Quasi-artinian Lie algebras

Fujio Kubo* and Masanobu Honda (Received April 12, 1984)

Introduction

The concept of 'quasi-artinian Lie algebras' was recently introduced by Aldosray in [1]. The class of all quasi-artinian Lie algebras contains $\mathbb{E}\mathfrak{A} \cup \mathbb{M}$ in- $\mathbb{E}\mathfrak{A} \cup \mathbb{M}$. We construct a quasi-artinian Lie algebra which does not belong to $\mathbb{E}\mathfrak{A} \cup \mathbb{M}$ in- $\mathbb{E}\mathfrak{A} \cup \mathbb{M}$. The existence of such a Lie algebra and a question left unanswered in [1] motivate us to rise the following problems:

- 1. Give a condition under which quasi-artinian Lie algebras are soluble.
- 2. Give a condition under which quasi-artinian Lie algebras satisfy the minimal condition for ideals.
- 3. Does every semisimple quasi-artinian Lie algebra satisfy the minimal condition for ideals?

The aim of this paper is to give answers to the above problems. In Section 2 we shall prove that every residually (ω) -central quasi-artinian Lie algebra is soluble (Theorem 2.3). This result is a generalization of Theorem 3.3 in [1]. The main result of Section 3 is that a quasi-artinian Lie algebra L satisfies the minimal condition for ideals if and only if L belongs to the largest Q-closed subclass of Min- \triangleleft $\mathfrak A$ (Theorem 3.3). In Section 4 we shall construct a Lie algebra by which we can give a negative answer to the third problem stated above (Corollary 4.2).

1.

Notations and terminology are based on Amayo and Stewart [3], and some of the notions used in this paper are found in [1] and [2]. But for the sake of convenience we list the terms that we use here.

Lie algebras will be of arbitrary dimension. For a Lie algebra L and an ordinal α , $L^{(\alpha)}$ and $\zeta_{\alpha}(L)$ denote the α -th terms of the (transfinite) derived and upper central series of L respectively. These are inductively defined by $L=L^{(0)}$, $L^{(\alpha+1)}=[L^{(\alpha)},L^{(\alpha)}]$ and $L^{(\rho)}=\bigcap_{\alpha<\rho}L^{(\alpha)}$ for limit ordinals ρ ; $\zeta_0(L)=0$, $\zeta_1(L)=$ the center of L, $\zeta_{\alpha+1}(L)/\zeta_{\alpha}(L)=\zeta_1(L/\zeta_{\alpha}(L))$ and $\zeta_{\rho}(L)=\bigcup_{\alpha<\rho}\zeta_{\alpha}(L)$ for limit ordinals ρ . The hypercenter $\zeta_*(L)$ of L is $\bigcup_{\alpha}\zeta_{\alpha}(L)$. For a subalgebra H of L the ideal closure series $(H_i)_{i\in N}$ is defined recursively by $H_0=L$, $H_{i+1}=\langle H^{H_i}\rangle$.

^{*} partially supported by Grant-in-Aid for Encouragement of Young Scientist of Ministry of Education of Japan.

A class \mathfrak{X} is a collection of Lie algebras together with their isomorphic copies and the 0-dimensional Lie algebra. We will need the classes

 \mathfrak{A} , $L\mathfrak{N}$, \mathfrak{A}^d , $E\mathfrak{A}$, \mathfrak{J} , $Min-\lhd$, $Min-\lhd E\mathfrak{A}$, $Min-\lhd \mathfrak{A}$, $Max-\lhd$, $Max-\lhd^2$, $SE\mathfrak{A}$ -Fin, $S\mathfrak{A}$ -Fin, $S\mathfrak{A}$

 $(d \in \mathbb{N})$ defined by: $L \in \mathfrak{A}$, $L\mathfrak{N}$ if L is respectively abelian, locally nilpotent. $L \in \mathfrak{A}^d$ if $L^{(d)} = 0$. $L \in \mathfrak{A}^d$ if $L \in \mathfrak{A}^d$ for some $d < \omega$. $L \in \mathfrak{Z}$ if $\zeta_*(L) = L$. $L \in \text{Min-} \lhd$, Min- $\lhd \mathfrak{A}$ if L has the minimal condition on ideals, soluble ideals, abelian ideals respectively. Here we note that Min- $\lhd \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ Min- $\lhd \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if L has the maximal condition on ideals, 2-step subideals respectively. $L \in \mathfrak{L} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if L has the maximal condition on ideals, 2-step subideal of L is finite-dimensional. It is known that $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A} \subseteq \mathfrak{A}$ if $L \subseteq \mathfrak{A} \subseteq \mathfrak{A}$

For a class X of Lie algebras the classes

are defined as follows. $L \in \mathfrak{SX}$ (resp. \mathfrak{IX}) if L is a subalgebra (resp. subideal) of a Lie algebra in \mathfrak{X} . $L \in \mathfrak{EX}$ if L has a finite series $0 = L_0 \lhd \cdots \lhd L_n = L$ whose factors $L_{i+1}/L_i \in \mathfrak{X}$ for $0 \le i \le n-1$. $L \in \mathfrak{RX}$ if L has a family $(I_\alpha)_{\alpha \in A}$ of ideals such that $L/I_\alpha \in \mathfrak{X}$ for all α and $\bigcap_{\alpha \in A} I_\alpha = 0$. $L \in \mathfrak{QX}$ if L is a homomorphic image of a Lie algebra in \mathfrak{X} . We say that a class \mathfrak{X} of Lie algebras is E-closed, I-closed, Q-closed, R-closed if $E\mathfrak{X} = \mathfrak{X}$, $I\mathfrak{X} = \mathfrak{X}$, $I\mathfrak{X} = \mathfrak{X}$, $I\mathfrak{X} = \mathfrak{X}$ respectively.

A Lie algebra L is said to be semisimple if the sum of all soluble ideals of L is zero.

Let L be a Lie algebra over any field. L is said to be quasi-artinian if for every descending chain $I_1 \supseteq I_2 \supseteq \cdots$ of ideals of L there exists a positive integer r such that $[L^{(r)}, I_r] \subseteq \cap_{i \ge 1} I_i$. We denote by qmin- \lhd the class of all quasi-artinian Lie algebras. The following proposition is a characterization of the quasiartinian Lie algebras.

PROPOSITION 1.1. Let L be a Lie algebra over any field. Then $L \in \text{qmin} - \text{d}$ if and only if there exists an ideal I of L such that $L/I \in \mathbb{R} M$ and the set $\{[K, I]: K \subset L\}$ satisfies the minimal condition.

PROOF. Let $L \in \text{qmin} - \square$ and put $I = L^{(\omega)}$. Then $I = L^{(n)}$ for some $n < \omega$ and $L/I \in \mathbb{P}$. Let $K_i \subseteq L$ ($i \ge 1$) and suppose that $[K_1, I] \supseteq [K_2, I] \supseteq \cdots$. Since $L \in \text{qmin} - \square$, there exists an integer $n \ge 1$ such that $[L^{(n)}, [K_n, I]] \subseteq \bigcap_{i \ge 1} [K_i, I]$. Observing $I^{(1)} = I$ we have $[K_n, I] \subseteq [[K_n, I], I] = [[K_n, I], L^{(n)}] \subseteq [K_{n+j}, I]$ for any $j \ge 0$.

Conversely take an ideal I of L such that $L/I \in \mathbb{E} \mathfrak{A}$ and the set $\{[K, I]: K \triangleleft L\}$

satisfies the minimal condition. Then $L^{(n)} \subseteq I$ for some $n < \omega$. Let $K_i \multimap L$ $(i \ge 1)$ and suppose that $K_1 \supseteq K_2 \supseteq \cdots$. Then $\{[K_i, I]: i \ge 1\}$ has the minimal element $[K_m, I]$. Putting $r = \max\{m, n\}$ we have $[K_r, L^{(r)}] \subseteq [K_m, I] \subseteq \bigcap_{i \ge 1} [K_i, I] \subseteq \bigcap_{i \ge 1} K_i$.

For an integer $n \ge 1$ we put $\mathbf{Q}(n) = \{p/q \in \mathbf{Q}: q > n, p \text{ and } q \text{ are relatively prime}\} + \mathbf{Z}$. Let V be a vector space over a field F of characteristic zero with basis $\{v(a): a \in \mathbf{Q}\}$. Considered as an abelian Lie algebra V has derivations $x: v(a) \mapsto v(a+1)$, $y: v(a) \mapsto a(a-1)v(a-1)$, $z: v(a) \mapsto 2av(a)$. Let L be the split extension $V \dotplus \langle x, y, z \rangle$.

Let $V_n = \sum_{a \in Q(n)} Fv(a)$. Then $V_1 \supseteq V_2 \supseteq \cdots$. Since Q(n) + Z = Q(n), we have $[V_n, L] \subseteq V_n$. On the other hand, take an element a in Q(n). Then $v(a) = [v(a-1), x] \in [V_n, L]$. Hence we have $[V_n, L] = V_n$. Since $L^{(\omega)} = L$, for any integer $m \ge 1$ a descending chain $[V_1, L^{(m)}] \supseteq [V_2, L^{(m)}] \supseteq \cdots$ does not terminate finitely. Therefore by [1, Theorem 3.1], $L \notin \text{qmin-} \triangleleft$.

Observing that $V, L/V \in \text{qmin-} \triangleleft$, we have the following

PROPOSITION 1.2. Over any field of characteristic zero qmin
is not E-closed.

2.

In this section we shall give classes $\mathfrak X$ of Lie algebras such that qmin- $\triangleleft \cap \mathfrak X = \mathfrak E \mathfrak A$.

To begin with, we generalize the notion of residually central Lie algebras. We say that a Lie algebra L is residually (ω) -central if $x \in L$ implies x = 0 or $x \notin [x, L^{(\omega)}]^L$, and denote by $\Re_{(\infty)}$ the class of all residually (ω) -central Lie algebras.

LEMMA 2.1. (1)
$$S\Re_{(\infty)} = R\Re_{(\infty)} = \Re_{(\infty)}$$
.

(2) RE $\mathfrak{A} \cup \mathfrak{R} \subseteq \mathfrak{R}_{(\infty)}$.

PROOF. (1) Clearly $\mathfrak{SR}_{(\infty)} = \mathfrak{R}_{(\infty)}$. Let $x \in L \in \mathfrak{RR}_{(\infty)}$ with $x \neq 0$ and take an ideal I of L such that $x \notin I$ and $L/I \in \mathfrak{R}_{(\infty)}$. Then $x + I \notin [x + I, (L/I)^{(\omega)}]^{L/I}$, so $x \notin [x, L^{(\omega)}]^L$. Therefore $L \in \mathfrak{R}_{(\infty)}$.

(2) If $L \in \text{RE}\mathfrak{A}$, then $L^{(\omega)} = 0$ and so $L \in \mathfrak{R}_{(\infty)}$. It is obvious that $\mathfrak{R} \subseteq \mathfrak{R}_{(\infty)}$.

LEMMA 2.2. Let $I \lhd L \in \Re_{(\infty)}$, $x \in L$. Then for any ordinal α , $x \notin \zeta_{\alpha}(I)$ if and only if $x \notin [x, I^{(\omega)}]^L + \zeta_{\alpha}(I)$.

PROOF. We use transfinite induction on α . It is trivial for $\alpha = 0$. Let $\alpha > 0$ and assume that the result is true for any ordinal $\beta < \alpha$. Let $x \notin \zeta_{\alpha}(I)$ and assume that $x \in [x, I^{(\alpha)}]^L + \zeta_{\alpha}(I)$. If α is limit, then there exists an ordinal $\beta < \alpha$ such that

 $x \in [x, I^{(\omega)}]^L + \zeta_{\beta}(I)$. By induction hypothesis we have $x \in \zeta_{\beta}(I) \subseteq \zeta_{\alpha}(I)$, which is a contradiction. In the case that α is non-limit, take elements $y \in [x, I^{(\omega)}]^L$ and $z \in \zeta_{\alpha}(I)$ such that x = y + z. Then $[z, I^{(\omega)}]^L \subseteq \zeta_{\alpha-1}(I)$. Hence we have $y \in [y, I^{(\omega)}]^L + [z, I^{(\omega)}]^L \subseteq [y, I^{(\omega)}]^L + \zeta_{\alpha-1}(I)$. By induction hypothesis $y \in \zeta_{\alpha-1}(I) \subseteq \zeta_{\alpha}(I)$ and $x = y + z \in \zeta_{\alpha}(I)$, which is a contradiction.

We now set about showing the main theorem in this section.

THEOREM 2.3. qmin- $\triangleleft \cap \mathfrak{X} = \mathbb{E} \mathfrak{A}$ for any class \mathfrak{X} of Lie algebras such that $\mathbb{E} \mathfrak{A} \subseteq \mathfrak{X} \subseteq \mathfrak{R}_{(\infty)}$.

PROOF. By Lemma 2.1(2) we have $\mathbb{E}\mathfrak{A} \subseteq \mathrm{qmin} - \mathbb{A} \cap \mathfrak{R}_{(\infty)}$. Assume that $\mathbb{E}\mathfrak{A} \subseteq \mathrm{qmin} - \mathbb{A} \cap \mathfrak{R}_{(\infty)}$ and take a Lie algebra $L \in \mathrm{qmin} - \mathbb{A} \cap \mathfrak{R}_{(\infty)}$ with $L \notin \mathbb{E}\mathfrak{A}$. Put $I = L^{(\omega)}$. Since $L \in \mathrm{qmin} - \mathbb{A}$, $I = L^{(d)}$ for some $d < \omega$ and $I^{(\beta)} = I \neq 0$ for any ordinal β . Then by [3, Lemma 8.1.1], we have $I \notin \mathfrak{A}$ and $\zeta_*(I) \subseteq I$. Take an element $x_1 \in I$ with $x_1 \notin \zeta_*(I)$. Since $I^{(\omega)} = I$, by Lemma 2.2 we have $x_1 \notin [x_1, I]^L + \zeta_*(I)$. Clearly $\zeta_*(I) \subseteq [x_1, I]^L + \zeta_*(I)$. Next we take an element $x_2 \in [x_1, I]^L + \zeta_*(I)$ with $x_2 \notin \zeta_*(I)$. Then by using Lemma 2.2 again we have $x_2 \notin [x_2, I]^L + \zeta_*(I)$. By continuing this procedure, we can find a sequence $(x_i)_{i=1}^{\infty}$ of elements of $I \setminus \zeta_*(I)$ such that for any integer $i \geq 1$

$$x_i \notin [x_i, I]^L + \zeta_*(I)$$
 and $x_{i+1} \in [x_i, I]^L + \zeta_*(I)$.

Set $I_i = [x_i, I]^L + \zeta_*(I)$. Then $I_i \triangleleft L$ $(i \ge 1)$ and $I_1 \supseteq I_2 \supseteq \cdots$. Since $L \in \text{qmin-} \triangleleft$, there exists an integer $n \ge 1$ such that $[I_n, L^{(d)}] = [I_n, I] \subseteq I_{n+1}$. Then we have $[x_n, I]^L \subseteq [[x_n, I], I]^L \subseteq [I_n, I]^L \subseteq I_{n+1}$. Therefore $I_n = [x_n, I]^L + \zeta_*(I) \subseteq I_{n+1} \subseteq I_n$, which is a contradiction.

Corollary 2.4. (1) qmin- $\triangleleft \cap \Re \subseteq \mathbb{R} \mathfrak{A}$.

(2) Min- $\triangleleft \cap \Re_{(\infty)} \subseteq \mathbb{E} \mathfrak{A}$.

Recalling the fact that $L\mathfrak{N} \subseteq \mathfrak{R}$, we have qmin- $\triangleleft \cap L\mathfrak{N} \subseteq E\mathfrak{A}$ as an immediate consequence of (1) in the above corollary. This is just Theorem 3.3 in [1]. Another immediate consequence of this corollary is that Min- $\triangleleft \cap \mathfrak{R} \subseteq E\mathfrak{A}$. This is a part of Theorem 3.5 in [2].

3.

In this section we shall present classes \mathfrak{X} of Lie algebras such that qmin- \triangleleft $\cap \mathfrak{X} = \text{Min-}\triangleleft$.

For any class X of Lie algebras, let

denote the largest Q-closed subclass of \mathfrak{X} . It is easy to see that for a Lie algebra $L, L \in \mathfrak{X}^Q$ if and only if $I \triangleleft L$ implies $L/I \in \mathfrak{X}$.

It is obvious that

We first consider the first inclusion. Let S be a non-abelian simple Lie algebra over any field. For any integer $i \ge 1$, let S_i be an isomorphic copy of S. Consider a Lie algebra $L = \bigoplus_{i=1}^{\infty} S_i$. Then $L \notin \text{Min} - \triangleleft$. Let $I \triangleleft L$. By [3, Lemma 13.4.3] there exists a subset M of N such that $L/I \simeq \bigoplus_{i \in M} S_i$. This shows that $I \triangleleft L$ implies $L/I \in \text{Min} - \triangleleft E\mathfrak{A}$, and that $L \in (\text{Min} - \triangleleft E\mathfrak{A})^Q$. Therefore we have the following

PROPOSITION 3.1. Min- $\triangleleft \subseteq (Min-\triangleleft E\mathfrak{A})^Q$ over any field.

For the second inclusion of (*) we have the following

LEMMA 3.2. $(Min - \triangleleft E\mathfrak{A})^Q = (Min - \triangleleft \mathfrak{A})^Q$.

PROOF. Let $L \in (\text{Min} - \triangleleft \mathfrak{A})^Q$. We show that for any $1 \le d < \omega$, L satisfies the minimal condition for soluble ideals of derived length $\le d$. As a consequence we will have $L \in \text{Min} - \triangleleft E\mathfrak{A}$ and $(\text{Min} - \triangleleft \mathfrak{A})^Q \subseteq (\text{Min} - \triangleleft E\mathfrak{A})^Q$. The assertion is trivial for d = 1. Assume that the assertion is true for d - 1. Let $K_1 \supseteq K_2 \supseteq \cdots$ be a descending chain of ideals of L with $K_i \in \mathfrak{A}^d$ for any i. Since $K_i^{(d-1)} \in \mathfrak{A}$ ($i \ge 1$) and $L \in \text{Min} - \triangleleft \mathfrak{A}$, there exists an integer $n \ge 1$ such that $K_n^{(d-1)} = K_{n+j}^{(d-1)}$ for any $j \ge 0$. Put $K = K_n^{(d-1)}$. Then $L/K \in (\text{Min} - \triangleleft \mathfrak{A})^Q$ and $K_{n+j}/K \in \mathfrak{A}^{d-1}$ for any $j \ge 0$. By using induction hypothesis the chain $K_n \supseteq K_{n+1} \supseteq \cdots$ terminates finitely.

We now give an answer to the second problem stated in the introduction.

THEOREM 3.3. qmin- $\triangleleft \cap \mathfrak{X} = \text{Min-} \triangleleft$ for any class \mathfrak{X} of Lie algebras such that $\text{Min-} \triangleleft \subseteq \mathfrak{X} \subseteq (\text{Min-} \triangleleft \mathfrak{A})^Q$.

PROOF. By Lemma 3.2 it is enough to show that qmin- $\triangleleft \cap (\text{Min-} \triangleleft \text{EM})^Q \subseteq \text{Min-} \triangleleft$. Let $L \in \text{qmin-} \triangleleft \cap (\text{Min-} \triangleleft \text{EM})^Q$ and put $I = L^{(\omega)}$. Then $I = L^{(d)}$ for some $d < \omega$. Let $K_i \triangleleft L(i \ge 1)$ and suppose that $K_1 \supseteq K_2 \supseteq \cdots$. Since $L \in \text{qmin-} \triangleleft$, there exists an integer $n \ge 1$ such that $[K_n \cap I, I] \subseteq \bigcap_{i \ge 1} (K_i \cap I)$. Put $K = \bigcap_{i \ge 1} (K_i \cap I)$. Then $(K_{n+j} \cap I)^{(1)} \subseteq [K_n \cap I, I] \subseteq K \ (j \ge 0)$. Since $K \triangleleft L \in (\text{Min-} \triangleleft \text{EM})^Q$, $L/K \in \text{Min-} \triangleleft \text{EM}$. Therefore a descending chain $(K_{n+1} \cap I)/K \supseteq (K_{n+2} \cap I)/K \supseteq \cdots$ of abelian ideals of L/K terminates finitely. On the other hand since $L/I \in \text{EM} \cap (\text{Min-} \triangleleft \text{EM})^Q$, we have $L/I \in \text{Min-} \triangleleft$. Hence a descending chain $(K_{n+1} + I)/I \supseteq (K_{n+2} + I)/I \supseteq \cdots$ terminates finitely, and so does the descending chain $K_1 \supseteq K_2 \supseteq \cdots$. This shows that $L \in \text{Min-} \triangleleft$.

COROLLARY 3.4. qmin- $\triangleleft \cap Max-{\triangleleft}^2 \subseteq Min-{\triangleleft}$.

PROOF. Let $L \in \text{Max} - \triangleleft^2$. Then every abelian ideal of L is finite-dimensional. Hence $L \in \text{Min} - \triangleleft \mathfrak{A}$. Since Max- \triangleleft^2 is Q-closed, we have Max- $\triangleleft^2 \subseteq (\text{Min} - \triangleleft \mathfrak{A})^Q$. The result immediately follows from the above theorem.

REMARK. We can not replace $\operatorname{Max} - \operatorname{\lhd}^2$ by $\operatorname{Max} - \operatorname{\lhd}$ in the above corollary. In fact, let V be a vector space over any field with basis $\{x_i \colon i \ge 1\}$. Considered as an abelian Lie algebra V has a derivation $z \colon x_i \mapsto x_{i+1}$ $(i \ge 1)$. Let L be the split extension $V \dotplus \langle z \rangle$. Then it is easy to see that every non-zero ideal of L has a finite codimension. Therefore $L \in \operatorname{Max} - \operatorname{\lhd}$. Since $L \in \operatorname{M} \subseteq \operatorname{qmin} - \operatorname{\lhd}$, we have $L \in \operatorname{qmin} - \operatorname{\lhd} \cap \operatorname{Max} - \operatorname{\lhd}$. But $L \notin \operatorname{Min} - \operatorname{\lhd}$.

We state a necessary condition for an 1-closed class \mathfrak{X} of Lie algebras to satisfy qmin- $\triangleleft \cap \mathfrak{X} \subseteq Min-\triangleleft$.

PROPOSITION 3.5. Let \mathfrak{X} be an 1-closed class of Lie algebras. If qmin- $\triangleleft \cap \mathfrak{X} \subseteq Min-\triangleleft$, then $\mathfrak{X} \subseteq SE\mathfrak{A}$ -Fin.

PROOF. Suppose that qmin- $\triangleleft \cap \mathfrak{X} \subseteq Min-\triangleleft$. Let $L \in \mathfrak{X}$ and A be an abelian subideal of L. Since \mathfrak{X} is 1-closed, $A \in \mathfrak{X} \cap \mathfrak{U} \subseteq Min-\triangleleft$, and hence A is finite-dimensional. This shows that $L \in \mathfrak{M}$ -Fin. The statement follows from the fact that \mathfrak{SL} -Fin = \mathfrak{SU} -Fin ([3, Corollary 9.2.2]).

The converse of this proposition fails. In fact, let L be the Lie algebra constructed in Section 4. Then $L \in \text{qmin-} \triangleleft \cap \text{se}\mathfrak{A}$ -Fin but $L \notin \text{Min-} \triangleleft$. However we have the following

COROLLARY 3.6. Let \mathfrak{X} be a class of Lie algebras. If \mathfrak{X} is 1-closed and Q-closed, then the following conditions are equivalent:

- (1) $qmin \triangleleft \cap \mathfrak{X} \subseteq Min \triangleleft$.
- (2) X⊆sEA-Fin.
- (3) **X**⊆Min-< **A**.

PROOF. (1) \Rightarrow (2) is the assertion of Proposition 3.5 and (2) \Rightarrow (3) is obvious. Assume that the condition (3) holds. Since $Q\mathfrak{X} = \mathfrak{X} \subseteq Min \multimap \mathfrak{A}$, $\mathfrak{X} \subseteq (Min \multimap \mathfrak{A})^Q$. Therefore by Theorem 3.3 the condition (1) holds.

4.

The purpose of this section is to construct a Lie algebra which gives a negative answer to the third problem stated in the introduction. This problem was asked as an open question in [1] and has been left unanswered.

Let K be any field, F the quotient field of polynomial algebra K[x] and $R = \sum_{i \in \mathbb{Z}} Kx^i$. Let W be a Lie algebra over F with basis $\{w(r): r \in R\}$ and multiplication

$$[w(g), w(h)] = (g-h)w(g+h), g, h \in R.$$

Then it is proved in [3, Theorem 10.3.1] that if K has characteristic $\neq 2$ then W is a non-abelian simple Lie algebra and that if K has characteristic 2 then $W^{(1)}$ is a non-abelian simple Lie algebra. For the sake of convenience we set S = W in the case that K has characteristic $\neq 2$, and $S = W^{(1)}$ in the case that K has characteristic 2.

For any integer n we define a homomorphism λ_n of an abelian group R into an abelian group F by $\lambda_n(\sum a_i x^i) = a_n$, and define a derivation δ_n of S by

$$w(r)\delta_n = \lambda_n(r)w(r), \quad w(r) \in S.$$

Let $D = \sum_{n \in \mathbb{Z}} F \delta_n$. Then D is an infinite-dimensional abelian subalgebra of a Lie algebra $\operatorname{Der}_F(S)$. We now let L be the split extension $S \neq D$.

We first claim that every non-zero subideal of L contains S. Let H be a non-zero subideal of L and H_i be the i-th ideal closure of H in L. By induction on i we show that $S \subseteq H_i$ ($i \ge 0$). As a consequence we will have $S \subseteq H$, since $H = H_n$ for some $n < \omega$. It is trivial for i = 0. Let $i \ge 0$ and assume that $S \subseteq H_i$. Suppose that $[S, H_{i+1}] = 0$ and take any element $z = \sum_{i=1}^m a_i w(r_i) + \sum_{j=p}^q b_j \delta_j$ ($a_i, b_j \in F$) in H_{i+1} . We may assume that $\{w(r_1), ..., w(r_m)\}$ is contained in the subspace spanned by $\{w(r): r \in \sum_{i \le s} Kx^i\}$. Let $t = \max\{s, q+1\}$. Then

$$0 = [S, H_{i+1}] \ni [z, w(x^{t})] = \sum_{i=1}^{m} a_{i}(r_{i} - x^{t})w(r_{i} + x^{t}).$$

Hence $a_1 = \cdots = a_m = 0$. Further $0 = [z, w(x^j)] = -b_j w(x^j)$ $(p \le j \le q)$, and we have z = 0. This is a contradiction. Hence we have $[S, H_{i+1}] \ne 0$. Since $S \bowtie H_i$ and $H_{i+1} \bowtie H_i$, $[S, H_{i+1}] \bowtie H_i \cap S = S$. By the simplicity of S we have $S = [S, H_{i+1}] \subseteq [H_i, H_{i+1}] \subseteq H_{i+1}$.

We next prove that every soluble subideal of L is zero. Let H be a non-zero soluble subideal of L. Then $S \subseteq H$ by the above result, which contradicts the simplicity of S.

We thirdly prove that $L \in \text{qmin}$. Let $I_1 \supseteq I_2 \supseteq \cdots$ be a descending chain of non-zero ideals of L. Since S is simple, L/S is abelian and $S \subseteq I_n$ for any $n \ge 1$, we have

$$[L^{(1)}, I_1] \subseteq [S, L] = S \subseteq I_n$$
 for any $n \ge 1$.

Therefore L is quasi-artinian.

Finally $L \notin Min - \triangleleft$ since L/S is infinite-dimensional and abelian. Summing up these facts we have

THEOREM 4.1. Over any field there is a Lie algebra L satisfying the following conditions:

(1) $L \in \text{qmin} - \triangleleft$.

- (2) L has no non-zero soluble subideals.
- (3) $L \notin E\mathfrak{A} \cup Min \triangleleft$.

COROLLARY 4.2. Over any field there is a semisimple quasi-artinian Lie algebra which does not satisfy the minimal condition for ideals.

References

- [1] F. A. M. Aldosray, On Lie algebras with finiteness conditions, Hiroshima Math. J. 13 (1983), 665-674.
- [2] R. K. Amayo, Ascendant subalgebras of Lie algebras, preprint, Universität Bonn, 1975.
- [3] R. K. Amayo and I. Stewart, Infinite-dimensional Lie algebras, Noordhoff, Leyden, 1974.
- [4] T. Ikeda, Chain conditions for abelian, nilpotent and soluble ideals in Lie algebras, Hiroshima Math. J. 9 (1979), 465-467.
- [5] F. Kubo, Finiteness conditions for abelian ideals and nilpotent ideals in Lie algebras, Hiroshima Math. J. 8 (1978), 301-303.

Department of Mathematics, Faculty of Science, Hiroshima University