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Introduction

The concept of ‘quasi-artinian Lie algebras’ was recently introduced by
Aldosray in [1]. The class of all quasi-artinian Lie algebras contains EW U Min-<.
We construct a quasi-artinian Lie algebra which does not belong to e U Min-<a
(Theorem 4.1). The existence of such a Lie algebra and a question left unanswered
in [1] motivate us to rise the following problems:

1. Give a condition under which quasi-artinian Lie algebras are soluble.

2. Give a condition under which quasi-artinian Lie algebras satisfy the
minimal condition for ideals.

3. Does every semisimple quasi-artinian Lie algebra satisfy the minimal
condition for ideals?

The aim of this paper is to give answers to the above problems. In Section 2
we shall prove that every residually (w)-central quasi-artinian Lie algebra is soluble
(Theorem 2.3). This result is a generalization of Theorem 3.3 in [1]. The
main result of Section 3 is that a quasi-artinian Lie algebra L satisfies the minimal
condition for ideals if and only if L belongs to the largest Q-closed subclass of
Min-< A (Theorem 3.3). In Section 4 we shall construct a Lie algebra by which
we can give a negative answer to the third problem stated above (Corollary 4.2).

1.

Notations and terminology are based on Amayo and Stewart [3], and some
of the notions used in this paper are found in [1] and [2]. But for the sake of
convenience we list the terms that we use here.

Lie algebras will be of arbitrary dimension. For a Lie algebra L and an
ordinal «, L® and {,(L) denote the a-th terms of the (transfinite) derived and
upper central series of L respectively. These are inductively defined by L=
LO, Let*D=[L®, L] and LW =N,., L® for limit ordinals p; {o(L)=0,
{(L)=the center of L, s (D/{AL)=Li(LIL(L) and {(L)=\Uy<,Lu(L) for
limit ordinals p. The hypercenter {,(L) of L is \U,{,(L). For a subalgebra H
of L the ideal closure series (H;);.y is defined recursively by Ho=L, H;, , ={HH¥:).
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A class X is a collection of Lie algebras together with their isomorphic copies
and the 0-dimensional Lie algebra. We will need the classes

A, LR, W, A, 3, Min-<, Min-<at A, Min-<a A, Max-<, Max-<i,
SseN-Fin, sA-Fin, R

(d € N) defined by: L € U, L if L is respectively abelian, locally nilpotent. L e 24
if L@=0. LeeW if LeW? for some d<w. LeJ if {,(L)=L. LeMin-<,
Min-<1 EY, Min-< A if L has the minimal condition on ideals, soluble ideals,
abelian ideals respectively. Here we note that Min-< A & Min-< A ([4], [5)).
L e Max-<a, Max-<a? if L has the maximal condition on ideals, 2-step subideals
respectively. L € sE-Fin (resp. s2-Fin) if every soluble (resp. abelian) subideal
of L is finite-dimensional. It is known that sg-Fin=sA-Fin ([3, Corollary
9.2.2]). LeR if xeL implies x=0 or xe[x, L]-. We note here that
LR R ([2]).
For a class X of Lie algebras the classes A

sX, 1X, EX, RX, QX

are defined as follows. L esX (resp.1X) if L is a subalgebra (resp. subideal) of a
Lie algebra in X. L eeX if L has a finite series 0=Ly<a---<a1L,=L whose factors
L;,,/L;ecX for 0<i<n-—1. LerX if L has a family (I,),., of ideals such that
L/I,e X for all « and N, I,=0. LeQX if L is a homomorphic image of a Lie
algebra in X. We say that a class X of Lie algebras is E-closed, 1-closed, Q-closed,
R-closed if EX=X%, 1X=X%, QX=X, RX=2X respectively.

A Lie algebra L is said to be semisimple if the sum of all soluble ideals of L
is zero.

Let L be a Lie algebra over any field. L is said to be quasi-artinian if for
every descending chain I, 21,2--- of ideals of L there exists a positive integer r
such that [L", I.J= N>, I;; We denote by qmin-< the class of all quasi-
artinian Lie algebras. The following proposition is a characterization of the
quasiartinian Lie algebras.

PrROPOSITION 1.1. Let L be a Lie algebra over any field. Then L € qmin-<
if and only if there exists an ideal I of L such that L/I e and the set {[K, I]:
K<L} satisfies the minimal condition.

Proor. Let Leqmin-<at and put I=L(), Then I=L™ for some n<w
and L/IeeA. Let K;<<L (i>1) and suppose that [K,, []2[K,, []=---. Since
L e gmin-<a, there exists an integer n>1 such that [L™, [K,, IT1= N>, [K;, I].
Observing IM=1 we have [K,, I1<[[K,, I, I1=[[K,, I], LM]<[K,; I]
for any j>0.

Conversely take an ideal I of L such that L/I e % and the set {[K, I]: K<L}
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satisfies the minimal condition. Then L™ <1 for some n<w. Let K;<aL(i>1)
and suppose that K,2K,2---. Then {[K;, I]: i>1} has the minimal element
[K,, I]. Putting r=max {m, n} we have [K,, LO]Jc[K,, I1= N [K;, I1S
Niz1 K.

For an integer n>1 we put Q(n)={p/qe Q: q>n, p and q are relatively
prime}+ Z. Let V be a vector space over a field F of characteristic zero with basis
{v(a): ae@}. Considered as an abelian Lie algebra V" has derivations x: v(a)—
v(a+1), y: v(a)y~a(a—Dv(a—1), z: v(a)~2av(a). Let L be the split extension
Vi<x, y, 2). ,

Let V,= Y sco(m Fv(a). Then V,2¥,2---. Since Q(n)+ Z=Q(n), we have
[V,, L]V, On the other hand, take an element a in @Q(n). Then v(a)=
[v(a—1), x]e[V,, L]. Hence we have [V,, L]=V,. Since L® =L, for any
integer m>1 a descending chain [V}, LM]2[V,, L(™]>... does not terminate
finitely. Therefore by [1, Theorem 3.1], L& qmin-<.

Observing that V, L/Ve qmin-<1, we have the following

PROPOSITION 1.2. Over any field of characteristic zero qmin-< is not
E-closed.

2.

In this section we shall give classes X of Lie algebras such that qmin-<a n X=
E2.

To begin with, we generalize the notion of residually central Lie algebras.
We say that a Lie algebra L is residually (w)-central if x e L implies x=0 or

x&[x, L@]E, and denote by R, the class of all residually (w)-central Lie
algebras.

LemMa 2.1. (1) SR,y =RR =R,
(2) REMURCSR,,.

Proor. (1) Clearly s®R =R, Let xeLerR, with x#0 and take
an ideal I of L such that x&I and L/I e R, Then x+I¢&[x+1, (L/T)]L/1,
so x&[x, L(®]L, Therefore Le R,

(2) If Lere¥, then L@ =0and so Le 91(,) It is obvious that RS R .

LEMMA 2.2. Let I<Le R, xeL. Then for any ordinal a, x&{(I) if
and only if x&[x, 1L+ (I).

Proor. We use transfinite induction on «. It is trivial for «=0. Let >0
and assume that the result is true for any ordinal f<a. Let x¢{,(I) and assume
that x € [x, [*@]L+{,(I). If ais limit, then there exists an ordinal f <« such that
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x € [x, [*]E+{4(I). By induction hypothesis we have x e {y(I)={,(I), which is
a contradiction. In the case that « is non-limit, take elements y € [x, I*)]L and
ze{(I) such that x=y+z. Then [z, I®]tc{,_,(I). Hence we have yel[y,
I+ [z, (L [y, @)L+ ¢, _,(I). By induction hypothesis ye{,_,(I)c
L) and x=y+z e {(I), which is a contradiction.

We now set about showing the main theorem in this section.

THEOREM 2.3. qmin-<a N X=gW for any class X of Lie algebras such that
EUcXc R,

ProOF. By Lemma 2.1(2) we have ENcgmin-<n R, Assume that
BAC gmin-< N R, and take a Lie algebra L eqmin-<an R, with L& gU.
Put I=L®), Since L eqmin-<a, I=L® for some d<w and I'® =10 for any
ordinal B. Then by [3, Lemma 8.1.1], we have I¢ 3 and {,(I)=I. Take an
element x, €l with x; & {,(I). Since I® =], by Lemma 2.2 we have x,¢&
[x;, IT¥+C4(D). Clearly (o (DE[x;, 1+ (). Next we take an element
x5 € [xq, [1F+ (1) with x,&(,(I). Then by using Lemma 2.2 again we have
X, [x5, 11X+ (I). By continuing this procedure, we can find a sequence (x;),
of elements of I\(,(I) such that for any integer i >1

X & [xpp I1Y + L) and  x;.q € [x, 115 + L)

Set I;=[x;, IT“+{4(I). Then I;<<L (i>1) and I,2I,22---. Since L € gmin-<,
there exists an integer n>1 such that [I,, LW]=[I,, I1<1,,,. Then we have
[xns I]Lg[[xm 1], I]LE[IM I]L§1n+l' Therefore I, =[x,, ]]L+C*(I)§In+1§;1m
which is a contradiction.

COROLLARY 2.4. (1) gmin-<a n R<BA.
(2) Min-<n R, =B

Recalling the fact that L9t =R, we have qmin-<a N LR SEW as an immediate
consequence of (1) in the above corollary. This is just Theorem 3.3 in [1].
Another immediate consequence of this corollary is that Min-<< n R<g. This
is a part of Theorem 3.5 in [2].

3.

In this section we shall present classes X of Lie algebras such that qmin-<
n ¥=Min-<.
For any class X of Lie algebras, let

xQ
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denote the largest Q-closed subclass of X. It is easy to see that for a Lie algebra
L, L € XQif and only if I<<L implies L/I € X.
It is obvious that

(*) Min-< € (Min-< E)Q < (Min-<a A)Q

We first consider the first inclusion. Let S be a non-abelian simple Lie algebra
over any field. For any integer i > 1, let S; be an isomorphic copy of S. Consider
a Lie algebra L=®, S;. Then L&Min-<a. Let I<wL. By [3, Lemma 13.4.3]
there exists a subset M of Nsuch that L/I~ @, S;. This shows that /<1 Limplies
L/I e Min-< e, and that L e (Min-<a EN)Q. Therefore we have the following

PROPOSITION 3.1. Min-<a & (Min-<a EX)Q over any field.
For the second inclusion of (*) we have the following
LEMMA 3.2. (Min-<a EA)Q = (Min-<a )<,

PrOOF. Let L e(Min-<a A)Q  We show that for any 1<d<w, L satisfies
the minimal condition for soluble ideals of derived length <d. As a consequence
we will have L € Min-<a EY and (Min-<a A= (Min-<a EN)Q?  The assertion is
trivial ford=1. Assume that the assertionis true ford—1. LetK;2K,=2---bea
descending chain of ideals of L with K;e ¢ for any i. Since K{¢~V e (z> 1)
and L € Min-< 9, there exists an integer n> 1 such that K(4- 1)—K("‘” for any
j=0. Put K=K{¢~V. Then L/Ke(Min-< A)Q and K,, /K e A" d for any
j>0. By using induction hypothesis the chain K,2K,,,2:-: terminates finitely.

We now give an answer to the second problem stated in the introduction.

THEOREM 3.3. qmin-<t N X=Min-< for any class X of Lie algebras such
that Min-<a € X <(Min-< A)Q,

PrOOF. By Lemma 3.2 it is enough to show that gmin-<at n (Min-< eA)c
Min-<1. Let L eqmin-<an(Min-<tEU)? and put I=L®. Then I=L@ for
some d<w. Let K;<a<L(i>1)and suppose that K,2K,=2---. Since L € gmin-<,
there exists an integer n>1 such that [K,nI, IlcsNs(K;nI). Put K=
Niz1 (K;n1). Then (K, ;nDWc[K,nI,I]JcK (j=0). Since K<Le
(Min-<t E)Q, L/K € Min-<at . Therefore a descending chain (K, ., NI)/K2
(Kn42.nI)/K=--- of abelian ideals of L/K terminates finitely. . On the other hand
since L/I € e n (Min-<1 EA)Q, we have L/I e Min-<1. Hence a descending chain
(Kp+1+D/I2(K,,,+1)/I2--- terminates finitely, and so does the descending
chain K;2K,=2-:-. This shows that L € Min-<

COROLLARY 3.4. gniin-<1 N Max-<? € Min-<.
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PrOOF. Let LeMax-<t?2. Then every abelian ideal of L is finite-di-
mensional. Hence L € Min-< . Since Max-<12 is Q-closed, we have Max-<?2 <
(Min-< )2 The result immediately follows from the above theorem.

REMARK. We can not replace Max-<12 by Max-< in the above corollary.
In fact, let V' be a vector space over any field with basis {x;: i>1}. Considered as
an abelian Lie algebra V" has a derivation z: x;x;,, (i>1). Let L be the split
extension ¥V 4{z). Then it is easy to see that every non-zero ideal of L has a
finite codimension. Therefore L eMax-<a. Since L e€gU<qgmin-<i, we have
L e qmin-<a N Max-<s. But L& Min-<.

We state a necessary condition for an I-closed class X of Lie algebras to
satisfy gqmin-<a N ¥ =Min-<.

PROPOSITION 3.5. Let X be an 1-closed class of Lie algebras. If qmin-<an
X <=Min-<, then X <se-Fin.

PrOOF. Suppose that qmin-<s n ¥<Min-<1. Let L € X and A4 be an abelian
subideal of L. Since X is I-closed, 4 € X N A =Min-<, and hence A4 is finite-
dimensional. This shows that L esU-Fin. The statement follows from the
fact that seU-Fin=s%A-Fin ([3, Corollary 9.2.2]).

The converse of this proposition fails. In fact, let L be the Lie algébra
constructed in Section 4. Then L e qmin-< n seA-Fin but L& Min-<t. How-
ever we have the following

COROLLARY 3.6. Let X be a class of Lie algebras. If X is 1-closed and
Q-closed, then the following conditions are equivalent:

(1) gmin-<a n ¥ < Min-<.

(2) X<seU-Fin.

(3) X=Min-< 9.

PROOF. (1)=>(2) is the assertion of Proposition 3.5 and (2)=>(3) is obvious.
Assume that the condition (3) holds. Since QX=X < Min-<a A, X = (Min-<a A)Q,
Therefore by Theorem 3.3 the condition (1) holds.

4.

The purpose of this section is to construct a Lie algebra which gives a negative
answer to the third problem stated in the introduction. This problem was asked
as an open question in [1] and has been left unanswered.

Let K be any field, F the quotient field of polyhdmial algebra K[x] and
R=Y,,Kxi. Let W be a. Lie algebra over F with basis {w(r): re.R} and
multiplication
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[w(g), w(h)] = (g—hw(g+h), g, heR.

Then it is proved in [3, Theorem 10.3.1] that if K has characteristic #2 then W
is a non-abelian simple Lie algebra and that if K has characteristic 2 then W
is a non-abelian simple Lie algebra. For the sake of convenience we set S=W
in the case that K has characteristic. #2, and S=W® in the case that K has
characteristic 2.

For any integer n we define a homomorphism 4, of an abelian group R into
an abelian group F by 1,(> a;x!)=a,, and define a derivation g, of S by

w(r)d, = A (rw(r), w(r)eS.

Let D=3Y,., F5,. Then D is an infinite-dimensional abelian subalgebra of a
Lie algebra Dery (S). We now let L be the split extension S+ D.

We first claim that every non-zero subideal of L contains S. Let H be a
non-zero subideal of L and H; be the i-th ideal closure of H in L. By induction
on i we show that S H; (i>0). As a consequence we will have S< H, since
H=H, for some n<w. It is trivial for i=0. Let i>0 and assume that SSH,.
Suppose that [S, H;;,]=0 and take any element z=3", aw(r)+ X%, b6,
(a;, b;eF) in H;,,. We may assume that {w(r,),..., w(r,)} is contained in the
subspace spanned by {w(r): re 3 ;. Kx'}. Let t=max{s, ¢g+1}. Then

0 =[S, Hiy 13 [z, w(x)] = X1, a)(ri—x")w(ri+x").

Hence a,=:--=a,=0. Further 0= [z, w(x/)] = —b;w(x/) (p<j<q), and we
have z=0. This is a contradiction. Hence we have [S, H;,;]#0. Since
S<H; and H;, ,<H,; [S, H;; \J<H;nS=S. By the simplicity of S we have
S=[S, Hi+,l<s [Hy, Hiv (1S H .

We next prove that every soluble subideal of L is zero. Let H be a non-zero
soluble subideal of L. Then S H by the above result, which contradicts the
simplicity of S.

We thirdly prove that L e qmin-<a. Let I, 21,2 be a descending chain
of non-zero ideals of L. Since S is simple, L/S is abelian and S<I, for any
n>1, we have

[LD, I,]<[S,L]=S<1, forany n>1.

Therefore L is quasi-artinian.
Finally L& Min-<a since L/S is infinite-dimensional and abelian.
Summing up these facts we have

THEOREM 4.1. Over any field there is a Lie algebra L satisfying the follow-
ing conditions:
(1) Leqgmin-<.
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(2) L has no non-zero soluble subideals.
(3) L & EAU Min-<.

COROLLARY 4.2. Over any field there is a semisimple quasi-artinian Lie
algebra which does not satisfy the minimal condition for ideals.
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