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1. Introduction

Our main purpose in this work is to study the nonoscillation property of the

solutions of the functional equation

(1) y"(i) + a(t)y*(g(ί))=f(t)

when a(t) oscillates with sufficiently large amplitudes. In the sequel we shall

assume that

( i ) a(t), 0(0> /(O: R-+R and continuous;
(ii) g(i)-+ao as ί-»oo, g'(t)>Q (thus g(i) may be advanced or retarded);
(iii) (5>0 and the ratio of odd integers: The equation (1) is therefore, allowed
to be superlinear, linear or sublinear.

In view of our Theorem 3.1 in [5], we shall assume that solutions of equation
(1) under consideration are those which exist continuously on some half line
[f0, oo). The term "solution", henceforth, applies only to such an entity.

Since the pioneering work of Hammett [1] the asymptotic nature of oscilla-
tory and nonoscillatory solutions of equation (1) has been the subject of numerous
studies. A recently published Russian book by Shevelo gives a fairly exhaustive
list of references for the interested reader. In regard to obtaining results about
the asymptotic nature of the nonoscillatory solutions, the coefficient a(f) has
been assumed to be of one sign by majority of authors. When α(ί)>0 for
sufficiently large ί, then a decent account of the nonoscillatory solutions can be
found in Kusano and Onose [3-4], Kitamura Kusano and Naito [2], Singh [6]
and Kusano and Singh [7]. However when a(t) is oscillatory, nothing seems to
be known about the asymptotic nature of the nonoscillatory solutions of equation

(!)•
In this work, we present an elementary but new technique to study oscillation

phenomenon in general. In particular, we not only assume that a(f) be oscillatory,
but also utilize the amplitude of oscillation to characterize the nonoscillatory
solutions of (1). In what follows we call a solution .of (1) oscillatory if it has

arbitrarily large zeros in [ί0, oo); otherwise we call it nonoscillatory.
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Our main theorem characterizes the bounded solutions of (1) as either non-
monotic or as monotonic converging to zero as f-»oo.

2. Main results

THEOREM (2.1). Suppose there exists a function φ(t)eCz\\t0, oo), (0, oo)]
such that φ'(t)>0, φ"(t)>0 and

(2)

(3) lim inf^ „, Q' l/φ2 (s) j' φ(x)a(x)dxds~^ = - oo

(4) lim sup^ 'l/ψ2(s) ' #xχ*)dxds = oo

Lei XO fee a bounded solution of (1). Tften eif/icr j>'(ί) is oscillatory or else
\y(t)\ monotonically decreases to a limit as ί-»oo.

PROOF. We only need to prove this theorem when y(i) is nonoscillatory.
Conditions on φ(t) imply

(5) j°° ί/φ2(t)dt < oo .

Without any loss of generality suppose that there exists a Γ>f0 such that y(i)>0
and j>(0(f))>0 for ί>Γ. Suppose first that y'(t) is nonoscillatory. We shall
show that y'(i) cannot be eventually positive. Suppose to the contrary that
there exists a number B > T such that y'(t) > 0 and /(0(f)) > 0 for ί ̂  B. Rewriting
(l)as

and multiplying by φ(t) we obtain

x (Φ(t)y'(t)Y _ ^>'

Integrating (7) between [B, ί] we have

'(t) _ , , (' Φ(s)y'(s)δy'(g(S))g'(s) ,
' i+l

_ Φ'(t)y(t) , (' φ"(s)y(s) ,
y'(g(t)) +IC2 + )» ds
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(8) _ f ' f(s)φ(s) ds

where

kι - Φ(B)y'(B)

and

t _ Φ'(B)y(B)
'V2 Λ / _ / r»\\ •

Dividing (8) by φ2(i) and integrating again we obtain

y(B) , f '
φ(B)y*(g(B» + }„ Φ2(s)ys(g(s))

y(t) _ y(B) , f ' y(s)φ'(s)ds
}„ Φ2(s)ys(

Φ"(χ)y(χ)dxds
B

φ'(X)y(X)δy'(g(X))g'(X)dxdS

l/φ2(s) a(x)φ(x)dxds
B JB

Now the third and seventh terms on the left hand side of (9) cancel each other.
Since /(f)>0, (2) holds, y(t) is bounded, and the right hand side of (9) remains
finite, whereas all the terms on the left except

(10) Γ l/Φ2(s) (S a(x)φ(x)dxds
JB JB

are either positive or finite. Note that ninth term on the left of (9) is of the order
of Ijφ and hence bounded. Since (10) oscillates between — oo and oo, we reach a
contradiction. Hence y'(f) must, eventually, be negative proving the theorem.

EXAMPLE (2.1). The equation

(11) y"(t) + t2 sint y(Jt) = e~* + t2 sint e~^T

9 f >0

has y(t)=e~* as a nonoscillatory solution satisfying the conclusion of the
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theorem. By choosing φ(i) = t, it is easily verified that all conditions of Theorem
(2.1) hold.

THEOREM (2.2). In addition to the conditions of Theorem (2.1) suppose

(12) lim sup^ J' (h(s)a(s) -f(s))ds > 0

(13) lim inf,^ J' (/ι(s)φ) -/(s))ds < 0

continuous and monotonic function h(t) such that lim^
Let y(t) be a bounded solution of equation (1). Then either y'(t) is oscillatory
or else \y(t)\ decreases monotonically to zero as t-+ao.

PROOF. Without any loss of generality suppose y(t) is eventually positive.
From Theorem (2.1), if y'(t) is nonoscillatory then y'(t)<Q and

(14) liπi^XO-λ.

We shall show that 1=0. Suppose to the contrary that λ>Q. Due to (12)
and (13) there exist a T>t0 and J3>0 such that

(15) lim inf,^ (h(s)a(s) -f(s))ds < -B .

Let h(ί) = y*(g(t)). Since y'(t)<0, and y'(t) is eventually positive, it follows that

(16) lim sup, .^/(ί) = 0.

Let Γbe large enough so that

(17) \y'(B)\<B/2.

From equation (1) we have

(18) /(O = y'(T) - Γ (a(s)h(s^f(s))ds
JT

which implies in view of (15) and (17) that lim sup^ „ y'(ί) > B/2. This contradicts
(16). Hence λ=0. The proof is complete.

THEOREM (2.3). In addition to the hypotheses of Theorem (2.1} suppose
that δ>l and g(t)>t for sufficient large t. Then, for every solution y ( i ) p f ( ϊ ) ,
either y'(t) is oscillatory or else y(i) tends monotonically to a finite limit as t-+ao

PROOF. Let y(t) be any solution of equation (1). We proceed as in
Theorem 2. L From the proof of Theorem (2.1), the only place we use the
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boundedness of y(t) is in the seventh expression on the left in equation (8). We
designate this by J, as

(19) / - - _ dxds2(s) )B yδ+ί

= f -χτrϊ-(5 Φ'WyW-T-ϊ a / * .)B Φ2(s) Jij ^^ ' dx \_ yδ(g(x))

From (19) J can be rewritten as

(20) /-- φ>(X) dxdsv ' 2 y(g(χ)) δ

Now <5 > 1 and g(t) > t. Thus, if y(f) > 0 and y'(i) > 0, then

so that Xx)/Xflf(x))^l9 provided t is large enough.
Hence J in (20) is bounded. From now on the contradiction follows as in

the proof of Theorem (2.1).
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