Boundary limit of discrete Dirichlet potentials

Takashi KAYANO and Maretsugu YAMASAKI (Received January 11, 1984)

§1. Introduction

Let X be a countable set of nodes, Y be a countable set of arcs, K be the node-arc incidence function and r be a strictly positive real function on Y. The quartet $N = \{X, Y, K, r\}$ is called an infinite network if the graph $\{X, Y, K\}$ is connected, locally finite and has no self-loop. For notation and terminology, we mainly follow [4], [6] and [7].

Let L(X) be the set of all real functions on X and $L_0(X)$ be the set of all $u \in L(X)$ with finite support. For $u \in L(X)$, its Dirichlet integral $D_p(u)$ of order p (1 is defined by

$$D_p(u) = \sum_{y \in Y} r(y)^{1-p} |\sum_{x \in X} K(x, y)u(x)|^p \quad (1
$$D_{\infty}(u) = \sup_{y \in Y} r(y)^{-1} |\sum_{x \in X} K(x, y)u(x)|.$$$$

Denote by $D^{(p)}(N)$ the set of all $u \in L(X)$ with finite Dirichlet integral of order p. It is easily seen that $D^{(p)}(N)$ is a Banach space with the norm $||u||_p = [D_p(u) + |u(b)|^p]^{1/p}$ $(1 and <math>||u||_{\infty} = D_{\infty}(u) + |u(b)|(b \in X)$.

Denote by $D_0^{(p)}(N)$ the closure of $L_0(X)$ in $D^{(p)}(N)$ with respect to the norm $||u||_p$. This $D_0^{(p)}(N)$ is determined independently of the choice of b. As in the continuous potential theory, we may call an element of $D_0^{(p)}(N)$ a (discrete) Dirichlet potential of order p.

A typical Dirichlet potential of order 2 is the Green function g_a of N with pole at a (cf. [1]). This is defined by the conditions: $g_a \in D_0^{(2)}(N)$ and $\Delta g_a(x) = -\varepsilon_a(x)$ on X, where Δ is the discrete Laplace operator and ε_a is the characteristic function of the set $\{a\}$. It was shown in [7] that the Green function g_a exists if and only if N is of hyperbolic type of order 2, or equivalently $D_0^{(2)}(N) \neq D_0^{(2)}(N)$.

In the case where $\{X, Y, K\}$ is the lattice domain in the 3-dimensional Euclidean space and r=1, Duffin [2] showed by means of Fourier analysis that g_a vanishes at the ideal boundary ∞ of N. In the general case, $g_a(x)$ does not always have limit 0 as x tends to the ideal boundary ∞ of N along a path from a to ∞ .

In this paper, we are concerned with the boundary behavior of Dirichlet potentials of order p. Namely, we aim to show that for every $u \in D_0^{(p)}(N)$ the set of all paths along which u(x) does not have limit 0 as x tends to the ideal boundary ∞ of N is a small set in some sense. As in the continuous case (cf. [5]), we use

the notion of extremal length of order p. We say that a property holds for p-almost every path of a family Γ of paths if it does for the member of Γ except for those belonging to a subfamily with infinite extremal length of order p. Some elementary properties of the extremal length of a family of paths will be discussed in §2. We shall prove in §3 that every Dirichlet potential u(x) of order p has limit 0 as x tends to the ideal boundary ∞ of N along p-almost every infinite path.

§2. Extremal length of a family of paths

Let L(Y) be the set of all real functions on Y and $L^+(Y)$ be the subset of L(Y) that consists of non-negative functions. For $w \in L(Y)$, its energy $H_p(w)$ of order $p \ (1 is defined by$

$$\begin{split} H_p(w) &= \sum_{y \in Y} r(y) |w(y)|^p \quad (1$$

Let us recall the notion of paths. A path P from a to the ideal boundary ∞ of N is the triple $\{C_X(P), C_Y(P), p\}$ of an infinite ordered set $C_X(P) = \{x_n; n \ge 0\}$ of nodes, an infinite ordered set $C_Y(P) = \{y_n; n \ge 1\}$ of arcs and a function p on Y called the path index of P which satisfy the conditions: $x_0 = a, x_i \ne x_j$ if $i \ne j$, $\{x \in X; K(x, y_i) \ne 0\} = \{x_{i-1}, x_i\}, p(y_i) = -K(x_{i-1}, y_i)$ if $y_i \in C_Y(P)$ and p(y) = 0 if $y \notin C_Y(P)$. Denote by $P_{a,\infty}$ the set of all paths from a to the ideal boundary ∞ of N and by P_∞ the union of $P_{x,\infty}$ for all $x \in X$. We call an element of P_∞ an infinite path.

The extremal length $\lambda_p(\Gamma)$ of order p of a set Γ of paths in N is defined by

$$\lambda_p(\Gamma)^{-1} = \inf \left\{ H_p(W); \ W \in E(\Gamma) \right\},\$$

where $E(\Gamma)$ is the set of all $W \in L^+(Y)$ such that $\sum_P r(y)W(y) = \sum_{y \in C_Y(P)} r(y)W(y)$ ≥ 1 for all $P \in \Gamma$. In case Γ is empty, we set $\lambda_p(\Gamma) = \infty$.

The following fundamental properties of the extremal length can be proved analogously to the continuous case (cf. [5]):

LEMMA 2.1. Let Γ_1 and Γ_2 be sets of paths. If $\Gamma_1 \subset \Gamma_2$, then $\lambda_p(\Gamma_1) \ge \lambda_p(\Gamma_2)$.

LEMMA 2.2. Let $\{\Gamma_n; n=1, 2,...\}$ be a family of sets of paths in N. Then $\sum_{n=1}^{\infty} \lambda_p (\Gamma_n)^{-1} \ge \lambda_p (\bigcup_{n=1}^{\infty} \Gamma_n)^{-1}$.

PROOF. We may assume that $\lambda_p(\Gamma_n) > 0$ for all *n*. For any $\varepsilon > 0$, there exist $W_n \in E(\Gamma_n)$ (n=1, 2, ...) such that $H_p(W_n) < \lambda_p(\Gamma_n)^{-1} + 2^{-n}\varepsilon$. Let $W(y) = \sup \{W_n(y); n=1, 2, ...\}$. Then $\sum_P r(y)W(y) \ge 1$ for all $P \in \bigcup_{n=1}^{\infty} \Gamma_n$ and

$$\begin{aligned} \lambda_p(\bigcup_{n=1}^{\infty} \Gamma_n)^{-1} &\leq H_p(W) \leq \sum_{n=1}^{\infty} H_p(W_n) \\ &\leq \sum_{n=1}^{\infty} \lambda_p(\Gamma_n)^{-1} + \varepsilon. \end{aligned}$$

402

Since ε is arbitrary, we obtain our inequality.

LEMMA 2.3. Let Γ be a set of paths. Then $\lambda_p(\Gamma) = \infty$ if and only if there exists $W \in L^+(Y)$ such that $H_p(W) < \infty$ and $\sum_P r(y)W(y) = \infty$ for all $P \in \Gamma$.

PROOF. Assume that there exists $W \in L^+(Y)$ such that $H_p(W) < \infty$ and $\sum_P r(y)W(y) = \infty$ for all $P \in \Gamma$. For any $\varepsilon > 0$, we have $\varepsilon W \in E(\Gamma)$, so that $\lambda_p(\Gamma)^{-1} \le H_p(\varepsilon W) = \varepsilon^p H_p(W)$ $(1 and <math>\lambda_{\infty}(\Gamma)^{-1} \le H_{\infty}(\varepsilon W) = \varepsilon H_{\infty}(W)$. Letting $\varepsilon \to 0$, we obtain $\lambda_p(\Gamma) = \infty$. Assume that $\lambda_p(\Gamma) = \infty$. Then there exists a sequence $\{W_n\}$ in $E(\Gamma)$ such that $H_p(W_n) < 4^{-np}$ in case $1 and <math>H_p(W_n) < 2^{-n}$ in case $p = \infty$. Put $W(y) = [\sum_{n=1}^{\infty} (2^n W_n(y))^p]^{1/p}$ in case $1 and <math>W(y) = \sup \{2^n W_n(y); n = 1, 2, ...\}$ in case $p = \infty$. Then it is easily seen that W satisfies our requirement.

LEMMA 2.4. Let Γ be a set of paths. Then $\lambda_{\infty}(\Gamma) < \infty$ if and only if there exists a path $P \in \Gamma$ such that $\sum_{P} r(y) < \infty$.

PROOF. The "only if" part is clear by Lemma 2.3. Assume that there exists a path $P \in \Gamma$ such that $\sum_{P} r(y) < \infty$. For any $W \in E(\Gamma)$, we have

$$1 \leq \sum_{P} r(y) W(y) \leq H_{\infty}(W) \sum_{P} r(y),$$

so that $\lambda_{\infty}(\Gamma) \leq \sum_{P} r(y)$.

§3. Main results

For each $u \in L(X)$, let us define $du \in L(Y)$ by

$$(du)(y) = -r(y)^{-1} \sum_{x \in X} K(x, y)u(x).$$

Then we have $H_p(du) = D_p(u)$.

LEMMA 3.1. Let $u \in D_0^{(\infty)}(N)$ and $\{N_n\}(N_n = \langle X_n, Y_n \rangle)$ be an exhaustion of N. Then $\sup_{y \in Y - Y_n} |(du)(y)| \to 0$ as $n \to \infty$.

PROOF. For any $\varepsilon > 0$, there exists $f \in L_0(X)$ such that $D_{\infty}(u-f) < \varepsilon$. We can find n_0 such that f(x)=0 on $X-X_n$ for all $n \ge n_0$. Thus we have $\sup_{y \in Y-Y_n} |(du)(y)| \le D_{\infty}(u-f) < \varepsilon$ for all $n > n_0$.

LEMMA 3.2. Let $P \in P_{a,\infty}$ and p be the path index of P. If $f \in L_0(X)$, then $\sum_P r(y)p(y)[(df)(y)] = f(a)$.

PROOF. Let us put $C_X(P) = \{x_n; n \ge 0\}$ and $C_Y(P) = \{y_n; n \ge 1\}$. There exists m such that $f(x_n) = 0$ for all $n \ge m$, since $f \in L_0(X)$. We have $(df)(y_n) = 0$ for all n > m and

Takashi KAYANO and Maretsugu YAMASAKI

$$\sum_{P} r(y) p(y) [(df)(y)] = \sum_{n=1}^{m} r(y_n) p(y_n) [(df)(y_n)]$$

= $-\sum_{n=1}^{m} p(y_n) [K(x_{n-1}, y_n) f(x_{n-1}) + K(x_n, y_n) f(x_n)]$
= $\sum_{n=1}^{m} [f(x_{n-1}) - f(x_n)] = f(a) - f(x_m) = f(a).$

Similarly we can prove

LEMMA 3.3. Let $P \in P_{a,\infty}$ and $C_X(P) = \{x_n; n \ge 0\}$. If $u \in L(X)$ and $\sum_P \cdot r(y)|(du)(y)| < \infty$, then $\sum_P r(y)p(y)[(du)(y)] = \lim_{n \to \infty} [u(a) - u(x_n)]$. We have

THEOREM 3.1. Let $u \in D^{(p)}(N)$. Then u(x) has a limit as x tends to the ideal boundary ∞ of N along p-almost every $P \in P_{a,\infty}$.

PROOF. Let us put $\Gamma = \{P \in P_{a,\infty}; \sum_P r(y) | (du)(y) | = \infty\}$. Then u(x) has a limit as x tends to the ideal boundary ∞ of N along any path $P \in P_{a,\infty} - \Gamma$ by Lemma 3.3. We see by Lemma 2.3 that $\lambda_p(\Gamma) = \infty$, since W(y) = |(du)(y)| satisfies $H_p(W) = D_p(u) < \infty$ and $\sum_P r(y)W(y) = \infty$ for all $P \in \Gamma$.

This is a discrete analogue to Theorem 2.28 in [5].

For Dirichlet potentials of order p, we have

THEOREM 3.2. Let $u \in D_0^{(p)}(N)$. Then, for p-almost every $P \in P_{a,\infty}$, $\sum_P \cdot r(y)p(y)[(du)(y)]$ exists and is equal to u(a).

PROOF. There exists a sequence $\{f_k\}$ in $L_0(X)$ such that $||u - f_k||_p \to 0$ as $k \to \infty$. Let us put w(y) = (du)(y) and $w_k(y) = (df_k)(y)$. Then we see that $w_k(y) \to w(y)$ as $k \to \infty$ for each $y \in Y$ and $H_p(w - w_k) \to 0$ as $k \to \infty$. Let Γ_0 be the set of all $P \in P_{a,\infty}$ such that $\sum_P r(y)|w(y)| < \infty$. Then $\lambda_p(P_{a,\infty} - \Gamma_0) = \infty$ (cf. the proof of Theorem 3.1) and $w(P) = \sum_P r(y)p(y)w(y)$ exists for any $P \in \Gamma_0$. Let $\{N_n\}(N_n = \langle X_n, Y_n \rangle)$ be an exhaustion of N with $a \in X_1$. For any $\varepsilon > 0$, let us put

$$\Gamma(\varepsilon) = \{ P \in \Gamma_0; |u(a) - w(P)| \ge \varepsilon \},\$$

 $\Gamma_n(\varepsilon) = \{P \in \Gamma(\varepsilon); |w(P) - \sum_{y \in C_T(P) \cap Y_m} r(y)p(y)w(y)| < \varepsilon/4 \text{ for all } m \ge n\}.$ Let n < m and $P \in \Gamma_n(\varepsilon)$. Since Y_m is a finite set, there exists k_1 such that

$$\sum_{y \in Y_m} r(y) |w(y) - w_k(y)| < \varepsilon/4$$

for all $k \ge k_1$. Since $f_k(a) \to u(a)$ as $k \to \infty$, there exists k_2 such that $|u(a) - f_k(a)| < \epsilon/4$ for all $k \ge k_2$. Note that k_1 and k_2 are independent of P. For each $k \ge \max\{k_1, k_2\}$, we have

$$\begin{split} \sum_{y \in C_{Y}(P) \cap (Y - Y_{m})} r(y) |w_{k}(y)| &\geq |\sum_{y \in C_{Y}(P) \cap (Y - Y_{m})} r(y) p(y) w_{k}(y)| \\ &= |\sum_{P} r(y) p(y) w_{k}(y) - \sum_{y \in C_{Y}(P) \cap Y_{m}} r(y) p(y) w_{k}(y)| \\ &= |f_{k}(a) - \sum_{y \in C_{Y}(P) \cap Y_{m}} r(y) p(y) w_{k}(y)| \quad \text{(by Lemma 3.2)} \\ &> |u(a) - \sum_{y \in C_{Y}(P) \cap Y_{m}} r(y) p(y) w(y)| - \varepsilon/2 \\ &> |u(a) - w(P)| - 3\varepsilon/4 \geq \varepsilon/4, \end{split}$$

since $P \in \Gamma_n(\varepsilon)$. Define $W_k \in L^+(Y)$ by $W_k(y) = 4|w_k(y)|/\varepsilon$ if $y \in Y - Y_m$ and $W_k(y) = 0$ if $y \in Y_m$. Then $\sum_P r(y)W_k(y) \ge 1$ for all $P \in \Gamma_n(\varepsilon)$ by the above observation, so that

$$\begin{aligned} \lambda_p(\Gamma_n(\varepsilon))^{-1} &\leq H_p(W_k) = (4/\varepsilon)^p \sum_{y \in Y - Y_m} r(y) |w_k(y)|^p \quad (1$$

Letting $k \rightarrow \infty$, we have

$$\begin{split} \lambda_p(\Gamma_n(\varepsilon))^{-1} &\leq (4/\varepsilon)^p \sum_{y \in Y - Y_m} r(y) |w(y)|^p \quad (1$$

since $H_p(w-w_k) \to 0$ as $k \to \infty$. By letting $m \to \infty$, we obtain $\lambda_p(\Gamma_n(\varepsilon)) = \infty$ $(1 and <math>\lambda_{\infty}(\Gamma_n(\varepsilon)) = \infty$ by Lemma 3.1. From the relation $\Gamma(\varepsilon) = \bigcup_{n=1}^{\infty} \Gamma_n(\varepsilon)$ and Lemma 2.2, it follows that $\lambda_p(\Gamma(\varepsilon)) = \infty$. Let $\Gamma^* = \{P \in \Gamma_0; u(a) \neq w(P)\}$. Since $\Gamma^* = \bigcup_{n=1}^{\infty} \Gamma(1/n)$, we have $\lambda_p(\Gamma^*) = \infty$ and hence $\lambda_p((P_{a,\infty} - \Gamma_0) \cup \Gamma^*) = \infty$ by Lemma 2.2. Thus w(P) = u(a) for p-almost every $P \in P_{a,\infty}$.

REMARK 3.1. An essential idea of the proof of Theorem 3.2 can be found in the proof of Theorem 2.10 in [5].

By Lemma 3.3 and Theorem 3.2, we have

THEOREM 3.3. Let $u \in D_0^{(p)}(N)$. Then u(x) has limit 0 as x tends to the ideal boundary ∞ of N along p-almost every path from a to ∞ .

COROLLARY 1. Let $u \in D_0^{(p)}(N)$. Then u(x) has limit 0 as x tends to the ideal boundary ∞ along p-almost every infinite path.

PROOF. For each $x \in X$, let Γ_x be the set of all $P \in P_{x,\infty}$ such that u(x) does not have limit 0 as x tends to the ideal boundary ∞ of N along P. Then $\lambda_p(\Gamma_x) = \infty$ by Theorem 3.3. By Lemma 2.2, we have $\lambda_p(\cup \{\Gamma_x; x \in X\}) = \infty$. Thus u(x) has limit 0 as x tends to the ideal boundary ∞ of N along p-almost every infinite path.

COROLLARY 2. Let N be of hyperbolic type of order 2. Then the Green function $g_a(x)$ of N with pole at a has limit 0 as x tends to the ideal boundary ∞ of N along 2-almost every infinite path.

PROOF. Since N is of hyperbolic type of order 2, the Green function g_a of N with pole at a exists and $g_a \in D_0^{(2)}(N)$ (cf. [7]). Thus our assertion follows from Corollary 1 of Theorem 3.3.

REMARK 3.2. In case N is of parabolic type of order p, i.e., $D_0^{(p)}(N) = D^{(p)}(N)$, $1 \in D^{(p)}(N)$ does not have limit 0 as x tends to the ideal boundary ∞

of N along any infinite path. However we have $\lambda_p(P_{a,\infty}) = \infty$ for any $a \in X$ in this case (cf. [6]), so that $\lambda_p(P_{\infty}) = \infty$.

We show by an example that $g_a(x)$ does not always have limit 0 as x tends to the ideal boundary ∞ of N along an infinite path.

EXAMPLE 3.1. Let Z be the set of all integers and let $X = \{x_n; n \in Z\}$ and $Y = \{y_n; n \in Z\}$. Define K by

 $K(x_{n-1}, y_n) = -1$ and $K(x_n, y_n) = 1$ for all $n \in \mathbb{Z}$, K(x, y) = 0 for any other pair.

Then {X, Y, K} may be considered as the lattice domain of the real line. Let us define r by $r(y_n)=1$ if $n \le 0$ and $r(y_n)=2^{-n}$ if n>0. Then $N = \{X, Y, K, r\}$ is an infinite network. Let $a = x_0$. Since $\lambda_2(P_{a,\infty}) = \sum_{n=1}^{\infty} r(y_n)=1$, N is of hyperbolic type of order 2. We see that $g_a(x_n)=1$ if $n\le 0$ and $g_a(x_n)=\sum_{k=n+1}^{\infty} r(y_k)=2^{-n}$ if n>0. Let P be the path defined by $C_X(P) = \{x_n; n\le 0\}, C_Y(P) = \{y_n; n\le 0\}, p(y_n)=-1$ if $n\le 0$ and $p(y_n)=0$ if n>0. Then $P \in P_{a,\infty}$ and $g_a(x)$ has limit 1 as x tends to the ideal boundary ∞ of N along P. Note that $\lambda_2(\{P\}) = \infty$.

Finally we show that the converse of Theorem 3.3 does not hold in general for $p = \infty$.

EXAMPLE 3.2. Let N be the same as in Example 3.1. Consider $u \in L(X)$ defined by $u(x_n) = n$ for $n \le 0$ and $u(x_n) = 2^{-n}$ for n > 0. Then $(du)(y_n) = -r(y_n)^{-1}[u(x_n) - u(x_{n-1})] = -1$ for $n \le 1$ and $(du)(y_n) = 1$ for $n \ge 2$, so that $u \in \mathbf{D}^{(\infty)}(N)$. We see by Lemma 2.4 that u(x) has limit 0 as x tends to the ideal boundary ∞ along ∞ -almost every path from $a = x_0$ to ∞ . On the other hand, it follows from Lemma 3.1 that $u \notin \mathbf{D}_0^{(\infty)}(N)$.

References

- C. R. Deeter and J. M. Gray, The discrete Green's function and the discrete kernel function, Discrete Math. 10 (1974), 29-42.
- [2] R. J. Duffin, Discrete potential theory, Duke Math. J. 20 (1953), 233-251.
- [3] R. J. Duffin, The extremal length of a network, J. Math. Anal. Appl. 5 (1962), 200-215.
- [4] T. Nakamura and M. Yamasaki, Generalized extremal length of an infinite network, Hiroshima Math. J. 6 (1976), 95-111.
- [5] M. Ohtsuka, Dirichlet problem, extremal length and prime ends, Van Nostrand, 1970.
- [6] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), 135-146.
- [7] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.

Department of Mathematics, Faculty of Science, Shimane University

406