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1. Introduction

Let M be a non-zero, finite module over a noetherian ring A. It is well
known that if A is a local ring with the maximal ideal m, then every permutation
of an M-sequence is an M-sequence. It seems to the author that this property
arises from the fact that the m-adic topology on M is a Hausdorίf space. In
this paper we study modules M which satisfy the condition that the Aa-adic
topology on M is separated for every M-regular element a. As a tool in this in-
vestigation we consider the subset Jf(M) of A which consists of those elements a
with separated v4α-adic topology.

In section 2 we study some inclusion relations among the set JΓ(M), the set
of all zero-divisors of M and the set of all M-regular elements. In section 3 we
establish a method of constructing modules M such that the sets jr(M) are as
large as possible. In section 4 we give some conditions equivalent to the assertion
that the sequence {ft, a} is an M-sequence for every M-sequence {α, b}.

All rings are assumed to be noetherian, commutative, with unity, and all
modules are assumed to be of finite type, unitary.

Let A be a ring and M an ^-module. We write (̂M) for the set of zero-
divisors on M. Let a be an element of A and let fa be the homomorphism
M-^»M, where fa(m) = am for weM. Then ae &(M) if and only if fa is not
injective. We denote by ^(M) the set of M-regular elements. Note that a e
@(M) if and only if fa is injective but not surjective. We let <$r(M) denote the set
of all elements a in A such that fa are isomorphims. If M is a non-zero
module, it is clear that A is a disjoint union of the subsets <3f(M),^(M) and (̂M).
Further we use freely the terminologies in [2].

2. The set Jf (M)

DEFINITION. Let A be a ring, M an 4-module. Then the set JΓ(M) is

defined to be the set of those elements a of A such that Γ\%=1 α"M = 0.
It follows easily from our definition that Jf(M) c &(M) U ̂ (M) for a non-

zero A-module M. In general Jf(M) is not an ideal. Applying KrulΓs inter-
section theorem, we have a basic proposition about JΓ(M).
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PROPOSITION 2.1. Let A be a ring, M an A-module. Let a be an element
of A. Then aeJίT(M) if and only if Aa + p3=Afor all peAssM.

PROOF. By the intersection theorem (cf. [3], (3.11)), ae jf(M) is equivalent
to the condition that if b — leAa for be A, then i> <$ ̂ (M). It is also equivalent
to the assertion that if b e 2£(M), then b — 1 £ Aa. Since 2£(M) is the set-theoretic
union of the associated prime ideals of M, it occurs if and only if Aa + p Φ A
for all peAssM.

COROLLARY 2.2. Let A be a ring and let q be a prime ideal of A. Let M
be a non-zero A-module. If every associated prime ideal of M is contained in

q, then q

COROLLARY 2.3. Let A be a ring, M an A-module. Then
if and only if pt + pjή=Afor all pt and PJ in Ass M.

REMARK 2.4. By prop. 2.1, we see well-known facts that if A is an integral
domain or a local ring, then JΓ(A)=A — W(A). Furthermore if A is a semi-
local ring, then its Jacobson radical is contained in JΓ(/1).

Let A be a ring, M an ^4-module. We denote by (̂M) the subset of A con-
sisting of those elements a of A which satisfy the following condition : for every
prime ideal p in Ass M, there exists a prime ideal q in Ass M/aM such that p c q .

PROPOSITION 2.5. Let A be a ring, M a non-zero A-module. Then

PROOF. Let a e ϋ^(M). For every p e Ass M, we can find a prime ideal q in
Ass M/aM with p c q. Since a e q, Aa + p c= q. Thus Aa + p φ A, and prop. 2.1

implies

COROLLARY 2.6. Let A and M be as above. Then (̂M) n

JΓ(M) n

PROOF. Prop. 2.5 implies that -)Γ(M) n ̂ (M) c: jf(M) n ̂ (M) and the
other inclusion follows from ([2], (15, d)).

PROPOSITION 2.7. Let A be a ring, M a non-zero A-module. Then the
following conditions are equivalent:

(i) ^(M)cιjr(M).

(ii) There exists a maximal ideal of A which belongs to AssM.

PROOF. (ii)=>(i). Let m be a maximal ideal of A in AssM. Assume the
contrary. Then we can find an element a of JΓ(M) with αφ^f(M). Whence

, and so Aa + m = A. It therefore follows from prop. 2.1 that a$JΓ(M).
(i)=>(ii). It is sufficient to prove that if any maximal ideal does not belong to
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Ass M, then JΓ(M) <£ ̂ (M). First we assume that A is a semi-local ring. Let
{m!,..., mf} be the set of the maximal ideals of A. Since every mf does not belong

to AssM, there is an element α{ of m£ n ^(M) for l ^ i r g f . Put α = α1---α ί.
Then αe jf(M) by prop. 2.1; in fact, for every peAssM we find a maximal ideal
mf with pcntj, thus ^4α + p c ,40 4-mf c mίs and hence Aα + p^A. On the other
hand we see αe<%(M) because α$^(M) and Jf(M) c J?(M) U &(M\ We

therefore obtain that JΓ(M) <t ^T(M).
We now proceed to the general case. Let AssM = {p1,..., ptt}. Since each

pf is not a maximal ideal, we find a maximal ideal mt with PiCtr^. Put S==
n C / 4 — ττtί), l^ i^M. Then S is a multiplicative subset of ,4 and Sc^(M)U

whence the natural mapping M-^S^M is injective. Note that
S"1M = {p1S

r~M,..., puS~1A}. It also follows from the definition of

JΓ(M) that if fl/le^Ts-i^S^M), thenαeJΓ(M). Now, since S~U is a semi-
local ring which satisfies the condition that any maximal ideal does not belong
to Asss-i^S^M, the first arguments imply JΓs-u(5~1M)φ&s- ίA(S~ lM).
Thus we may choose an element α /I in jfs-ιA(S~1M) which is not contained in
&s-ιA(S-lM). Hence we see that αeJΓ(M) and α $<^(M), which settles the

assertion.

COROLLARY 2.8. Let A be α ring, M α non-zero A-module. Then JΓ(M) =
2?(M) if and only if there exists a maximal ideal m in AssM such that pent

for all pe AssM.

PROOF. This is immediate from cor. 2.3 and prop. 2.7.

LEMMA 2.9. Let A be a ring and let M be an A-module. Then W(M) =

A - U p, p e Supp M.

PROOF. We may assume that M is a non-zero ^4-module. We shall show that
any element a in ^r(M) does not belong to any prime ideal in Supp M. Assume
on the contrary that there exists peSuppM such that 0ep. Then Mp = aM^.
By Nakayama's lemma we see that Mt)=0. But this is a contradiction.

Conversely let α be an element of A which does not belong to any prime
ideal in Supp M. Then a $ 2£(M). We thus have an exact sequence

0 > M -£-> M > M/αM > 0.

Let p be a prime ideal of A. Then we get an exact sequence

0 —> M, -̂  M, —->.(M/flM)p —> 0.

If ρ$ SuppM, then Mp = 0. Thus (M/aM\ = Q. If peSuppM, then 0$p

by hypothesis. It follows that Mp = aM^, and this implies (M/aM\ = 0. Whence
0, so α belongs to
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THEOREM 2.10. Let A be a ring and let M be a non-zero A-module. Then
the following assertions are equivalent:

( i ) JΓ(M) = ̂ -^(M).
(ii) For every prime ideal p in AssM and for every maximal ideal m in

Supp M, we have p cm.

(iii) ^(M)cjΓ(M) and pi + --+ pM=M, where AssM = {p l5..., pn}.

PROOF. (i)=>(ii). We assume the contrary. Then we can find a prime ideal
p e Ass M and a maximal ideal m e Supp M such that p <t m. We thus see that

= A, and hence there exist an element α e m and an element pep with
= l. Thus Aa + p = A, consequently, in view of prop. 2.1, #φJf(M). By

hypothesis we obtain a ε<%(M). It therefore follows from lemma 2.9 that α£m,
a contradiction.

(ii)=>(i). We have only to prove that (̂M) U ̂ (M)cι jf(M). Let 0 be an
element of ^(M) U ̂ (M). Then, using lemma 2.9, there exists a maximal ideal
m in Supp M such that β e m. Since m contains all associated prime ideals of
M, it follows from cor. 2.2 that me: jf(M). In particular a belongs to

(i)=>(iii). Since A-<%(M) = &(M) U ̂ (M), it is clear that ^(M)c
There is a maximal ideal rrt in Supp M, for M is a non-zero module. Thus, by
(ii), p j + .-. + p^cim, andsop^-. '+pnΦΛL

(iii)=>(i). It is enough to prove that &(M) c JΓ(M). But this follows from
cor. 2.3, because pf-f p y cp 1 H ----- \-pn + A for all pf and p7-.

EXAMPLE 2.11. Let R be a ring and let Ass jR = {p1?..., p,J. Suppose
h p M Φ # and put 5=l + p 1 H ----- hpn. Then S is a multiplicative subset

of R and it does not contain 0. Put A = S~1R. Then A satisfies the equivalent
conditions of theorem 2.10 as an ^.-module.

LEMMA 2.12. Let M be a non-zero module over a ring A. We let AssM =

{P!,..., pj. Suppose that p1 + "-+pn = A and ^(M)Φ0. Then 3?(M) ct JΓ(M).

PROOF. We may assume that any pf is not maximal by prop. 2.7. First we
also assume that there exist pt and Py such that pί + pj. = >4. Without loss of
generality, we may suppose that there is an integer k with 2^k^n which satisfies
the following conditions: p1+p2 = ̂ ,..., p x +p f c = >l, p1+pk+l^A9...9 pi+pnή=A.

Thus p1 + p 2"-pfc = ̂ 4. We can therefore find an element p± epv and an element

jP2 e P2"Φfc such that jPι+P2 = l- We can also find a maximal ideal m with
p2--.pfcc:m. Since each p£ for l^i^n is not a maximal ideal, there exists an

element x e m which does not belong to any pt. Then J; = pιx + Jp2 ^™> and this
implies y φ ̂ (M), since m E Supp M.

We shall show that y e &(M). If y e pί9 then p2

 e Pι» whence 1 =Pι 4- p2 e pt,
and this is impossible. If y e pf for 2 ̂  ί g fc, then p tx e pf. Since x •$ pf, we have
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Thus we also get a contradiction that 1 = p± + p2 e pf. Finally we assume
that ye Pi for fc+l^i^n. Then it follows from the relation pί(l — x) + y = l
that pi+pi^A, and it shows a contradiction. Using those results we see that
y E &(M). However y $ jf(M). Indeed, if n is a maximal ideal with Ay + Pi <= n,
then Ptcrn, whence Pi^n. Therefore, since y = Pι* + p2 and yen, we see that
p2 e n, and so 1 = pί + p2 e n. This contradiction shows that Ay-{-pί=A. Con-
sequently y$ JΓ(M) by prop. 2.1.

Next we assume that for all / and j with 1 ̂  i, j^n, Pί + Py Φ A Let t be the
smallest integer among integers u which satisfy a condition that there is a relation

Pi! + Pi2^ ----- '"Pίu==^- We may assume that pι-j-p 2H ----- t-pt = A. Then we
find elements ^epf with pι+p2-\ — +p f=l. Put y = l — Pi- Then
because if ye£?(M), then there exists some pf such that yep f , and hence
P; = ;4, which is contrary to our assumption. Since Ay + p^—A, it follows from
prop. 2. 1 that y $ Jf (M). To prove that (̂M) φ JΓ (M), it is sufficient to show that
yφ^(M). Assume on the contrary that ye^(M). Then, in view of lemma
2.9, we find an element c e A and ά e Ann M such that cy + d= 1. We thus verify
the identity cp2-\ ----- \-cpt_l+(cpt + d) = ].. Since dep,, we get that p 2 H ----- h
pf = A9 which contradicts the minimal property of the integer t. Accordingly we
see that y $ ̂ (M) and this completes the proof.

THEOREM 2.13. Let M be α non-zero module over α ring A. Assume that
Then Jf (M) = A - ^r(M) i/ and orc/y z/ ̂ (M) c JΓ(M).

PROOF. We have only to show that if ̂ (M) c JT(M), then JΓ(M) = 4 -
But this follows from theorem 2.10 and lemma 2.12.

3. Modules M with JΓ (M ) = A - <%(M)

In this section we study a method of construction of y4-modules M with

DEFINITION. Let A be a ring and let α be an ideal of A. We denote by
5(α) the set of those elements a such that Aa + a = A.

Let φ be the natural mapping A^A/a. Then S(a) = φ~ί(^(A/ά)). We see
that 5(α) is a saturated multiplicative subset of A and that 0 e S(α) if and only if
a = A.

PROPOSITION 3.1. Let A be a ring, and let M be an A-module. Let a be
an element of A. Then a e Jf (M) if and only if a φ 5(p) for all p e Ass M.

PROOF. This is an immediate consequence of prop. 2.1.

LEMMA 3.2. Let A be a ring, α an ideal of A and M an A-module. If
α =3 Ann M, then 5(α) =>
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PROOF. Let a be an element of A with αφS(α). Then Aa + aΦA, whence
there is a maximal ideal m with Aa + aam. Therefore meSupp M and a em.
By lemma 2.9, we have a

PROPOSITION 3.3. Let M be a non-zero module over a ring A. Then
if and only if S(p) = <%(M)for allpe\ssM.

PROOF. Assume that JΓ(M)=A-W(M). We shall show that for all
peAssM, S(p) = ̂ (M). Assume the contrary. Then there exists some pe
Ass M with S(p) Φ ̂ (M). It therefore follows from lemma 3.2 that S(p) ̂  ̂ r(M),
and hence we find an element a ε S(p) with a <$ W(M). By assumption, we have
a e JΓ(M). We thus get a required contradiction by prop. 3.1.

Conversely we assume that S(p) = ̂ (M) for all peAssM. Let a be an
element of A with αφ ̂ (M). Then αφS(p) for all pe AssM, and so prop. 3.1
shows αejT(M). We therefore obtain that Jf(M)=D^-^(M). The other
inclusion is obvious.

LEMMA 3.4. Let A be a ring and let α be an ideal of A. Suppose that p
is a prime ideal of A. Then p Π S(α) = 0 if and only ifp + aή=A.

PROOF. Assume p n 5(α) Φ 0. Then we find an element p of p n S(α), whence
ap + b = l for suitable elements aeA and ί?eα, and so p + α = A We can easily
prove the "only if" part in the same way.

PROPOSITION 3.5. Let M be a non-zero module over a ring A. We let
AssM = {p1,..., pj and put S = S(p1H ----- hprt). Then the following statements
are equivalent:

(i) Pi + '-'+p,,^.
(ii) SaO.
(iii) 5-^=0.
(iv) S n Pf Φ 0 for some pf.
(v) Snpi + 0 for all p£.

PROOF. By lemma 3.4 and the definition of S we can easily prove this
proposition.

COROLLARY 3.6. Notation and assumptions being the same as in the
previous proposition, ί / p j H ----- hp π φA, then

(i) 5n^(M) = 0.
(ii) The natural mapping M-*S~1M is injective.
(iii) Asss-M 5-1M={p1S-M,..., pnS~lA}.

LEMMA 3.7. Let M be a module over a ring A and let b be an ideal of A
with Ann M c: b. // S(b) = <%(A\ then S(b)
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PROOF. We first show that every maximal ideal of A belongs to Supp M.
Let m be a maximal ideal of A. Assume that bcCm. Then m-f b = 4, whence
there exists an element yem such that Ay + b = A. Thus this yields yeS(b),
and so ye<%(A). This contradiction shows bcm, and hence meSuppM.
Now, in view of lemma 2.9, we obtain that <%(M) = <%(A)9 and so

LEMMA 3.8. Let M be a non-zero module over a ring A. Let S = S(pί-{-
— + Pιλ where p£ runs through the set Ass M. Then Ss-ιA(piS-ίA) = ^(S-1A)
for all Pi e Ass M.

PROOF. We may assume that pί-\ ----- \-pnή=A. It is sufficient to show that
Ss-ιA(piS~lA)<=:^(S~1A) for all p f eAssM. Let a/sί be an element of
Ss-ιA(piS~1A)9 where aeA, s^S and p f eAssM. Then we find elements
be A, s29 s3eS and j^ep; with a/s1-b/s2 + p1/s3 = l. Thes abs3s4 + pisίs2s4 =
sίs2s3s4 for a suitable element s4 of 5. Since S1s2s3s4 belongs to S, there exist
elements c e A and q e p{ H ----- h pn such that cs1s2s3s4 -f q .= 1. We therefore obtain
αfccs3s4-f cpisίs2s4 = csίs2s3s4 = 1 — ̂ r, whence flfcc53S4 + (cpίs1S2S4 + ̂ ) = l. Since

p i H ----- hpn, this relation yields aeS. Thus we see that als\ 6
), and we complete the proof.

PROPOSITION 3.9. Let A be a ring. Let M a non-zero A-module with
associated prime ideals pl9...,pn. Suppose that p x H ----- hp r tφ^4. Then
JΓS-1X(5-1M) = S-U~^-U(5~1M), where S = S(pί + .-+ pn).

PROOF. By prop. 3.3 and cor. 3.6, it is enough to show that Ss-ιA(piS"iA) =
%-u(S-1M) for all pf. However the assertion follows from lemma 3.7 and
lemma 3.8.

THEOREM 3.10. Assumptions being the same as in prop. 3.9, the following
conditions are equivalent:

( i )
(ii)
(iii) The natural mapping M-^S~1M is an isomorphism.

PROOF. (i)=»(ii). It is suffcient to prove Sc^(M) by lemma 3.2. Let s
be an element of 5. Then as -f q = 1 for suitable elements a 6 A and q e px H ----- h
pn. Let m be a maximal ideal in SuppM. Then < / e m by theorem 2.10, and
hence s $ m. This implies s E <%(M) by lemma 2.9. Thus S c ^r(M),

(ii)=>(iii) is trivial.
(iii)=>( i ) follows from prop. 3.9. We complete the proof.
We continue with the assumptions of prop. 3.9. We set T= A — &(M). Then

it is clear that ScΓ, and hence the natural mapping S~1M-*T~1M is injective.
We denote by P the set of prime ideals of A which contain all p£. Since p j H ----- h
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1, we know that PΦ0. Let q belong to P. It follows from lemma 3.4 that
I — qc Γ, and thus we may assume that S^McMq c: T~XM. Consequently

we have S~lMc ΠM q , qeP.

PROPOSITION 3.11. Let the assumptions be as above. Then S~1M= ΠM q ,
where q ranges over the set P.

PROOF. It will suffice to show that 5-1M=) Γ)Mq. By properties of the
the localizations and cor. 3.6 we may assume that M = S~1M. For an element
XE ΠM q , we put b = {aeA\axeM}. Then b is an ideal of A with bz^AnnM.
We want to show that b = ̂ 4, which implies xeM, and hence we get M-=> f lM q .
Assume on the contrary that b Φ A. Then there exists a maximal ideal m such that
b c m. If m e P, then x e Mm. Whence we can write x — m/t for suitable m e M
and ί$m. Accordingly ίx = m, and so ίeb. This contradicts our assumption
that bcm and it yields m£P. We therefore find some p£ with p£ctm. It is

clear that p ί-hm = y4, and there are elements j^ep,- and a em with pi + a = ί 9

which implies aeS. But, since M = S~1M, theorem 3.10 implies ae<%(M).
We now get a required contradiction by lemma 2.9, because a e m and m e Supp M.
This completes the proof.

4. Permutations of M-sequence

We consider permutations of M-sequences in this section. D. Taylor proved
the following assertion in [4]: If A possesses an ^.-sequence of length 3, and if
every permutation of an ^4-sequence is an ^-sequence, then A is a local ring. Now
we give some conditions which are equivalent to saying that {&, a} is an M-
sequence for every M-sequence {α, b}.

LEMMA 4.1. Let A be a ring and let M be an A-module. If {a, b} is an
M-sequence^ then 0 :Mbc: π a"M (n = l, 2,...), where 0: Mb = {meM|ftra = 0}.

PROOF. Let m be an element in 0: Mb. Then fcm = 0 = αO. Since {a, b}
is an M-sequence, we find an element ml eM with m — aml, and hence abm1=Q.
Thus 6m1=0, for a$&(M). Repeating this argument with m t, we can write

mί=am2 for suitable w 2 eM. Whence it implies w = α2w2. It thus follows
from these observations that m e n a"M.

COROLLARY 4.2. Let M be a module over a ring A. If {a, b} is an M-

sequence with a e JΓ(M), then {b, a} is an M-sequence.

PROOF. Since a $ &(MjbM) ([1], Theorem 117), we have only to prove that
However the assertion follows from lemma 4.1.

COROLLARY 4.3. Let M be a module over a ring A. Suppose that



Separation of the Aa-adic topology 171

Then {ft, a} is an M-sequence for every M-sequence {α, ft}.

PROPOSITION 4.4. Let M be a module over a ring A. Let a be an element in
Put N = Γιa"M (n = l, 2,...) and let M = M/N. Then:

( i ) a is an element in &(M) n JΓ(M).
(ii) If {a, ft} is an M-sequence, then {a, ft} and {ft, a} are M-sequences.
(iii) For a prime ideal p of A, p e A s s M if and only if p e A s s M and

p c q for some q e Ass M/aM.

PROOF, (i) and (ii) are easily shown by elementary properties of M-sequences
and cor. 4.2.

(iii) We first note that if p is a prime ideal such that any associated prime
ideal of M/aM does not contain p, then pφ Ass M. Assume on the contrary that
p e Ass M. Then p = Ann (m) for suitable m e M, where m denotes the image of
m is M. Furthermore we find an element ftep with b<£&(M/aM). Thus
ftm = 0, whence bmeN. In particular bmeanM for all positive integers n.
By the fact that &(M/anM) = &(M/aM) ([1], Ch. 3, Ex. 13), we have b&&(M/
anM). It thus implies m e anM9 and so meN, that is w = 0. This is a required
contradiction.

Now.we are ready to prove (iii). We may only deal with a prime ideal p

which is contained in some qeAssM/αM. Then Nq=0, because Nqcz
nM(α/l)"Mq=0. It therefore follows that M q =M q / J /V q = Mq. Since peAss

M if and only if pAq e Ass^q Mq, we thus know that p e A s s M if and only if
ρ^4q e AssX qMq, and it happens if and only if p e Ass M.

LEMMA 4.5. Let M be a module over a ring A and let p be a prime ideal in
AssM. Let a bean element of ^(M). ThenAa + p=£A if and only if there exists
an associated prime ideal q of M/aM with pcq.

PROOF. The "if" part is obvious. Suppose Aa + pή^A, Then we find a
maximal ideal m such that ^α-fpcm. Thus p>lm e Ass^m Mm and aemAm.
Since ae&Am(Mm), it follows from cor. 2.6 that aG^Am(Mm), that is to say,
there is a prime ideal q^4me Assyl raMm/αMm such that pAmac\Am. Thus we find
a required prime ideal q e Ass M/aM which contains p.

LEMMA 4.6. Let M be a module over a ring A. Let a be an element of

^(M)-JΓ(M) with ^(M/αM)Φ0. Then there exists an element b of &(M)
such that [a, ft} is an M-sequence.

PROOF. By prop. 2.1, there exists a prime ideal pe AssM with Aa + p = ̂ 4,
for a $ Jf (M). It now follows from lemma 4.5 that p φ q for all q e Ass M/aM.
Since ^(M/αM) Φ 0, we find a maximal ideal m such that Aa + Ann Mem and
mφAssM/αMv Then we see that mφq for all qe AssM/αM. It follows from
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these results that m n p <t q for all q e Ass M/aM, and hence there is an element

b e m n p which is not contained in any associated prime ideal of M/aM. Since

meSuppM and (a, b)M c:\nM, we see (a, fc)MφM. Consequently {a, b} is

an M-sequence with

THEOREM 4.7. Let Abe a ring and M be an A-module. Then the following

conditions are equivalent:

( i ) For every M-sequence {a, b} of length 2, {b, a} is an M-sequence.

( ii ) For every a e &(M) - Jf(M), <%(M/aM) = 0.
(iii) For every a e ^(M) — JΓ(M) and every maximal ideal m in

Supp M/aM, depth^m Mm = 1.

PROOF. (i)=>(ii) is an immediate consequence of lemma 4.6. (ii)=>(i) follows

from cor. 4.2.
(ii)<=>(iii). Let a be an element of ^(M). Then, since ^(M/αM) = 0 means

that every maximal ideal in Supp M/aM belongs to Ass M/aM, we see that

0 if and only if for all maximal ideals m in Supp M/aM,

EXAMPLE 4.8. We consider a quotient ring R = k[X, Y,Z~\I(XY) of the

polynomial ring over a field k and we write R = k[x, y, z] as usual. Put n =
(x, y, z) and r = (x — 1, y). Then n and r are prime ideals of R. Let A = S~1R,

m = n/4 and ς = r/ί, where we put S=(R — n) ft(R — r). Then A is a semi-local

ring with its maximal ideals m and q. Furthermore we see easily that Ass .4 =

{Pι» P2^ where px=^x and p2 = Ay. Since p 1 U p 2

c = m » we know by cor 2.2
that mcjΓ(/l), and this implies &(A) — tf(A) cq. On the other hand it follows

from prop. 2. 1 and the relation A(x — 1) 4- p ί = A that x — 1 <$ Jf(A), and so ^(^4) —

JΓ(X)Φ0. We wish to show that A satisfies the equivalent conditions of theorem

4.7 as an A-module. This can be shown as follows. Let a be an element in
— JΓ(A). Then q is the only prime ideal which belongs to Ass A/Aa, because

and ht q = l. We therefore conclude that &(A/Aά) = 0.
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