Boundary limit of discrete Dirichlet potentials

Takashi Kayano and Maretsugu Yamasaki

(Received January 11, 1984)

§1. Introduction

Let X be a countable set of nodes, Y be a countable set of arcs, K be the node-arc incidence function and r be a strictly positive real function on Y. The quartet $N=\{X, Y, K, r\}$ is called an infinite network if the graph $\{X, Y, K\}$ is connected, locally finite and has no self-loop. For notation and terminology, we mainly follow [4], [6] and [7].

Let $L(X)$ be the set of all real functions on X and $L_{0}(X)$ be the set of all $u \in L(X)$ with finite support. For $u \in L(X)$, its Dirichlet integral $D_{p}(u)$ of order $p(1<p \leq \infty)$ is defined by

$$
\begin{aligned}
& D_{p}(u)=\sum_{y \in Y} r(y)^{1-p}\left|\sum_{x \in X} K(x, y) u(x)\right|^{p} \quad(1<p<\infty), \\
& D_{\infty}(u)=\sup _{y \in Y} r(y)^{-1}\left|\sum_{x \in X} K(x, y) u(x)\right|
\end{aligned}
$$

Denote by $D^{(p)}(N)$ the set of all $u \in L(X)$ with finite Dirichlet integral of order p. It is easily seen that $D^{(p)}(N)$ is a Banach space with the norm $\|u\|_{p}=\left[D_{p}(u)+\right.$ $\left.|u(b)|^{p}\right]^{1 / p}(1<p<\infty)$ and $\|u\|_{\infty}=D_{\infty}(u)+|u(b)|(b \in X)$.

Denote by $\boldsymbol{D}_{0}^{(p)}(N)$ the closure of $L_{0}(X)$ in $\boldsymbol{D}^{(p)}(N)$ with respect to the norm $\|u\|_{p}$. This $D_{o}^{(p)}(N)$ is determined independently of the choice of b. As in the continuous potential theory, we may call an element of $\boldsymbol{D}_{0}^{(p)}(N)$ a (discrete) Dirichlet potential of order p.

A typical Dirichlet potential of order 2 is the Green function g_{a} of N with pole at a (cf. [1]). This is defined by the conditions: $g_{a} \in \boldsymbol{D}_{0}^{(2)}(N)$ and $\Delta g_{a}(x)=-\varepsilon_{a}(x)$ on X, where Δ is the discrete Laplace operator and ε_{a} is the characteristic function of the set $\{a\}$. It was shown in [7] that the Green function g_{a} exists if and only if N is of hyperbolic type of order 2, or equivalently $\boldsymbol{D}^{(2)}(N) \neq \boldsymbol{D}_{0}^{(2)}(N)$.

In the case where $\{X, Y, K\}$ is the lattice domain in the 3-dimensional Euclidean space and $r=1$, Duffin [2] showed by means of Fourier analysis that g_{a} vanishes at the ideal boundary ∞ of N. In the general case, $g_{a}(x)$ does not always have limit 0 as x tends to the ideal boundary ∞ of N along a path from a to ∞.

In this paper, we are concerned with the boundary behavior of Dirichlet potentials of order p. Namely, we aim to show that for every $u \in \boldsymbol{D}_{0}^{(p)}(N)$ the set of all paths along which $u(x)$ does not have limit 0 as x tends to the ideal boundary ∞ of N is a small set in some sense. As in the continuous case (cf. [5]), we use
the notion of extremal length of order p. We say that a property holds for p-almost every path of a family Γ of paths if it does for the member of Γ except for those belonging to a subfamily with infinite extremal length of order p. Some elementary properties of the extremal length of a family of paths will be discussed in $\S 2$. We shall prove in $\S 3$ that every Dirichlet potential $u(x)$ of order p has limit 0 as x tends to the ideal boundary ∞ of N along p-almost every infinite path.

§ 2. Extremal length of a family of paths

Let $L(Y)$ be the set of all real functions on Y and $L^{+}(Y)$ be the subset of $L(Y)$ that consists of non-negative functions. For $w \in L(Y)$, its energy $H_{p}(w)$ of order $p(1<p \leq \infty)$ is defined by

$$
\begin{aligned}
& H_{p}(w)=\sum_{y \in Y} r(y)|w(y)|^{p} \quad(1<p<\infty), \\
& H_{\infty}(w)=\sup _{y \in Y}|w(y)| .
\end{aligned}
$$

Let us recall the notion of paths. A path P from a to the ideal boundary ∞ of N is the triple $\left\{C_{X}(P), C_{Y}(P), p\right\}$ of an infinite ordered set $C_{X}(P)=\left\{x_{n} ; n \geq 0\right\}$ of nodes, an infinite ordered set $C_{Y}(P)=\left\{y_{n} ; n \geq 1\right\}$ of arcs and a function p on Y called the path index of P which satisfy the conditions: $x_{0}=a, x_{i} \neq x_{j}$ if $i \neq j$, $\left\{x \in X ; K\left(x, y_{i}\right) \neq 0\right\}=\left\{x_{i-1}, x_{i}\right\}, p\left(y_{i}\right)=-K\left(x_{i-1}, y_{i}\right)$ if $y_{i} \in C_{Y}(P)$ and $p(y)=0$ if $y \notin C_{Y}(P)$. Denote by $P_{a, \infty}$ the set of all paths from a to the ideal boundary ∞ of N and by P_{∞} the union of $P_{x, \infty}$ for all $x \in X$. We call an element of P_{∞} an infinite path.

The extremal length $\lambda_{p}(\Gamma)$ of order p of a set Γ of paths in N is defined by

$$
\lambda_{p}(\Gamma)^{-1}=\inf \left\{H_{p}(W) ; W \in E(\Gamma)\right\}
$$

where $E(\Gamma)$ is the set of all $W \in L^{+}(Y)$ such that $\sum_{P} r(y) W(y)=\sum_{y \in C_{Y}(P)} r(y) W(y)$ ≥ 1 for all $P \in \Gamma$. In case Γ is empty, we set $\lambda_{p}(\Gamma)=\infty$.

The following fundamental properties of the extremal length can be proved analogously to the continuous case (cf. [5]):

Lemma 2.1. Let Γ_{1} and Γ_{2} be sets of paths. If $\Gamma_{1} \subset \Gamma_{2}$, then $\lambda_{p}\left(\Gamma_{1}\right) \geq \lambda_{p}\left(\Gamma_{2}\right)$.
Lemma 2.2. Let $\left\{\Gamma_{n} ; n=1,2, \ldots\right\}$ be a family of sets of paths in N. Then $\sum_{n=1}^{\infty} \lambda_{p}\left(\Gamma_{n}\right)^{-1} \geq \lambda_{p}\left(\cup_{n=1}^{\infty} \Gamma_{n}\right)^{-1}$.

Proof. We may assume that $\lambda_{p}\left(\Gamma_{n}\right)>0$ for all n. For any $\varepsilon>0$, there exist $W_{n} \in E\left(\Gamma_{n}\right)(n=1,2, \ldots)$ such that $H_{p}\left(W_{n}\right)<\lambda_{p}\left(\Gamma_{n}\right)^{-1}+2^{-n} \varepsilon$. Let $W(y)=$ $\sup \left\{W_{n}(y) ; n=1,2, \ldots\right\}$. Then $\sum_{P} r(y) W(y) \geq 1$ for all $P \in \cup_{n=1}^{\infty} \Gamma_{n}$ and

$$
\begin{aligned}
\lambda_{p}\left(\cup_{n=1}^{\infty} \Gamma_{n}\right)^{-1} \leq H_{p}(W) & \leq \sum_{n=1}^{\infty} H_{p}\left(W_{n}\right) \\
& \leq \sum_{n=1}^{\infty} \lambda_{p}\left(\Gamma_{n}\right)^{-1}+\varepsilon .
\end{aligned}
$$

Since ε is arbitrary, we obtain our inequality.
Lemma 2.3. Let Γ be a set of paths. Then $\lambda_{p}(\Gamma)=\infty$ if and only if there exists $W \in L^{+}(Y)$ such that $H_{p}(W)<\infty$ and $\sum_{P} r(y) W(y)=\infty$ for all $P \in \Gamma$.

Proof. Assume that there exists $W \in L^{+}(Y)$ such that $H_{p}(W)<\infty$ and $\sum_{P} r(y) W(y)=\infty$ for all $P \in \Gamma$. For any $\varepsilon>0$, we have $\varepsilon W \in E(\Gamma)$, so that $\lambda_{p}(\Gamma)^{-1} \leq H_{p}(\varepsilon W)=\varepsilon^{p} H_{p}(W)(1<p<\infty)$ and $\lambda_{\infty}(\Gamma)^{-1} \leq H_{\infty}(\varepsilon W)=\varepsilon H_{\infty}(W)$. Letting $\varepsilon \rightarrow 0$, we obtain $\lambda_{p}(\Gamma)=\infty$. Assume that $\lambda_{p}(\Gamma)=\infty$. Then there exists a sequence $\left\{W_{n}\right\}$ in $E(\Gamma)$ such that $H_{p}\left(W_{n}\right)<4^{-n p}$ in case $1<p<\infty$ and $H_{p}\left(W_{n}\right)<2^{-n}$ in case $p=\infty$. Put $W(y)=\left[\sum_{n=1}^{\infty}\left(2^{n} W_{n}(y)\right)^{p}\right]^{1 / p}$ in case $1<p<\infty$ and $W(y)=$ $\sup \left\{2^{n} W_{n}(y) ; n=1,2, \ldots\right\}$ in case $p=\infty$. Then it is easily seen that W satisfies our requirement.

Lemma 2.4. Let Γ be a set of paths. Then $\lambda_{\infty}(\Gamma)<\infty$ if and only if there exists a path $P \in \Gamma$ such that $\sum_{P} r(y)<\infty$.

Proof. The "only if"' part is clear by Lemma 2.3. Assume that there exists a path $P \in \Gamma$ such that $\sum_{P} r(y)<\infty$. For any $W \in E(\Gamma)$, we have

$$
1 \leq \sum_{P} r(y) W(y) \leq H_{\infty}(W) \sum_{P} r(y)
$$

so that $\lambda_{\infty}(\Gamma) \leq \sum_{P} r(y)$.

§3. Main results

For each $u \in L(X)$, let us define $d u \in L(Y)$ by

$$
(d u)(y)=-r(y)^{-1} \sum_{x \in X} K(x, y) u(x) .
$$

Then we have $H_{p}(d u)=D_{p}(u)$.
Lemma 3.1. Let $u \in \boldsymbol{D}_{0}^{(\infty)}(N)$ and $\left\{N_{n}\right\}\left(N_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right)$ be an exhaustion of N. Then $\sup _{y \in Y-Y_{n}}|(d u)(y)| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. For any $\varepsilon>0$, there exists $f \in L_{0}(X)$ such that $D_{\infty}(u-f)<\varepsilon$. We can find n_{0} such that $f(x)=0$ on $X-X_{n}$ for all $n \geq n_{0}$. Thus we have $\sup _{y \in Y-Y_{n}}$ $|(d u)(y)| \leq D_{\infty}(u-f)<\varepsilon$ for all $n>n_{0}$.

Lemma 3.2. Let $P \in P_{a, \infty}$ and p be the path index of P. If $f \in L_{0}(X)$, then $\Sigma_{P} r(y) p(y)[(d f)(y)]=f(a)$.

Proof. Let us put $C_{X}(P)=\left\{x_{n} ; n \geq 0\right\}$ and $C_{Y}(P)=\left\{y_{n} ; n \geq 1\right\}$. There exists m such that $f\left(x_{n}\right)=0$ for all $n \geq m$, since $f \in L_{0}(X)$. We have $(d f)\left(y_{n}\right)=0$ for all $n>m$ and

$$
\begin{aligned}
& \sum_{P} r(y) p(y)[(d f)(y)]=\sum_{n=1}^{m} r\left(y_{n}\right) p\left(y_{n}\right)\left[(d f)\left(y_{n}\right)\right] \\
& \quad=-\sum_{n=1}^{m} p\left(y_{n}\right)\left[K\left(x_{n-1}, y_{n}\right) f\left(x_{n-1}\right)+K\left(x_{n}, y_{n}\right) f\left(x_{n}\right)\right] \\
& \quad=\sum_{n=1}^{m}\left[f\left(x_{n-1}\right)-f\left(x_{n}\right)\right]=f(a)-f\left(x_{m}\right)=f(a) .
\end{aligned}
$$

Similarly we can prove
Lemma 3.3. Let $P \in P_{a, \infty}$ and $C_{X}(P)=\left\{x_{n} ; n \geq 0\right\}$. If $u \in L(X)$ and Σ_{P}. $r(y)|(d u)(y)|<\infty$, then $\sum_{P} r(y) p(y)[(d u)(y)]=\lim _{n \rightarrow \infty}\left[u(a)-u\left(x_{n}\right)\right]$.

We have
Theorem 3.1. Let $u \in \boldsymbol{D}^{(p)}(N)$. Then $u(x)$ has a limit as x tends to the ideal boundary ∞ of N along p-almost every $P \in P_{a, \infty}$.

Proof. Let us put $\Gamma=\left\{P \in P_{a, \infty} ; \sum_{P} r(y)|(d u)(y)|=\infty\right\}$. Then $u(x)$ has a limit as x tends to the ideal boundary ∞ of N along any path $P \in P_{a, \infty}-\Gamma$ by Lemma 3.3. We see by Lemma 2.3 that $\lambda_{p}(\Gamma)=\infty$, since $W(y)=|(d u)(y)|$ satisfies $H_{p}(W)=D_{p}(u)<\infty$ and $\sum_{P} r(y) W(y)=\infty$ for all $P \in \Gamma$.

This is a discrete analogue to Theorem 2.28 in [5].
For Dirichlet potentials of order p, we have
Theorem 3.2. Let $u \in D_{0}^{(p)}(N)$. Then, for p-almost every $P \in P_{a, \infty}, \Sigma_{P}$. $r(y) p(y)[(d u)(y)]$ exists and is equal to $u(a)$.

Proof. There exists a sequence $\left\{f_{k}\right\}$ in $L_{0}(X)$ such that $\left\|u-f_{k}\right\|_{p} \rightarrow 0$ as $k \rightarrow \infty$. Let us put $w(y)=(d u)(y)$ and $w_{k}(y)=\left(d f_{k}\right)(y)$. Then we see that $w_{k}(y) \rightarrow$ $w(y)$ as $k \rightarrow \infty$ for each $y \in Y$ and $H_{p}\left(w-w_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Let Γ_{0} be the set of all $P \in P_{a, \infty}$ such that $\sum_{P} r(y)|w(y)|<\infty$. Then $\lambda_{p}\left(P_{a, \infty}-\Gamma_{0}\right)=\infty$ (cf. the proof of Theorem 3.1) and $w(P)=\sum_{P} r(y) p(y) w(y)$ exists for any $P \in \Gamma_{0}$. Let $\left\{N_{n}\right\}\left(N_{n}=\right.$ $\left.\left\langle X_{n}, Y_{n}\right\rangle\right)$ be an exhaustion of N with $a \in X_{1}$. For any $\varepsilon>0$, let us put

$$
\begin{gathered}
\Gamma(\varepsilon)=\left\{P \in \Gamma_{0} ;|u(a)-w(P)| \geq \varepsilon\right\}, \\
\Gamma_{n}(\varepsilon)=\left\{P \in \Gamma(\varepsilon) ;\left|w(P)-\sum_{y \in C_{Y}(P) \cap Y_{m}} r(y) p(y) w(y)\right|<\varepsilon / 4 \text { for all } m \geq n\right\} .
\end{gathered}
$$

Let $n<m$ and $P \in \Gamma_{n}(\varepsilon)$. Since Y_{m} is a finite set, there exists k_{1} such that

$$
\sum_{y \in Y_{m}} r(y)\left|w(y)-w_{k}(y)\right|<\varepsilon / 4
$$

for all $k \geq k_{1}$. Since $f_{k}(a) \rightarrow u(a)$ as $k \rightarrow \infty$, there exists k_{2} such that $\left|u(a)-f_{k}(a)\right|<$ $\varepsilon / 4$ for all $k \geq k_{2}$. Note that k_{1} and k_{2} are independent of P. For each $k \geq$ $\max \left\{k_{1}, k_{2}\right\}$, we have

$$
\begin{aligned}
\sum_{y \in C_{Y}(P) \cap\left(Y-Y_{m}\right)} r(y)\left|w_{k}(y)\right| \geq\left|\sum_{y \in C_{Y}(P) \cap\left(Y-Y_{m}\right)} r(y) p(y) w_{k}(y)\right| \\
\quad=\left|\sum_{P} r(y) p(y) w_{k}(y)-\sum_{y \in C_{Y}(P) \cap Y_{m}} r(y) p(y) w_{k}(y)\right| \\
\quad=\left|f_{k}(a)-\sum_{y \in C_{Y}(P) \cap Y_{m}} r(y) p(y) w_{k}(y)\right| \quad \text { (by Lemma 3.2) } \\
\quad>\left|u(a)-\sum_{y \in C_{Y}(P) \cap Y_{m}} r(y) p(y) w(y)\right|-\varepsilon / 2 \\
\quad>|u(a)-w(P)|-3 \varepsilon / 4 \geq \varepsilon / 4,
\end{aligned}
$$

since $P \in \Gamma_{n}(\varepsilon)$. Define $W_{k} \in L^{+}(Y)$ by $W_{k}(y)=4\left|w_{k}(y)\right| / \varepsilon$ if $y \in Y-Y_{m}$ and $W_{k}(y)=0$ if $y \in Y_{m}$. Then $\Sigma_{P} r(y) W_{k}(y) \geq 1$ for all $P \in \Gamma_{n}(\varepsilon)$ by the above observation, so that

$$
\begin{aligned}
& \lambda_{p}\left(\Gamma_{n}(\varepsilon)\right)^{-1} \leq H_{p}\left(W_{k}\right)=(4 / \varepsilon)^{p} \sum_{y \in Y-Y_{m}} r(y)\left|w_{k}(y)\right|^{p} \quad(1<p<\infty) \\
& \lambda_{\infty}\left(\Gamma_{n}(\varepsilon)\right)^{-1} \leq H_{\infty}\left(W_{k}\right)=(4 / \varepsilon) \sup _{y \in Y-Y_{m}}\left|w_{k}(y)\right| .
\end{aligned}
$$

Letting $k \rightarrow \infty$, we have

$$
\begin{aligned}
& \lambda_{p}\left(\Gamma_{n}(\varepsilon)\right)^{-1} \leq(4 / \varepsilon)^{p} \sum_{y \in Y-Y_{m}} r(y)|w(y)|^{p} \quad(1<p<\infty), \\
& \lambda_{\infty}\left(\Gamma_{n}(\varepsilon)\right)^{-1} \leq(4 / \varepsilon) \sup _{y \in Y-Y_{m}}|w(y)|,
\end{aligned}
$$

since $H_{p}\left(w-w_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. By letting $m \rightarrow \infty$, we obtain $\lambda_{p}\left(\Gamma_{n}(\varepsilon)\right)=$ $\infty(1<p<\infty)$ and $\lambda_{\infty}\left(\Gamma_{n}(\varepsilon)\right)=\infty$ by Lemma 3.1. From the relation $\Gamma(\varepsilon)=$ $\cup_{n=1}^{\infty} \Gamma_{n}(\varepsilon)$ and Lemma 2.2, it follows that $\lambda_{p}(\Gamma(\varepsilon))=\infty$. Let $\Gamma^{*}=\left\{P \in \Gamma_{0}\right.$; $u(a) \neq w(P)\}$. Since $\quad \Gamma^{*}=\cup_{n=1}^{\infty} \Gamma(1 / n)$, we have $\lambda_{p}\left(\Gamma^{*}\right)=\infty$ and hence $\lambda_{p}\left(\left(P_{a, \infty}-\Gamma_{0}\right) \cup \Gamma^{*}\right)=\infty$ by Lemma 2.2. Thus $w(P)=u(a)$ for p-almost every $P \in P_{a, \infty}$.

Remark 3.1. An essential idea of the proof of Theorem 3.2 can be found in the proof of Theorem 2.10 in [5].

By Lemma 3.3 and Theorem 3.2, we have
Theorem 3.3. Let $u \in \boldsymbol{D}_{0}^{(p)}(N)$. Then $u(x)$ has limit 0 as x tends to the ideal boundary ∞ of N along p-almost every path from a to ∞.

Corollary 1. Let $u \in D_{0}^{(p)}(N)$. Then $u(x)$ has limit 0 as x tends to the ideal boundary ∞ along p-almost every infinite path.

Proof. For each $x \in X$, let Γ_{x} be the set of all $P \in P_{x, \infty}$ such that $u(x)$ does not have limit 0 as x tends to the ideal boundary ∞ of N along P. Then $\lambda_{p}\left(\Gamma_{x}\right)=$ ∞ by Theorem 3.3. By Lemma 2.2, we have $\lambda_{p}\left(\cup\left\{\Gamma_{x} ; x \in X\right\}\right)=\infty$. Thus $u(x)$ has limit 0 as x tends to the ideal boundary ∞ of N along p-almost every infinite path.

Corollary 2. Let N be of hyperbolic type of order 2. Then the Green function $g_{a}(x)$ of N with pole at a has limit 0 as x tends to the ideal boundary ∞ of N along 2-almost every infinite path.

Proof. Since N is of hyperbolic type of order 2, the Green function g_{a} of N with pole at a exists and $g_{a} \in \boldsymbol{D}_{0}^{(2)}(N)$ (cf. [7]). Thus our assertion follows from Corollary 1 of Theorem 3.3.

Remark 3.2. In case N is of parabolic type of order p, i.e., $\boldsymbol{D}_{0}^{(p)}(N)=$ $\boldsymbol{D}^{(p)}(N), 1 \in \boldsymbol{D}^{(p)}(N)$ does not have limit 0 as x tends to the ideal boundary ∞
of N along any infinite path. However we have $\lambda_{p}\left(P_{a, \infty}\right)=\infty$ for any $a \in X$ in this case (cf. [6]), so that $\lambda_{p}\left(P_{\infty}\right)=\infty$.

We show by an example that $g_{a}(x)$ does not always have limit 0 as x tends to the ideal boundary ∞ of N along an infinite path.

Example 3.1. Let Z be the set of all integers and let $X=\left\{x_{n} ; n \in Z\right\}$ and $Y=\left\{y_{n} ; n \in Z\right\}$. Define K by

$$
\begin{aligned}
& K\left(x_{n-1}, y_{n}\right)=-1 \text { and } K\left(x_{n}, y_{n}\right)=1 \quad \text { for all } n \in Z, \\
& K(x, y)=0 \quad \text { for any other pair. }
\end{aligned}
$$

Then $\{X, Y, K\}$ may be considered as the lattice domain of the real line. Let us define r by $r\left(y_{n}\right)=1$ if $n \leq 0$ and $r\left(y_{n}\right)=2^{-n}$ if $n>0$. Then $N=\{X, Y, K, r\}$ is an infinite network. Let $a=x_{0}$. Since $\lambda_{2}\left(P_{a, \infty}\right)=\sum_{n=1}^{\infty} r\left(y_{n}\right)=1, N$ is of hyperbolic type of order 2. We see that $g_{a}\left(x_{n}\right)=1$ if $n \leq 0$ and $g_{a}\left(x_{n}\right)=\sum_{k=n+1}^{\infty} r\left(y_{k}\right)=$ 2^{-n} if $n>0$. Let P be the path defined by $C_{X}(P)=\left\{x_{n} ; n \leq 0\right\}, C_{Y}(P)=\left\{y_{n} ; n \leq 0\right\}$, $p\left(y_{n}\right)=-1$ if $n \leq 0$ and $p\left(y_{n}\right)=0$ if $n>0$. Then $P \in P_{a, \infty}$ and $g_{a}(x)$ has limit 1 as x tends to the ideal boundary ∞ of N along P. Note that $\lambda_{2}(\{P\})=\infty$.

Finally we show that the converse of Theorem 3.3 does not hold in general for $p=\infty$.

Example 3.2. Let N be the same as in Example 3.1. Consider $u \in L(X)$ defined by $u\left(x_{n}\right)=n$ for $n \leq 0$ and $u\left(x_{n}\right)=2^{-n}$ for $n>0$. Then $(d u)\left(y_{n}\right)=-$ $r\left(y_{n}\right)^{-1}\left[u\left(x_{n}\right)-u\left(x_{n-1}\right)\right]=-1$ for $n \leq 1$ and $(d u)\left(y_{n}\right)=1$ for $n \geq 2$, so that $u \in \boldsymbol{D}^{(\infty)}(N)$. We see by Lemma 2.4 that $u(x)$ has limit 0 as x tends to the ideal boundary ∞ along ∞-almost every path from $a=x_{0}$ to ∞. On the other hand, it follows from Lemma 3.1 that $u \notin \boldsymbol{D}_{0}^{(\infty)}(N)$.

References

[1] C. R. Deeter and J. M. Gray, The discrete Green's function and the discrete kernel function, Discrete Math. 10 (1974), 29-42.
[2] R. J. Duffin, Discrete potential theory, Duke Math. J. 20 (1953), 233-251.
[3] R. J. Duffin, The extremal length of a network, J. Math. Anal. Appl. 5 (1962), 200-215.
[4] T. Nakamura and M. Yamasaki, Generalized extremal length of an infinite network, Hiroshima Math. J. 6 (1976), 95-111.
[5] M. Ohtsuka, Dirichlet problem, extremal length and prime ends, Van Nostrand, 1970.
[6] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), 135-146.
[7] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.

