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Take the punctured Euclidean unit n-ball Ω: 0 < | x | < l (x = (x1, , xn), n>2).

Throughout this paper we regard Ω as the subspace of the punctured Euclidean

n-space M: 0 < | x | < o o , so that the topological notions such as boundaries and

closures etc. are considered relative to the "whole" space M. Hence |x| = l is

the boundary dΩ of Ω, x = 0 is the ideal boundary of Ω, and the relative closure

Ω of Ω is Ω U dΩ. Consider an elliptic partial differential equation

(1) Lu(x) = Au(x) + b(x)-Fu(x) + c(x)u(x) = 0

on Ω, where A = Σ?=i ^2/dxf, ^ —(dldxί,-", d/dXn), the inner product, and the

vector field 6(x) = (fe1(jc), , bn(x)) is of class C2 on Ω = { 0 < | x | < l } and the

function c(x) of class C1 on Ω which may not be of constant sign. Thus the

operator L is smooth on Ω and especially on dΩ: |x| = l, but may, and actually

will, have singularities at x = 0. We are interested in the class & of the non-

negative solutions of (1) on Ω with vanishing boundary values on dΩ. It is con-

venient to consider the normalized subclass ^ of & given by 0>

1 = {ue0>:

\ (d/dnx)u(x)dSx=l}9 where (d/dnx)u(x) denotes the inner normal derivative of
JdΩ

u(x) at each point of dΩ whose existence is well known since u(x) vanishes on

dΩ (cf. e.g. Miranda [6]) and dS the surface element on dΩ. Since ^ is convex,

we can consider the set ex. &x of extreme points of &x and the cardinal number

#(ex. ^x) of ex. ^ t , which will be referred to as the Picard dimension of L at

x = 0, dim L in notation :

(2) dim L = #(ex. ^ ) .

We are particularly interested in the case d i m L = l . In this case we say, after

Bouligand, that the Picard principle is valid for L at x = 0. We will give a suf-

ficient condition for its validity in terms of the orders of the growth of coefficients

of L.

It can happen that dim L = 0. To prevent this trivial case we need to consider

the existence of "Green's function" on Ω. For any point y fixed in Ω take a ball

U: \x — y\<a in Ω. If U is sufficiently small, then the Green's function (with

respect to the Dirichlet problem) ^ ( x , y) on U for (1) with its pole y exists (cf.
e g [6]). Consider a positive solution u(x) of (1) on Ω — {y} satisfying the

following two conditions: (i) u(x) — gv(x9 y) is a solution of (1) on U; (ii) if v(x)
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is a solution of (1) on Ω dominated by u(x) on Ω — {y}, then υ(x) is nonpositive on

Ω. In view of (i) and (ii) such a function u(x) is unique provided that it exists.

In this case, we denote the function w(x) by GΩ(x, y) and call it as the Green's

function on Ω for (1) with its pole y. It is easy to see that the existence of the

Green's function GΩ(x, y) does not depend on the choice of y. The boundary

values of Gβ(x, y) on dΩ is zero but GΩ(x, y) may have diverse behaviors at x = 0

depending on the operator L. It is also easy to see that dim L > 0 if and only if

there exists the Green's function GΩ(x9 y) on Ω for (1) (cf. e.g. Nakai [7]). The

purpose of this paper is to establish the following:

THEOREM. Suppose the existence of the Green's function GΩ(x9 y) on Ω

for (1) and assume that

\b(x)\ =

\c(x)\ =

Then the Picard principle is valid for L at x = 0.

Actually we will prove the theorem under a weaker assumption that the

condition (3) holds only on a certain sequence of annuli converging to x = 0. To

be more precise, let {Am} be a sequence of annuli in Ω with the condition [A] in

the sense of Kawamura[5], that is, each Am is given by (1 — a)rm<\x\<(l+a)rm,

where a is any fixed number in (0, 1) and {rm} is an arbitrarily fixed sequence in

(0, (1 + α)"1) with rm+ί<((l — a)l(l + a))rm for each m. Then we can generalize

the above theorem by relaxing the condition (3) with the following:

(4) \b(x)\ < co/|x|, \V b(x)\ < cj\x\*, \c(x)\ < c2/\x\2

on WϋίLi Aw with some α > 0 , where c0, cx and c2 are constants. We wish once

more to stress the following: We only assume the condition (4) for the co-

efficients of L on an arbitrarily given VJJJ=1 Am no matter how a is small and also

we do not care how wildly these coefficients behave in the remaining disjoint

annuli Ω — \Jm=i Am Our result generalizes the corresponding one by Kawamura

[5] where additional assumptions b(x) = 0 and φ c ) < 0 are made.

Although, in the general framework, various conditions for the existence of

the Green's function are known (cf. e.g. Ito [4] among others), it is difficult to

determine the existence explicitely in terms of b(x) and c(x). We will remark

in no. 7 by an example that (3) can not assure the existence of the Green's func-

tion, and therefore we have to assume it in addition to the condition (3).

The author would like to express his sincere thanks to Professor M. Nakai

for his valuable advice.
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§ 1. The maximum-minimum principle

1. Let Ωs: 0 < | x | < s (se(0, 1]), and dΩs: | x |=s , with QX^Ω and 3Ω 4 =δΩ.

For each fixed 5 in (0,1] take an exhaustion {N} of M, i.e. a directed net of rela-

tively compact subregions N of M with UiV = M, such that each N contains (dΩ) U

(δΩs) and its boundary dN is of class C3. Hence {Ωs Π N} forms an exhaustion

of Ωs toward x = 0. The Green's function on Ωs for (1) with its pole y is denoted

by GΩs(x, y). We recall that the adjoint equation of (1) on Ω is given by

(5) L*u(x) ΞΞ Δu{x) - b(x) Fw(x) + (c(x)-Γ b(x))u(x) = 0.

For each ^ in C(<3ΩS) denote by D*(ΩS n JV; d£2s)^ the solution of (5) on Ωs n JV

with boundary values φ on dΩs and zero on dN. The solvability of the Dirichlet

problem on the relatively compact subregion Ωs(] N in D is assured by the existence

of GΩ(x, y) (cf. e.g. [6]). We also denote by GΩsnN(x, y) the Green's function on

Ωs n JV for (1) with its pole y in.Ω, n ΛΓ. Then by the Green's formula

(D*(ΩS Π N; dΩs)φ)(y) = [ φ(x)-^-~GΩsUx, y)dSx.
JdΩs

 v n x

The convergence of {(dldnx)GΩs(]N(x, y)} to (djdnx)GΩs{x, y) as N->M is uniform

on dΩs for each y fixed in Ωs. Thus

lim^M (D*(Ω, n N 0 Ω » (j) = ί ^f(x) * GOa(x, y)dSx

exists. We set

D*(ΩS; aΩs)ιA = limN^M D*(ΩS Π JV; dΩs)φ.

In particular, for 5 = 1 and φ = 1 we set

(6) eΩ(y) = (D*(Ω;dΩ)l)(y).

Then the associated equation with (1) is, by definition, given by

(7) Lu(x) = Δu{x) + (2F log eΩ(x) - 6(x)) Vu(x) = 0

on Ω. We denote by &(ΩS; L) the linear space of bounded solutions of (7) on

Ωs with continuous boundary values on dΩs. Then the following relation holds

(cf. Nakai [7]):

(8) @(ΩS; L) = {OD*(ΩS; dΩs)φ)/eΩ; φ e C(dΩs)} .

In [7] the above relation was shown only for s — 1 but we can easily see that it is

valid for any s in (0, 1] with trivial modifications.
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2. Take any bounded solution v in ΰδ(Ω\ΐ). We set M s = supββι? and

ms = inίΩsv for each s in (0, 1]. Then Ms — v is the solution of (7) on Ωs with

nonnegative boundary values Ms — v on ΘΩS and v — ms the solution of (7) on

Ωs with nonnegative boundary values v — ms on dΩs. Setting (Ms — ύ)eΩ\dΩa—ψa

and (v-ms)eΩ\dΩs = φS9 observe that (D*(ΩS()N; dΩs)φs)leΩ is the solution of

(7) on ΩS(\N with boundary values Ms — v on dΩs and zero on δJV, and (D*(ΩS Π N

dΩs)φs)/eΩ the solution of (7) on Ωs n iV with boundary values v — ms on dΩs and

zero on 8N. The maximum principle for solutions of the equation (7) whose

term of zero order differentiation is missing (cf. e.g. [6]) yields that

s - ί 0 > (D*(ΩS Π N; dΩs)ψs)leΩ,

β s (v-ms) > (D*(ΩS n N; dΩs)φs)/eΩ

on Ωs Π N. Letting N-*M, we have

^ M . - i O > (D*(ΩS; dΩs)ψs)leΩ9

s (v - ms) > (D*(ΩS dΩs)φs)/eΩ

on Ωs. Thus it follows from (8) that

Ms - mmdΩs υ > Ms - v, max5βs v - ms>v - ms,

i.e. mαxdΩs υ>v>mmdΩa v on Ωs. Consequently we have the following:

LEMMA 1. For any s in (0, 1] and each υ in @(Ω; L) the following
maximum-minimum principle is valid:

v — m a x a o s

 v> ^ΩS

 v — i

% 2. Transformations of solutions of L* u (x) = 0

3. Consider the transformation x = Tmζ defined by Tmζ — rmζ for each

positive integer m. We set A = T"HAm): (1 - a) < \ζ\ < (1 + a), and /m(ζ) =/(Tmζ)

for the coefficients and the solutions of (5). We assume that (4) holds on each

Am. Then it is easy to see that

L*u(x) = 0 on Aw

is transformed to the equation

(9) L*um(0 = 0 on A,

where

L*um(Q = AuJiζ) ~ rmbm(ζ) - Vum(ζ) + (rfoXO - rj . hm(ζ))um(ζ),

\r2

mcm(ζ)-rmF bw(C)l ^ (
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on Δ (cf. Gilbarg-Serrin [1]).

We set ξ = ζ — α for each α fixed in Γ: \ζ\ = 1, and

for a positive constant B (cf. [1]). Denote by 5(α, a) the closed ball in A with

center α and radius a and by 5(0, α) the closed ball with center at the origin and

radius a. If 1 — Ba2>0, then we can easily see that the equation

L*um(ζ) = 0 on 5(α,α)

is transformed to the equation

(10) L?n,BUm,B(ξ) = 0 on 5(0, a),

where

(11)

Fm<B(ξ)Um<B(ξ),

Fm,B(ξ) = t _ ( - « + rmξ • bm(a + ξ))

4. An estimate of FmB(ζ). We will choose a pair of positive constants a

and B such that FmB(ξ)<0 on 5(0, α) for any m. We first observe that the

following inequalities hold on 5(0, a):

(12)

\rmbm{a

If we choose α and β so as to satisfy a< 1/(1 + c 0 ) and 0 < 1 — Ba2, then

on 5(0, a). Observe that

l - \ ξ \ ) + {l-\ξ\Y

, - l + coKI/(l-|ίlX0
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on 5(0, a). We can choose a and B in such a way that the right hand side of

(13) is not positive on 5(0, a) or equivalently

In fact it suffices to choose a and B so as to satisfy

2n(l—a)(l — (co + l)a) ~~ a2'

Then a > 0 must satisfy

0 <2n - 2n(c0 -h 2)a + (2n(c0 +1) - (ct + c2))a2,

or

We compile the above argument in:

LEMMA 2. J/α satisfies (15) and J5 satisfies (14),

on B(0, a) for each positive integer m.

In this case the following inequalities are valid on 5(0, a):

We remark that the last two inequalities in the above lemma can be derived

from (11) and (12).

§3. A boundary Harnack principle

5. Choose any a satisfying (15) arid let {rm} be an arbitrary sequence in (0,

(l + α)" 1) with rm+i<((l — a)/(l + a))rm for each m. Denote by {Am} the sequence

of annuli on Ω with the condition [A] which is determined by {rm} and a. Then

our boundary Harnack principle for L* and L can be stated as follows (cf

Kawamura[5]):

LEMMA 3. Suppose the existence of the Green's function on Ω for (1) and

assume that (4) holds on W*= 1 Am. Let u be any nonnegative solution of (5)
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on Ωs with an arbitrary s in (0, 1]. Then there exists a constant K>\ which is

independent of m, s and u such that

u(x±) <. Ku(x2)

for any xt and x2 on |x| = rOT and for each rm satisfying rm(l + a)<s. Conse-

quently, each nonnegative v in @(ΩS, L) satisfies

υ(xt) < K*v(x2)

for any xx and x2 as above.

Using the notation in no. 3, the positive solution u(x) of (5) on Am is trans-

formed to the solution um(ζ) of (9) on Δ and um(ζ) on 5(α, a) with each α in Γ

is transformed to the solution UmtB(ζ) of (10) on 5(0, a) for each m such that

rm(l + a)<s, where the constant B is chosen so as to satisfy (14). Then it follows

from Lemma 2 and the Harnack inequality (Serrin [8]) that there exists a positive

constant k which depends only on a, c0, cu c2, B and n and is independent of m

and s such that U^βiξ^KkU^Biξ^ for any ξt and ξ2 in 5(0, a/4). Returning

(16) «.({,) < 42

4^k

Ba2 um(ζ2)

for any ζx and ζ2 in 5(α, α/4). Since Γ is compact, we can find a positive integer

N and the points {£/}£= i in Γ such that Γcz\j1J=ιB(ζp α/4). Applying the

inequality (16) at most N times

( Λ2

for any ζt and ζ2 in Γ. Setting

it is clear that X is independent of m and s. Changing ζ to the original variables

x, we obtain u{xi)<Ku(x2) for any xx and x2 on |x| = rm and for each rm such that

rm(l + α)<s. Then the boundary Harnack principle for £ follows instantly from

that for L* (cf. [5]). This completes the proof.

6. The proof of the theorem. The essence of our proof is almost identical

with Kawamura [5] once preparations in nos. 1-5 are established. But we will

give it here for the sake of completeness. The proof will be given for the theorem

in the sharper form mentioned in the introductory part with the condition (4) only

assumed on W£= 1 Am, where {Am} is an arbitrary sequence of annuli in Ω with the
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condition [A]. We may assume that a satisfies (15).
To assert the validity of the Picard principle for L at Λ; = 0 it suffices to show

that lim^oφc) exists for every v in @}{Ω\ £) in view of the duality theorem
(Nakai [7], cf. also Heins [3] and Hayashi [2]). Let {rm} be the sequence in
(0, (1+α)"1) which determines {Am}. For each v in @{Ω\ L) we set M(rm) =
snpΩmv(x)9 where Ωm: 0<\x\<rm. Then M(rm) — v(x) is a positive element of
£8(Ωn\ t) for each n: n>m. It follows from Lemmas 1 and 3 that

supβn (M(rm) - v(x)) < K2(infΩn (M(rm) - v(x)))

for each n: n>m. Letting n->oo for a fixed m,

M(rm) - lim inf^o Φ ) < £ 2 (M(rJ -lim sup^o v(x)).

As m-»oo, we deduce that limsup^^o^x) —liminfΛ._oy(x) = 0, i.e. \imx^oυ(x)
exists for each υ in @t(Ω\ £). This completes the proof.

7. An example. Let x = (r, Θ) = (r, θ l 9 , 0,,-i): \x\ = r, be the spherical
coordinates on Ω and denote by dΘ the surface element of dΩ. Consider

(17) Lu(x) SE Δu(x) - (Λ-2)(-g[2-,-, ^ . ) . Γ w ( χ ) + ^ u W = 0

on Ω. Suppose that there exists a positive solution h(x) = h(r, Θ) of (17) on Ω

with boundary values zero on dΩ. The function ft*(r) defined by \ h(r9 Θ)dΘ
JdΩ

is a positive solution of (17) on Ω. The linear space consisting of rotation free
solutions, i.e. solutions with the variable r only, of (17) on Ω is generated by
cos (log r) and sin (log r). Thus /ί*(r) = αcos(logr) + /?sin(logr) for some
constants α and β. This contradicts h*(r) > 0 on Ω. Hence there exists no positive
solutions of (17) on Ω with vanishing boundary values on dΩ. Then it follows
from a criterion (cf. [7], p. 285) that there exists no Green's function on Ω for (17).
On the other hand, it is easily checked that \b(x)\ =(n-2)/|x|, \F b(x)\ =(n-2)2/
|x|2 and φc)=l/|x | 2 on Ω. Therefore the assumption of the existence of the
Green's function in our theorem can not be dispensed with.
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