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Introduction

The concept of 'quasi-artinian Lie algebras' was recently introduced by

Aldosray in [1]. The class of all quasi-artinian Lie algebras contains E$ί U Min-<].

We construct a quasi-artinian Lie algebra which does not belong to E21.U Min-<α

(Theorem 4.1). The existence of such a Lie algebra and a question left unanswered

in [1] motivate us to rise the following problems:

1. Give a condition under which quasi-artinian Lie algebras are soluble.

2. Give a condition under which quasi-artinian Lie algebras satisfy the

minimal condition for ideals.

3. Does every semisimple quasi-artinian Lie algebra satisfy the minimal

condition for ideals?

The aim of this paper is to give answers to the above problems. In Section 2

we shall prove that every residually (ω)-central quasi-artinian Lie algebra is soluble

(Theorem 2.3). This result is a generalization of Theorem 3.3 in [1]. The

main result of Section 3 is that a quasi-artinian Lie algebra L satisfies the minimal

condition for ideals if and only if L belongs to the largest Q-closed subclass of

Min-<i 21 (Theorem 3.3). In Section 4 we shall construct a Lie algebra by which

we can give a negative answer to the third problem stated above (Corollary 4.2).

1.

Notations and terminology are based on Amayo and Stewart [3], and some

of the notions used in this paper are found in [1] and [2]. But for the sake of

convenience we list the terms that we use here.

Lie algebras will be of arbitrary dimension. For a Lie algebra L and an

ordinal α, L ( α ) and ζΛ(L) denote the α-th terms of the (transfinite) derived and

upper central series of L respectively. These are inductively defined by L =

L (0) j L ( α+i) = [L(α)> L(α)] a n d z>> = Λ α < p L<α> for limit ordinals p ; ζo(L) = 0,

W L H Λ e center of L, Cα+1(L)/ζα(L) = C1(L/Cα(L)) and ζp(L) = \Ja<p ζa(L) for

limit ordinals p. The hypercenter ζ*(L) of L is Wα ζΛ(L). For a subalgebra H

of L the ideal closure series (Hι)ieN is defined recursively by Ho — L, Hi+ί =
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A class £ is a collection of Lie algebras together with their isomorphic copies

and the O-dimensional Lie algebra. We will need the classes

SI, L% 91', E9ί, 3, Min-o, Min-<iE2t, Min-o % Max-<J, Max-<i2,

(d e N) defined by: L e SI, L91 if L is respectively abelian, locally nilpotent. L e W

if L(d>=0. LeεSt if LeW for some d<ω. Le3 if ζ*(L) = L. L e M i n - o ,

Min-<] ESI, Min-<ι 51 if L has the minimal condition on ideals, soluble ideals,

abelian ideals respectively. Here we note that Min-<ι ESI ζΞ Min-o SI ([4], [5]).

L e M a x - < , Max-<i2 if L has the maximal condition on ideals, 2-step subideals

respectively, L esESί-Fin (resp. sSί-Fin) if every soluble (resp. abelian) subideal

of L is finite-dimensional. It is known that sE^l-Fin = s$ϊ-Fin ([3, Corollary

9.2.2]). L e f t if xeL implies x = 0 or x ^ [ x , L ] L . We note here that

For a class X of Lie algebras the classes

s£, iX, ΈX, RX, QX

are defined as follows. LesX (resp. iX) if L is a subalgebra (resp. subideal) of a

Lie algebra in X. Le ΈX if L has a finite series 0 = L 0<i <α Lπ = L whose factors

Li+ί/LieX for 0 < ί < n - l . LGKX if L has a family (/α)αeΛ of ideals such that

L/IaeX for all α and Λαey4 /α = 0. LeqX if L is a homomorphic image of a Lie

algebra in X. We say that a class X of Lie algebras is E-closed, i-closed, Q-closed,

R-closed if EX = X, ιX = X, QX = X, RX = X respectively.

A Lie algebra L is said to be semisimple if the sum of all soluble ideals of L

is zero.

Let L be a Lie algebra over any field. L is said to be quasi-artinian if for

every descending chain /x 2 J 2 3 ••• of ideals of L there exists a positive integer r

such that [L ( r ) , / r] g ^ & 1 /.. We denote by qmin-<i the class of all quasi-

artinian Lie algebras. The following proposition is a characterization of the

quasiartinian Lie algebras.

PROPOSITION 1.1. Let L be a Lie algebra over any field. Then Leqmin-<i

if and only if there exists an ideal I of L such that L//eΈ8I and the set {[K, / ] :

satisfies the minimal condition.

PROOF. Let Leqmin-<ι and put / = L(α>). Then / = L(W) for some n<ω

and L/1 e E$l. Let K^L (i> 1) and suppose that \KU /] 2 [K2, 7]2 . Since

Leqmin-<a, there exists an integer n>\ such that [L(/ι), [Km / ] ] ^ Λ Q > I [KΓ , / ] .

Observing /<*>=/ we have [XΛ, / ] s [[Kπ, /],/] = [[XM, / ] , LC)]c[Xπ + i, /]

for any j >0.

Conversely take an ideal / of L such that L/I e E9I and the set {[X, 7]: K o L}
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satisfies the minimal condition. Then L ( l ϊ ) c / for some n<ω. Let K^L (i> 1)

and suppose that Kΐ^K2'2"'. Then {[Xf, / ] : i > l } has the minimal element

[Km, / ] . Putting r = max{m, n} we have [KΓ, LW]g[X m , Γ ^ n , ^ [Kh /]•£

For an integer n ^ l we put Q(n) = {p/qeQ: q>n, p and g are relatively

prime} 4- Z. Let V be a vector space over a field F of characteristic zero with basis

{v(a): aeQ}. Considered as an abelian Lie algebra Fhas derivations x: v(a)*-*

v(a +1), y: v(a)i->a(a — l)v(a — l), z: v(a)*-*2av(a). Let L be the split extension

Let Vn=ΣaeQ(n)Mcι)' Then F ^ ^ ^ . Since . β ( n ) + Z = β ( n ) , we have

[ K n , L ] c F n . On the other hand, take an element a in β(rc). Then y(α) =

[ι ( α - l ) , x]e\Vw L]. Hence we have [Frt, L] = FM. Since L ^ = L , for any

integer m > l a descending chain [Vl9 L ( W ) ]^[K 2 , L ( m ) ] ^ does not terminate

finitely. Therefore by [1, Theorem 3.1], L^qmin-<α.

Observing that V9 L/Kveqmin-<i, we have the following

PROPOSITION 1.2. Over any field of characteristic zero qmin-o is not

E-closed.

2.

In this section we shall give classes X of Lie algebras such that qmin-<3 n X =

To begin with, we generalize the notion of residually central Lie algebras.

We say that a Lie algebra L is residually (ω)~central if xeL implies x = 0 or

xφ[x9 L<ω )]L, and denote by 9t(oo) the class of all residually (ω)-central Lie

algebras.

LEMMA 2.1. (1) S5R(OO) = R5R(OO) = 5R(OO).

(2)

PROOF. (1) Clearly s9?(oo) = 9l(oo). Let X 6 L G R 9 1 ( O O ) with xΦO and take

an ideal / of L such that x<£I and L/I e 9ϊ(o0). Then x + I& [x + /, (L/J)^)] 1 ^,

so x<£ lx, Uωψ. Therefore L e 5R(oo).

(2) If L e RE ί̂, then L<ω> = 0 and so L e M(oo). It is obvious that 91 c 5R(αo).

LEMMA 2.2. L^ί / < L e 5R(o0), x e L . 77*e« /<?r αwj; ordinal α, x&ζa(I) if

and only if xφ [x, /<ω>]L + C.(/).

PROOF. We use transfinite induction on α. It is trivial for α = 0. Let α > 0

and assume that the result is true for any ordinal /?<α. Let x$zζa(l) and assume

that x e [x, / ( ω ) ] L -K α (/) . If α is limit, then there exists an ordinal β<a such that
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XG[X, I(ω)~\L + ζβ(I). By induction hypothesis we have x e ζβ(I)£ζα(7), which is

a contradiction. In the case that α is non-limit, take elements ye [x, /<ω)]L and

zeζa(I) such that x=y + z. Then [z, 7<ω>]Lcζα_1(/). Hence we have ye[y,

/(ω)]L + [-Z)/(α»]Lc[3;>/(ω)]L + ς _ i ( / ) B y induction hypothesis yeζ^^I)^

ζa(I) and x = y + ze£α(7)> which is a contradiction.

We now set about showing the main theorem in this section.

THEOREM 2.3. qmin-<α Γ\X = E$l for any class X of Lie algebras such that

PROOF. By Lemma 2.1(2) we have Es2lcqmin-<j n 9l(oo). Assume that

] Π 9l(oo) a n < l t a ke a Lie algebra Leqmin-<i n 9ί(oo) with L ^ E$ί.

Put 7 = L<ω>. Since L e q m i n - o , 7 = L<d> for some d<ω and / ( ^ ) = / # 0 for any

ordinal /?. Then by [3, Lemma 8.1.1], we have 7 ^ 3 a n ^ C*W£^ Take an

element x1el with xt ^ ζ^(I). Since 7^ω>=7, by Lemma 2.2 we have x t £

C^i,7]L + C*(/). Clearly ζ*(I)^[xί9 7] L + C*(/). Next we take an element

x 2 e [ x 1 ? 7] L + ζ*(7) with x2φζ*(l). Then by using Lemma 2.2 again we have

x2 <£ [χ2, 7] L + C*W By continuing this procedure, we can find a sequence (x,)^ x

of elements of I\ζ*(I) such that for any integer i > 1

. x, £ [ * „ / ] L + C*(/) and X ί + ^ C x ^ / ^ + C ί/).

Set 7 i =[x ί , 7] L + ζ*(7). Then 7,.<]L ( ί > l ) and 7 1 ^ 7 2 ^ . Since Leqmin-<3,

there exists an integer n>\ such that [7n, L<d)] = [/π, 7 ] c / M + 1 . Then we have

[xπ, 7 ] ^ [ [ χ π , / ] , /]*.£[/„, 7 ] ^ 7 M + 1 . Therefore 7M=[xπ, 7]^ + C*(7)e7M + 1£7π,

which is a contradiction.

COROLLARY 2.4. (1) qmin-<i n 5H^B^i.

(2) Min-<3fl9l ί00)£B8l.

Recalling the fact that L91^% we have qmin-<i n L^^Έ^ as an immediate

consequence of (1) in the above corollary. This is just Theorem 3.3 in [1].

Another immediate consequence of this corollary is that Min-o n $ R ^ E 2 I . This

is a part of Theorem 3.5 in [2].

3.

In this section we shall present classes X of Lie algebras such that qmin-<i

For any class X of Lie algebras, let



Quasi-artinian Lie algebras 567

denote the largest Q-closed subclass of X. It is easy to see that for a Lie algebra

L, LeXQ if and only if 7 < J L implies L/I e X.

Tt is obvious that

(•) Min-<3 £ (Min-<i E9Ϊ)Q C (Min-<a Sl)Q.

We first consider the first inclusion. Let S be a non-abelian simple Lie algebra

over any field. For any integer i > 1, let St be an isomorphic copy of S. Consider

a Lie algebra L = © J ^ S,-. Then L £ M i n - o . Let / o L . By [3, Lemma 13.4.3]

there exists a subset M of iV such that L/I~®ieM St. This shows that /oLimplies

L/I e Min-o E2I, and that L e (Min-<3 Es2l)Q. Therefore we have the following

PROPOSITION 3.1. Min-o $Ξ (Min-<i E$1)Q over any field.

For the second inclusion of (*) we have the following

LEMMA 3.2. (Min-<α E?I)<* = (Min-<ι

PROOF. Let L e ( M i n - o s2l)Q. We show that for any l < d < ω , L satisfies

the minimal condition for soluble ideals of derived length <d. As a consequence

we will have LeMin-<dΈ9ϊ and (Min-<i 2I)Qc(Min-<ι E^I) Q The assertion is

trivial for d = 1. Assume that the assertion is true for d — 1. Let Kί^K2^ be a

descending chain of ideals of L with Kte S&d for any i. Since K\d~ι) e S2ί ( i> 1)

and LeMin-<3 ^ί, there exists an integer n>ί such that K(

n

d"ί) = Ki

n

dfj

ί) for any

7>0. Put K = K{

n

d-χ\ Then L/Ke(Min-<3 9I)Q and Kn+j/KeSΆd-1 for any

j > 0 . By using induction hypothesis the chain Kn^Kn+12 ••* terminates finitely.

We now give an answer to the second problem stated in the introduction.

THEOREM 3.3. qmin-<3 π ϊ = Min-<α for any class X of Lie algebras such

that Min-<α £ ϊ c

PROOF. By Lemma 3.2 it is enough to show that qmin-<α n (Min-o

Min-<]. Let L e qmin-<] n (Min-<α ESΆ)Q and put I = Uω\ Then / = L<d> for

some d <ω. Let K^L(i > 1) and suppose that X t ^ X2 ^ . Since L e qmin-<ι,

there exists an integer n>\ such that [Kn n /, /]£/°\^i (Xf ίl /). Put K =

n f e l ( X , n / ) . Then ( K ^ n p c ^ n ί . q ε K 0 > 0 ) . Since K < L G

(Min-<3 E3T)Q, L/X6Min-<i E2T. Therefore a descending chain (Kn+1 n/)/X2

(Xn+2.0 /)/K2 ••• of abelian ideals of L/K terminates finitely. On the other hand

since L\l e E ί̂ n (Min-<ι E9Ϊ) Q , we have L// e Min-<α. Hence a descending chain

(K n + 1 +/)//2( jK w + 2 + /)//2 terminates finitely, and so does the descending

chain iCj 2 K 2 ^ . This shows that L e Min-o.

COROLLARY 3.4. qmin-<3 n Max-<i2 E Min-<ι.
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PROOF. Let L e M a x - < 2 . Then every abelian ideal of L is finite-di-

mensional. Hence L e Min-<α 81. Since Max-o 2 is Q-closed, we have M a x - o 2 c

(Min-<i s2ί)Q. The result immediately follows from the above theorem.

REMARK. We can not replace Max-o 2 by Max-<α in the above corollary.

In fact, let V be a vector space over any field with basis {xf: i> 1}. Considered as

an abelian Lie algebra V has a derivation z: xiv-^xi+ι (/>1). Let L be the split

extension F-j-<z>. Then it is easy to see that every non-zero ideal of L has a

finite codimension. Therefore L e M a x - < . Since LeE s2tcqmin-<i, we have

L e qmin-o Π Max-o. But L ^ Min-o.

We state a necessary condition for an i-closed class X of Lie algebras to

satisfy qmin-<i Π X £ Min-o.

PROPOSITION 3.5. Let X be an i-closed class of Lie algebras. If qmin-<i Π

i, then 3E£sE$ί-Fin.

PROOF. Suppose that qmin-<3 n X£Min-<i. Let Le£ and A be an abelian

subideal of L. Since X is i-closed, AeX n 8I^Min-<i, and hence A is finite-

dimensional. This shows that Les$l-Fin. The statement follows from the

fact that sE8l-Fin = s8I-Fin ([3, Corollary 9.2.2]).

The converse of this proposition fails. In fact, let L be the Lie algebra

constructed in Section 4. Then Leqmin—<3 Π SE8I-Fin but Lφ. Min-<α. How-

ever we have the following

COROLLARY 3.6. Let X be a class of Lie algebras. If X is i-closed and

Q-closed, then the following conditions are equivalent:

(1) qmin-o Π X £ Min-o.

(2) 3E<=sE8l-Fin.

(3) £<=Min-<]$ί.

PROOF. (1)=>(2) is the assertion of Proposition 3.5 and (2)=>(3) is obvious.

Assume that the condition (3) holds. Since Q£ = £cMin-<] % £e(Min-<ι 9I)Q.

Therefore by Theorem 3.3 the condition (1) holds.

4.

The purpose of this section is to construct a Lie algebra which gives a negative

answer to the third problem stated in the introduction. This problem was asked

as an open question in [1] and has been left unanswered.

Let K be any field, F the quotient field of polynomial algebra K[x] and

R = ΣiezKχi' L e t ^ be a Lie algebra over F with basis {w(r):reR} and

multiplication
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, W(/Ϊ)] = (g - h)w(g + h\ g, h eR.

Then it is proved in [3, Theorem 10.3.1] that if K has characteristic Φ2 then W
is a non-abelian simple Lie algebra and that if K has characteristic 2 then W(ί)

is a non-abelian simple Lie algebra. For the sake of convenience we set S=W
in the case that K has characteristic Φ2, and S=W{ί) in the case that K has
characteristic 2.

For any integer n we define a homomorphism A,, of an abelian group R into
an abelian group F by λrt(Σ aix

i) = an, and define a derivation £M of 5 by

w(r)δn = Λ,(r)w(r), w(r)eS.

Let £=Σwez^M Then D is an infinite-dimensional abelian subalgebra of a
Lie algebra DerF (5). We now let L be the split extension S 4- D.

We first claim that every non-zero subideal of L contains S. Let H be a
non-zero subideal of L and Hi be the ί-th ideal closure of H in L. By induction
on i we show that S^Hi (i>0). As a consequence we will have S^H, since
H = Hn for some n<ω. It is trivial for Ϊ = 0. Let z>0 and assume that S^H^
Suppose that [5, # ί + 1 ] = 0 and take any element z=ΣT=ίaiw(ri)+Σ<j=pbjδJ

(ah bj-eF) in Hi+i. We may assume that {w(ri),..., w(rm)} is contained in the
subspace spanned by {w(r): re Σi<sK

χi}- Let ί = max{s, g + 1). Then

0 = [5, /ί ί + J 9 [z, w(xθ] = ΣΓ=i α ί (r ί -x ί Mr, + λί)"

Hence flj = ••• = αm = 0. Further 0= [z, w(x 0] = -bjw(χj){p<j<q), and we
have z = 0. This is a contradiction. Hence we have [S, J^+IIT^O. Since

and Hi+ί^iHb [5, H ^ J - d ^ Γi S = S. By the simplicity of 5 we have

We next prove that every soluble subideal of L is zero. Let H be a non-zero
soluble subideal of L. Then S^H by the above result, which contradicts the
simplicity of S.

We thirdly prove that Leqmin-<i. Let / 1 ^ / 2 2 be a descending chain
of non-zero ideals of L. Since S is simple, L/S is abelian and S^In for any
n > 1, we have

[I/1), / J c [ S , L ] = S c /„ for any n>\.

Therefore L is quasi-artinian.
Finally L^Min-<3 since L/S is infinite-dimensional and abelian.
Summing up these facts we have

THEOREM 4.1. Over any field there is a Lie algebra L satisfying the follow-
ing conditions:

(1) Le qmin-o.
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(2) L has no non-zero soluble subideals.
(3) L£E2I

COROLLARY 4.2. Over any field there is a semisimple quasi-artinian Lie
algebra which does not satisfy the minimal condition for ideals.
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