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1. Introduction

This paper is concerned with the diffusion approximations of certain stochastic

difference equations expressed in the following manner

f Ui - XBn = εF(π, Xεn> ω) + ε2G(n, X«, ω), (n = 0, 1, 2,...)
(1)

where {F(n9 x, ω)} (E(F(n9 x, ω)) = 0) and {G(n9 x, ω)} are certain random fields

on a probability space (Ω, &, P). This paper is a continuation of the author's

previous paper H. Watanabe [12] which deals with the case in which random

fields are derived from some Markov chains. In this paper, we deal with the

case in which given random fields are not necessarily Markovian, but mixing and

stationary. The methods of the proof base on a paper of Kesten and Papanicolaou

[6]. Here, we need more stringent conditions than in the continuous parameter

case, about boundedness and differentiability of random fields. Iizuka and

Matsuda [5] have considered the special case of (1). Here, we will show that

their results can be derived as the discrete versions of [2], [6], [7], [9]. In the

course of the preparations of this paper, a paper of Kushner and Huang [8] has

appeared. They have considered the same problem as ours under φ-mixing

conditions, while in our paper we assume strong mixing conditions.

2. Assumptions and main results

Let (Ω, &, P) be a probability space. We introduce the following conditions.

I) F(n, x, ω) and G(n, x, ω): Rd x Ω-+Rd(xeRd;ωeΩ) are jointly

measurable with respect to & x @(Rd) for each n e N = {0, 1, 2,...}, where @(Rd) =

σ-algebra of Borel sets in Rd.

II) For P almost all ω, the random field F(n, x, ώ)=(Fί(n, x, ω), F2(n,

x, ώ),...,Fd(n, x, ω)) (respectively, G(n, x, ω)) are six (one) times continuously

differentiable with respect to x=(x 1 , . . . , xd).

Ill) {F(n, x, ω), neN} and {G(n9 x, ω), neN} are strictly stationary for

each fixed x.
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IV) For each fixed M<oo, there exist constants C = C(M) and CM inde-

pendent of n such that

a) £ ( s u p w ύ M \D>Fίn, x, ω)|8) ^ C, 0 g \β\ ̂  6,

b) £( sup, x | ί M ID'G^/i, x, ω)|8-*M) £ C, 0 ^ \γ\ ̂  1,

c) P(max | x I^M |F,(n, x, ω)| ^ CM) = 1,

and

d) P ( m a x ( x U M \GJin, x, ω)\ ^ CM) ^ 1.

V) ί F(n, x, ω)P(dω) = £(F(n, x, ω)) = 0.
JΩ

REMARK. Under the conditions IV) and V)

E(DPF(n, x, ω)) = 0, 0 ^ |j8| ^ 6.

VI) Let

Λψ(M) = σ{F(n, x, ω), G(n, x, ω), / g n ^ m, |x| g M},

and

j?(n, M) = sup^o s u p ^ M ^ ^ M ) |P(A fl B) - P(A)P(J5)|.

Then,

Σ S n 08(w, M)) 1 ^ < oo for p = 6 + Id.

VII) The following limits exist uniformly on compact sets and are continuous

functions of x . υ

aki(x) = Σiι2) Σn=i E(Fk(0, x, ω)Fι(n, x, ω)) + F(Fk(0, x, ω)Fz(0, x, ω)),

bkι(x) = Σ?-i E(Fk(09 x, ω)dFι/dxk(n, x, ω))5

and

cfc(x) = £(Gk(n, x, ω)).

Weputfor/eC 2(Λ d)

= 1/2 Σί.ι-i akι(x)d2fldxkdXι + Σf«i (Σί=i 6«(^) +

The martingale problem associated with the generator J£? and starting at XeRd

has a unique solution £ on (C([0, oo), #<*), ̂ (C)) such that JR(Z(O) = X) = 1,

where ^(C) is the topological Borel field of C([0, oo), Λd).

Define Xε(t) for {X}} given by (1) as follows

1) Under the conditions I)-VI), we can show these facts.
2) Σln0t,,=0ktt+0ltk
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(2) Xε(t) = X) + (ί~jε2)/ε2(X;.+1-X5) if ]# <i t < (; + l)ε2, ( = 0,1, 2,...),

* ε(0) = Xo.

Let Rε be the measure on C([0, oo), Rd) generated by the stochasitc process

{Xε(ή}.

THEOREMI. We assume that the above stated conditions on {F} and {G}

are satisfied. Then Rε converges weakly to the probability measure R on

C([0, oo), Rd) when ε-»0.

3 Proof of Theorem 1

Let φM(x) be a C«)(Rd->R) function such that 0^</>M<;i,

ί 1 if |x| ^ M/2,
= (M ^ 1)

[ 0 if |x| ^ M,

and such that the grandient φM(x) is bounded uniformly in x. Define the truncated

fields FM(n, x, ω) = φM(x)F(n, x, ω) and GM(n, x, ω) = φM(x)G(n, x, ω). Also

define stochastic processes Xε

n>
M(ω) successively,

Xϊfflω) = Xε

n>
M(ω) + εFM(n9 Xε

n>
M(ω), ω) + ε2GM(n9 X ε

π ' M (ω), ω ) ,

X ^ ( ω ) = X0, (\X0\£M).

We define Z ε > M(ί) as in (2). From the definitions, we know that there hold

\Xε

n>
M(ω)\ ^ 2M for all n = 1, 2,..., and for sufficiently small ε > 0,

and

l* ε 'M(0l ^ 2M for all t > 0 and for sufficiently small ε > 0.

Let β β ' M be the measure induced by Xε>M(t) on D([0, oo), Rd). At first, we show

that for each fixed M>0, the family of measures {βε M}ε>0 is tight on

D([0, oo), R*).

We list the following lemmas from Kesten and Papanicolaou [6] which we

will use frequently. Their proofs will be omitted, because they are similar to [6].

LEMMA 1. Let U(n, x, ω) be ^^-measurable for each fixed x(|x|^2M)

and such that E{U(n, x, ω)} = 0. Let V(m, ω), mrgn, be an JC^-measurable

random variable. Then, for 0 < y ^ l , there eixsts a constant C^ — C^iy, d) such

that for all O^l^m^n

\E{U(n, XVMW(m)}\ ^ C ^ Σ w s i supw<;2 M |2W(n, x)|4}1/4

x E(\V(m

3) In the following, in Jί: (M), we will omit M and simply denote by Jί:, also for β(-, M).
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LEMMA 2. Let Y(m, ω) be ^-measurable, and for jc(|x|^2Af) let U(n, x)
(respectively V(l, x)) be Jt^Jtty measurable. Assume that E(V(l, x)) = 0.

Put

,x) = E(U(n,x)V(l,x)).

Then, for each 0 < y ^ l , there exists a constant C2 = C2(y, d) such that for all

\E(Y(m) [U(n, XUM)V(l, X£*) - W(n, I,

\DβV(l, x)\*}y*{β(n-m, M)β(l-n,

Let Φ(s, t) = E(\Xε>M(t)-Xε>M(s)\r), O^s^t, 0 ^ r ^ 2 . If we can show that

E(\Xε>M(u) - Xε'M(t)\2Φ) ^ const. \u - t\E(\Φ\8)^8,

then, by the argument in [6, p. 108], we can obtain the tightness of the family of
measures {βε 'M}ε > 0 for each fixed M>0 on D([0, oo); Rd). Since \Xε>M(u)~
Xru%2,\2SCM\u-lu/ε^\^CM\u-t\ and \Xε

ύf^+1-Xε^(t)\^CM\u-t\, it is
enough to show that £( |Zf^ 2 ] -Xf^ 2 ] + 1 | ^ )^const . Iw-ίlEdΦI8)1/8.

Put [w/ε2] = w(ε), [w/ε2] — l = u'(ε) and [w/ε2] H-1 = u"(ε) for an arbitrary real
number u. We have, for O^t^u, by Taylor's expansion theorem,

I Vε,M _ Vε,M 12
1^ (ε) A ί " ( ε ) I

= Σ£&.) Σf-i

= 2ε Σ ^ ω Σf-

+ 2ε2 Σpίhe) Σf-i

= At + A2.

By the boundedness of XyM and condition 6) in IV), we have

\E{A2Φ}\ g \u-t\ const.

Also, we have, by Taylor's theorem again,

E{AXΦ}

, x, ω))

x {dldXll{FYx{j, x, ω) (x - Xi^hJ^jf'φ)



Diffusion approximations of some stochastic difference equations 19

&& ff (*, x, ω) + β(?ίf (*, x, ω))

2 (Fft(k, XVM, co)

+ eGf[(k, Xi ", ω))

£(1 -uneηdx.Jx^x^iFKU, x, ωXx-Xp%)iχ=x..M+u(Xi.»_x.,»)duΦ)

By Assumption IV), we can see easily that

|/,| ^ const. \u-t\E(\Φ\syιs (i = 1, 4).

By means of Lemma 1, we have

\h\ ^ 2ε* ΣAε*ω Σfc/ w Σf,.ι2=i l^([(^(^. x, ω) +εG^(4, x, ω))

x (8ldxh)(FK(j, x, ω)(x-X ,ιfa)h

g 4ε2 ΣAε<>ω Σfcί-w Σft.1,-1 CxjSC/

A:, x, ω)| + e\G%{k, x, ω)\)*y»E(\Φ\ψl»

^ const \u - ί\E(\Φ\sy8.

By the same way, we have

|/3 | ^ const. lu-ί

Since the family {βε 'M}ε > 0 is tight, we can extract a sequence {εn} of positive
numbers tending to zero such that Qε» M converges weakly to QM. Generally,
there may exist many such sequences and their corresponding limit measures, say,
Qf, λeΛ. Now, we show that for any Qf, λeΛ,

/WO) - (' &Mf(X(t))dt
Jo

is a martingale with respect to J^o ( = °(x(s\ s£t) on C([0, oo), Rd)), where/is
any C00 function/: Rd^>R with compact support and ££u is a generator which
will be determined later. For this purpose, we prove that for any integer n>0
and a bounded continuous function Φ: (Rd)n->R and O^s1<s2<' '<

= £β? I J <?Mf(X(μ))Φ(X(8ί),...9 X(sn))du }.
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For the mean time, we omit the super-suffix ε, M in Xc

k'
M and Xε M(t). By

using Taylor's theorem repeatedly, we have for O^s^ί ,

= ε Σ'Ά ΣU £ (δ/3*,l/ (ΛΓy + «(ΛΓy+1-Λ0)) rf«(*7C/, XJt ω)

» « ΣJ'iil.) Σί-i £ ( J T O . *}> ω) (d/dxdf (Xj + u{XJ+ί - Xj))

-Fψ(j XJ,ω)(δldxι)f(XJ))du

+ β Σ Ά Σfcίw ΣU(F?(j, Xk+1, ω) (δ/dXl)f(Xk+1)

- Ff(j, Xk, ω)(dldXι)f(Xk))

+ B Σ 'j'^U Σ f - i W . *•.(.>. ω> (W*ι)f {*«.))

+ ε2 Σ'Ά ΣU \\δ/dx,)f (Xj + u(XJ+1-Xj)) duGf(J, Xj, «)

= Λ + J2 + J3 + J4.

Let Φc(ω)=Φ(ZSl(£), XS2(ε))..., ZSn(e))and \Φe\£Cφ<oo. Then we have

\E(J3Φt)\ = |£(ε ΣJ'iίi.) Σf-i ̂ U . ^ ( £ ) . ω) (5/^ ( )/(Z s ( ί ) )Φ ε ) |

^ β ΣJ'i:}.) Σf-x Q^Σi/ris i βup | < | S 2 J ί | / ) ' / f (/, *, ω)!4)

^ ε const ΣT=iβ(l)1/(3+d) >• 0 (ε -> 0).

(3) Λ + J 2

/. Xj, co))(d2ldxl2dxh)f(Xj)

(ε2/2) ΣViίi.) Σf,. l,.ι,-i FX(J> xi> °>) Π?=2 ((^fίCΛ JO. ω>

fίO", 1>, ω))

+ ε2 Σ*Ά Σfcλ.) Σf,.ι2-i
x {FψΛ{k, Xk, ω) + εG%(k, Xk, ω))

+ (ε3/2) ΣJ'iίw Σfci« Σf.,1,.1,-1 id*ldxhdxh)

flV, x, ω) (dldxh)f(x))x=xk
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x Π?=2 (* ff(*. Xk, ω) + βGff(fc, Xk, ω))

+ (ε 4 /3!Σ^ω Σfcίω Σ?,,l2,i3,/,=i UUiF^U, X*, ω) + βGf,(J, X*. ω))

x {dηdxudxl3dxh){Fΐ[U, x, ω) (diexlt)f(x))^Xk

J'iίi.) Σfcίw ΣfI.ι1.ι,,i4.ι,-i Π?=2 (Fff(Aτ, ΛΓt, ω)

Gathering the terms involving ε2 in (3), we put

+ Σ f t ) Σfcίw Σf.«-i {WxmHFYU, x, ω) (dldx,)f(x))x=Xk

xF»ϊ(k,Xk,ω))

e2 Σ Λ Σf.-i Σ5=(ί+i ^rα. ^> ω)Fif(Λ, ΛΓ*. ω){eηdxjdx,)f (Xk)

+ β2 Σ&ί.) Σ#.-i ΣJ'iiVi ^ίί(*, Λf», o>) ((δ/dxk) FfU, x, ω)

Then we have

ε2 Σi'iίw Σlm=i E{(d*ldxJdx,)AXk)Φ.(ω)(Σtjli\iE(Fr(j, x, ω)

xF%(k,x,ω))x=Xk)}

+ ε2 Σi'iίω Σί=ίw Σf,-i £[a2/β*^*ι)/(JΓ»)Φ.(ω)

x {FfO', x, ω)F%{k, x, ω)
- £(Ff (y, x, ω) Fjf(Λ, x, ω))}x=xJ

+ ε2 Σl'iίJ.) Σf.»-i £{(3/a*,)/(Jrt)i>,(a)) Σj'iίn [^(^^(A:, x, ω)

x (3/aχJ /-f a, x, ω))]x = xJ

+ ε2 ΣJ'iίw Σ f t w Σf.-i Ei(djdXι)nXk))Φ. (ω)

x {-Fjf (Λ, x, ω)(βldxjF?(j, x, ώ)

- E{F%{k, x,ω){dldxjFfU, x, «) )}^xj

+ (ε2/2) ΣJ'iίc) Σf.-i £[(52/δxmax,)/(Ji0.)Φε(ω))£(Frθ , x, ω)
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+ (*2/2) Σί'ii) Σf.-i E^ldxJd

x{Fψ{j,x,ω)F%{j,x,ω)

- E(Ff{j, x, ω)F%{j, x, ω))}x=Xjl

= Ki.i + *i,2 + X1.3 + KiA + KU5 + KU6.

From the mixing property VI (see Theorem 17. 2.2 of [4]), it follows that

j , x, ω))

+ E{Fψ{j, x, ω)F%(j, x, ω)) = afm(x) + O£(l)

and

iί , x, ω)} = fc^(x)

where β{J,(x) = φUx)aJx), fc^,(x)Ξ^(x)bίmW+(^xm)0MW Σ"-i
ω) x Ffa, x, ω)) and O£(l)->0 uniformly on Rd as ε->0.

Therefore, we have, applying Lemma 3.4 in [10],

^1,1 + ^1,3 + ̂ 1,5

(dldx,)f(Xk)Φ,n(ω)(brm(Xk)

f=i Σί- i * ! ? - 1 (d*/dxmdx,)f (X(u))Φ(ω)afm

+ (δlδXι)f(X(u))Φ(ω)bfm(X(umdu, (e. —» 0),

where β£« M=>α^ (εn->0). Put Hltm(j,k,x,ω)=Fψ(j,x,ωyF*{k,x,ω)-
E{Ff(j, x, ω)F%(k, x, ω)). Then, K1>2 can be written in the following way,

*i.2 = ε2 ΣJ'iίw Σfciw ΣΛ,h-i E{(d2ldxhdxh)f(X,M)

x Φc(ω)Hluh(j, k, Xs(ε), ω)}

+ εG^(A, Jrft, ω))

x (dldxl3)(δ2lδxhdXll)f(x) HllthU, k, x, ω))x=Xh}

+ (ε4/2!) ΣJ'i?« Σfciw ΣfcW Σfliίϊ.i,.i4-i ^{*,(ω) Πt-a (̂ ff(A, *„, ω)

+ β<7ff (A, ΛT,, ω)){δηδxuδxH({δ2lδxhδxh)f{x)Hluh{j, k, x, ω)))x=Xh}

Π?-3 (FffίA, *kr ω)

uh{j> k,x, ω)))x=Xh}

fciw Σί=ί« Σf1>ί2 /.-! £{Φε(ω) Π?=3 {Fψt{h, Xk, ω)
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eGf,(h, Xh, ω)){dηdxl6dXlίdxlΛdxH){φ2l<>XHdxιMx)Hluh{j, k, x, ω))x=Xh}

Πh, Xh,

t^U, k, x, ω)))x=Xh+u(Xh^.Xh)du}

By applying Lemma 2, we have

l*i,2.il ύ ε2 Σ'Ά Σfcίw Σf

g const, ε̂  Σyiίϊ.) Σfcίw

^ const, ε2 Σ",-o β(JiYn6+2d) Σf2=o j9C/ 2) 1 / ( 6 + M ) 0 (β -> 0)

Again applying Lemma 2, we have

|JSΓ1>2,2| ύ const, ε3 Σ'Ά Σfcίw Σfcίw Σί.,1,.1,-1

x [£(|Φ.(ω)| βup^is^Ka'/ax^ax^j^/WFίίίA, x, a))!)8)1

+ βJB((|Φ.(ω)|sup,x|S2Jί|(a3/a*/,a*Il5xIl)/(*)Gf;(A, x,

x ^ { Σ liWJίC/ )|8}1/8£{Σ

h=s{ε) Z*l1,l2,l3 = l

^ const, ε* ΣJ'iίw Σί=i« Σfcίw
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g const. ε3(ί(ε) - s(ε))(Σ?=o0(tf)1/(6+2<i))2

^ const.ε|ί-s| —> 0, (ε-»0).

If we recall that E(D*F(n, x, ω))=0, |α |^6, we can prove that \KU2,t\-*0
(ε->0)for i = 3, 4, 5.

Since

Λ, * „ , ω))

x (d5ldxhdxhdxlsdxudxl3)((β2ldxhdxh)f(x)HluHti> K x, ω)))x=

is bounded, we have

l^i,2,6l ^ const. ε(ε2(/(ε) - s(ε)))3 g const. ε | ί-s | 3 > 0, (ε-^ O).

By the same method as for K1>2 we can see that K1 4->0, (ε->0). For K16, we
make the following transformation.

r 5 ( £ ) ) Φ £ ( ω ) ( ^ ( > m 0 , y, XJt ω))

+ 2-^ ΣJ'iίω Σfcίw Σt.h.1,-1 Et(d*/dxtidx,2dxh)f(Xk)Φt(ω)

x (F%(k, Xk, ω) + εGftik, Xk, ω))Hluh(j, j , XJt α»)]

Πf-s (̂ ίf(A:, JΓ*. ω) + sGf,(k, Xk, ω)Hίlth(j, j , XJt ω)]

x(Xk + u(Xk+1-Xk))

+ eGY,(k,Xk, ω))HluhU,j, Xj,

= ^1,6,1 + ^1,6,2 + ^1,6,3 + -^1,6,4-

By applying Lemma 1 to Kλ6Λ, we have

K,,6fi ^ const, ε2 Σ Ά ftj-s®)1'13"* — • °> (£ 2"> 0)

Also, we can show that K16t->Q, (ε->0), i=2, 3, 4.
We put

•Ί.l + 2̂,1

= Ki + ε3 ΣJ-%) Σf,.ι,.-i ^ffα ^y. ω)<?fία ^ . ω)(d2ldxhdxh)f(Xj)

+ ε3 Σ Λ Σfcίw ΣΛ.h-i (S/dxh)(FiiU. x. o>)(d/dxh)f(x)UXk
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Since E{F^j\Xpω)G?2(j\Xpω)(d2ldxl2dxlι)f(Xj)ΦE(ω)} is bounded, we

have£{K2Φε}->0, (ε->0).

Furthermore, we have

\E{K3Φt}\

z ε3 Σ'Ά Σfciw Σf1)l2=i

ε3 Σ'Ά Σfciw ΣL12-1 E{(\Φe(ω)\supMS2M\(dieXlι)f(x)

fι(j, x, ω)\*yι

g const, ε Σ/°=o β(0ι/(3+i) • 0, (β-»0).

For / 1 > 2 , we have

E(JU2φt(ω))

= ε3 Σi'iίl.) Σf,.ι2.ι,-i ^ { ^ ( Λ *j, co) Π3=2

( ) (

Jo Jo

Since E{ } is bounded by assumptions, we have
\E{JU2Φε(ω)}\ ^ const, ε > 0, (β->0).

In the same way, we have £{J2,4^e(co)}->0 (ε->0).

Concerning J 2 2 , since E(D*F(j, x, ω)) = 0, we can apply Lemma 1 to this

situation and we have

\E{J2>2Φε{co)}\

S (β3/2) Σ}'i&) Σfcί(.) Σf1.I a.i3=il^ίΦ.(ω)

?f0 , x, ω)(dldxh)f(x)))s=xk

^ β̂  ΣJ'i:}.) Σfcίw const. β{j-

= 0(ε) . 0, (ε^O).

In the same way we have £{J2)3Φε(ω)}->0 (ε-^0).

Let us consider J4. JA can be transformed in the following form
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Λ = ε2 Σ'Ά ΣU iβldxι)f{Xί)Gψ{ji Xj, ω)

ΣU
- (δldXι)f{Xj))duGf(j, Xj, ω)

= ε2 ΣU (ΣjίίftΓ1 + - + ΣΆnnr) (dldx,)f(Xj)Gru, Xj, «))

Σ'Ά

x Gίί(Λ Jfy, ω)(Ff2(Λ Xj, ώ) + εGY2{j, Xp ω))

= "̂ 4,1 + -̂ 4,2'

where we put n = [(ί(ε) — s(ε))/Γ] for large integer T>0. From Condition IX),
we can easily deduce that

E{J^2Φlω)) >0, as ε-»0.

Let us consider JA>1. We have

E{JAΛΦε{ω)) = ε2 Σf=i (ΣPί ΣίiV^" 1 + E^i?*5 '

), ω)Φ,(ω))

x E([(dlδXι)f(Xh+ί+sω)Gr(j + s(ε), Xh+1+S(ε), ω)

- (.dldx,)f(Xh+lW)Gf(j + Φ), *•*+.(.).

= ε2 Σf-i (ΣXΞέ Σ ^ 1 " " 1 + Σ ^ W " 1 )

x E(Gf(J + s(ω), X, ω))s=Xkτ+siε)}

+ ε2 ΣU (Σϊ=4 Σj*-tVΓ-1 + Σi (- i 7 w -

x (Gf(7 + ί(ε), x, ω) - E(G?(j + s(ε), x, ω)))x=XkTts(J

+ ε3 ΣU ΣU (ΣU Σj ΆF-1 Σi=lτ + Σ'MΪ?™-1 Σί^

((dldxlt)f(x) (G?(j + s(e), x, ω))

, x, o})))x=Xh+Hc)+u(Xh+l+sM-Xh+s(^

, Xh+S(φ ω) + εGf(h+s(ε), Xh+s(ε),

= Lχ+ L2 + L3.

Now choose T such that εT->0 (ε-»0), but T-» oo (for example, take as T=
Since the integrand in L3 is bounded by Condition IV), we can see that L3->0
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Since E(Gf(j + s(ε), x, ώ)) = φM(x)cι(x) = c^(x) by definition,

Let X(n, x, ω) = Gψ{n, x, ω ) - c f (x), then £(K(n, x, ω)) = 0 and K(n, x, ω) is

e. Therefore, we can apply Lemma 1 to L 2. Hence, we have

x const. E{Σ\β\*iSup\x\*2M\D'KU + s(e), x9

^ const, ε 2 ^ " 2 ^ 1 Σ?=o jS(u) 1 / ( 3 + d ) = const. Γ" 1 • 0, (e->0).

Thus, we have, for any bounded J^g-measurable Φ(ω),

) = £β? {£ [{Σf.m=i 2-1(

from which we can deduce that any Qf, λeM, are solutions of the martingale

problem such that

/(x(0) - Γ J?Mf(x(u))du
JO

is a martingale on (C([0, oo), i^d), «^S)4)

5 where ifM = 2-A Σf,m=i (afί

m(x)(d2ldxιdxj

We have uniformly on each compact set

limM.^ aft(x) = αw(x), limj^^^ b^(x) = bfcί(x) and l i m ^ ^ cf (x) = cfc(x),

which are continuous.

By Assumption VII), applying Theorem 11.4 in Stroock and Varadhan

([11], p. 264) to Qf, Qf weakly converges to R as M->oo.

If we repeat the argument in Kesten and Papanicolaou [6], we can show that

Rε weakly converges to R on C([0, oo), JRa).

4. Special cases

If the random fields {F(n, x, ω)} and {G(n9 x, ω)} take the special forms,

4) As in [6], we can show that each Qf is concentrated on C.
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assumptions can be much simplified.
In this section, we consider stochastic difference equations defined by

n, X%, ω)

n, X%, ε, ω), X°o = Xo

We introduce the following conditions.
Γ) The random fields FW(n, x, ω)=(F(

1

i)(n, x, ω),..., Fd

ι\n, x, ω)} (i = 1,2)
are expressed in the form

Fj'>(fi, x, ω) = ΣUi ήKxfflKn, ω), (k = 1, 2,..., d),

where {ξ\°(n, ώ), 1 = 1,..., dj}, n=0, 1, 2,... are real ^"-measurable functions and
giΫ(x) are real ^(R^-measurable functions. F<3)(n, x, ε, ω)=(F[3\n, x, ε, ω),
..., Fγ\n, x, ε, ω)) is real ^-measurable for n=0, 1, 2,..., xeRd.

Π') {9ί\Kx)}k=i,2,...d,ι=i drR'^R (respectively gW(x)) are six (one)
times continuously differentiable with respect to x=(x,, x2,- , Xd)-

IIΓ) {ξγ\n,ω),j=:ί,...,d} 0 = 1,2) and {F^\n, ,ε,ω)} are bounded
strictly stationary vector processes and E(ξψ{n, ω))=0.

IV) Let ^f = σ{ξγ\n, ω), Fψ{n, x, ε, ω), 0 = 1,2,...,^), (i-1,2), /g
and

f Λ i i \P(A n B) -

Then

V) Let

akl(x) = Σii Σ?-i ^(^"(O, x, ω)Fί'>(«, x, ω))) +JE(n i )(0, x, α»)F{D(0, *, ω))

= Σi.,Σί:.-i Σ?-ι EtfPiO, ω)ξ<Λn, ω))gίV(x)g\l\x)

+ Σϊ.v-i E(ξ(Λ0, ω)ζiι\0, ω)gil\x)g\l\x)

= Σt.i Σίί.-i ΛiίWMffίίHjO + Σί:.-! ^ ί 'HO, ω)e'(0, ω))^^^)^^)^) ,

where we put R<£ = Σ?-i £(ίL1}(0) f^OO). Also, we put

(Λ0, x, ω)(dldxk)F<iXn, x, ώ))

and

(», x. ω)) = Σίi i
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where cu=£((

M

2)(n)). We put, for fe C2(Rd),

* / ( * ) = 2-1 Σί.1-1 akl(χ)(eηdxkdXι)f

+ ΣU (Σί-i ω + ΦMd/dxdf

Then, the solution of the martingale problem associated with generator if has a

unique solution # on (C[0, oo), Kd

We define Xε(t) as in §2. Let Rε be the measure on C([0, oo), Kd) generated

by the stochastic process {Xε(t)}. Then, we have the following theorem.

THEOREM 2. We assume that conditions Γ)-V) are satisfied. Then Rε

converges weakly to the probability measure R on C([0, oo), Rd) such that

The proof of Theorem 2 is analogous to the one of Theorem 1. It is neces-

sary to replace Lemmas 1 and 2 by the following Lemmas 3 and 4.

LEMMA 3. // ξ is measurable with respect to Jt*ξ with E(ξ) = 0 and η is

measurable with respect to Jί™+m (n>0) and if\ξ\<LCl9 \η\^C2 with probability

one, then we have

PROOF. This is Theorem 17.2.1 in Ibragimov and Linnik [4, p. 306].

LEMMA 4. Let ξibe ^l

0 measurable and ηj (respectively ζk) be

measurable. Assume that E(ζk) = 0 and

P(\ξi\ ^ Cu \ηj\ g C2, \ζk\ S C3) = 1.

Then, for all i^j^k9 we have

\E{ξ{ηjζk-E(ηjζk))}\ ^ SC±C2

PROOF. vv7k = f7J Ck — E(ηjζk) is bounded and Jί™-measurable and E(wJk)

Therefore by Lemma 3, we have

\E{ξfηjζk-E(ηjξj)}\ ^ SC&CM-Ϊ).

On the other hand, ξflj is ^-measurable and ζk is ^J°-measurable. Hence

Also, we have

Therefore, we have
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from which we obtain the conclusion of Lemma 3.

We will omit the proof of Theorem 2.

If d = l,gW(x)=l and F«\n, x, ω) = 0 (7 = 2, 3), then Theorem 2 gives

Theorem 4.1 in Davydov [3]. If {ξnk} are orthogonal random variables with unit

variance and F^\n, x, ω) = 0 (ί = 2, 3), then

which is the generator of the solution process of the stochastic differential equation

dxk(t) = ΣUi gίiKχ(t))dBtι(t), (fc = i, 2,..., d).

5. Generalizations

In this section, we will try some extension of the results of the preceeding

sections. In this section, we assume that all random fields depend on ε. We

introduce the following conditions.

VI") Let uTf(ε, M) = σ{F(n, x, ε, ω), G(n, x, ε, ω), / = n = m | x | = M } and

β(n9 ε, M) = sup^o sup^^i ( β f M ) f f c u r Γ + i i ( β > M ) |P(A n B) -

There exists a positive non-decreasing function L(ε) such that L(ε)->oo (ε-»0) and

ε2L(ε)->0, (ε->0), and such that

Ό2^'11 β(n9 ε, M)^6+2^ = 0

and the following limits exist uniformly on any compact sets of x, independent of t

(4) limε_0 1/L(ε) Σ ί , , Σ^Ϊ 2 L ( ε ) " 1 ] E(F k (0 , x9 ε, ω)Fι(n, x, ε, ω)) = αf,(x),

and

(5) limε_o 1/L(ε) Σ f i ί 2 ^ " 1 3 ^ * ^ , x, ε, ω)(5/δxfc)Fz(n, x, ε, ω)) = 6ft(x).

IVW) Let uf?(β) = σ{#>(n, ε, ω), Fj3>(n, x, ε, ω), (./ = 1, 2,..., dt), (i = l, 2),

l<.m^n} and

α(n, ε) = suP />0 s u p ^ ^ ^ f c ^ - ^ , ) |P(A n B) -

There exists a positive non-decreasing function L(ε) such that L(ε)->oo, (ε-^ O),

and ε2L(ε)->0, (ε->Ό), and such that

^ ε ί 2 L ( ε ) " 1 ] Φ 5 β) 1 / 2 = 0

and the following limit which is independent of t exists,
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(6) lim^o L(ε)-1 Σ ^ ί 2 t w " 1 ] E(ξ™(0, β)#>(«, β)) = R*u

(

v

l\

Define X%(t), as follows,

X%(t) = X} + (ί-jε2L(ε))/ε2L(ε), if 7ε
2L(ε) < t < (j + l)ε2L(ε).

Let R% be the measure on C([0, oo), Rd) induced by the stochastic process

If we consider f{X^-2Ue)-^-f(Xl^L{E)i) m place o f / ( X f # ) -
in the proof of Theorem 1 and make use of the assumptions introduced in the
above, we can prove the following theorems in analogous ways as in Theorem 1.

THEOREM 3. We assume that I)-V) in §2 and VI"), where in Assumption
IV), constants C = C{M) and CM are independent of n and ε. We put fe Cj(Rd)

J?*f(x) = 2-ι Σiι=i aUx)(d2/dxkdxl)f+ Σί,ι=i 6ftW(δ/Sx,)/,

where a*t(x) and bft{x) are defined in VI"). Furthermore, we assume that the
solution of the martingale problem associated with generator &* and starting
atXeRd has a unique solution R* on (C([0, oo), Rd), @(C)) such that R*(X(0) =
X) = l, XeRd. Then, R% weakly converges to R*.

THEOREM 4. We assume that Γ)-IIΓ) in §4 and IV"), where in III')
{ξγ\n, ε),j = l,..., d} (i = l, 2) are bounded also with respect to ε. Let

a* = y I y di R*ωaί1)(x)a(iΐ)(x)

and

)g\l\x), g[\\x).

We define &*f(x) as in Theorem 3 for fe C\Rd). Also, we assume that the
solution of the martingale problem associated with generator ££* starting at
XeRd has a unique solution R* on (C([0, oo), Rd), @(C)) such that R*(X(0) = X)
= 1. Then, R% weakly converges to R*.

In Theorem 4, we take a dxd symmetric, non-negative definite matrix σ*k

(u, k = l,...,d) such that

°UU = Σfc=l σukσvk-

Now put

where B(t) = (Bί(t),..., Bd(t)) is a J-dimensional Brownian motion. Then, the
corresponding stochastic differential equation to the diffusion process associated
with the generator J£?* is written as follows;
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where o means the stochastic integral in the sense of Stratonovich.

Now consider the case d = l. Let δ(έ)>0 and (5(ε)->0 (ε-^0). Assume that

E(ξM(P9 e)ξi»("> β))~exp (-£(β)n)(n->oo). Then the limit

l i m ^ 0 δ(s) Σ ? β l E(ξ«KO, β)f(1)(n, β)) = # * ( 1 )

exists. Therefore, we can take L(ε) = l/<5(ε). Assume that α(n, ε)~exp ( — δ(ε)ή)

Then, also we have

Therefore

lim^oίβδίβ)1 '2 Σ?A ( β ) β ' a ]α(Λ, ε) 1 ' 2 = 0

if and only if limε_*0 ε/<5(ε) = 0.
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Supplement

We propose another version of Theorems 1 and 2. At first, we remark that

if {X*} defined by (1) is known to be bounded, then Assumptions (c) and (d) of

IV) of Theorem 1 in Section 2 can be dropped. Many examples in population

genetics are the case.

More precisely, we introduce the following conditions.

0) {Xε

n

tM(ω)} (which is defined in section 3) is bounded for each fixed

M > 0 , with respect to ε, n and ω.

VΪ) For each M<oo, there exists a constant C = C(M) independent of n

such that

a) £ ( s u p | x | ^ M \D*Fln9 x, ω)|«) ^ C, ^ύ\β\ύ 6,

b) B(sup | x | g M |D^ I (»i ,x,ω) |8-*l» l)^C, 0 £ | y | = 1.

It is clear that if {Xε

n} is bounded, condition 0) is satisfied.

THEOREM Γ. We assume that conditions 0), /), //), ///), VΓ)9 V) and VI)

are satisfied with respect to {F} and {G}. Then, the conclusion of Theorem 1

holds.

PROOF. In section 3 (Proof of Theorem 1), we used conditions c) and d)

in two places. The first one is to say about boundedness of {Xε

n'
M} which is

equivalent to condition 0). The second one is to say that the inequality

and etc. hold.

In this situation, we proceed as follows.

:§ |/ -

We can deal with | Z f ; J ί ] + 1 - Z β M(OI by the same way.

Next, we consider some modification of Theorem 2. Let us introduce the

following conditions.

ΪΪΓ) {ξψ(n, ω), j = l,..., di) (i = l, 2) are stationary vector processes and

E{ξγXn9ω)} = 0.
There is a constant C independent of ε, n, for a δ > 0

£( |#>(n, ω)|<*+">) ^ C, i = 0, 1, j = 1,..., d%

and
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IV7) For α(n) defined in condition IV), it holds

Σf-i Φ)δ/i*+2δ) < oo for a 5 > 0.

THEOREM 2'. C/nder Conditions 0), /'), //'), W/') Ή and V'\ the con-
clusion of Theorem 2 holds.

The proof of Theorem 2' is analogous to the one of Theorem Γ. We have
to replace Lemmas 1 and 2 by discrete versions of Lemmas 3 and 4 in [13].

[13] H. Watanabe, A note on the weak convergence of solutions of certain stochastic ordinary

differential equations, Proceedings of Fourth Japan-USSR Symposium on Probability and

Mathematical statistics.




