On the set of free homotopy classes and Brown's construction

Dedicated to Professor Nobuo Shimada on his 60th birthday

Takao Matumoto, Norihiko Minami and Masahiro Sugawara

(Received December 8, 1983)

Introduction

The purpose of this note is to demonstrate some simple facts about the set of free homotopy classes. An application will be found in the construction of G-CW approximations of G-spaces through Brown's construction.

Throughout this note, let $[A, B]$ denote the set of all free homotopy classes of continuous maps of A to B for any spaces A and B. Then, we have the following two theorems.

Theorem 1. Let X and Y be spaces and $f: X \rightarrow Y$ a continuous map. Suppose that X and Y are arcwise connected and

$$
\begin{equation*}
f_{*}: \pi_{1}(X, x) \longrightarrow \pi_{1}(Y, f(x))(x \in X) \text { is surjective. } \tag{*}
\end{equation*}
$$

Then, $f_{*}: \pi_{n}(X, x) \rightarrow \pi_{n}(Y, f(x))$ is injective or surjective if and only if $f_{*}:\left[S^{n}, X\right]$ $\rightarrow\left[S^{n}, Y\right]$ is injective or surjective, respectively.

Theorem 2. Let $f: X \rightarrow Y$ be a continuous map and $N \geqq 1$. Then, the following three conditions are equivalent to each other:
(1) For any $x \in X$, the induced homomorphism $(n \geqq 1)$ or map $(n=0)$

$$
f_{*}: \pi_{n}(X, x) \longrightarrow \pi_{n}(Y, f(x))
$$

is bijective when $n<N$ and surjective when $n=N$.
(2) For any CW complex K, the induced map

$$
f_{*}:[K, X] \longrightarrow[K, Y]
$$

is bijective when $\operatorname{dim} K<N$ and surjective when $\operatorname{dim} K=N$.
(2)' (2) is valid for $K=*$ or $S^{n}(n \geqq 1)$ and, in addition, f_{*} in (2) is surjective for $K=\vee_{\lambda \in \Lambda} S_{\lambda}^{1}$, the wedge of circles $S_{\lambda}^{1}=S^{1}$, where Λ is any set.

Theorem 2 is a corollary to Theorem 1, because (*) is a consequence of the last condition in (2)'. Here, we notice that Λ in (2)' can be taken to be each conjugate class of $\pi_{1}(Y, f(x))$ (see Lemma 1.3), and to be the one-point-set when
$\pi_{1}(Y, f(x))$ is finite or nilpotent (see Proposition 3.1). So, we can restrict K in Theorem 2 to finite CW complexes under some finiteness conditions on the fundamental groups; but this is not the case in general. Such conditions and counter-examples will be given in $\S 3$ and $\S 4$, respectively.

Now, we present some results in the theory of G-spaces. Let G be a topological group. By a G-space X, we mean a space X together with a continuous G-action on X. For a subgroup H of G, the H-stationary subspace $\{x \in X: g x=x$ for every $g \in H\}$ is denoted by X^{H}. Let \mathscr{F} be an orbit type family for $G ; \mathscr{F}$ consists of subgroups of G, and $g{H g^{-1} \in \mathscr{F}}$ if $H \in \mathscr{F}$ and $g \in G$. A (not necessarily Hausdorff) G-CW complex K is called a $G-\mathrm{CW}_{\mathscr{F}}$ complex if the isotropy subgroups of G-cells in K are contained in \mathscr{F} (see [5]). Let [,] $]_{G}$ denote the set of all free G-homotopy classes of G-maps. Then, an equivariant version of Theorem 2 is given by the following theorem, which is equivalent to Theorem 5.2*) of [4] when \mathscr{F} consists of all closed subgroups of G.

Theorem 3. Let $f: X \rightarrow Y$ be a G-map between G-spaces and $N \geqq 1$. Then, the following four conditions are equivalent to each other:
(1) For any $H \in \mathscr{F}, X^{H}$ is non-empty if and only if so is Y^{H}, and moreover, for any $x \in X^{H}$, the induced homomorphism ($n \geqq 1$) or map $(n=0)$

$$
f_{*}: \pi_{n}\left(X^{H}, x\right) \longrightarrow \pi_{n}\left(Y^{H}, f(x)\right)
$$

is bijective when $n<N$ and surjective when $n=N$.
(2) For any $G-\mathrm{CW}_{\mathcal{F}}$ complex K, the induced map

$$
f_{*}:[K, X]_{G} \longrightarrow[K, Y]_{G}
$$

is bijective when $\operatorname{dim} K / G<N$ and surjective when $\operatorname{dim} K / G=N$.
(2)' (2) is valid for $K=(G / H) \times L$ where $H \in \mathscr{F}$ and L is a CW complex with trivial G-action.
(2)" (2) is valid for $K=G / H$ or $(G / H) \times S^{n}(n \geqq 1)$ and, in addition, f_{*} in (2) is surjective for $K=(G / H) \times \vee_{\lambda \in \Lambda} S_{\lambda}^{1}\left(S_{\lambda}^{1}=S^{1}\right)$, where $H \in \mathscr{F}$ and G acts trivially on the second factors.

By using the construction of E. H. Brown [1] and by the above theorem, we have the following

Theorem 4. Let \mathscr{F} be an orbit type family for G. Then, for any G-space X, there exists a pair of a $G-\mathrm{CW}_{\mathscr{F}}$ complex $K_{\mathscr{F}}(X)$ and a G-map $\rho_{X}: K_{\mathcal{F}}(X) \rightarrow X$ such that

$$
\left(\rho_{X}\right)_{*}: \pi_{n}\left(K_{\mathscr{F}}(X)^{H}, v\right) \longrightarrow \pi_{n}\left(X^{H}, \rho_{X}(v)\right) \quad(n \geqq 0)
$$

[^0]is bijective for any $H \in \mathscr{F}$ and $v \in K_{\mathscr{F}}(X)^{H}$. Moreover, for any G-map $f: X \rightarrow Y$, there exists a G-cellular map $K_{\mathcal{F}}(f): K_{\mathcal{F}}(X) \rightarrow K_{\mathcal{F}}(Y)$, unique up to homotopy, such that $\rho_{Y} \circ K_{\mathcal{F}}(f)$ is G-homotopic to $f \circ \rho_{X}$.

When \mathscr{F} consists of all subgroups of $G, K_{\mathscr{F}}(X)$ is constructed more canonically in [5]. A variant of Brown's construction used in Hastings-Waner [2] also seems applicable to the proof of Theorem 3; but our construction given in $\S 2$ is much simpler. Besides, even when $G=\{e\}$, our construction which uses only the free homotopy classes is newly justified.

§1. Elementary study of free homotopy sets and proofs of Theorems $\mathbf{1 , 2}$ and 3

We shall prove Theorem 1 by an elementary lemma. Let K and X be arcwise connected spaces with base points $v_{0} \in K$ and $x_{0} \in X$. Let $\left[K, v_{0} ; X, x_{0}\right.$] denote the set of all based homotpy classes of (continuous) maps of (K, v_{0}) to (X, x_{0}). Then, we have the forgetful map

$$
\psi:\left[K, v_{0} ; X, x_{0}\right] \longrightarrow[K, X]
$$

to the free homotopy set. Assume that K is a CW complex and v_{0} is a vertex of K. Then, for any maps $f:\left(K, v_{0}\right) \rightarrow\left(X, x_{0}\right)$ and $\alpha:(I, \dot{I}) \rightarrow\left(X, x_{0}\right)$, we have a homotopy $f_{t}: K \rightarrow X$ with $f_{0}=f$ and $f_{t}\left(v_{0}\right)=\alpha(t)(t \in I)$, and denote $f_{1}:\left(K, v_{0}\right) \rightarrow$ (X, x_{0}) by $\alpha \cdot f$. The following lemma can be proved by a standard homotopy argument:

Lemma 1.1. $\pi_{1}\left(X, x_{0}\right)$ operates on $\left[K, v_{0} ; X, x_{0}\right]$ by $[\alpha] \cdot[f]=[\alpha \cdot f]$ and the set $\left[K, v_{0} ; X, x_{0}\right] / \pi_{1}\left(X, x_{0}\right)$ of all orbits is identified with $[K, X]$ by the forgetful map ψ.

Proof of Theorem 1. Consider the commutative diagram

where ψ 's are the forgetful maps and the lower f_{*} is denoted by $f_{\#}$ to distinguish it from the upper f_{*}.

Injectivity: Assume that $f_{\#}$ is injective. Take $g:\left(S^{n}, *\right) \rightarrow(X, x)$ with $f_{*}[g]=0$ in $\pi_{n}(Y, f(x))$. Then, $f_{\#}[g]=0$ in $\left[S^{n}, Y\right]$ and hence $[g]=0$ in $\left[S^{n}, X\right]$. Since the orbit of 0 in $\pi_{n}(X, x)$ consists of 0 alone, we see that $[g]=0$ in $\pi_{n}(X, x)$ by Lemma 1.1. Thus the group homomorphism f_{*} is injective.

Conversely, assume that f_{*} is injective. Let $g, g^{\prime}: S^{n} \rightarrow X$ be two maps such that $f_{\#}[g]=f_{\#}\left[g^{\prime}\right]$ in $\left[S^{n}, Y\right]$. We may assume that $g(*)=g^{\prime}(*)=x$. By Lemma 1.1, there is a $\beta \in \pi_{1}(Y, f(x))$ with $\beta \cdot[f \circ g]=\left[f \circ g^{\prime}\right]$. Take an element $\alpha \in$ $\pi_{1}(X, x)$ with $f_{*} \alpha=\beta$ by the assumption (*) in the theorem. Then, $f_{*}(\alpha \cdot[g])=$ $f_{*}\left[g^{\prime}\right]$. So, $\alpha \cdot[g]=\left[g^{\prime}\right]$ by the assumption, which implies $[g]=\left[g^{\prime}\right]$ in $\left[S^{n}, X\right]$. Thus $f_{\#}$ is injective.

Surjectivity: If f_{*} is surjective, then so is $f_{\#}$ by Lemma 1.1.
Assume that $f_{\#}$ is surjective, and take any $h:\left(S^{n}, *\right) \rightarrow(Y, f(x))$. Then, there is a map $g: S^{n} \rightarrow X$ with $f_{\#}[g]=[h]$ in $\left[S^{n}, Y\right]$, where we may assume that $g(*)=x$. By Lemma 1.1, there is a $\beta \in \pi_{1}(Y, f(x))$ such that $\beta \cdot[f \circ g]=[h]$. Take $\alpha \in \pi_{1}(X, x)$ with $f_{*} \alpha=\beta$ by the assumption (*) in the theorem. Then $f_{*}(\alpha \cdot[g])=[h]$; and f_{*} is surjective.
q.e.d.

To prove Theorem 2, we notice the following lemma, where

$$
\vee_{A} S^{1}=\vee_{\lambda \in \Lambda} S_{\lambda}^{1}\left(S_{\lambda}^{1}=S^{1}\right), \quad \Pi_{\Lambda} \pi=\prod_{\lambda \in \Lambda} \pi_{\lambda} \quad\left(\pi_{\lambda}=\pi\right)
$$

Lbmma 1.2. For any set Λ, any map $f: X \rightarrow Y$ between arcwise connected spaces and $x \in X$, the induced map $f_{\#}\left(=f_{*}\right):\left[\vee_{A} S^{1}, X\right] \rightarrow\left[\vee_{A} S^{1}, Y\right]$ can be identified with the map

$$
\left(\Pi_{\Lambda} f_{*}\right)_{\#}:\left(\Pi_{\Lambda} \pi\right) / \mathrm{ad} \pi \longrightarrow\left(\Pi_{\Lambda} \pi^{\prime}\right) / \mathrm{ad} \pi^{\prime}
$$

induced from the product $\Pi_{A} f_{*}$ of the induced homomorphism

$$
f_{*}: \pi=\pi_{1}(X, x) \longrightarrow \pi^{\prime}=\pi_{1}(Y, f(x)),
$$

where /ad denotes the set of orbits by the conjugation-action $\alpha \cdot\left(\alpha_{\lambda}\right)=\left(\alpha \alpha_{\lambda} \alpha^{-1}\right)$.
Proof. $\left[\vee_{A} S^{1}, * ; X, x\right]$ can be identified naturally with $\Pi_{\Lambda} \pi$. Thus, the lemma follows immediately from Lemma 1.1. q.e.d.

Lemma 1.3. In Lemma 1.2, assume that $f_{\#}=\left(\Pi_{A} f_{*}\right)_{\#}$ is surjective for any $\Lambda=\pi^{\prime} \cdot \beta$, where $\pi^{\prime} \cdot \beta=\left\{b \beta b^{-1}: b \in \pi^{\prime}\right\}$ is the conjugate class of $\beta \in \pi^{\prime}$. Then, $f_{*}: \pi \rightarrow \pi^{\prime}$ is also surjective.

Proof. Take any $\beta \in \pi^{\prime}$ and consider $\Pi_{\Lambda} f_{*}: \Pi_{\Lambda} \pi \rightarrow \Pi_{\Lambda} \pi^{\prime}$ for $\Lambda=\pi^{\prime} \cdot \beta$. Then the assumption means that for any $\left(\beta_{\lambda}\right) \in \Pi_{\lambda} \pi^{\prime}$, some conjugate $b \cdot\left(\beta_{\lambda}\right)=$ $\left(b \beta_{\lambda} b^{-1}\right)\left(b \in \pi^{\prime}\right)$ is contained in the image of $\Pi_{\Lambda} f_{*}$. Now, take $\left(\beta_{\lambda}\right)$ to be

$$
\beta_{\lambda}=\lambda \quad \text { for any } \quad \lambda \in \Lambda=\pi^{\prime} \cdot \beta
$$

Then, $\beta=b \beta_{\lambda_{0}} b^{-1}$ for $\lambda_{0}=b^{-1} \beta b \in \Lambda$ and so $\beta \in \operatorname{Im} f_{*}$. Thus f_{*} is surjective.
q. e. d.

Proof of Theorem 2. The implication (1) $\Rightarrow(2)$ is well-known in the theory
of CW complexes. (2)' is a special case of (2). (2)' for $K=*$ implies (1) for $n=0$. Lemma 1.3 shows that the last condition in (2)' implies the assumption $(*)$ in Theorem 1. The implication $(2)^{\prime} \Rightarrow(1)$ now follows from Theorem 1.

Proof of Thborem 3. Let L be a CW complex with trivial G-action. Then, for any $H \in \mathscr{F}, K=(G / H) \times L$ is a $G-\mathrm{CW}_{\mathscr{F}}$ complex and we can identify naturally as $K / G=L$ and $[K, Z]_{G}=\left[L, Z^{H}\right]$ for any G-space Z. So, (2)' is a special case of (2), and Theorem 2 shows the equivalence of (1), (2)' and (2)". The implication $(1) \Rightarrow(2)$ is due to a standard argument in the theory of $G-\mathrm{CW}$ complexes. q.e.d.

§ 2. Proof of Theorem 4 through Brown's construction

We shall construct $K_{\mathcal{F}}(X)$ in Theorem 4. Let \mathscr{C} be the category of $G-\mathrm{CW}_{\mathscr{F}}$ complexes and free G-homotopy classes of G-maps. The sum in this category stands for the disjoint union. Consider the equalizer $E\left(g_{0}, g_{1}\right)$ of two maps $g_{0}, g_{1}: A \rightarrow B$, defined to be the identification space
$E\left(g_{0}, g_{1}\right)=A \times I+B / \sim \quad$ with $(a, t) \sim g_{t}(a)$ for any $a \in A$ and $t \in \dot{I}$.
If $A, B \in \mathscr{C}$ and g_{0}, g_{1} are G-cellular, then $E\left(g_{0}, g_{1}\right) \in \mathscr{C}$.
Choose one representative for each class of conjugate subgroups in \mathscr{F} and put $\mathscr{F}^{\prime}=\{$ representatives $\} \subset \mathscr{F}$. Then,

$$
\begin{aligned}
& \mathscr{C}_{0}^{\prime}=\left\{G / H,(G / H) \times S^{n}: H \in \mathscr{F}^{\prime}, n \geqq 1\right\} \quad \text { and } \\
& \mathscr{C}_{1}^{\prime}=\mathscr{C}_{0}^{\prime} \cup\left\{(G / H) \times \vee_{A} S^{1}: H \in \mathscr{F}^{\prime}, \Lambda \subset \operatorname{Map}\left(S^{1}, X\right)\right\}
\end{aligned}
$$

$\left(\vee_{A} S^{1}=\vee_{\lambda \in A} S_{\lambda}^{1}, S_{\lambda}^{1}=S^{1}\right)$ are small subcategories of \mathscr{C}. Let \mathscr{C}_{0} (resp. $\left.\mathscr{C}_{1}\right)$ be a minimal subcategory which contains \mathscr{C}_{0}^{\prime} (resp. \mathscr{C}_{1}^{\prime}) and is closed under the operation of taking finite sum and equalizer. Then, \mathscr{C}_{0} and \mathscr{C}_{1} are small, full subcategories of \mathscr{C}.

Now, we fix a G-space X and put $H(\cdot)=[\cdot, X]_{G}$. We see that $\left(\mathscr{C}, \mathscr{C}_{0}\right)$ is a homotopy category and H is a homotopy functor in the sense of E . H. Brown [1]. To construct $K_{\mathscr{F}}(X) \in \mathscr{C}$ in Theorem 4, we use Brown's construction given there.

If γ is anything and $Y \in \mathscr{C},(Y, \gamma) \in \mathscr{C}$ will denote a copy of Y and $t_{\gamma}:(Y, \gamma) \rightarrow$ Y will be an identification. By induction on n, we define $K_{n} \in \mathscr{C}$ and $u_{n} \in H\left(K_{n}\right)$ so that

$$
K_{n} \subset K_{n+1} \quad \text { and } \quad H\left(f_{n}\right) u_{n+1}=u_{n}
$$

where $f_{n}: K_{n} \rightarrow K_{n+1}$ is the inclusion. Put

$$
K_{0}=\Sigma(Y, u) \quad \text { and } \quad u_{0}=\Sigma H\left(t_{u}\right) u \in H\left(K_{0}\right)
$$

where the sum ranges over all $Y \in \mathscr{C}_{1}$ and all $u \in H(Y)$. Note that the choice of K_{0} and u_{0} in [1] is arbitrary. So, we specify them as above to get the following

Lemma 2.1. $T_{u_{0}}:\left[Y, K_{0}\right]_{G} \rightarrow H(Y)$ is surjective for any $Y \in \mathscr{C}_{1}$.
Suppose that K_{n} and $u_{n}(n \geqq 0)$ have been defined. Let $K_{n+1} \in \mathscr{C}$ be the equalizer of

$$
\sum g_{i} \circ t_{\left(g_{0}, g_{1}\right)}: \sum\left(Y,\left(g_{0}, g_{1}\right)\right) \longrightarrow K_{n} \quad \text { for } \quad i=0,1
$$

where the sum ranges over all $Y \in \mathscr{C}_{0}$ and all pairs of G-cellular maps g_{0}, g_{1} : $Y \rightarrow K_{n}$ such that g_{0} is not freely G-homotopic to g_{1} and $H\left(g_{0}\right) u_{n}=H\left(g_{1}\right) u_{n}$. Then, it is easy to see that there is a $u_{n+1} \in H\left(K_{n+1}\right)$ with $H\left(f_{n}\right) u_{n+1}=u_{n}$.

From the way of the construction of $K_{n}(n \geqq 1)$ together with Lemma 2.1 and $\mathscr{C}_{0} \subset \mathscr{C}_{1}$, we see the following

Lemma 2.2. $\lim T_{u_{n}}: \lim \left[Y, K_{n}\right]_{G} \rightarrow H(Y)$ is bijective for any $Y \in \mathscr{C}_{0}$ and surjective for any $Y \in \mathscr{C}_{1}$.

Let $K_{\mathcal{F}}(X)=\cup K_{n}$ be the direct limit and $h_{n}: K_{n} \rightarrow K_{\mathcal{F}}(X)$ the inclusion. Then, $K_{\boldsymbol{F}}(X) \in \mathscr{C}$ and there is a $u_{X} \in H\left(K_{\mathcal{F}}(X)\right)$ such that $H\left(h_{n}\right) u_{X}=u_{n}$. Furthermore,

Lemma 2.3. $T_{u_{X}}:\left[Y, K_{\mathcal{F}}(X)\right]_{G} \rightarrow H(Y)$ is bijective for any $Y \in \mathscr{C}_{0}$ and surjective for any $Y \in \mathscr{C}_{1}$.

In fact, $\lim T_{u_{n}}$ in lemma 2.2 is the composition of

$$
\lim \left(h_{n}\right)_{*}: \lim \left[Y, K_{n}\right]_{G} \longrightarrow\left[Y, K_{\mathscr{F}}(X)\right]_{G}
$$

and $T_{u_{X}}$; and $\lim \left(h_{n}\right)_{*}$ is bijective for any $Y \in \mathscr{C}_{0}$, because the image of Y or $Y \times I\left(Y \in \mathscr{C}_{0}\right)$ is contained in a finite $G-\mathrm{CW}_{\mathscr{F}}$ subcomplex of $K_{\mathscr{F}}(X)$. Thus, Lemma 2.3 is a consequence of Lemma 2.2.

Take a G-map $\rho_{X}: K_{\mathcal{F}}(X) \rightarrow X$ representing $u_{X} \in H\left(K_{\boldsymbol{F}}(X)\right)=\left[K_{\boldsymbol{F}}(X), X\right]_{G}$. Then

$$
\left(\rho_{X}\right)_{*}=T_{u_{X}}:\left[Y, K_{\mathscr{F}}(X)\right]_{G} \longrightarrow[Y, X]_{G}=H(Y)
$$

which satisfies Lemma 2.3. So, the first half of Theorem 4 is a consequence of the implication (2)" $\Rightarrow(1)$ in Theorem 3 by the definition of \mathscr{C}_{0} and \mathscr{C}_{1}. The last half of Theorem 4 is clear by construction; and Theorem 4 is proved completely.

§3. Some finiteness conditions

In this section, we shall prove two propositions to give a condition that K in Theorem 2 can be restricted to finite CW complexes.

In the notations of Lemma 1.2, consider the induced homomorphism

$$
\varphi=f_{*}: \pi=\pi_{1}(X, x) \longrightarrow \pi^{\prime}=\pi_{1}(Y, f(x)) \quad(f: X \rightarrow Y, x \in X),
$$

and the induced $\operatorname{map} f_{\#}\left(=f_{*}\right):\left[\vee_{A} S^{1}, X\right] \rightarrow\left[\vee_{A} S^{1}, Y\right]$ identified with the map

$$
\left(\Pi_{\Lambda} \varphi\right)_{\#}:\left(\Pi_{\Lambda} \pi\right) / \mathrm{ad} \pi \longrightarrow\left(\Pi_{\Lambda} \pi^{\prime}\right) / \mathrm{ad} \pi^{\prime}
$$

induced from the product homomorphism $\Pi_{\Lambda} \varphi$, where /ad denotes the set of orbits by the conjugation-action $\alpha \cdot\left(\alpha_{\lambda}\right)=\left(\alpha \alpha_{\lambda} \alpha^{-1}\right)$. Then, we have the following proposition, where ($s n$) (resp. (bn)) means that
($\mathrm{s} n$) (resp. (bn)) $\quad f_{\#}=\left(\Pi_{\Lambda} \varphi\right)_{\#}$ is surjective (resp. bijective) when $|\Lambda|=n$.
Proposition 3.1. (i) When π^{\prime} (resp. π) is finite or nilpotent, (s1) (resp. ($\mathrm{s} n$) for all n) implies the assumption (*) in Theorem 1 that $f_{*}=\varphi$ is surjective.
(ii) When π is nilpotent, (b1) and (s2) imply that φ is bijective.

Proof. (i) Put $\bar{\pi}=\operatorname{Im} \varphi \subset \pi^{\prime}$. Then (s1) means that $\pi^{\prime}=\{e\} \cup \cup_{\beta \in \pi^{\prime}} \beta$. ($\bar{\pi}-\{e\}$). So, when π^{\prime} is finite, this implies that $\left|\pi^{\prime}\right| \leqq 1+(|\bar{\pi}|-1)\left|\pi^{\prime}\right| \bar{\pi} \mid=1+$ $\left|\pi^{\prime}\right|-\left|\pi^{\prime}\right| \bar{\pi} \mid$ and $\pi^{\prime}=\bar{\pi}$.

When π^{\prime} is nilpotent, take the upper central series $\{e\}=Z_{0}^{\prime} \subset Z_{1}^{\prime} \subset \cdots \subset Z_{n}^{\prime}=\pi^{\prime}$. Let $\beta \in Z_{i+1}^{\prime}$. Then, $b \cdot \beta \in \bar{\pi}$ for some $b \in \pi^{\prime}$ by (s1), and $b \cdot \beta \equiv \beta \bmod Z_{i}^{\prime}$ since $Z_{i+1}^{\prime} / Z_{i}^{\prime}=Z\left(\pi^{\prime} \mid Z_{i}^{\prime}\right)$. So, if $Z_{i}^{\prime} \subset \bar{\pi}$, then $\beta \in \bar{\pi}$ and $Z_{i+1}^{\prime} \subset \bar{\pi}$. Thus we see $Z_{i}^{\prime} \subset \bar{\pi}$ by induction; and $\pi^{\prime}=Z_{n}^{\prime}=\bar{\pi}$.

Assume that (sn) holds for all n. Let $\beta \in \pi^{\prime}$. Then $b \cdot(\{\beta\} \cup(\bar{\pi}-\{e\})) \subset \bar{\pi}$ for some $b \in \pi^{\prime}$ by ($\mathrm{s}|\bar{\pi}|$) when π is finite. This shows $\beta \in \bar{\pi}$ and $\pi^{\prime}=\bar{\pi}$. Now consider the lower central series given by $\bar{\pi}_{0}=\bar{\pi}, \bar{\pi}_{i+1}=\left[\bar{\pi}, \bar{\pi}_{i}\right]$ and $\pi_{0}^{\prime}=\pi^{\prime}, \pi_{i+1}^{\prime}=$ $\left[\pi^{\prime}, \pi_{i}^{\prime}\right]$. Then, for any $\beta_{\lambda} \in \pi_{i(\lambda)}^{\prime}(1 \leqq \lambda \leqq n)$, there is a $b \in \pi^{\prime}$ with $b \cdot \beta_{\lambda} \in \bar{\pi}_{i(\lambda)}$. This is the assumption when $i=\max i(\lambda)$ is 0 , and is proved by induction on i and by the definition of commutator subgroups. So, $\pi_{m}^{\prime}=\{e\}$ if $\bar{\pi}_{m}=\{e\}$. Thus, when π is nilpotent, so is π^{\prime} and we have $\pi^{\prime}=\bar{\pi}$ as is shown already.
(ii) φ is injective by (b1) and we regard φ as the inclusion. Take the upper central series $\{e\}=Z_{0} \subset Z_{1} \subset \cdots \subset Z_{n}=\pi$. Then, we see by induction that Z_{i} is a normal subgroup of π^{\prime}; and so is $\pi=Z_{n}$ and $\pi^{\prime}=\pi$ by (s1). In fact, take any $\alpha \in Z_{i+1}$ and $\beta \in \pi^{\prime}$. Then $b^{\prime} \cdot(\alpha, \beta) \in \pi \times \pi$ for some $b^{\prime} \in \pi^{\prime}$ by (s2), and so $b^{\prime} \cdot \alpha=a \cdot \alpha$ for some $a \in \pi$ by (b1). Thus $b \cdot(\alpha, \beta)=\left(\alpha, \alpha_{1}\right)$ where $b=a^{-1} b^{\prime} \in \pi^{\prime}$ and $\alpha_{1} \in \pi$. So, $\quad b \cdot(\beta \cdot \alpha)=\left(\alpha_{1} b\right) \cdot \alpha=\alpha_{1} \cdot \alpha \equiv \alpha \bmod Z_{i}$ since $Z_{i+1} / Z_{i}=Z\left(\pi / Z_{i}\right)$, and $\beta \cdot \alpha \equiv b^{-1} \cdot \alpha=\alpha \bmod Z_{i}$ by inductive assumption. Hence $\beta \cdot \alpha \in Z_{i+1}$ and
Z_{i+1} is normal in π^{\prime}, as desired.
q.e.d.

We now consider the following finiteness condition (**) for any group π :
(**) There exists a finite subset A of π such that $Z(A) \cdot \alpha=\left\{a \alpha a^{-1}: a \in Z(A)\right\}$ is finite for any $\alpha \in \pi . \quad(Z(A)$ is centralizer of A.)

Example 3.2. π satisfies (**), when
(1) π is a FC-group, i.e., each conjugate class $\pi \cdot \alpha$ of $\alpha \in \pi$ consists of finite elements (e.g., π is abelian or finite), or
(2) π is finitely generated group or a free group.

In fact, any FC-group π satisfies (**) by taking the empty set for A. If π is generated by a finite set A, then $Z(A)=Z(\pi)$. If π is free and $A=\left\{a_{1}, a_{2}\right\}\left(a_{1} \neq a_{2}\right)$ is a subset of a system of free generators of π, then $Z(A)=\{e\}$. So, $Z(A) \cdot \alpha=\{\alpha\}$ in these cases.

Proposition 3.3. When π or π^{\prime} satisfies ($* *$), $\varphi=f_{*}$ is bijective if (bn) holds for all n.

By the proof of Theorem 2, we have the following
Corollary 3.4. In cases of Propositions 3.1 and 3.3, Theorem 2 is valid by restricting K to finite CW complexes.

In Proposition 3.3, φ is injective by (b1) (see the proof of Theorem 1), and we regard $\varphi: \pi \subset \pi^{\prime}$ as the inclusion hereafter. When $\Lambda \subset \pi$, we denote by $d_{\Lambda}=$ $\left(d_{\lambda}\right) \in \Pi_{\Lambda} \pi$ the element with $d_{\lambda}=\lambda$ for any $\lambda \in \Lambda$. Then, $\alpha \cdot d_{\Lambda}=d_{\Lambda}$ means $\alpha \in Z(\Lambda)$ when $\alpha \in \pi$ and $\alpha \in Z\left(\Lambda, \pi^{\prime}\right)=\left\{\beta \in \pi^{\prime}: \beta \lambda=\lambda \beta\right.$ for any $\left.\lambda \in \Lambda\right\}$ (the centralizer of Λ in π^{\prime}) when $\alpha \in \pi^{\prime}$, respectively.

Lemma 3.5. Assume that (bn) holds, and let A and B be finite sets with $A \subset \pi,|A|=n$ and $|B|=m-n$, and $\beta_{B} \in \prod_{B} \pi^{\prime}$ be any element.
(i) If ($\mathrm{s} m$) holds, then there exists $\alpha_{B} \in\left(\prod_{B} \pi\right) \cap Z\left(A, \pi^{\prime}\right) \cdot \beta_{B}$.
(ii) If (bm) holds in addition, then $Z(A) \cdot \alpha_{B}=\left(\prod_{B} \pi\right) \cap Z\left(A, \pi^{\prime}\right) \cdot \beta_{B}$.

Proof. (i) For $\left(d_{A}, \beta_{B}\right) \in \prod_{A} \pi^{\prime} \times \prod_{B} \pi^{\prime}$, there is a $\left(x_{A}, x_{B}\right) \in\left(\prod_{A} \pi \times\right.$ $\left.\Pi_{B} \pi\right) \cap \pi^{\prime} \cdot\left(d_{A}, \beta_{B}\right)$ by (sm), and so $x_{A}=\alpha \cdot d_{A}$ for some $\alpha \in \pi$ by (bn) since $d_{A} \in \prod_{A} \pi$. Thus, $\alpha_{B}=\alpha^{-1} \cdot x_{B} \in \prod_{B} \pi$ and $\left(d_{A}, \alpha_{B}\right)=\beta \cdot\left(d_{A}, \beta_{B}\right)$ for some $\beta \in \pi^{\prime}$. This means that $\beta \in Z\left(A, \pi^{\prime}\right)$ and (i).
(ii) If $\alpha_{B}^{\prime} \in\left(\prod_{B} \pi\right) \cap Z\left(A, \pi^{\prime}\right) \cdot \beta_{B}$ in addition, then $\left(d_{A}, \alpha_{B}^{\prime}\right) \in \pi^{\prime} \cdot\left(d_{A}, \beta_{B}\right)$ and so $\left(d_{A}, \alpha_{B}^{\prime}\right)=\alpha^{\prime} \cdot\left(d_{A}, \alpha_{B}\right)$ for some $\alpha^{\prime} \in \pi$ by (bm). This means $\alpha^{\prime} \in Z(A)$ and $\alpha_{B}^{\prime} \in Z(A) \cdot \alpha_{B}$.
q.e.d.

Proof of Proposition 3.3. Assume that π^{\prime} satisfies (**) by a finite subset B of π^{\prime}. Then, there is a $\left(\alpha_{b}\right) \in\left(\prod_{B} \pi\right) \cap \pi^{\prime} \cdot d_{B}$ by $(\mathrm{s}|B|)$. So, $A=\left\{\alpha_{b}: b \in B\right\} \subset \pi$
satisfies $A=\beta_{0} \cdot B$ for some $\beta_{0} \in \pi^{\prime}$. Take any $\beta \in \pi^{\prime}$. Then $B^{\prime}=Z\left(A, \pi^{\prime}\right) \cdot \beta=$ $\beta_{0} \cdot\left(Z(B) \cdot\left(\beta_{0}^{-1} \cdot \beta\right)\right)$ is finite by (**). By (b|A|), (s(|A|+|B'|)) and Lemma 3.5 (i), we have $b \cdot d_{B^{\prime}} \in \prod_{B^{\prime}} \pi$ for some $b \in Z\left(A, \pi^{\prime}\right)$. So, for $b^{\prime}=b^{-1} \cdot \beta \in B^{\prime}$, we see that $\beta=b \cdot b^{\prime}=b \cdot d_{b^{\prime}} \in \pi$; and $\pi^{\prime}=\pi$.

Assume now that π satisfies (**) by a finite subset A of π. Take any $\beta \in \pi^{\prime}$. Then there is an $\alpha \in \pi \cap Z\left(A, \pi^{\prime}\right) \cdot \beta$ by (b|A|), (s $\left.(|A|+1)\right)$ and Lemma 3.5 (i). Put $A^{\prime}=Z(A) \cdot \alpha$ which is a finite subset of π by (**). Take again $\alpha^{\prime} \in \pi$ with $\alpha^{\prime}=b \cdot \beta$ for some $b \in Z\left(A, \pi^{\prime}\right) \cap Z\left(A^{\prime}, \pi^{\prime}\right)$ by $\left(\mathrm{b}\left(|A|+\left|A^{\prime}\right|\right)\right)$ and $(\mathrm{s}(|A|+|A|+1))$. Then, $\alpha^{\prime} \in Z(A) \cdot \alpha=A^{\prime}$ by $(\mathrm{b}(|A|+1))$ and Lemma 3.5 (ii). So, $\beta=b^{-1} \cdot \alpha^{\prime}=$ $\alpha^{\prime} \in \pi ;$ and $\pi^{\prime}=\pi$.
q.e.d.

§4. Counter-examples

In this section, we shall show that Proposition 3.3 and Corollary 3.4 do not hold in general without any assumption on π or π^{\prime}, that is, K in Theorem 2 cannot be restricted to finite CW complexes.

Counter-examples are given by using the infinte symmetric group $S_{\infty}=$ $\cup_{n \in N} S_{n}$, where N is the set of positive integers and S_{n} is the symmetric group of n letters $\{1,2, \ldots, n\}$. Any element $\sigma \in S_{\infty}$ is a bijection $\sigma: N \rightarrow N$ such that $m(\sigma)=$ $\{n \in N: \sigma(n) \neq n\}$ is a finite subset of N.

Proposition 4.1. For any injection $\varphi: N \rightarrow N$, let $\bar{\varphi}: S_{\infty} \rightarrow S_{\infty}$ be the homomorphism defined by

$$
\bar{\varphi} \sigma|N-\varphi N=\operatorname{id}, \quad \bar{\varphi} \sigma| \varphi N=\varphi \circ \sigma \circ \varphi^{-1} \quad\left(\sigma \in S_{\infty}\right)
$$

Then the induced map $\left(\Pi_{\Lambda} \bar{\varphi}\right)_{\#}$ of $\left(\Pi_{\Lambda} S_{\infty}\right) / \mathrm{ad} S_{\infty}$ to itself is bijective for any finite set Λ.

Corollary 4.2 Let X be the Eilenberg-MacLane complex $K\left(S_{\infty}, 1\right)$, and $f: X \rightarrow X$ be the map such that $f_{*}=\bar{\varphi}$ on $\pi_{1}(X)=S_{\infty}$. Then, the induced map $f_{\#}\left(=f_{*}\right)$ of the free homotopy set $[K, X]$ to itself is bijective for any finite CW complex K.
$\bar{\varphi}$ is not surjective unless φ is surjective. So, these give counter-examples.
We see that $f_{\#}$ in Corollary 4.2 is bijective for the 1 -skeleton K^{1} of any finite CW complex K by Proposition 4.1 and Lemma 1.2, and so for K by a standard homotopy argument because $\pi_{n}(X)=0$ for $n \geqq 2$.

Proof of Proposition 4.1. By the definition of $\bar{\varphi}$, it is clear that $\bar{\varphi}$ is injective and that $\sigma \in \operatorname{Im} \bar{\varphi}$ if and only if $m(\sigma) \subset \varphi N$ for $\sigma \in S_{\infty}$.

Let Λ be a finite set. Take any $\left(\sigma_{\lambda}\right) \in \Pi_{\Lambda} S_{\infty}$ and put $M=\cup_{\lambda \in \Lambda} m\left(\sigma_{\lambda}\right)$. Then, M is a finite subset of N and there exists a $\sigma \in S_{\infty}$ such that $\sigma(M) \subset \varphi N$. So,
$m\left(\sigma \sigma_{\lambda} \sigma^{-1}\right) \subset \varphi N$ and $\sigma \sigma_{\lambda} \sigma^{-1} \in \operatorname{Im} \bar{\varphi}$ for any $\lambda \in \Lambda$. Thus, $\left(\Pi_{\Lambda} \bar{\varphi}\right)_{\#}$ is surjective.
Now, assume that $\left(\sigma_{\lambda}\right),\left(\sigma_{\lambda}^{\prime}\right) \in \Pi_{\Lambda} S_{\infty}$ are contained in $\operatorname{Im} \Pi_{\Lambda} \bar{\varphi}$ and $\left(\sigma_{\lambda}^{\prime}\right)=$ $\sigma \cdot\left(\sigma_{\lambda}\right)$ for some $\sigma \in S_{\infty}$. When $m(\sigma) \not \subset \varphi N$, take $n \in m(\sigma)-\varphi N$ and put $\sigma^{\prime}=$ $\left(n n^{\prime}\right) \sigma$, where $\left(n n^{\prime}\right)$ is the transposition of n and $n^{\prime}=\sigma(n)(\neq n)$. Then,

$$
m\left(\sigma^{\prime}\right) \subset m(\sigma)-\{n\}, \quad\left(\sigma_{\lambda}^{\prime}\right)=\sigma^{\prime} \cdot\left(\sigma_{\lambda}\right)
$$

In fact, the first one is clear. Since $\sigma_{\lambda}, \sigma_{\lambda}^{\prime} \in \operatorname{Im} \bar{\varphi}$ and $n \notin \varphi N, n$ and n^{\prime} are fixed by $\sigma_{\lambda}^{\prime}=\sigma \sigma_{\lambda} \sigma^{-1}$, which shows the second one. Since $m(\sigma)$ is finite, the repeating use of this process shows that $\left(\sigma_{\lambda}^{\prime}\right)=\tau \cdot\left(\sigma_{\lambda}\right)$ for some $\tau \in S_{\infty}$ with $m(\tau) \subset \varphi N$, i.e., $\tau \in \operatorname{Im} \bar{\varphi} . \quad$ Thus, $\left(\Pi_{\Lambda} \bar{\varphi}\right)_{\#}$ is injective.
q.e.d.

In the end of this section, we note the following counter-example, which is given by T. Ohkawa before we obtain Corollary 4.2, where spaces are assumed to be arcwise connected CW complexes.

Remark 4.3. (T. Ohkawa). For any based map $f: X \rightarrow Y$, we can construct $X_{\infty} \supset X, Y_{\infty} \supset Y$ and an extension $f_{\infty}: X_{\infty} \rightarrow Y_{\infty}$ of f with the following properties:
(1) $f_{\infty *}:\left[K, X_{\infty}\right] \rightarrow\left[K, Y_{\infty}\right]$ is bijective for any finite CW complex K.
(2) For the induced homomorphisms $\pi_{1}(X) \xrightarrow{f_{*}} \pi_{1}(Y) \xrightarrow{i_{*}} \pi_{1}\left(Y_{\infty}\right) \xrightarrow{f_{\infty} *} \pi_{1}\left(X_{\infty}\right)$ ($i: Y \subset Y_{\infty}$), i_{*} is injective and $\operatorname{Im} f_{\infty *} \cap \operatorname{Im} i_{*}=\operatorname{Im}\left(i_{*} \circ f_{*}\right)$, (and so $f_{\infty *}$ is not surjective when f_{*} is not surjective).

The construction is done by modifying the one given in $\S 2$ so as to satisfy (2), and is sketched as follows: Let $X_{1}=X \vee \vee(K, h), Y_{1}$ be the equalizer of

$$
\vee h \circ t_{h}, j \text { (the inclusion) }: \vee(K, h) \longrightarrow Y^{\prime}=Y \vee \vee(K, h),
$$

and $f_{1}: X_{1} \rightarrow Y^{\prime} \subset Y_{1}$ be defined by f and the identity map, where the wedge ranges over all finite CW complexes K with base points and all based maps $h: K \rightarrow Y$ (up to free homotopy). Furthermore, let X_{2}, Y_{2} be the equalizers of

$$
\begin{aligned}
\sum g_{i} \circ t_{\left(g_{0}, g_{1}\right)}: \sum\left(K,\left(g_{0}, g_{1}\right)\right) \longrightarrow X_{1} \quad(i=0,1), \\
\sum f_{1} \circ g_{i} \circ t_{\left(g_{0}, g_{1}\right)}: \sum\left(K,\left(g_{0}, g_{1}\right)\right) \longrightarrow Y_{1} \quad(i=0,1),
\end{aligned}
$$

respectively, and $f_{2}: X_{2} \rightarrow Y_{2}$ be defined by the identity map and f_{1}, where the sum (disjoint union) ranges over all K of above and all pairs of based maps g_{0}, g_{1} : $K \rightarrow X_{1}$ such that $f_{1} \circ g_{0}$ is freely homotopic to $f_{1} \circ g_{1}$. Let X_{n}, Y_{n} and $f_{n}: X_{n} \rightarrow Y_{n}$ be defined inductively by the first or second construction according to n is odd or even. Then, $X_{\infty}=\cup X_{n}, Y_{\infty}=\cup Y_{n}$ and $f_{\infty}=\cup f_{n}: X_{\infty} \rightarrow Y_{\infty}$ are the desired ones. In fact, (1) is clear. (2) is seen by the following result:

Let $E=E\left(g_{0}, g_{1}\right)$ be the equalizer of based maps $g_{0}, g_{1}: A \rightarrow B$ and consider

$$
\pi_{1}(A) \xrightarrow{g_{i *}} \pi_{1}(B) \xrightarrow{i_{1} *} \pi_{1}(E) \xrightarrow{i_{2} *} \pi_{1}\left(S^{1}\right) \quad(i=0,1)
$$

where i_{1} and $i_{2}: S^{1}=* \times I / \sim \subset E$ are the inclusions. Then, the isomorphism

$$
\pi_{1}(E) \cong \pi_{1}(B) * \pi_{1}\left(S^{1}\right) /\left\langle\left(g_{0 *} \alpha\right)^{-1} s\left(g_{1 *} \alpha\right) s^{-1}: \alpha \in \pi_{1}(A)\right\rangle
$$

is induced from $i_{1 *}$ and $i_{2 *}$, where $s \in \pi_{1}\left(S^{1}\right)$ is a generator, (which is shown by using van Kampen's theorem). Furthermore, if $\operatorname{Ker} g_{0 *}=\operatorname{Ker} g_{1 *}$, then $i_{1 *}$ is injective and the right hand side is an HNN-extension which satisfies the Normal Form Theorem (cf., e.g., [3, Ch. IV, Th. 2.1]).

References

[1] E. H. Brown: Abstract homotopy theory, Trans. Amer. Math. Soc., 119 (1965), 79-85.
[2] H. M. Hastings and S. Waner: On Brown's construction for compact Lie group actions, (preprint).
[3] R. C. Lyndon and P. E. Schupp: Combinatorial Group Theory, Erg. d. Math. 89, Springer-Verlag, Berlin, 1977.
[4] T. Matumoto: On G-CW complexes and a theorem of J. H. C. Whitehead. J. Fac. Sci. Univ. Tokyo, IA, 18 (1971), 363-374.
[5] -: A complement to the theory of G-CW complexes, to appear in Japan. J. Math., 10-2 (1984).

Department of Mathematics,
Faculty of Science,
Hiroshima University

[^0]: *) We remark that a missing part of the proof of this theorem is covered by that in this note.

