
5.12 that E(Gu, Gv)={u, v)g for all u, ve #}. Hence the map u—Gpu, u€ 4y,
is a linear map from .#; to &, and extends to a unitary operator from the Hilbert

Space (H9 < ’ >E) to (gO, E)
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For pe#™* let L\(X; p) (resp. LA(X; n)) denote the space of (classes of)
u-integrable (resp. u-square integrable) functions on X and set for fe L?(X ; u)

1£12:=§1/dp.

Let me.#* such that suppm=X. We recall thataccording to [5] a pair
(&,, E) is called an ,,extended (transient) Dirichlet space with reference measure
m*, if the following conditions are satisfied:

(#,1) &£,is a real Hilbert space with inner product E.
(#,2) There exists an m-integrable, bounded function g, strictly positive m-a.e.
such that #,c L!(X; g - m) and

g|u|g dm < JE(u,u)  forevery ues,

(#,3) £,nL¥X; m)isdense bothin (L3(X; m), | ||,) and in (&, E).

(#.4) Every normal contraction operates on (&, E); i.e.,if ue#,and vis a
normal contraction of u (i.e., |v*(x)|<|u*(x)| and |v*(x)—v*(y)|<
|u*(x)—u*(y)| for all x, y € X for some Borel version v* of v resp. u* of u),
then ve %, and E(v, v)< E(u, u).

Furthermore (#,, E) is called ,,regular®, if it has the following property (which is
stronger than (£,.3)):

(£#..3) Z.n €y(X) is dense both in (£,, E) and in (Zo(X), | ) (Where €o(X)
denotes the set of all real continuous functions on X with compact
support and | fl: =sup,ex |f(x)| for fe €(X)).

(#., E) issaid to have the ,,local property®, if it satisfies the following condition:

(#..5) E(f, g)=0for all f, geF,n LA(X; m) such that supp (f- m), supp (g - m)
are compact and disjoint.

2. The set of all possible reference measures

Let
My ={me .#4*: m(N)=0 for every Borel polar subset N of X}
and

M,:={me 4, m(U)>0 for every non-empty Borel, finely open subset
U of X}.
By [7] Prop. 5.1 we know that .#}c.#, Furthermore, if pe.#} such that
Gu is strict, then pe #,.
In the present and the following sections we shall essentially prove that
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(€, E) can be considered as an extended (transient) Dirichlet space with reference
measure m, iff m e 4,.

For (&, E) being an extended Dirichlet space with reference to some measure
m, & should be imbedded into the space of m-equivalence classes of functions on
X. Therefore we make the following definitions.

Let #(X) denote the set of all Borel-measurable numerical functions on X

and set for me #+

ZB*(m):={f: X>RU{+0}: fis m-measurable on X}.

Identifying functions which are equal m-a.e. on X we obtain a new space denoted
by #(m).

2.1. DEerINITION. Let me#*. Let =n,: &§n #(X)—>%(m) denote the
canonical map associating to each fe &% n #(X) the class of functions on X,
which are equal to f m-a.e. on X. We say that &, is embedded in #(m), denoted
by &, #(m), iff there exists an injective map T,,: &,— % (m) such that the fol-
lowing diagram commutes

¢80 B(X)—F=—>ZB(m)
e Tm
€o

2.2 REMARK. Let me#*. If & %(m), then the map T, defined in
2.1, is unique. Obviously, T,, exists, iff for every fe & n #(X) the following
assertions are equivalent:

i) f=0 m-a.e. on X.

ii) f=0q.e. on X.

To proceed we need the following proposition which is valid in a more
general situation:

2.3 PROPOSITION. Let (X, #°) be a standard balayage space in the sense
of [2]. Let f be a numerical function on X and assume that there exists a family
F(f) of subsets of X and a strictly positive potential p such that f|g, the restri-
ction of f to F, is finely continuous for every F e #(f) and

ianEf(f) Rg\F = 0 q.e. on X.
Let U be a finely open subset of X and W be an open subset of R U {+ o0} such

that f-int (U nf~Y(W))=@, then U n f~Y(W) is polar (where for A= X we denote
the fine interior of A by f-int A).

Proor. Let A:=Unf~Y(W). Let xe{infr.g Rg\F=0} and &>0.
There exists F € Z(f), such that

IA(},‘\F(x) <e.
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Set
B:= X\(f<intF).
Since f | is finely continuous, there exists V< X, V finely open, such that
A=VnF)u AnX\F).

f-int A=0 implies, f-int(V nF)=@. Hence V=B and consequently AcB.
We conclude

RA(x) < RB(x) = R¥\F(x) < e.
Thus R4=0 q.e. on X, whence R4=0. O
Applying 2.3 to our situation we obtain:

2.4 COROLLARY. Let me.#, and f be a quasi-continuous function on X.
Let U be a finely open subset of X. Then f=0m-a.e.on U, iff f=0q.e.on U.

PrROOF. Assume that f=0 m-a.e. on U. Let #F(f):={F<X:F closed,
f1r is continuous}. Since f is quasi-continuous there exists a decreasing sequence
(Vi)nen such that X\ V, e #(f) and C(V,)<1/nfor everyne N. Let ue .#%such

that p: =Gu is a bounded continuous potential on X, which is strictly positive.
We have for ne N

RV = Gu'n.
Hence, if p<a for a € R, then
Gu'» < aR¥n.
By [7] Lemma 5.4 there exists a measure A, € .#} for every n e N such that
RY» = G,
and

C(Vn) = <Am '1:1>E'
Therefore

E(Gu¥r, Gu¥n) = {pin, phnyp = SG#V"d#V"
< ozS Gl du¥» = ocS Gundj,
o2
< a2y Ang < "

Thus by [7] Theorem 5.1 (d) there exists a subsequence (¥,

lk)kEN IOf (Vn)ueN SUCh
that (R},’"k)keN converges to zero q.e.. Consequently
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infpe’(f) ﬁl),{\l«‘ = 0 q.e. on X.
Since f=0 m-a.e. on U and m € .#,, we obtain that
fAnt(Un{f+0}) =0

and thus by 2.3 that U n {f+0} is polar.
The converse is trivial. O

Now we are prepared to prove the main result of this section:

2.5 THEOREM. Letme.#*. Then the following assertions are equivalent:
1) &,5%(m)
i) me.,.

PROOF. Assume i). By 2.2 we have that for every fe &% n Z(X):
(*) f=0m-ae. on X, iff f=0q.e. on X.

a) Let N be a Borel polar subset of X. Then 1y=0 g.e. on X, and hence
Iye&¥ n #(X) and m(N)=0 by (*).

b) Let U be a non-empty Borel, finely open subset of X. Let ye . #3% such
that p: =Gue 2 and p is strict. Let U, : ={RX*'W<p}. Then U, is not polar
and UcU,. Since p, R{,“U € & N #(X), we conclude by (*) m(U,) > 0.
Furthermore

a

p = RX\U g.e. on X\U,
hence by a)
m(U,) = m(U).

Assume ii). Then 2.2 and 2.4 imply i). d

3. The associated extended Dirichlet spaces and their properties

First we want to give a characterization of .#}, which will be useful later.
We need a lemma.

3.1 LEMMA. Let ue.#% such that Gue 2. Then there exists a sequence
(Upnen in Mg such that 0<Gu, € Pgc N €o(X) for every ne N, Gu, T Gu on X
and lim,_, , E(Gu—- Gu,, Gu—Gu,)=0.

Proor. The proof is essentially the same as the proof of Lemma 6.4 in
[8]. O

3.2 PROPOSITION. Let pe.#*. Then the following assertions are
equivalent:
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(i) nedi.
(ii) There exists a constant ¢>0 such that

fifldn < VBT for every fea,.

(ili) There exists a constant ¢>0 such that

Slfldu < cJE(f,f)  forevery fe&yn €o(X).

Proor. Because of [7] Lemma 5.12 it remains to show: (iii)=>(i). Assume
(iii). Consider the linear map

f— Sfdu, fe&on €o(X),

which is densely defined on (&,, E) by 3.1. By Riesz’s representation theorem
there exists Uu e &% N #(X) such that

Sfdu = E(Uy, f) for every fedy N €o(X).

Let ve .#}. Since Gv is the limit of an increasing sequence in £, we conclude
by 3.1 and [7] Lemma 4.3

SGvdu = E(Uy, Gv).
Using [7] Lemma 5.12 this means
SG,udv =S Upudv.
Since 1G>y v and 1<y, - V€ 4%, we obtain

v({Gu+Uu}) = 0.

By [9] 2.1 it follows that {Gus# Uy} is polar, hence Gue &, and consequently
by [7] Lemma 6.4 we have ue .#}. d

Now we want to prove that for every ue.#, there exists a bounded, pu-
integrable function g, strictly positive, such that gue .#%. If uislocally in .#%,
ie. 1x-ue #% for every compact subset K of X, then it is easily seen that by 3.2
there exists a pu-integrable function g, g >0 and gu e .#%, which is continuous and
vanishes at infinity (and vice versa). But not every element of .#, is locally in
A%, Consider e.g. the classical case, where X =R, d>3, and (R?, &) is the
self-adjoint harmonic space associated with the Laplacian. Let A4 denote the
Lebesgue measure on R? and B(r): ={xe R?: |x|<r}. Define for ke N
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= kd+3/218(1/k2) A (et
and
Bi= 2R e
Then p € .4, with supp u compact, but ue #}.

3.3 LeMMA. Let ue.#* such that W(X)<oo. Assume that there exists
a constant ¢ such that for every Borel subset A of X

U(A) < cC(4).
Then ue #%.

Proor. By [7] Lemma 5.13 we have for any constant «>0

C{f =a}) < &le(f, f) for every fe&,.
Hence the same argument as in the proof of [5] Lemma 3.2.4. leads to
S |fldu < ((X)+40)E(f], |f)!/?  for every fe&.
Since
E(f1, IfD < E(f,f)  forevery fed,

(cf. [7] Theorem 6.4), this means by 3.2 that ue .#%. 0

34 LeMMA. Let pe.#, such that y(X)<oo. Then there exists a de-
creasing sequence (U,),.n 0of open subsets of X such that
lim,., C(U,) =0, lim,, , w(U,) =0
and for every ne N
u(A) < 2"C(A) for every Borel subset A of X\ U,

ProOF. The proof can be done in exactly the same manner as the proof of
Lemma 3.2.5 in [5]. O

3.5 PROPOSITION. Let pe€.#, Then there exists an increasing sequence
(K, )uen of compact subsets of X such that
) uX\\Ur K,)=0,
ii) lim,_, C(K\K,)=0 for every compact subset K of X,
iii) 1g,-pe#% for every ne N.

Proor. By 3.3 and 3.4 we can use the same arguments as in the proof of
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Theorem 3.2.3:in [5].

ReEMARK. The existence of an increasing sequence (K,),.x of compact subsets

of X having the properties i) and iii) of 3.5 may also be derived from Theorem
2.6 in [4].

3.6 CoROLLARY. Let pe.#, Then there exists a bounded, p-integrable
function g on X, strictly positive, such that g-pe #%.

ProoOF. Choose (K,),.y @asin 3.5,let 4:=X\\UZ, K, and define
g:= =1 0lg, + 1,4
with
a,:=2""(u(K,) + [[1gpule+ D~ for neN.
Then 0<g<1on X and [ gdu<1.
Set for Ne N
By = 2h=go(lg, 1)
Then puy € 43 and (uy)yey vaguely converges to g-p. Since
lunlle < i1 dalllgplle < 1 for every NeN,

we conclude by [9] 3.5 that g-pe #%. O

Given me .#* we know that by 2.5

&y c B(m), iff me A,.
Hence, if m € .#,, we may define

Er,.: T,(6o) X T,(6) — R

m

by
ETm(Tmf, ng) = E(fa g)’ f’ g E(’5”0'

Now we can prove our main theorem.

3.7 THEOREM. Let me.#,. Then (T,(&), Er,) is a regular extended
(transient) Dirichlet space with reference measure m, which has the local
property.

Proor. Let T:=T, and F:=T(&)N L3 X; m). Then the restriction
E%} of E; to & x & is a non-negative definite, symmetric bilinear form on the
Hilbert space L3(X ; m) with domain &. By [7] Lemma 4.2 the set {Gv: ve .#;}
N %o(X) is dense in L%(X; m), hence E} is densely defined in L%(X; m). By 3.6
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there exists a bounded, m-integrable function g on X, strictly positive, such that
g-me . #%. This means by 3.2:
1) There exists a constant ¢> 0 such that

ngulg dm < ¢\/JE{(Tu, Tu)  for every ueé,.

In particular T(&,)=L'(X; g-m). We now claim that E7 is a closed form.
Indeed, let (v,),.5 be a sequence in &, which is a Cauchy sequence with respect to
both E7 and | ||,. Let v be the limitin L?(X; m). Since (T(&,), E7) is a Hilbert
space, there exists v’ € T(6,) = L'(X ; g - m) such that lim,_, , Ef(v,—v’, v,—v")=0.
By 1) we conclude that (v,),.y converges to v’ in LY(X; g-m). Thus there exists
a subsequence (v, )ien Such that

v = limy, v, m-a.e. on X

v = limy_, , U, (g-m)-a.e. on X,

and hence v=v" m-a.e. Therefore we have:

2) E% is a non-negative definite, symmetric, densely defined bilinear form
on L?(X; m), which is closed.

By [7] Theorem 6.4 and Prop. 6.4 we know:

3) The unit contraction operates on (&, Ey); i.e., given ue %, then v
:=min (max (u, 0), 1) € F and ET(v, v)< ET(u, u).

Furthermore by 3.1 and [7] Lemma 4.2:

4) T(&,) N €o(X) is dense both in (%o(X), | |l.) and in (T(&), Er).
In particular, this means:

5) (T(&,), Er) is a completion of (&, E7).

Combining 1)-5) and using [5] Theorem 1.4.1 and Theorem 1.5.2 (ii) we conclude
that (T(&,), E7) is a regular extended (transient) Dirichlet space with reference
measure m.

Now it is easily seen (e.g. by [7] Lemma 5.12, [9] 3.11 and [5] Theorem
3.3.4) that the balayage of measures in the sense of [5] is identical to that defined
in [3]. By [3] Prop. 7.1.3 we know that, if ue.#% and V=X, Vopen, with
supp u<V, then

supp u*\V < ov.

It is known that this property is equivalent to the local property of (T(&,), Er)
(for an analytical proof. cf. [10]; see also [1] (14.5)). O

3.8 REMARK. i) A substantial part of [5] and [11] is devoted to the con-
struction of a Hunt process starting from a Dirichlet space. On the other hand it
is well known by results of Meyer, Boboc-Constantinescu-Cornea, Hansen e.a.
that given a self-adjoint harmonic space (X, s#) (or more generally a standard
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balayage space (X, #7)) one can construct an associated Hunt process, i.e. a process
of which the set of excessive functions is equal to *s#* (resp. #°). It is now inter-
esting to compare these two constructions. Starting from a self-adjoint harmonic
space one can choose an arbitrary measure me.#, to get a Dirichlet space
(Ti(&0), Er,,) (cf. 3.7), and then it is possible to construct the process as described
in [5] or [11]. This freedom of choice of the reference measure in a sense cor-
responds to the freedom of choosing the strict potential for the potential kernel
one starts with in the second construction mentioned above.

(ii)) By 3.7 for every self-adjoint harmonic space (X, &) there is an associated
Dirichlet space. (X, ) is uniquely determined by (T,(&,), Er,), i.e., if (X', o)
is a second self-adjoint harmonic space and (T,(&,), Er,) is associated to it in
the above sense, then (X, #)=(X’, ##'). (This is obvious, since the real con-
tinuous potentials of bounded energy must coincide.) The next question, arising
naturally, is whether every regular extended (transient) Dirichlet space having the
local property is associated with some self-adjoint harmonic space. Let us
consider the following example. Let X=R2 We define a form on L2(R2, A2)
by

B/, 0) = [ & utx ) Lo o0 a2, )+ fute, »ots, s, y)
2(E") = ¥5(RY,

where € (R?) denotes the set of all infinitely differentiable functions on R2 with
compact support. By [5] §2.1 (1°.a) this form is closable and by [5] Theorem
1.5.2 ii) its closure (2(E), E) gives rise to a regular extended Dirichlet space with
reference measure A2, which has the local property. This Dirichlet space is
connected with the differential operator L on R? defined by

Lf(x, ) = = 25 £ ) + £, ).

However, there is no harmonic space which belongs to L.
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