Spherical hyperfunctions on the tangent space of symmetric spaces

Atsutaka Kowata

(Received May 11, 1990)

Introduction

Let G be connected semisimple Lie group, σ an involutive automorphism of G and H an open subgroup of fixed points of σ . Then G/H is called a semisimple symmetric space and the tangent space at the origin of G/H is identified with a complement q of h in g, where g and h are the Lie algebras corresponding to G and H, respectively.

In this paper, we consider spherical hyperfunctions on q that are Hinvariant and simultaneously eigen hyperfunctions on q. There have appeared several papers dealing with spherical functions on q ([1], [2], [3], [5], [9], [10]). In his paper [2], van Dijk listed up spherical distributions for the rank 1 case. On the other hand, in his paper [1], Cerezo determined the dimension of O(p, q) (or $SO_0(p, q)$) invariant spherical hyperfunctions on \mathbb{R}^{p+q} , where \mathbb{R}^{p+q} can be regarded as the tangent space of the semisimple symmetric space; $SO_0(p+1, q)/SO_0(p, q)$. However, studying spherical hyperfunctions, the author found interesting phenomenon. That is; if f is an H-invariant eigen hyperfunction then f is \tilde{H} -invariant, where \tilde{H} is the connected component of the Lie group of all non-singular transformations T on q such that p(Tx)= p(x) for any H-invariant polynomial p and $x \in q$. In fact, \tilde{H} is "large" (if $G = SL(m + 1, \mathbf{R})$ and $H = GL^+(m, \mathbf{R})$, then dim $H = m^2$ and dim \tilde{H} $= 2m^2 - m$). It seems that this phenomenon is independent of the category of functions but is dependent on H or \tilde{H} orbits structure on q. In his paper [8], Ochiai deals with this problem as \mathcal{D} -module structure generated by the Lie algebra h or $\tilde{\mathfrak{h}}$ which is the Lie algebra corresponding to \tilde{H} .

In this paper, we prove that for "generic" eigen values if f is an H-invariant eigen hyperfunction then f is \tilde{H} -invariant (see Theorem 5.1 in §5). From Cerezo's result and Theorem 5.1, we can determine the dimension of spherical hyperfunctions on q when rank q = 1 and eigen value $\mu \neq 0$ (see §5).

§0. Notations and preliminaries

Let g be a real semisimple Lie algebra with Killing form B and σ an involutive automorphism of g. Denote $g = \mathfrak{h} + \mathfrak{q}$ the corresponding decomposition on g into +1 and -1 eigenspaces of σ . In this paper, we denote by V_c the complexification of V, for any **R**-vector space V. Then σ can be extended uniquely to the involutive automorphism (over C) of \mathfrak{g}_c and $\mathfrak{g}_c = \mathfrak{h}_c + \mathfrak{q}_c$ the corresponding decomposition on \mathfrak{g}_c into +1 and -1 eigenspaces of extended σ . Let G be the connected adjoint group of g and H the connected Lie subgroup of G with the Lie algebra adh. Then H acts on \mathfrak{q} by the adjoint action. This action is analytic and can be extended uniquely to the holomorphic action on \mathfrak{q}_c . Let $P(\mathfrak{q}_c)$ and $S(\mathfrak{q}_c)$ be the polynomial ring and the symmetric algebra on \mathfrak{q}_c , respectively. Denote by $P_H(\mathfrak{q}_c)$ and $S_H(\mathfrak{q}_c)$ the subalgebras of all H-invariant polynomials on \mathfrak{q}_c and H-invariant elements in $S(\mathfrak{q}_c)$, respectively.

We denote by $\mathscr{B}(q)$ the vector space of all hyperfunctions on q. Let GL(q) be a Lie group of all non-singular linear transformations on q. Then GL(q) acts on q naturally. Let A be a subgroup of GL(q). We denote by $\mathscr{B}^{A}(q)$ the subspace (of $\mathscr{B}(q)$) of all A-invariant hyperfunctions. For each $\lambda \in q_{c}$, put $\chi_{\lambda}(e) = v(e)(\lambda)$ (for the definition v, see §2), for $e \in S_{H}(q_{c})$. Conversely, for any character χ of $S_{H}(q_{c})$, there exists $\lambda \in q_{c}$ such that $\chi_{\lambda} = \chi$. Indeed, the map; $\lambda \mapsto (p_{1}(\lambda), \dots, p_{l}(\lambda))$ is of q_{c} onto C^{l} , where p_{1}, \dots, p_{l} are homogeneous H-invariant polynomials on q_{c} and $P_{H}(q_{c}) = C[p_{1}, \dots, p_{l}]$ (that is a polynomial ring and see [7]).

For each $\lambda \in \mathfrak{q}_{\mathcal{C}}$, We denote by $\mathscr{B}_{\lambda}(\mathfrak{q})$ the subspace (of $\mathscr{B}(\mathfrak{q})$) of all hyperfunctions f such that $(\partial e)f = v(e)(\lambda)f$ for any $e \in S_H(\mathfrak{q}_{\mathcal{C}})$ (for the definition of ∂ , see §2). For each subgroup A of $GL(\mathfrak{q})$ and $\lambda \in \mathfrak{q}_{\mathcal{C}}$, denote $\mathscr{B}^{A}_{\lambda}(\mathfrak{q})$ $= \mathscr{B}_{\lambda}(\mathfrak{q}) \cap \mathscr{B}^{A}(\mathfrak{q})$. An element f in $\mathscr{B}^{A}_{\lambda}(\mathfrak{q})$ is called an A-invariant eigen hyperfunction.

§1. Regular elements

In this section, we give two definitions of regular elements in two different ways and consider about their relations.

Let g be complex semisimple Lie algebra. Let t be an indeterminate and consider the polynomial;

$$\det (t - adX) = t^N + \Delta_1(X)t^{N-1} + \dots + \Delta_N(X),$$

where $N = \dim g$ and det A is the determinant of A. Then Δ_k is a homogeneous polynomial function on g with degree k. Let m be the smallest

integer such that Δ_m is not identically zero. It is well known that N-m coincides with the dimension L of a Cartan subalgebra of g. Put $\Delta = \Delta_m = \Delta_{N-L}$. Let $\widetilde{\mathscr{R}}_g$ be the set of all elements $X \in g$ such that $\Delta(X) \neq 0$.

On the other hand, for any $X \in g$, let g^X be the centralizer of X in g and \mathscr{R}_g the set of all elements $X \in g$ such that dim $g^X \leq \dim g^Y$ for all $Y \in g$. That is sim $g^X = L$. Then we have the following assertion.

PROPOSITION 1.1. $\tilde{\mathcal{R}}_{g} \subset \mathcal{R}_{g}$.

PROOF. For each $X \in \mathfrak{g}$, set $\tilde{\mathfrak{g}}^{X} = \{Y \in \mathfrak{g}; (adX)^{k} Y = 0 \text{ for some } k\}$. It is well known that for any $X \in \widetilde{\mathscr{R}}_{\mathfrak{g}}, \tilde{\mathfrak{g}}^{X}$ is a Cartan subalgebra of \mathfrak{g} . Furthermore, for any $X \in \mathfrak{g}, \mathfrak{g}^{X} \subset \tilde{\mathfrak{g}}^{X}$. Hence dim $\tilde{\mathfrak{g}}^{X} = \dim \mathfrak{g}^{X} = L$ and $X \in \mathscr{R}_{\mathfrak{g}}$. Therefore $\widetilde{\mathscr{R}}_{\mathfrak{g}} \subset \mathscr{R}_{\mathfrak{g}}$.

REMARK. It is not always true that $\widetilde{\mathscr{R}}_{g} = \mathscr{R}_{g}$. If $g = \mathfrak{sl}(2, \mathbb{C})$ then $\Delta(X) = x^{2} + yz$, where $X = \begin{bmatrix} x & y \\ z & -x \end{bmatrix}$. Let $e = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$. It is easily seen that $\Delta(e) = 0$ and dim $g^{e} = 1$. Hence $e \notin \widetilde{\mathscr{R}}_{g}$, but $e \in \mathscr{R}_{g}$.

Let σ be an involutive automorphism of g such that $\sigma \neq 1$ and let $g = \mathfrak{h} + \mathfrak{q}$ be the decomposition as in §0. Put $\widetilde{\mathscr{R}}_{\mathfrak{q}} = \widetilde{\mathscr{R}}_{\mathfrak{g}} \cap \mathfrak{q}$. For each $Z \in \mathfrak{q}$, let \mathfrak{q}^Z be the centralizer of Z in \mathfrak{q} and $\mathscr{R}_{\mathfrak{q}}$ the set of all elements that dim $\mathfrak{q}^Z \leq \dim \mathfrak{q}^Y$ for all $Y \in \mathfrak{q}$. That is; dim $\mathfrak{q}^Z = \operatorname{rank} \mathfrak{q} = l$ if and only if $Z \in \mathscr{R}_{\mathfrak{q}}$.

PROPOSITION 1.2. $\tilde{\mathscr{R}}_{q} \subset \mathscr{R}_{q}$.

PROOF. For any $Z \in q$, we can prove that

$$\dim \mathfrak{h} - \dim \mathfrak{h}^{Z} = \dim \mathfrak{q} - \dim \mathfrak{q}^{Z}$$

by the similar way in Kostant-Rallis [7], where \mathfrak{h}^Z is the centralizer of Z in \mathfrak{h} . On the other hand, for any $Z \in \mathfrak{q}$, dim $\mathfrak{g}^Z = \dim \mathfrak{h}^Z + \dim \mathfrak{q}^Z$, since $\mathfrak{g}^Z = \mathfrak{h}^Z + \mathfrak{q}^Z$. Hence dim $\mathfrak{g}^Z = \dim \mathfrak{h} - \dim \mathfrak{q} + 2\dim \mathfrak{q}^Z$ for any $Z \in \mathfrak{q}$. It implies that dim $\mathfrak{g}^Z = L$ if and only if dim $\mathfrak{q}^Z = l$. It follows that $\mathscr{R}_{\mathfrak{q}} = \mathscr{R}_{\mathfrak{g}} \cap \mathfrak{q}$. Therefore $\widetilde{\mathscr{R}}_{\mathfrak{g}} \subset \mathscr{R}_{\mathfrak{g}}$ from Proposition 1.1.

§2. Polynomial differential operators

Let V be a vector space over **R** of finite dimension n. We consider the symmetric algebra $S(V_c)$ over the complexification V_c of V. For any $X \in V$, let $\partial(e)$ denote the differential operator on V given by

$$(\partial(e)f)(x) = \frac{d}{dt}\Big|_{t=0} f(x+te) \qquad (x \in V, f \in C^{\infty}(V), t \in \mathbf{R}).$$

Then it is well known that the mapping $e \to \partial(e)$ can be extended uniquely to the algebraic isomorphism of $S(V_c)$ (over C) into the algebra of differential operators on V. Now suppose there is given a real non-degenerate symmetric bilinear form $B(u, v)(u, v \in V)$ on V. We extend this form B on V_c by its linearity. Let $P(V_c)$ be the algebra of all polynomial functions on V_c and vdenote the linear isomorphism of V_c into $P(V_c)$ given by $v(e)(z) = B(e, z)(z, e \in V_c)$. Then it is obvious that the mapping $e \to v(e)$ can be extended uniquely to the algebraic isomorphism of $S(V_c)$ onto $P(V_c)$. For each non-negative integer m, we denote $P^m(V_c)$ the subalgebra of all homogeneous polynomial functions of the degree m on V_c and $S^m(V_c)$ the inverse image of $P^m(V_c)$ by v.

Let $\mathscr{D}(V)$ be the algebra of all differential operators on V. Then $\mathscr{D}(V) \supset C^{\infty}(V)$ and therefore $P(V_{c})$ and $\partial(S(V_{c}))$ are both subalgebras of $\mathscr{D}(V)$. Let $\mathscr{D}_{P}(V)$ denote the subalgebra of $\mathscr{D}(V)$ generated by $P(V_{c}) \cup \partial(S(V_{c}))$. The elements of $\mathscr{D}_{P}(V)$ will be called polynomial differential operators on V.

Now, we consider differential operators on V_c . We define the differential operator ∂' on $V_{\mathbf{c}}$ such that $(\partial'(e)f)(z) = \frac{d}{dt}\Big|_{t=0} f(z+te)$ for any $e \in V_{\mathbf{c}}, z \in V_{\mathbf{c}}$, $f \in C^{\infty}(V_c)$ and $t \in \mathbf{R}$. Then, for $e \in V_c$, $\partial'(e)$ is a first order C^{∞} -differential operator on V_c . So we can define a C^{∞} -differential operator $\tilde{\partial}(e)$ on V_c such that $\tilde{\partial}(e) = \frac{1}{2}(\partial'(e) - \partial'(ie))$ for $e \in V$, where $i = \sqrt{-1}$. Then $\tilde{\partial}(e)$ is a holomorphic differential operator on V_c for each $e \in V$. Indeed, for each $z \in V_c$, let $Hol_z(V_c)$ be a subspace (of $T_z^c(V_c)$) of all elements v such that $J_z(v) = iv$, where $T_z^{\mathcal{C}}(V_c)$ is the complexification of the tangent space $T_z(V_c)$ of V_c at z in V_c and J_z the canonical complex structure. It is easily seen that $(\tilde{\partial}(e))_z \in Hol_z(V_c)$, for any $z \in V_c$. Then it is obvious that the mapping $e \to \tilde{\partial}(e)$ can be extended uniquely to the algebraic isomorphism of $S(V_{C})$ (over C) into the algebra of holomorphic differential operators on $V_{\mathbf{C}}$. Let $\tilde{\mathscr{D}}_{\mathbf{P}}(V_{\mathbf{C}})$ denote the subalgebra of the algebra of holomorphic differential operators on V_c generated by $P(V_c) \cup$ $\hat{\partial}(S(V_c))$. Then we can identify $\mathscr{D}_P(V)$ with $\hat{\mathscr{D}}_P(V_c)$ by the algebraic isomorphism defined by $p\partial(e) \to p\overline{\partial}(e)$, for $p \in P(V_c)$ and $e \in S(V_c)$. In this paper, under the above identification, we use the same notation ∂ . That is if f is a C^{∞} -function on V_{c} , we write $(\partial(e))f$ instead of $(\overline{\partial}(e))f$.

Let $\mathfrak{X}(V)$ be the Lie algebra of all C^{∞} -vector fields on V. Then $\mathscr{D}(V) \supset \mathfrak{X}(V)$. We put $\mathfrak{X}_{P}(V) = \mathscr{D}_{P}(V) \cap \mathfrak{X}(V)$. Then $\mathfrak{X}_{P}(V)$ is a Lie subalgebra of $\mathfrak{X}(V)$. Let E denote the Euler's vector field over V, that is,

$$Ef(x) = \frac{d}{dt}\Big|_{t=0} f(x+tx) \qquad (f \in C^{\infty}(V), x \in V, t \in \mathbf{R}).$$

We denote by $\mathfrak{X}_{P}^{0}(V)$ the Lie algebra of all vector fields $X \in \mathfrak{X}_{P}(V)$ such

that [E, X] = 0, where $[D_1, D_2] = D_1 D_2 - D_2 D_1$. Indeed, if $X, Y \in \mathscr{X}_P^0(V)$ then

$$[E, [X, Y]] = [X, [E, Y]] + [[E, X], Y] = 0$$
 (Jacobi's identity).

Hence $[X, Y] \in \mathfrak{X}_{P}^{0}(V)$.

Let $\mathfrak{X}_{P}^{0}(V; \mathbf{R})$ denote the Lie subalgebra (over \mathbf{R}) (of $\mathfrak{X}_{P}^{0}(V)$) of all vector fields $X \in \mathfrak{X}_{P}^{0}(V)$ such that Xf is a real-valued function for any real-valued function f. Then it is clear that $\mathfrak{X}_{P}^{0}(V; \mathbf{R})$ is a real form of $\mathfrak{X}_{P}^{0}(V)$.

Let gl(V) be the Lie algebra of all linear transformations of V into itself. We define a mapping φ ; $gl(V) \rightarrow \mathcal{D}(V)$ by

$$(\varphi(T)f)(x) = \frac{d}{dt}\Big|_{t=0} f(x - tT(x)) \qquad (T \in \mathfrak{gl}(V), x \in V, f \in C^{\infty}(V)).$$

PROPOSITION 2.1. φ is a Lie algebra isomorphism of gl(V) onto $\mathfrak{X}_{P}^{0}(V; \mathbf{R})$.

PROOF. Choose a basis v_1, \dots, v_n of V. For each $T \in gl(V)$, let M(T) be a matrix representation of T with respect to this basis $\{v_1, \dots, v_n\}$; That is $M(T) = (a_{ij}(T))$, where $Tv_i = \sum a_{ji}(T)v_j$. We identify V with \mathbb{R}^n by the mapping; $x = x_1v_1 + \dots + x_nv_n \mapsto (x_1, \dots, x_n)$. Under this identification, we have the following expression;

$$\varphi(T) = -(x_1, \dots, x_n) \begin{bmatrix} a_{11}(T) \cdots a_{n1}(T) \\ \vdots & \vdots \\ a_{1n}(T) \cdots a_{nn}(T) \end{bmatrix} \begin{bmatrix} \partial/\partial x_1 \\ \vdots \\ \partial/\partial x_n \end{bmatrix}.$$

The above expression may be written simply

$$\varphi(T) = -x^{t}M(T)\frac{\partial}{\partial x}.$$

It is easily seen that $\varphi(T) \in \mathfrak{X}_{P}^{0}(V; \mathbb{R})$ and φ is a linear map. Moreover if $\varphi(T) = 0$ it is obvious that T = 0. Hence φ is injective. Since dim $\mathfrak{gl}(V) = n^{2}$ and dim $\mathfrak{X}_{P}^{0}(V; \mathbb{R}) = n^{2}$, it follows that φ is bijective. Finally, we shall show that φ is a Lie algebra homomorphism. Indeed, for $S, T \in \mathfrak{gl}(V)$,

$$\varphi([S, T]) = -x'M([S, T])\frac{\partial}{\partial x} = -x'(M(S)M(T) - M(T)M(S))\frac{\partial}{\partial x}$$
$$= x['M(S), 'M(T)]\frac{\partial}{\partial x} = \left[-x'M(S)\frac{\partial}{\partial x}, -x'M(T)\frac{\partial}{\partial x}\right] = [\varphi(S), \varphi(T)].$$

Since the above proof is independent of the choice of a basis, the proposition is proved.

REMARK. Let $gl(V)_c$ be the complexification of gl(V). But, whenever convenient, we can regard an element of $gl(V)_c$ also as a *C*-linear transformation on V_c . We recall that $\mathfrak{X}_P^0(V)$ is the complexification of $\mathfrak{X}_P^0(V; \mathbf{R})$. Thus φ can be extended uniquely to a Lie algebra isomorphism (over *C*) of $gl(V)_c$ onto $\mathfrak{X}_P^0(V)$. Under the identification of $\mathscr{D}_P(V)$ with $\widetilde{\mathscr{D}}_P(V_c)$, we regard $X \in \mathfrak{X}_P^0(V)$ as a holomorphic vector field on V_c .

For each $e \in S(V_c)$, let μ_e be the derivation of $\mathscr{D}_P(V)$ given by $\mu_e(D) = [\partial(e), D]$ $(D \in \mathscr{D}_P(V))$. On the other hand, for each $q \in P^1(V_c)$, there exists unique derivation δ_q of $S(V_c)$ such that $\delta_q(v) = \langle v, q \rangle$ $(v \in V_c)$, where $\langle v, q \rangle = v(v)(q)(0)$. Let *m* be a positive integer, then we have

PROPOSITION 2.2. If $q_i \in P^1(V_C)$ $(1 \le j \le m)$ then

$$\mu_e^m(q_1\cdots q_m)=m!\,\partial(\delta_{q_1}(e)\cdots \delta_{q_m}(e)),$$

for any $e \in S(V_c)$.

PROOF. We shall prove the proposition by induction on *m*. Let 3 be a subalgebra (of $\mathscr{D}_P(V)$) of all polynomial differential operators *D* such that $[\partial(v), D] = 0$ for any $v \in V_C$. It is obvious that $\partial(S(V_C)) \subset 3$. Conversely, if $D \in 3$ there exist $q_j \in P(V_C)$ and $e_j \in S^j(V_C)$ such that $D = \sum q_j \partial(e_j)$ and $\sum \partial v(q_j) \partial e_j = 0$ for any $v \in V_C$. Hence $\partial v(q_j) = 0$ for any $v \in V_C$ (for any *j* such that $e_j \neq 0$). Then $q_j \in P^0(V_C)$ (= *C*), for any *j* such that $e_j \neq 0$. Therefore $3 = \partial(S(V_C))$.

Let $v \in V_c$, $q \in P^1(V_c)$ and $e \in S(V_c)$ then

$$[\partial v, [\partial e, q]] = [\partial e, [\partial v, q]] + [[\partial v, \partial e], q] = [\partial e, \langle v, q \rangle] = 0.$$

Hence $[\partial e, q] \in \mathcal{J}$. Therefore $[\partial e, q] \in \partial(S(V_c))$ for any $e \in S(V_c)$ and $q \in P^1(V_c)$.

Let m = 1. From the above argument, for each $q \in P^1(V_c)$, we can define a linear map τ_q of $S(V_c)$ into itself such that $\tau_q(e) = \partial^{-1} [\partial e, q]$. Moreover τ_q is a derivation of $S(V_c)$. Indeed, since $\partial^{-1} [\partial e_1 e_2, q] = \partial^{-1} \{\partial e_1 [\partial e_2, q] + [\partial e_1, q] \partial e_2\} = e_1 \partial^{-1} [\partial e_2, q] + e_2 \partial^{-1} [\partial e_1, q]$, we have $\tau_q(e_1 e_2) = e_1 \tau_q(e_2) + e_2 \tau_q(e_1)$ for any $e_1, e_2 \in S(V_c)$.

On the other hand, $\tau_q(v) = \partial^{-1} [\partial v, q] = \langle v, q \rangle$ for any $v \in V_c$. Therefore $\tau_q = \delta_q$ for any $q \in P^1(V_c)$. It follows that $[\partial e, q] = \partial \delta_q(e)$, for any $q \in P^1(V_c)$. Now, let $q_1, \dots, q_m \in P^1(V_c)$ and $e \in S^1(V_c)$, we have

$$\mu_e^m(q_1\cdots q_m)=\sum_{0\leq k\leq m}\binom{m}{k}\mu_e^{k}(q_1\cdots q_{m-1})\mu_e^{m-k}(q_m),$$

from the Leibniz rule for derivations. But, if $m \ge 2$ then

$$\mu_e^m(q_1 \cdots q_{m-1}) = 0$$
 and $\mu_e^{m-k}(q_m) = 0$ for $0 \le k \le m-2$,

because $\mu_e^{m-1}(q_1 \cdots q_{m-1}) = (m-1)! \partial (\delta_{q_1}(e) \cdots \delta_{q_{m-1}}(e))$ and $\mu_e(q_m) = \partial \delta_{q_m}(e)$ by induction hypothesis. Hence

$$\mu_{e}^{m}(q_{1}\cdots q_{m}) = m\mu_{e}^{m-1}(q_{1}\cdots q_{m-1})\mu_{e}(q_{m}) = m! \partial(\delta_{q_{1}}(e)\cdots \delta_{q_{m}}(e)).$$

Therefore the proposition is proved.

Let v_1, \dots, v_n be a basis of V_c . Since B is a symmetric non-degenerate bilinear form, we can choose a basis u_1, \dots, u_n such that $B(v_i, u_j) = \delta_{i,j}$, where $\delta_{i,j}$ is the Kronecker's δ . Put

$$\omega = \frac{1}{2} \sum_{1 \le i \le n} u_i v_i \in S^2(V_C)$$

This element ω is independent of a choice of a basis and is called the Casimir element. Then we have the following

LEMMA 2.3. If $q \in P^m(V_c)$ then $\mu_{\omega}^m(q) = m! \partial(v^{-1}(q))$.

PROOF. First we will show that $\delta_q(\omega) = v^{-1}(q)$ for any $q \in P^1(V_c)$. From the definition of δ_q ,

$$v\delta_{q}(\omega) = \frac{1}{2}v\sum \{\delta_{q}(u_{i})v_{i} + \delta_{q}(v_{i})u_{i}\}$$
$$= \frac{1}{2}\sum \{\langle u_{i}, q \rangle v(v_{i}) + \langle v_{i}, q \rangle v(u_{i})\}.$$

Hence

$$v\delta_{q}(\omega)(z) = \frac{1}{2}\sum \{q(u_{i})B(v_{i}, z) + q(v_{i})B(u_{i}, z)\}$$
$$= \frac{1}{2}q(\sum \{B(v_{i}, z)u_{i} + B(u_{i}, z)v_{i}\}).$$

But $\sum B(v_i, z)u_i = \sum B(u_i, z)v_i = z$. Therefore $\delta_q(\omega) = v^{-1}(q)$ for any $q \in P^1(V_c)$. Next, from Proposition 2.2, we have

$$\mu_{\omega}^{m}(q) = \mu_{\omega}^{m}(q_{1}\cdots q_{m}) = m! \partial(v^{-1}(q_{1})\cdots v^{-1}(q_{m})) = m! \partial(v^{-1}(q)),$$

for $q = q_1 \cdots q_m (q_i \in P^1(V_C), 1 \le i \le m)$. This shows that if $q \in P^m(V_C)$, then $\mu_{\omega}^m(q) = m! \partial(\nu^{-1}(q))$.

REMARK. Under the identification of $\mathscr{D}_{P}(V)$ with $\widetilde{\mathscr{D}}_{P}(V_{C})$, we have

$$\tilde{\mu}_{e}^{m}(q_{1}\cdots q_{m})=m!\,\overline{\partial}(\delta_{q_{1}}(e)\cdots \delta_{q_{m}}(e)) \text{ and } \tilde{\mu}_{\omega}^{m}(q)=m!\,\overline{\partial}(v^{-1}(q)),$$

where $\tilde{\mu}_e$ is the derivation of $\tilde{\mathscr{D}}_P(V_c)$ such that $\tilde{\mu}_e(D) = [\tilde{\partial}e, D]$.

§3. Analytic solutions

Let θ be a Cartan involution of g such that $\theta \sigma = \sigma \theta$ (see §0, for the notations g, h, q, σ). Then $\mathfrak{h} = \mathfrak{h} \cap \mathfrak{k} + \mathfrak{h} \cap \mathfrak{p}$ (direct sum) and $\mathfrak{q} = \mathfrak{q} \cap \mathfrak{p} + \mathfrak{q} \cap \mathfrak{k}$ (direct sum), where $\mathfrak{k} = \{X \in \mathfrak{g} : \theta X = X\}$ and $\mathfrak{p} = \{X \in \mathfrak{g} : \theta X = -X\}$. It is clear that

$$\mathfrak{h}_{c} = \mathfrak{h} \cap \mathfrak{k} + \mathfrak{h} \cap \mathfrak{p} + i\mathfrak{h} \cap \mathfrak{k} + i\mathfrak{h} \cap \mathfrak{p}$$
 (direct sum as real vector spaces),

 $q_c = q \cap t + q \cap p + iq \cap t + iq \cap p$ (direct sum as real vector spaces).

Set $\mathfrak{f}^d = \mathfrak{h} \cap \mathfrak{f} + i\mathfrak{h} \cap \mathfrak{p}$, $\mathfrak{p}^d = \mathfrak{q} \cap \mathfrak{p} + i\mathfrak{q} \cap \mathfrak{f}$ and $\mathfrak{g}^d = \mathfrak{f}^d + \mathfrak{p}^d$. Let G^d (or G^d_C) be the connected adjoint group of \mathfrak{g}^d (or \mathfrak{g}^d_C) and K^d (or K^d_C) the connected Lie subgroup of G^d (or G^d_C) with Lie algebra ad \mathfrak{f}^d (or ad \mathfrak{f}^d_C), respectively. It is known that the pair (G^d , K^d) is a Riemannian symmetric pair with the Cartan involution σ and the Killing form of \mathfrak{g}^d is the restriction of the Killing form B of \mathfrak{g}_C . We define the linear map ξ (over \mathfrak{R}) of \mathfrak{g}_C into \mathfrak{g}^d_C such that

$$\begin{aligned} \xi(e\otimes a) &= e\otimes a & \text{for } e\in\mathfrak{h}\cap\mathfrak{k} + \mathfrak{q}\cap\mathfrak{p}, \ a\in C \\ \xi(e\otimes a) &= (ie)\otimes(-ia) & \text{for } e\in\mathfrak{h}\cap\mathfrak{p} + \mathfrak{q}\cap\mathfrak{k}, \ a\in C. \end{aligned}$$

Then it is easily seen that ξ is a linear isomorphism (over C) of \mathfrak{g}_C onto \mathfrak{g}_C^d . By restricting this map ξ , we have the linear isomorphisms (over C) of \mathfrak{h}_C onto \mathfrak{t}_C^d and of \mathfrak{q}_C onto \mathfrak{p}_C^d . Moreover, it is obvious that this map ξ can be extended uniquely to the algebraic isomorphism (over C) of $S(\mathfrak{q}_C)$ onto $S(\mathfrak{p}_C^d)$ and the map ξ of \mathfrak{h}_C onto \mathfrak{t}_C^d induces a Lie group isomorphism of H_C onto K_C^d . One can easily see that for any $h \in \mathfrak{h}_C$ and $e \in S(\mathfrak{q}_C) \xi([h, e]) = [\xi(h), \xi(e)]$. Hence the restriction of ξ to $S_H(\mathfrak{q}_C)$ is an algebraic isomorphism (over C) of $S_H(\mathfrak{q}_C)$ onto $S_{K^d}(\mathfrak{p}_C^d)$. Indeed, if $e \in S_H(\mathfrak{q}_C)$ then $\xi(e) \in S_{K^d}(\mathfrak{p}_C^d)$ by the above equality. Conversely, if $e \in S_{K^d}(\mathfrak{p}_C^d)$ then $\xi^{-1}(e) \in S_H(\mathfrak{q}_C)$ by the above equality. Let μ be the algebraic isomorphism of $S_{K^d}(\mathfrak{p}_C^d)$ onto $P_{K^d}(\mathfrak{p}_C^d)$ defined by the same way as the map ν . Then it is easily seen that for any $e \in S_H(\mathfrak{q}_C)$ and $\lambda \in \mathfrak{q}_C$ we have $\nu(e)(\lambda) = \mu(\xi(e))(\xi(\lambda))$, because $B(\xi(e), \xi(\lambda)) = B(e, \lambda)$ for any $e \in \mathfrak{q}_C$ and $\lambda \in \mathfrak{q}_C$.

Let φ (or ψ) be the Lie isomorphism (over \mathbf{R}) of gl(q) (or gl(p^d)) onto $\mathfrak{X}_P^0(q; \mathbf{R})$ (or $\mathfrak{X}_P^0(p^d; \mathbf{R})$) defined in §2, respectively. Then we have the Lie isomorphism φ (or ψ) (over (\mathbf{C}) of ad \mathfrak{h}_c (or ad \mathfrak{f}_c^d) onto φ (ad \mathfrak{h}_c) (or ψ (ad \mathfrak{f}_c^d)) whose restriction to ad \mathfrak{h} (or ad \mathfrak{f}^d) is a Lie isomorphism (over \mathbf{R}) of ad \mathfrak{h} (or ad \mathfrak{f}^d) onto φ (ad \mathfrak{h}^d) (or ψ (ad \mathfrak{f}^d)), respectively.

Let V be a real vector space and a is a Lie subalgebra of gl(V). We denote by $\alpha(U)$ the vector space of all analytic functions on U which is an open

subset of V and $a^{\alpha}(U)$ the vector space of all $\varphi_{V}(\mathfrak{a})$ -invariant analytic functions on U (where φ_{V} is defined by Proposition 2.1). Let A be a connected Lie subgroup of GL(V) corresponding with the Lie algebra \mathfrak{a} . If U is A-invariant (that is, $ax \in U$ for any $a \in A$ and $x \in U$), we denote by $a^{A}(U)$ the vector subspace (of $\alpha(U)$) of all A-invariant analytic functions on U.

Let U be an open subset of q_c . Then $\xi(U)$ is an open subset of p_c^d . Let $\mathcal{O}(U)$ (or $\mathcal{O}(\xi(U))$) be the vector space of all holomorphic functions on U (or $\xi(U)$), respectively. Then it is obvious that ξ^* is a linear isomorphism of $\mathcal{O}(\xi(U))$ onto $\mathcal{O}(U)$, where $(\xi^*F)(z) = F(\xi(z))$ for any $F \in \mathcal{O}(\xi(U))$ and $z \in U$.

LEMMA 3.1. For any $h \in \mathfrak{h}_{c}$, $F \in \mathcal{O}(\xi(U))$ and $z \in U$, we have

$$(\varphi(adh)(\xi^*F))(z) = (\psi(ad\ \xi(h))F)(\xi(z)).$$

PROOF. From the definition of φ (or ψ), we have

$$(\varphi(adh)(\xi^*F))(z) = \frac{d}{dt}\Big|_{t=0} (F \circ \xi)(z - t[h, z])$$
$$= \frac{d}{dt}\Big|_{t=0} F(\xi(z) - t[\xi(h), \xi(z)])$$
$$= (\psi(ad \xi(h))F)(\xi(z)),$$

for any $h \in \mathfrak{h}_{c}$, $F \in \mathcal{O}(\xi(U))$ and $z \in U$, since F is holomorphic. This implies the lemma.

For each $\lambda \in q_c$ (or $\lambda' \in \mathfrak{p}_c^d$) and an open subset U of \mathfrak{q} (or \mathfrak{p}^d), we denote by $a_{\lambda}(U)$ (or $a_{\lambda'}(U)$) the vector space of all analytic functions f such that for any $e \in S_H(\mathfrak{q}_c)$ (or $e \in S_{K^d}(\mathfrak{p}_c^d))$ ($\partial e)f = v(e)(\lambda)f$ (or $(\partial e)f = \mu(e)(\lambda)f$), respectively. Set $a_{\lambda}^{H}(U) = a_{\lambda}(U) \cap a^{H}(U)$, $a_{\lambda'}^{K^d}(U') = a_{\lambda'}(U') \cap a^{K^d}(U')$, $a_{\lambda}^b(U) = a_{\lambda}(U) \cap a^{t^d}(U')$, $a_{\lambda'}^{t^d}(U') = a_{\lambda'}(U') \cap a^{t^d}(U')$, for each open subset U of \mathfrak{q} and U' of \mathfrak{p}^d .

It is well known that if $f \in \alpha(q)$ then there exist a domain U of q_c and unique holomorphic function $F \in \mathcal{O}(U)$ such that $U \cap q = q$ and f is the restriction of F to q. Set $\tilde{F} = (\xi^{-1})^* F$. Then \tilde{F} is a holomorphic function on $\xi(U)$. Set $W = \xi(U) \cap p^d$. Then W is an open subset of p^d and $0 \in W$. Let g be the restriction of \tilde{F} to W. Then g is an analytic function on W. In this section we call that g is a pure imaginary analytic continuation of f.

LEMMA 3.2. If $f \in a_{\lambda}^{H}(q)$ then $g \in a_{\mathcal{E}(\lambda)}^{t^{d}}(W)$.

PROOF. Let $f \in a^H(q)$. Then $\varphi(adh)f = 0$ on q, for any $h \in \mathfrak{h}$. It is obvious that $\varphi(adh)F = 0$ on U for any $h \in \mathfrak{h}_c$. Here $\varphi(adh)$ is regarded as a holomorphic vector field (see Remark of Proposition 2.1). From Lemma 3.1, we have $\psi(ad \xi(h))\tilde{F} = 0$ on $\xi(U)$ for any $h \in \mathfrak{h}_c$, where $\tilde{F} = (\xi^{-1})^*F$. Hence

 $\psi(adk)\widetilde{F} = 0$ on $\xi(U)$ for any $k \in t^d$, since ξ is bijective. It implies that $\psi(adk)g = 0$ on W for any $k \in t^d$. Therefore $g \in a^{t^d}(W)$.

Let $f \in \alpha_{\lambda}(q)$. Then $(\partial e) F = v(e)(\lambda) F$ on U for any $e \in S_H(q_c)$. Here ∂e is regarded as a holomorphic differential operator (see § 2). Indeed, the restricted function of $\partial(e) F - v(e)(\lambda) F$ to q is zero on q, since $(\partial e) f = v(e)(\lambda) f$ on q. But $\partial(e) F - v(e)(\lambda) F$ is holomorphic on U. Hence $(\partial e) F - v(e)(\lambda) F = 0$ on Ufrom the identity theorem for an analytic function. On the other hand, it is easily seen that for any $e \in S(q_c)$ and $z \in U$ we have $(\partial e)(\xi^* \tilde{F})(z) = \partial(\xi e) \tilde{F}(\xi(z))$. Hence, for any $e \in S_H(q_c)$ and $z \in U$, we have $\partial(\xi e) \tilde{F}(\xi(z)) = v(e)(\lambda) \tilde{F}(\xi(z))$, since $\tilde{F} = (\xi^{-1})^* F$. Therefore, by restricting the above equality to $\xi(U) \cap p^d$, we have $\partial(\xi e) g = v(e)(\lambda) g$ on W for any $e \in S_H(q_c)$. This implies that $g \in \alpha_{\xi(\lambda)}(W)$, because $v(e)(\lambda) = \mu(\xi e)(\xi \lambda)$ and ξ is bijective. Therefore the lemma is proved.

Let B be the restricted Killing form of p^d . It is easily seen that B is a positive definite symmetric bilinear form on p^d . Since $0 \in W$ and W is an open subset of p^d , there exists a positive number r such that if B(x, x) < r and $x \in p^d$ then $x \in W$. We fix r. But r is dependent on a given analytic function f, since W is so. Let W_0 be a (connected open) subset (of W) of all elements $x \in p^d$ such that B(x, x) < r. Then W_0 is a K^d -invariant open subset, since B is K^d -invariant. We have the following lemma by the usual way in the analysis of Lie groups (see [6] or [11]).

LEMMA 3.3. For any $\eta \in p^d$, we have

$$a_{\eta}^{t^{d}}(W_{0}) = a_{\eta}^{K^{d}}(W_{0})$$
 and $\dim a_{\eta}^{K^{d}} = 1.$

PROOF. For each $e \in S(\mathfrak{p}_{C}^{d})$, set $\rho(e) = \int_{K^{d}} ke \ dk$, where dk is the normalized Haar measure of K^{d} such that $\int_{K^{d}} dk = 1$. Then ρ is the projection of $S(\mathfrak{p}_{C}^{d})$ onto $S_{K^{d}}(\mathfrak{p}_{C}^{d})$. Let $u \in \alpha_{\eta}^{K^{d}}(W_{0})$. Then for any $e \in S(\mathfrak{p}_{C}^{d})$,

$$\mu(\rho(e)) u(0) = (\partial(\rho(e)) u)(0) = \int_{K^d} (L_k \circ \partial e \circ L_{k^{-1}}) u(0) dk$$
$$= \int_{K^d} ((\partial e) u)(0) dk = (\partial e) u(0),$$

where $(L_k u)(x) = u(k^{-1}x)(x \in p^d)$. This implies that if u(0) = 0 then u = 0 on W_0 , since W_0 is connected. Therefore dim $\alpha_{\eta}^{K^d}(W_0) \leq 1$ for any $\eta \in p_c^d$. It is obvious that $\alpha_{\eta}^{K^d}(W_0) \subset \alpha_{\eta}^{I^d}(W_0)$. But if $u \in \alpha_{\eta}^{I^d}(W_0)$ then $u \in \alpha_{\eta}^{K^d}(W_0)$. Indeed, for any $X \in I^d$ and $x \in W_0$,

Spherical hyperfunctions on the tangent space of symmetric spaces

$$\frac{d}{dt}u(e^{tX}x) = \frac{d}{ds}\Big|_{s=0} u(e^{sX}e^{tX}x) = (\psi(adX)u)(e^{tX}x) = 0.$$

Hence $u(e^X x) - u(x) = \int_0^1 \frac{d}{dt} u(Ad(e^{tX})x) dt = 0$ for any $X \in \mathfrak{t}^d$ and $x \in W_0$. This implies that u is K^d -invariant, since K^d is connected. Thus we have $a_{\eta}^{\mathfrak{t}^d}(W_0) = a_{\eta}^{K^d}(W_0)$ for any $\eta \in \mathfrak{p}_{\mathfrak{c}}^d$.

For any $\eta \in \mathfrak{p}_{\boldsymbol{C}}^d$ and $w \in \mathfrak{p}_{\boldsymbol{C}}^d$, set

$$\Psi_{\eta}(w) = \int_{K^d} e^{B(kw,\eta)} \, dk.$$

Then it is clear that Ψ_{η} is an entire holomorphic function of \mathfrak{p}_{c}^{d} such that $\Psi_{\eta}(0) = 1$. Moreover Ψ_{η} is K_{c}^{d} -invariant. Indeed it is trivial that Ψ_{η} is K^{d} -invariant. But, for each $w \in \mathfrak{p}_{c}^{d}$, it is obvious that the function $\Psi_{\eta}(kw) - \Psi_{\eta}(w)$ of K_{c}^{d} is an entire holomorphic function on K_{c}^{d} , since the adjoint action of K_{c}^{d} on \mathfrak{p}_{c}^{d} is holomorphic. Hence $\Psi_{\eta}(kw) - \Psi_{\eta}(w) = 0$ for any $w \in \mathfrak{p}_{c}^{d}$ and $k \in K_{c}^{d}$ from the identity theorem for an analytic function. Therefore Ψ_{η} is K_{c}^{d} -invariant. Moreover, it is easily seen that $(\partial e) e^{B(kw,\eta)} = B(ke,\eta) e^{B(kw,\eta)}$ for any $e \in \mathfrak{p}_{c}^{d}$ and $k \in K^{d}$. Thus if $e \in S_{K^{d}}(\mathfrak{p}_{c}^{d})$ then $(\partial e) e^{B(kw,\eta)} = \mu(e)(\eta) e^{B(kw,\eta)}$. Therefore $(\partial e) \Psi_{\eta} = \mu(e)(\eta) \Psi_{\eta}$ for any $e \in S_{K^{d}}(\mathfrak{p}_{c}^{d})$. Let g_{η} be the restriction of Ψ_{η} to W_{0} . Then it is obvious that $g_{\eta} \in a_{\pi}^{K^{d}}(W_{0})$ and $g_{\eta}(0) = 1$. Hence the lemma is proved.

Now we have the following.

THEOREM 3.4. dim $a_{\lambda}^{H}(q) = 1$ for any $\lambda \in q_{C}$.

PROOF. Let $f_i \in a_{\lambda}^H(q)$ (i = 1, 2). Then there exist K^d -invariant open connected subset W_i (i = 1, 2) of p^d and analytic functions $g_i \in a_{\xi(\lambda)}^{I^d}(W_i)$ such that $0 \in W_i$ and g_i is the pure imaginary analytic continuation of f_i (i = 1, 2). Put $c_i = f_i(0)$ $(= g_i(0))$ (i = 1, 2), $f = c_2 f_1 - c_1 f_2$, $g = c_2 g_1 - c_1 g_2$ and $W = W_1$ $\cap W_2$. Then it is obvious that $f \in a_{\lambda}^H(q)$, g is the pure imaginary analytic continuation of f and $g \in a_{\xi(\lambda)}^{I^d}(W)$. But g = 0 on W, since g(0) = 0. From the identity theorem for an analytic function, we have f = 0 on q. It implies that dim $a_{\lambda}^H(q) \leq 1$ for any $\lambda \in q_c$.

Set $\Phi_{\lambda} = \xi^* \Psi_{\eta}$, where $\lambda = \xi^{-1}(\eta)$ (see Lemma 3.3, for the notations η , Ψ_{η}). Then Φ_{λ} is an H_c -invariant entire holomorphic function of q_c and $(\partial e) \Phi_{\lambda} = v(e)(\lambda) \Phi_{\lambda}$ for any $e \in S_H(q_c)$. Indeed, for any $z \in q_c$, we have

$$\Phi_{\lambda}(z) = \int_{K^d} e^{B(k\xi(z),\,\xi(\lambda))} \, dk.$$

Since Ψ_{η} is K_{c}^{d} -invariant and $\xi(hz) = \xi(h)\xi(z)$ for any $h \in H_{c}$ and $z \in q_{c}$, it is clear that Φ_{λ} is H_{c} -invariant. By the same way as Lemma 3.3, we have $(\partial e) \Phi_{\lambda}$

 $= v(e)(\lambda) \Phi_{\lambda}$ on q_c , for any $e \in S_H(q_c)$. Let f_{λ} be the restriction of Φ_{λ} to q. Then it is obvious that $f_{\lambda} \in \alpha_{\lambda}^H(q)$ and $f_{\lambda}(0) = 1$. Therefore the theorem is proved.

Note that the technique described in this section is based on Flested-Jensen's idea in [4].

§4. The definition of \tilde{H} and \tilde{h}

We consider a real semi-simple symmetric pair (G, H). We recall that $g = \mathfrak{h} + \mathfrak{q}$ and H is acting on \mathfrak{q} by the adjoint action. Let $P_H(\mathfrak{q}_c)$ (or $S_H(\mathfrak{q}_c)$) be a subalgebra of $P(\mathfrak{q}_c)$ (or $S(\mathfrak{q}_c)$) of all H-invariant polynomials (or H-invariant elements) on \mathfrak{q}_c as the above H-action. Then from Chevalley's theorem, $P_H(\mathfrak{q}_c) = C[p_1, \dots, p_l]$, where p_j is a homogeneous polynomial and $C[p_1, \dots, p_l]$ is the polynomial ring $(l = \operatorname{rank} \mathfrak{q})$. Put $e_i = v^{-1}(p_i)$ $(1 \le i \le l)$. Then $S_H(\mathfrak{q}_c)$ is generated by 1, e_1, \dots, e_l .

Let $GL(\mathfrak{q})$ be the Lie group of all non-singular linear transformations on \mathfrak{q} . Then the Lie algebra of $GL(\mathfrak{q})$ is $\mathfrak{gl}(\mathfrak{q})$. Let H' be the subgroup of $GL(\mathfrak{q})$ of all non-singular linear transformations T of \mathfrak{q} such that P(Tx) = P(x) for any $x \in \mathfrak{q}$ and $P \in P_H(\mathfrak{q}_c)$. It is obvious that H' is a closed subgroup of $GL(\mathfrak{q})$. Thus H' is a Lie group. We denote by \tilde{H} the connected component of the Lie group H'. Let Ad(H) be the Lie subgroup of $GL(\mathfrak{q})$ of all non-singular transformations Ad(h) $(h \in H)$. Then the Lie algebra of Ad(H) is $ad\mathfrak{h}$ which is a Lie subalgebra of $\mathfrak{gl}(\mathfrak{q})$ of all linear transformations adx $(x \in \mathfrak{h})$. We assume H is connected. Then the definition of \tilde{H} implies that Ad(H) is a connected subgroup of \tilde{H} . Let $\tilde{\mathfrak{h}}$ be the Lie subalgebra of $\mathfrak{gl}(\mathfrak{q})$ of all elements X such that $\varphi(X)p = 0$ for any $p \in P_H(\mathfrak{q}_c)$, where φ is defined in §2. Then it is clear that $\tilde{\mathfrak{h}}$ is the Lie algebra corresponding to \tilde{H} (or H') and $\tilde{\mathfrak{h}} \supset ad\mathfrak{h}$.

Under the identification of $\mathscr{D}_{P}(\mathfrak{q})$ with $\widetilde{\mathscr{D}}_{P}(\mathfrak{q}_{c})$ (see §2), the mapping $i_{z}; e \mapsto (\partial e)_{z}$ is a linear isomorphism (over C) of \mathfrak{q}_{c} onto $Hol_{z}(\mathfrak{q}_{c})$ for any $z \in \mathfrak{q}_{c}$. Let $[z, \mathfrak{h}_{c}]$ be the subspace of \mathfrak{q}_{c} of all elements [z, w] ($w \in \mathfrak{h}_{c}$) for each $z \in \mathfrak{q}_{c}$ and $Hol_{z}(\mathfrak{q}_{c}; I)$ the subspace of $Hol_{z}(\mathfrak{q}_{c})$ of all elements v such that $(dp)_{z}v = 0$ for any $p \in P_{H}(\mathfrak{q}_{c})$. Then we have the following.

PROPOSITION 4.1. If $z \in \mathcal{R}_{q_c}$ then i_z gives a linear isomorphism of $[z, \mathfrak{h}_c]$ onto $Hol_z(\mathfrak{q}_c; I)$.

PROOF. It is trivial that the map i_z is linear and injective. But, it is obvious that $\dim_{\mathbf{c}}[z, \mathfrak{h}_{\mathbf{c}}] \leq n - l$ for any $z \in \mathfrak{q}_{\mathbf{c}}$ and $\dim_{\mathbf{c}}[z, \mathfrak{h}_{\mathbf{c}}] = n - l$ if and only if $z \in \mathscr{R}_{\mathfrak{q}_{\mathbf{c}}}$, where $n = \dim_{\mathbf{c}} \mathfrak{q}$, $l = \operatorname{rank} \mathfrak{q}$. Indeed, for each $z \in \mathfrak{q}_{\mathbf{c}}$ the map;

$$\mathfrak{h}_{c}/\mathfrak{h}_{c}^{z} \ni w + \mathfrak{h}_{c}^{z} \longmapsto [z, w] \in [z, \mathfrak{h}_{c}]$$

is well defined and a linear isomorphism of $\mathfrak{h}_c/\mathfrak{h}_c^z$ onto $[z, \mathfrak{h}_c]$ (for the notation \mathfrak{h}_c^z , see §1). By the similar proof of Proposition 5 in [7], we have $\dim_c \mathfrak{h}_c/\mathfrak{h}_c^z$ = $\dim_c \mathfrak{q}_c/\mathfrak{q}_c^z$ for any $z \in \mathfrak{q}_c$. Hence $\dim_c [z, \mathfrak{h}_c] = n - \dim_c \mathfrak{q}_c^z$ for any $z \in \mathfrak{q}_c$. Thus we have the assertion from the definition of $\mathscr{R}_{\mathfrak{q}_c}$ (see §1). On the other hand, $\dim_c Hol_z(\mathfrak{q}_c; I) \ge n - l$ for any $z \in \mathfrak{q}_c$ and if $z \in \mathscr{R}_{\mathfrak{q}_c}$ then $\dim_c Hol_z(\mathfrak{q}_c; I) = n - l$. Indeed, we can easily see that

$$Hol_{z}(\mathfrak{q}_{\mathbf{C}}; I) = \{ v \in Hol_{z}(\mathfrak{q}_{\mathbf{C}}); (dp_{j})(v) = 0 \text{ for any } j \ (1 \le j \le l) \}$$

from the definition of $Hol_z(q_c; I)$, where $P_H(q_c) = C[p_1, \dots, p_l]$. By the similar proof of Theorem 13 in [7], we have that if $z \in \mathscr{R}_{q_c}$ then $(dp_1)_z, \dots, (dp_l)_z$ are linearly independent. Thus we have the assertion. This implies that the map is surjective. So the proposition is proved.

For each $z \in q_c$, we define the linear map (over C) φ_z of $gl(q_c)$ into $Hol_z(q_c)$ such that $\varphi_z(X) = (\varphi(X))_z$ for $X \in gl(q)_c$. Then we have the following.

PROPOSITION 4.2. (1)
$$\varphi_z(\tilde{\mathfrak{h}}_c) \subset Hol_z(\mathfrak{q}_c; I)$$
 for any $z \in \mathfrak{q}_c$,
(2) If $z \in \mathscr{R}_{\mathfrak{q}_c}$, $\varphi_z(ad \mathfrak{h}_c) = Hol_z(\mathfrak{q}_c; I)$.

PROOF. For any $X \in \tilde{\mathfrak{h}}_{c}$, $z \in \mathfrak{q}_{c}$, $p \in P_{H}(\mathfrak{q}_{c})$, we have

$$(dp)_z(\varphi(X)_z) = \varphi(X)(p)(z) = 0.$$

This implies (1). From the definition of φ , for any $z \in q_c$ and $w \in h_c$, we have $\varphi(adw)_z = (\partial [z, w])_z$. By Proposition 4.1, if $z \in \mathscr{R}_q$ then for any $v \in Hol_z(q_c; I)$ there exists $w \in h_c$ such that $i_z([z, w]) = v$. Hence $\varphi_z(adw) = \varphi(adw)_z = (\partial [z, w])_z = i_z([z, w]) = v$. This implies (2).

Let $P(q_c) \varphi(ad \mathfrak{h}_c)$ be the Lie subalgebra (of $\mathcal{D}_P(q_c)$) of all elements D such that $D = \sum p_i \varphi(X_i)$ for some $p_i \in P(q_c)$ and $X_i \in ad \mathfrak{h}_c$. Indeed, we have $[p\varphi(X), q\varphi(Y)] \in P(q_c)\varphi(ad \mathfrak{h}_c)$ (for $p, q \in P(q_c), X, Y \in ad \mathfrak{h}_c$), because

$$[p\varphi(X), q\varphi(Y)] = pq\varphi([X, Y]) + p\varphi(X)(q)\varphi(Y) - q\varphi(Y)(p)\varphi(X).$$

Then we have the following.

LEMMA 4.3. For any $X \in \mathfrak{h}_{c}$ and $z \in \mathcal{R}_{\mathfrak{q}_{c}}$, there exist a polynomial $p \in P(\mathfrak{q}_{c})$ and a domain $W \subset \mathfrak{q}_{c}$ such that $z \in W$, $p(w) \neq 0$ for any $w \in W$ and $p\varphi(X) \in P(\mathfrak{q}_{c})\varphi(ad\mathfrak{h}_{c})$.

PROOF. Choose a basis (over C) v_1, \dots, v_n of q_C which is a basis (over **R**) of q. So we identify q_C with C^n by the mapping;

$$\mathbf{q}_{\mathbf{C}} \ni z = z_1 v_1 + \cdots + z_n v_n \longmapsto (z_1, \cdots, z_n) \in \mathbf{C}^n.$$

Under this identification, for any $X \in gl(q)_c$, we have

$$\varphi(X)_z = \sum_{1 \le j \le n} g_j(z; X) \left(\frac{\partial}{\partial z_j}\right)_z$$
 for any $z \in q_c$,

where $g_j(z; X) = -\sum_{1 \le i \le n} a_{ij}(X) z_i$ $(1 \le j \le n)$ (see Proposition 2.1). From Proposition 4.2, if $z_0 \in \mathcal{R}_{q_C}$ then there exist $H_1, \dots, H_t \in \mathfrak{h}_C$ (t = n - l) such that $\varphi(ad H_1)_{z_0}, \dots, \varphi(ad H_i)_{z_0}$ is a C-basis of $Hol_{z_0}(\mathfrak{q}_C; I)$. That is,

rank
$$\begin{bmatrix} g_1(z; ad H_1) \cdots g_n(z; ad H_1) \\ \vdots \\ g_1(z; ad H_t) \cdots g_n(z; ad H_t) \end{bmatrix}_{z=z_0} = t.$$

Since $g_j(z; ad H_i)$ $(1 \le j \le n, 1 \le i \le t)$ is a continuous map on q_c , there exists a domain W of q_c such that $z_0 \in W$ and for any $z \in W$, rank $(g_j(z; ad H_i)) = t$. Thus for any $z \in W$, $\varphi(ad H_1)_z, \dots, \varphi(ad H_i)_z$ is a C-basis of $Hol_z(q_c; I)$. Since, for any $X \in \tilde{\mathfrak{h}}_c$ and $z \in W$, $\varphi(X)_z \in Hol_z(q_c; I)$ from Proposition 4.2, there exists $h_i(1 \le i \le t) \in C^\infty(W)$ such that $\varphi(X)_z = \sum_{1 \le i \le t} h_i(z) \varphi(ad H_i)_z$ for any $z \in W$. So

$$\sum_{1 \le j \le n} g_j(z; X) \left(\frac{\partial}{\partial z_j}\right)_z = \sum_{\substack{1 \le i \le t \\ 1 \le j \le n}} g_j(z; ad H_i) h_i(z) \left(\frac{\partial}{\partial z_j}\right)_z$$

for any $z \in W$. Hence $g_j(z; X) = \sum_{1 \le i \le t} g_j(z; ad H_i) h_i(z)$ $(1 \le j \le n)$ for any $z \in W$. This implies that there exists $g \in P^t(q_c)$ such that $gh_i \in P(q_c)$ $(1 \le i \le t)$ and $g(z) \ne 0$ for any $z \in W$, since rank $(g_j(z; ad H_i)) = t$ for any $z \in W$. Hence

$$g(z)\varphi(X)_z = \sum_{1 \le i \le t} g(z)h_i(z)\varphi(ad H_i)_z$$
 for any $z \in W$.

Since $gh_i \in P(q_c)$, we have $g\varphi(X) \in P(q_c)\varphi(ad h_c)$. Thus g is a desired polynomial. Therefore the lemma is proved, because the above argument is independent of a choice of a basis.

For each Lie subalgebra \mathfrak{a} of $\mathfrak{gl}(\mathfrak{q})_{c}$ and an open subset U of \mathfrak{q}_{c} , we denote by $\mathcal{O}_{\mathfrak{a}}(U)$ a vector space of all holomorphic functions on U such that $\varphi(X)f$ = 0 for any $X \in \mathfrak{a}$. Then it is obvious that $\mathcal{O}_{\mathfrak{f}}(U) \subset \mathcal{O}_{ad\mathfrak{h}_{C}}(U)$. But we have the following.

COROLLARY 4.4. For any domain U of q_{c} , $\mathcal{O}_{\mathfrak{h}}(U) = \mathcal{O}_{ad\mathfrak{h}_{c}}(U)$.

PROOF. Let U is a domain of \mathfrak{q}_c . Since it is well known that $\mathscr{R}_{\mathfrak{q}_c}$ is an open dense subset of \mathfrak{q}_c , $\mathscr{R}_{\mathfrak{q}_c} \cap U \neq \phi$. From Lemma 4.3, for any $X \in \mathfrak{h}_c$ and $z_0 \in U$ there exist a polynomial $p \in P(\mathfrak{q}_c)$ and a domain W of \mathfrak{q}_c such that $z_0 \in W$,

 $p(z) \neq 0$ for any $z \in W$ and $p\varphi(X) \in P(q_c)\varphi(ad \mathfrak{h}_c)$. Hence for any $f \in \mathcal{O}_{ad\mathfrak{h}_c}(U)$, we have $p(z)(\varphi(X)f)(z) = 0$ for any $X \in \mathfrak{h}_c$ and $z \in U \cap W$. But since $p(w) \neq 0$ for any $w \in W$, $(\varphi(X)f)(z) = 0$ for any $X \in \mathfrak{h}_c$ and $z \in U \cap W$. Since f is holomorphic on U, $\varphi(X)f$ is so. Hence, from the identity theorem for an analytic functions, $\varphi(X)f = 0$ on U. This implies that $f \in \mathcal{O}_{\mathfrak{h}_c}(U)$. Thus the corollary is proved.

§5. Ĥ-invariantness

In this section, we prove the following theorem.

THEOREM 5.1. If $\lambda \in \widetilde{\mathscr{R}}_{q_C}$, then

$$\mathscr{B}^{H}_{\lambda}(\mathfrak{q}) = \mathscr{B}^{H}_{\lambda}(\mathfrak{q}).$$

PROOF. From the definition of $\mathscr{B}^{H}_{\lambda}(q)$ and $\mathscr{B}^{\tilde{H}}_{\lambda}(q)$, it is obvious that $\mathscr{B}^{H}_{\lambda}(q) \supset \mathscr{B}^{\tilde{H}}_{\lambda}(q)$. Thus we must show that $\mathscr{B}^{H}_{\lambda}(q) \subset \mathscr{B}^{\tilde{H}}_{\lambda}(q)$. For any element $X \in \tilde{\mathfrak{h}}$, we denote by $P_{X}(\mathfrak{q}_{C})$ the ideal of all polynomials $p \in P(\mathfrak{q}_{C})$ such that $p\varphi(X) \in P(\mathfrak{q}_{C})\varphi(ad\mathfrak{h}_{C})$. Let V_{X} be the algebraic subvariety of \mathfrak{q}_{C} defining by $P_{X}(\mathfrak{q}_{C})$. That is; V_{X} is the set of all elements $z \in \mathfrak{q}_{C}$ such that p(z) = 0 for any $p \in P_{X}(\mathfrak{q}_{C})$. If there exists an element $z \in V_{X} \cap \mathscr{R}_{\mathfrak{q}_{C}}$, then p(z) = 0 and $z \in \mathscr{R}_{\mathfrak{q}_{C}}$ for any $p \in P_{X}(\mathfrak{q}_{C})$. This contradicts Lemma 4.3. Thus $V_{X} \cap \mathscr{R}_{\mathfrak{q}} = \phi$. From Proposition 1.2, we have

$$V_{X} \subset \mathfrak{q}_{\mathcal{C}} \setminus \mathscr{R}_{\mathfrak{q}_{\mathcal{C}}} \subset \mathfrak{q}_{\mathcal{C}} \setminus \widetilde{\mathscr{R}}_{\mathfrak{q}_{\mathcal{C}}} = \{z \in \mathfrak{q}_{\mathcal{C}}; \Delta(z) = 0\}.$$

By Hilbert's Nullstellensatz,

$$\sqrt{(\varDelta)} \subset \sqrt{P_X(\mathfrak{q}_c)},$$

where (Δ) is the ideal of $P(q_c)$ generated by Δ and \sqrt{a} is the radical of an ideal *a* of $P(q_c)$ that is; $p \in P(q_c)$ then $p \in \sqrt{a}$ if and only if $p^k \in a$ for some positive integer *k*. Therefore for any $X \in \tilde{\mathfrak{h}}$ there exists a positive integer *k* such that $\Delta^k \in P_X(q_c)$. That is; $\Delta^k \varphi(X) \in P(q_c) \varphi(ad \mathfrak{h}_c)$.

We consider the following system of differential equations on q, for fixed λ and k.

$$(\#) \begin{pmatrix} (\partial e) \, u = v(e)(\lambda) \, u & \text{for any } e \in S_H(\mathfrak{q}_C), \\ \Delta^k \, u = 0. \end{cases}$$

We put m = k(N - L) (see §1, for N and L). From Proposition 2.2, for any $e \in S^d(\mathfrak{q}_c)$ there exists unique element $D(e, \Delta^k) \in S^{m(d-1)}(\mathfrak{q}_c)$ such that $\mu_e^m(\Delta^k) = \partial D(e, \Delta^k)$, since deg $\Delta^k = m$. Let $e \in S_H(\mathfrak{q}_c)$ such that deg e = d. Then $\mu_e^m(\Delta^k)$ is obviously an H-invariant differential operator on \mathfrak{q} . So $D(e, \Delta^k)$ is

H-invariant. When *u* is a solution of the above differential equations (#), it is easily seen that $\mu_e^m(\Delta^k)u = (\partial e - v(e)(\lambda))^m\Delta^k u = 0$. So $\partial(D(e, \Delta^k))u = v(D(e, \Delta^k))(\lambda)u = 0$. Hence, if there exists a homogeneous element $e \in S_H(q_c)$ for fixed $\lambda \in q_c$ and $k \in N$ such that $v(D(e, \Delta^k))(\lambda) \neq 0$, then u = 0. From Lemma 2.3, when $e = \omega(\omega)$ is the Casimir element), we have $v(D(\omega, \Delta^k))(\lambda) = \Delta^k(\lambda)$. Therefore if $\lambda \in \widetilde{\mathcal{M}}_{q_c}$, then any solution *u* of the differential equations (#) is zero.

Finally, for any $f \in \mathscr{B}^{H}_{\lambda}(\mathfrak{q})$ and $X \in \tilde{\mathfrak{h}}$, we put $g = \varphi(X) f$. Then there exists a positive integer k such that $\Delta^{k} \in P_{X}(\mathfrak{q}_{c})$ and g is a solution of the system of the differential equations (#), because $\varphi(ad \mathfrak{h}_{c})f = 0$ and $[\partial e, \varphi(X)] = 0$ for any $e \in S_{H}(\mathfrak{q}_{c})$. Hence if $\lambda \in \widetilde{\mathscr{R}}_{\mathfrak{q}_{c}}$, then g = 0. Thus $f \in \mathscr{B}^{\widetilde{H}}_{\lambda}(\mathfrak{q})$. This proves that $\mathscr{B}^{H}_{\lambda}(\mathfrak{q}) \subset \mathscr{B}^{\widetilde{H}}_{\lambda}(\mathfrak{q})$ for any $\lambda \in \widetilde{\mathscr{R}}_{\mathfrak{q}_{c}}$. Therefore the theorem is proved.

We consider Theorem 5.1 in the case when $l = \operatorname{rank} q = 1$. In the case, the polynomial Δ is a homogeneous polynomial of q_c such that the homogeneous degree of Δ is dim g - rank g (see §1). Since rank $g = \dim \mathfrak{h}$ - dim $q + 2 \operatorname{rank} q$, dim g - rank $q = \dim \mathfrak{h} + \dim q$ - rank g = 2 (dim q- rank q) = 2 (dim q - 1). On the other hand, Δ is a polynomial of the Casimir polynomial ω , because Δ is an *H*-invariant polynomial (we may use the same notation ω for the Casimir element ω in $S^2(q_c)$). Hence there is a non zero constant c such that $\Delta = c\omega^{\dim q^{-1}}$. Let \mathcal{N} be the variety of all elements $z \in q_c$ such that $\omega(z) = 0$. Then we have the following.

COROLLARY 5.2. When rank q = 1, if $\lambda \notin \mathcal{N}$, then

$$\mathscr{B}^{H}_{\lambda}(\mathfrak{q}) = \mathscr{B}^{H}_{\lambda}(\mathfrak{q})$$

REMARK. In this case, the system of differential equations

 $(\partial e) f = v(e)(\lambda) f$ for any $e \in S_H(q_c)$

are written simplify so that $(\partial \omega) f = \mu f$, where we set $\mu = v(\omega)(\lambda)$. Under the new parametrization ($\mu \in C$), Corollary 5.2 can be rewritten such that;

If
$$\mu \neq 0$$
, then $\mathscr{B}^{H}_{\mu}(q) = \mathscr{B}^{H}_{\mu}(q)$.

On the other hand, we consider about \tilde{H} . In this case, any *H*-invariant polynomial is a polynomial of the Casimir polynomial ω . We can choose a basis $X_1, \dots, X_p, \dots, Y_1, \dots, Y_q$ of q such that $X_i \in \mathfrak{t} \cap \mathfrak{q}$, $Y_i \in \mathfrak{p} \cap \mathfrak{q}$, $B(X_i, X_j) = -\delta_{i,j}$ and $B(Y_i, Y_j) = \delta_{i,j}$. Then the Casimir polynomial is written as such;

$$\omega(X) = x_1^2 + \dots + x_p^2 - y_1^2 - \dots - y_q^2,$$

where $X = \sum_{1 \le i \le p} x_i X_i + \sum_{1 \le i \le q} y_i Y_i$. Then from the definition of \tilde{H} , we have \tilde{H}

 $\simeq SO_0(p, q)$. On the other hand, in [1], Cerezo proved the following assertion;

- (1) p = q = 1 case, $\dim \mathscr{B}^{\tilde{H}}_{\mu}(q) = 4$,
- (2) p = 1 or q = 1 case, $\dim \mathscr{B}^{\widetilde{H}}_{\mu}(q) = 3$, (except for case (1))
- (3) p > 2 and q > 2 case, $\dim \mathscr{B}^{\widetilde{H}}_{\mu}(q) = 2$,

for any complex number μ .

Therefore we have the following.

THEOREM 5.3. When rank q = 1, if $\mu \neq 0$, then

- (1) p = q = 1 case, $\dim \mathscr{B}^H_\mu(\mathfrak{q}) = 4$,
- (2) p = 1 or q = 1 case, $\dim \mathscr{B}^{H}_{\mu}(q) = 3$, (except for case (1))

(3) p > 2 and q > 2 case, $\dim \mathscr{B}^H_{\mu}(q) = 2$,

where $p = \dim (q \cap f)$ and $q = \dim (q \cap p)$.

REMARK. In [2], Van Dijk listed up the dimension of invariant eigen distributions. Since $\mathscr{D}'_{\lambda,H}(q) \subset \mathscr{B}^{H}_{\lambda}(q)$ (see [2] for the definition of $\mathscr{D}'_{\lambda,H}(q)$), it is clear that dim $\mathscr{D}'_{\lambda,H}(q) \leq \dim \mathscr{B}^{H}_{\lambda}(q)$. But from Theorem 5.3 and [2], if $\lambda \neq 0$, then we have $\mathscr{D}'_{\lambda,H}(q) = \mathscr{B}^{H}_{\lambda}(q)$.

References

- Cerezo, A., Equations with constant coefficients invariant under a group of linear transformations, Trans. Amer. Math. Soc. 204 (1975), 267–298.
- [2] van Dijk G., Invariant eigendistributions on the tangent space of a rank one semisimple symmetric space, Math. Ann. 268 (1984), 405-416.
- [3] Faraut, J., Distributions sphériques sur les espaces hyperboliques. J. Math. Pure Appl. 58 (1979), 369-444.
- [4] Flensted-Jensen, M., Spherical functions on a real semisimple Lie group. A method of reduction to the complex cace. J. Funct. Anal. 30 (1978), 106-146.
- [5] Harish-Chandra, Invariant distributions on Lie algebras. Am. J. Math. 86 (1964), 271-309.
- [6] Helgason, S., Differential geometry, Lie groups and symmetric spaces, Academic Press, London, 1978.
- [7] Kostant, B., Rallis, S., Orbits and representations associated with symmetric spaces. Amer. J. Math. 93 (1971), 753-809.
- [8] Ochiai, H., Invariant hyperfunctions on a rank one semisimple symmetric space, to apper.
- [9] Sekiguchi, J., Invariant spherical hyperfunctions on the tangent space of a symmetric space, Advanced Studies in Pure Math. 4 (1985), 83-126.

- [10] Strichartz, Robert S., Harmonic analysis on hyperboloids, J. Funct. Anal., 12 (1973), 341– 383.
- [11] Varadarajan, V. S. Lie groups, Lie algebras and their representations. Prentice-Hall Inc., Englewood Cliffs, N. J., 1974.

Department of Mathematics, Faculty of Science, Hiroshima University