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Introduction

Let G be connected semisimple Lie group, σ an involutive automorphism
of G and H an open subgroup of fixed points of σ. Then G/H is called a
semisimple symmetric space and the tangent space at the origin of G/H is
identified with a complement q of ί) in g, where g and ί) are the Lie algebras
coresponding to G and H9 respectively.

In this paper, we consider spherical hyperfunctions on q that are H-
invariant and simultaneously eigen hyperfunctions on q. There have appeared
several papers dealing with spherical functions on q ([1], [2], [3], [5], [9],
[10]). In his paper [2], van Dijk listed up spherical distributions for the rank
1 case. On the other hand, in his paper [1], Cerezo determined the dimension
of O(p, q) (or SO0(p, q)) invariant spherical hyperfunctions on Rp+q, where Rp+q

can be regarded as the tangent space of the semisimple symmetric space;
S00(p + 1, q)/S00(p9 q). However, studying spherical hyperfunctions, the
author found interesting phenomenon. That is if / is an H-invariant eigen
hyperfunction then / is //-invariant, where H is the connected component of
the Lie group of all non-singular transformations T on q such that p(Tx)
= p(x) for any H-invariant polynomial p and xeq. In fact, H is "large"
(if G = SL(m + 1, R) and H = GL+(m, /?), then dim H = m2 and dim H
= 2m2 — m). It seems that this phenomenon is independent of the category
of functions but is dependent on H or H orbits structure on q. In his paper
[8], Ochiai deals with this problem as ^-module structure generated by the Lie
algebra ί) or ζ which is the Lie algebra corresponding to H.

In this paper, we prove that for "generic" eigen values if / is an H-
invariant eigen hyperfunction then / is H-invariant (see Theorem 5.1 in
§5). From Cerezo's result and Theorem 5.1, we can determine the dimension
of spherical hyperfunctions on q when rank q = 1 and eigen value μ φ 0 (see

§5).
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§0. Notations and preliminaries

Let g be a real semisimple Lie algebra with Killing form B and σ an

involutive automorphism of g. Denote g = ί) + q the corresponding decompo-

sition on g into +1 and — 1 eigenspaces of σ. In this paper, we denote by Vc

the complexification of V9 for any /?-vector space V. Then σ can be extended

uniquely to the involutive automorphism (over C) of gc and gc = I)c + qc the

corresponding decomposition on gc into +1 and — 1 eigenspaces of extended

σ. Let G be the connected adjoint group of g and H the connected Lie

subgroup of G with the Lie algebra adfy. Then H acts on q by the adjoint

action. This action is analytic and can be extended uniquely to the

holomorphic action on qc. Let P(qc) and 5(qc) be the polynomial ring and the

symmetric algebra on qc, respectively. Denote by PH(qc) and SH(qc) the

subalgebras of all //-invariant polynomials on qc and //-invariant elements in

S(qc), respectively.

We denote by J*(q) the vector space of all hyperfunctions on q. Let GL(q)

be a Lie group of all non-singular linear transformations on q. Then GL(q)

acts on q naturally. Let A be a subgroup of GL(q). We denote by &A(q) the

subspace (of ^(q)) of all ^-invariant hyperfunctions. For each /leq c, put χλ(e)

= v(e)(λ) (for the definition v, see §2), for eeSH(c\c). Conversely, for any

character χ of SH(qc), there exists λeqc such that χλ = χ. Indeed, the

map; λ\-^(pί(λ)9'",pι(λ)) is of qc onto Cl, where PI, •••>£/ are homogeneous H
invariant polynomials on qc and PH(qc) = CTpu jpJ (that is a polynomial

ring and see [7]).

For each Λeq c , We denote by #A(q) the subspace (of J^(q)) of all

hyperfunctions / such that (de)f = v(e)(λ)f for any eeSH(qc) (for the definition

of 3, see §2). For each subgroup A of GL(q) and /leqc, denote ^f(q)

= J^λ(q)Π^(q). An element / in Jtf(q) is called an ^-invariant eigen

hyperfunction.

§1. Regular elements

In this section, we give two definitions of regular elements in two different

ways and consider about their relations.

Let g be complex semisimple Lie algebra. Let t be an indeterminate and

consider the polynomial;

det(ί - adX) = tN + A1(X)tN~1 + - + AN(X)9

where N = dim g and det A is the determinant of A. Then Δk is a

homogeneous polynomial function on g with degree k. Let m be the smallest
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integer such that Δm is not identically zero. It is well known that N — m
coincides with the dimension L of a Cartan subalgebra of g. Put A = Am

= ΛJV-L Let ^9 be the set of all elements AT eg such that Δ(X) Φ 0.
On the other hand, for any X e g, let gx be the centralizer of X in g and &Q

the set of all elements X e g such that dim g* < dim gy for all Ye g. That is

sim gx = L. Then we have the following assertion.

PROPOSITION 1.1. $Q a 3$Q.

PROOF. For each Xe& set g* = {7eg; (adX)k 7=0 for some fc}. It is
well known that for any Xe$Q, g* is a Cartan subalgebra of g. Furthermore,

for any Xe& g* c g*. Hence dim g* = dim g* = L and Xe@Q. Therefore

REMARK. It is not always true that g = ̂ g. If g = si (2, C) then

= x2 + yz9 where X = . Let e = ^ I . It is easily seen that
[z -xj _ L-1 -ij

= 0 and dim Qe = 1. Hence e$@Q, but

Let σ be an involutive automorphism of g such that σ Φ 1 and let g = I)

+ q be the decomposition as in § 0. Put ̂ q = ̂ g n q. For each Z e q, let qz be
the centralizer of Z in q and ^£q the set of all elements that dim q2 < dim qγ for
all 7eq. That is; dim qz = rank q = I if and only if Ze^?q.

PROPOSITION 1.2. J?q c= ̂ q.

PROOF. For any Zeq, we can prove that

dim ί) — dim ί)z = dim q — dim qz

by the similar way in Kostant-Rallis [7], where ί)z is the centralizer of Z in
ί). On the other hand, for any Zeq, dim gz = dim ϊ)z + dim qz, since gz = ί)z

+ qz. Hence dim gz = dim ί) — dim q + 2dim qz for any Zeq. It implies
that dim gz = L if and only if dim qz = /. It follows that ^q

= ^gΠq. Therefore ^q c ̂ q from Proposition 1.1.

§2. Polynomial differential operators

Let V be a vector space over R of finite dimension n. We consider the

symmetric algebra S(VC) over the complexification Vc of V. For any XeV9 let

d (e) denote the differential operator on V given by

f(x + te) (xeK,/eC°°(F),ίe/ί).
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Then it is well known that the mapping e -> d (e) can be extended uniquely to
the algebraic isomorphism of S(VC) (over C) into the algebra of differential
operators on V. Now suppose there is given a real non-degenerate symmetric
bilinear form B (u9 v) (u, vεV) on V. We extend this form B on Vc by its
linearity. Let P(VC] be the algebra of all polynomial functions on Vc and v
denote the linear isomorphism of Vc into P(VC) given by v(e)(z) = B(e, z)(z, eeVc).
Then it is obvious that the mapping e -> v (e) can be extended uniquely to the
algebraic isomorphism of S(VC) onto P(VC). For each non-negative integer m,
we denote Pm(Vc) the subalgebra of all homogeneous polynomial functions of
the degree m on Vc and Sm(Vc) the inverse image of Pm(Vc) by v.

Let 9(V) be the algebra of all differential operators on V. Then ®(V)
=3 C°°(7) and therefore P(VC) and d(S(Vc)) are both subalgebras of 2(V). Let
2P(V) denote the subalgebra of 2(V) generated by P(Vc)\jd(S(Vc)). The
elements of @P(V) will be called polynomial differential operators on V.

Now, we consider differential operators on Vc. We define the differential

operator d' on Vc such that (d'(e)f)(z) = — f(z + te) for any ee Vc, zeVCί

/EC°°(P£) and tεR. Then, for eeVc, d'(e) is a first order C°°-differential
operator on Vc. So we can define a C°°-differential operator d(e) on Vc such

that d(e) = -(d'(e)-d'(ie)) for eeV, where i = ^f^ϊ. Then d(e) is a

holomorphic differential operator on Vc for each eeV. Indeed, for each ze Vc,
let Holz(Vc) be a subspace (of 7ic(Jc)) of all elements v such that Jz(f) = iv9

where 7^C(P£) is the complexification of the tangent space TZ(VC) of Vc at z in P£
and J2 the canonical complex structure. It is easily seen that (d(e))zeHolz(Vc),
for any zεVc. Then it is obvious that the mapping e-+d(e) can be extended
uniquely to the algebraic isomorphism of S(VC) (over C) into the algebra of
holomorphic differential operators on Vc. Let @P(VC) denote the subalgebra of
the algebra of holomorphic differential operators on Vc generated by P(VC)(]
d(S(Vc)). Then we can identify @P(V) with &P(VC) by the algebraic
isomorphism defined by pd(e)^pd(e), for peP(Vc) and eeS(Vc). In this
paper, under the above identification, we use the same notation d. That is if /
is a C°°-function on Vc, we write (d(e))f instead of (d(e)}f.

Let ϊ(V) be the Lie algebra of all C°°-vector fields on V. Then 2(V)
We put £P(K) = ^P(F)n3£(K). Then XP(V) is a Lie subalgebra of

Let E denote the Euler's vector field over V9 that is,

d
dt t=o

We denote by ϊ?(7) the Lie algebra of all vector fields X (e*P(K)) such
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that [£, X]=0, where [D1? D2] = D±D2 - D2Dl. Indeed, if X, Yε%°P(V)
then

[£, = [X, [£, + [[£, = 0 (Jacobl's identity).

Hence [
Let ί?(F; /?) denote the Lie subalgebra (over R) (of I? (7)) of all vector

fields Xe £?(K) such that A/ is a real- valued function for any real- valued
function /. Then it is clear that 3E?(F; R) is a real form of ϊ?(F).

Let gl(K) be the Lie algebra of all linear transformations of V into

itself. We define a mapping φ; gI(7)-»®(7) by

d

~dt
/(x - tT(x)) (Tegl(F), xe

PROPOSITION 2.1. φ w 0 Lie algebra isomorphism of $l(V) onto ; /?).

PROOF. Choose a basis Όl9 9vn of K For each TegΙ(K), let M(T) be a
matrix representation of T with respect to this basis {vl9 9 v n } ' 9 That is M(T)
= (αy(T)), where Ti;,- = X^ίT)^. We identify K with /?" by the mapping;
x = x ! t; ! H- + xn t>n H* (x i , j xn) . Under this identification, we have the
following expression;

φ(T) = -(xl9...,xn)

\-<*in(T)-am(T) J

The above expression may be written simply

φ(Γ)=-x'M(T) — .

It is easily seen that φ(T)eϊp(F; R) and φ is a linear map. Moreover if φ(T)
= 0 it is obvious that T= 0. Hence φ is injective. Since dim gl(F) = n2 and
dim 3Ep(7; R) = n2, it follows that φ is bijective. Finally, we shall show that φ
is a Lie algebra homomorphism. Indeed, for 5,

= x['M(S), '

- = - x'(M (S)M(Γ) - M(T) M ( S ) ) -

^ = Γ- x'M(S)^9 - x<M(T)-jt-~\ =

Since the above proof is independent of the choice of a basis, the proposition is
proved.
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REMARK. Let gI(K)c be the complexification of gl(K). But, whenever
convenient, we can regard an element of Ql(V)c also as a C-linear
transformation on Vc. We recall that ΐp(V) is the complexification of
3£p(F; /?). Thus φ can be extended uniquely to a Lie algebra isomorphism
(over C) of gI(K)c onto £?(F). Under the identification of 2P(V) with @P(VC)9

we regard AΓe££(F) as a holomorphic vector field on Vc.

For each eeS(P£), let μe be the derivation of @P(V) given by μeφ)

= [δ(<0, £] φe®P(K)). On the other hand, for each qePl(Vc), there exists
unique derivation δq of S(J£) such that δq(v) = (v, q) (velQ, where <f, g>
= v(v)(q)(0). Let m be a positive integer, then we have

PROPOSITION 2.2. Tjf ^eP1 (Vc) (1 <;' < m) then

for any eeS(Vc).

PROOF. We shall prove the proposition by induction on m. Let 3 be a
subalgebra (of @P(V)) of all polynomial differential operators D such that
[<?(ι?), D] = 0 for any veVc. It is obvious that d(S(Vc)) c 3. Conversely, if
D e 3 there exist qj e P ( Vc) and βj e Sj ( Vc) such that D = £ q. d (βj) and
^dυ(qj)dej = 0 for any veVc. Hence dυ(q^ = 0 for any veVc (for any j such
that e,. / 0). Then fyeP°(tQ (= C), for any j such that e} Φ 0. Therefore 3
= d(S(Vc)).

Let ι?e»έ, βeP1^) and eεS(Vc) then

[δt;, [3β, q]] = [3e, [3t?, 9]] + [[θϋ, 3e], β] = [3β, <υ, q>~] = 0.

Hence [de, q\ e 3. Therefore [δe, ]̂ e 3 (S (Vc)) for any e e S (Vc) and f̂ e P1 (Vc).
Let m = 1. From the above argument, for each q eP1 (P^), we can define a

linear map τ^ of S(VC) into itself such that τq(e) = d~l [de, q]. Moreover τq is a
derivation of S(VC). Indeed, since δ"1 \_deίe2, q] = d'1 {de^ [βe2, q]
+ [δ^i, q]8e2} = eίd~1[de2, q] +e2d~1[fdel9 q~], we have τq(ele2) = e^q(e2)
+ e2τq(ei) for any ̂ , e2εS(Vc).

On the other hand, τq(v) = d~l [dυ, q\ = <υ, ^f> for any veVc. Therefore
τq = δq for any qePl(Vc). It follows that [de, q"\ = dδq(e), for any qePl(Vc).

Now, let qi, — 9qmeP*(Vc) and eeS1^), we have

( \

. Ate

k(ίl €m-l)μe

m~*(9m)>
K /

from the Leibniz rule for derivations. But, if m > 2 then

AC(«i-9«-i) = 0 and μΓ*(«J = 0 for 0 < fe < m - 2,
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because μjr'fai - qm-J = (m - l ) l d ( δ q ι ( e ) .. δίm _,(«)) and μe(qj = dδqm(e)
by induction hypothesis. Hence

Therefore the proposition is proved.

Let vί9 9vn be a basis of T£. Since B is a symmetric non-degenerate
bilinear form, we can choose a basis ul9 ~9un such that B(υi9 Uj) — δitj9 where
δitj is the Kronecker's <5.
Put

This element ω is independent of a choice of a basis and is called the Casimir
element. Then we have the following

LEMMA 2. 3. If qe Pm(Vc) then μ™ (q) = m I d (v " l (q)).

PROOF. First we will show that δq(ω) = v~1(q) for any qePl(Vc). From
the definition of δq,

Hence

vδq(ω)(z) = ^Σ(9(uύB(Όt9 z)

But X B (OI, z) HI = X β (MJ, z) r^ = z. Therefore δq (ω) = v~ l (q) for any
qePl(Vc). Next, from Proposition 2.2, we have

for q = qί -qm(qiePί(Vc), 1 < i < m).
This shows that if gePm(J£), then μ™(g) = mlSίv" 1^)).

REMARK. Under the identification of &P(V) with 3tP(Vc), we have

/ϊΓ(9ι-«J = w ! 3 ' ( 5 ( β ) . . . 5 ( e ) ) and i%(q) = m\3(v-l(q))9
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where μe is the derivation of @P(VC) such that μe(D) = \ΰe, D].

§3. Analytic solutions

Let θ be a Cartan involution of g such that θσ = σθ (see § 0, for the

notations g, ϊ), q, σ). Then ί) = ϊ ) n ϊ + ϊ ) n p (direct sum) and q = qnp + qΠϊ
(direct sum), where f = (Xeg; ΘX = X} and p = {X ε$: ΘX = - X}. It is
clear that

f)c = fyπϊ + ί)Πp + i f y n ϊ 4- ϊ f y f Ί p (direct sum as real vector spaces),

qc = q f l ϊ + q ( Ί p + ϊ 'qnϊ + J q f l p (direct sum as real vector spaces).

Set ld = f ) Π Ϊ + ϊ f j n p , pd = qnp + zqίlί and gd = fd + pd. Let Gd (or Gd

c) be the
connected adjoint group of gd (or gc) and Kd (or Kc) the connected Lie

subgroup of Gd (or Gd

c) with Lie algebra ad ld (or αd f£), respectively. It is
known that the pair (Gd, Kd) is a Riemannian symmetric pair with the Cartan
involution σ and the Killing form of gd is the restriction of the Killing form B of
gc. We define the linear map ξ (over R) of gc into gc such that

ξ(e® a) = e®a for e e I) n ϊ + q Π p, aeC

ξ ( e ® a ) = (ie)®(-ia) for e e l j f l p + q f l ϊ , aeC.

Then it is easily seen that ξ is a linear isomorphism (over C) of gc onto g£. By
restricting this map ξ, we have the linear isomorphisms (over C) of ί)c onto ϊ^

and of qc onto p£. Moreover, it is obvious that this map ξ can be extended

uniquely to the algebraic isomorphism (over C) of S(qc) onto S(p£) and the
map ξ of ί)c onto f£ induces a Lie group isomorphism of Hc onto K£. One
can easily see that for any hε\)c and eeS(qc) ξ([ft, e]) = [ξ(h), ξ(e)~]. Hence
the restriction of ξ to SH(qc) is an algebraic isomorphism (over C) of SH(qc)

onto Sκd(pc). Indeed, if eeSH(qc) then ξ(e)eSκd(pd

c) by the above

equality. Conversely, if eeSκd(pc) then ξ " 1 (e) e 5H (qc) by the above
equality. Let μ be the algebraic isomorphism of Sκd (p£) onto Pκd (PC) defined
by the same way as the map v. Then it is easily seen that for any eεSH(c\c)

and λeqc we have v(e)(λ) = μ(ξ(e))(ξ(λ)), because B(ξ(e)9 ξ(λ)) = B(e, λ) for
any eeqc and /leq c.

Let φ (or φ) be the Lie isomorphism (over R) of gί(q) (or gl(pd)) onto
3β?(q;Jf) (or ££(pd; /?)) defined in §2, respectively. Then we have the Lie
isomorphism φ (or ψ) (over (C) of αd ί)c (or αrf 1̂ ) onto φ(ad fyc) (or ι/^(αrf f^))
whose restriction to ad ί) (or ad ld) is a Lie isomorphism (over R) of ad ί) (or

αd fd) onto φ (ad ί)d) (or ψ(ad fd)), respectively.

Let F be a real vector space and α is a Lie subalgebra of gl(K). We
denote by a(U) the vector space of all analytic functions on U which is an open
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subset of V and aa(U) the vector space of all φκ(α)-in variant analytic functions
on U (where φv is defined by Proposition 2.1). Let A be a connected Lie
subgroup of GL(V) corresponding with the Lie algebra α. If U is ^-invariant
(that is, axeU for any aeA and xeU), we denote by &A(U) the vector
subspace (of a(U)) of all ^-invariant analytic functions on U.

Let U be an open subset of qc. Then ξ(U) is an open subset of p£. Let
(9(U) (or 0 (£(£/))) be the vector space of all holomorphic functions on U (or
ξ(U)), respectively. Then it is obvious that ξ* is a linear isomorphism of
0(£(!/)) onto 0(17), where (ξ*F)(z) = F(ξ(z)) for any F e Θ ( ξ ( U ) ) and zeU.

LEMMA 3.1. For any het)c, F e O ( ξ ( U ) ) and zeU, we have

(φ(adh)(ξ*F))(z) = (ψ(ad ξ(h))F)(ξ(z)).

PROOF. From the definition of φ (or ψ), we have

(φ(adh)(ξ*F))(z) = £t

= (ψ(adξ(h))F)(ξ(z))9

for any /ιel)c, F e Θ ( ξ ( U ) ) and zeU, since F is holomorphic. This implies the
lemma.

For each λeqc (or λ'epc) and an °Pen subset U of q (or pd), we denote by
aλ(U) (or aλ>(U)) the vector space of all analytic functions / such that for any
eeSH(qc) (or eeSκd(pd

c)) (de)f = v(e)(λ)f (or (de)f=μ(e)(λ)f)9 respectively.

Set aλ

H(U) = ^λ(l/)n^H(l/), *F(U') = <*λ (U')(\*κd(U')9 *\(U) = *λ(U)
Π^(17) and ^(Uf) = ^(l/On^ίί/'), for each open subset U of q and U'
of pd.

It is well known that if /e^(q) then there exist a domain U of qc and

unique holomorphic function F e ( 9 ( U ) such that l/f]q = q and / is the
restriction of F to q. Set F = (ξ'^F. Then F is a holomorphic function on
ξ(U). Set W= ξ(C/)np d . Then Wis an open subset of pd and Oe M^ Let g
be the restriction of F to W. Then g is an analytic function on W. In this
section we call that g is a pure imaginary analytic continuation of /.

LEMMA 3.2. ///e^f(q)

PROOF. Let /e^H(q). Then φ(adh)f=Q on q, for any hel). It is
obvious that φ(adh)F = 0 on U for any /ze^c. Here φ(adh) is regarded as a
holomorphic vector field (see Remark of Proposition 2.1). From Lemma 3.1,

we have ψ(ad ξ(h))F = 0 on ξ(U) for any hel)c, where F = (Γ1)*^- Hence
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ψ(adk)F = Q on ξ(U) for any ketd, since ξ is bijective. It implies that
ψ(adk)g. = 0 on W for any keld. Therefore gEatd(W).

Let /e ^λ (q). Then (<3e) F = v (e) (/I) F on 17 for any e e 5H (qc). Here <3e is
regarded as a holomorphic differential operator (see §2). Indeed, the restricted
function of d(e)F — v(e)(λ)F to q is zero on q, since (de)f = v(e)(λ)f on q. But

d(e)F-v(e)(λ)F is holomorphic on U. Hence (de)F - v(e)(λ)F = 0 on U
from the identity theorem for an analytic function. On the other hand, it is
easily seen that for any eeS(qc) and zel/ we have (de)(ξ*F)(z) = d(ξe)F(ξ(z)).
Hence, for any eeSH(qc) and zet/, we have d(ξe)F(ξ(z)) = v(e)(λ)F(ξ(z)),
since F = (ξ~1)*F. Therefore, by restricting the above equality to ξ(U)Γ\pd,
we have d(ξe)g = v(e)(λ)g on Wfor any eeSH(qc). This implies that geaξ(λ)(W),
because v (e) (λ) = μ (ξe) (ξλ) and ξ is bijective. Therefore the lemma is proved.

Let B be the restricted Killing form of pd. It is easily seen that B is a
positive definite symmetric bilinear form on pd. Since O e W a n d W is an open
subset of pd, there exists a positive number r such that if B(x, x) <r and xepd

then x e W. We fix r. But r is dependent on a given analytic function /, since
W is so. Let WQ be a (connected open) subset (of W) of all elements x e pd such
that B(x, x)<r. Then W0 is a ^-invariant open subset, since B is Kd-
invariant. We have the following lemma by the usual way in the analysis of

Lie groups (see [6] or [11]).

LEMMA 3.3. For any ηepd, we have

J*(WQ) = **d(W0) and dim a* = 1.

PROOF. For each ^eS(p^), set ρ(e) = ke dk, where dk is the normalized
Λ Jxd

Haar measure of Kd such that dk = 1. Then p is the projection of
JK*

onto SKd(pc). Let uea%d(W0). Then for any

μ(p(e))u(0) = (d(p(e))u)(0) = J (Lk ° de °L fc-1)u(0) rf/c

ίfc = (3e)ιι(0),-I-
where (Lfcw)(x) = M(fc~1x)(xep ί ί). This implies that if u(Q) = 0 then u = 0 on
W0, since W^ is connected. Therefore dim &%d(W0)< 1 for any ηepd

c. It is

obvious that **d(W<>) c= <(^0) But if ιi6^d(»&) then ιιe^d(»&). Indeed,
for any Xeld and xeW09
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u(esxetxx) = (ψ(adX)u)(etXx) = 0.

f i A
Hence u (ex x) - u (x) = \ —u (Ad(etx) x)dt = Q for any X e Id and x e WQ. This

Jo dt
implies that u is Xd-invariant, since Kd is connected. Thus we have al*(WQ)

any ηepd

c.
For any ^epc and wep£, set

ψ<w)= I eB(kw'η)dk.
JK

Then it is clear that Ψη is an entire holomorphic function of p£ such that Ψη (0)
= l.Moreover Ψη is K£-invariant. Indeed it is trivial that Ψη is Kd-invariant.
But, for each wep£, it is obvious that the function Ψn(kw) — Ψn(w) of Kd

c is an
entire holomorphic function on K£, since the adjoint action of Kd

c on p£ is
holomorphic. Hence Ψη (kw) — Ψη (w) = 0 for any w e p£ and k e Kd

c from the
identity theorem for an analytic function. Therefore Ψη is K£-invariant.
Moreover, it is easily seen that (de)eB(kw'η)} = B(ke, η)eB(kw'η) for any eεpd

c and
k E Kd . Thus if e e Sκd (pd

c) then (de) eB(k™> η) = μ (e) (η) eB(kw> η) . Therefore (de) Ψη

= μ(e)(η) Ψη for any eeSχd(pέ). Let gη be the restriction of Ψη to W0. Then
it is obvious that gηε&%d(WQ) and ^(0) = 1. Hence the lemma is proved.

Now we have the following.

THEOREM 3.4. dim f̂ (q) = 1 for any λεc\c.

PROOF. Let /t e^f (q)(i = 1, 2). Then there exist Kd-invariant open
connected subset Wi (ί = 1, 2) of pd and analytic functions gi^^λ)(W^ such
that QeWi and gt is the pure imaginary analytic continuation of /t (i = 1, 2).
Put c, =/£(0) (= 0i(0)) (i = 1, 2),/= c2Λ - Cl/2, g = c2gι - C lg2 and P^= W,
{\W2. Then it is obvious that /e^f(q), gf is the pure imaginary analytic
continuation of / and ^e^d

(λ)(VF). But g = 0 on W9 since g(0) = 0. From
the identity theorem for an analytic function, we have / = 0 on q. It implies
that dim ̂ f(q) < 1 for any λεqc.

Set Φλ = ξ*Ψη, where λ = ζ ~ l ( η ) (see Lemma 3.3, for the notations η,
Ψη). Then Φλ is an Hc-invariant entire holomorphic function of qc and (de)Φλ

— v(e)(λ)Φλ for any ^eSH(qc). Indeed, for any zeqc, we have

Φλ(z) = ί
Jκ

Since Ψη is Xc invariant an(* έ(^z) = ζ(h)ξ(z) for any /ϊ6//c and zeqc, it is
clear that Φλ is ίίc-invariant. By the same way as Lemma 3.3, we have (de) Φλ
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= v(e)(λ)Φλ on qc, for any eeSH(qc). Let fλ be the restriction of Φλ to
q. Then it is obvious that /Ae^f (q) and /Λ(0) = 1. Therefore the theorem is
proved.

Note that the technique described in this section is based on Flested-
Jensen's idea in [4].

§4. The definition of H and ί)

We consider a real semi-simple symmetric pair (G, H). We recall that g

= ϊ) + q and H is acting on q by the adjoint action. Let PH(qc) (or SH(qc)) be
a subalgebra of P(qc) (or S(qc)) of all //-invariant polynomials (or //-invariant
elements) on qc as the above //-action. Then from Chevalley's theorem,

PH(QC) = C[p !,-••,/?/], where PJ is a homogeneous polynomial and C[pί9 9pι~]
is the polynomial ring (/ = rank q). Put et = v ~ 1 ( p i ) (1 < i < /). Then SH(qc)
is generated by 1, el9"-9el.

Let GL(q) be the Lie group of all non-singular linear transformations on
q. Then the Lie algebra of GL(q) is gl(q). Let H' be the subgroup of GL(q) of
all non-singular linear transformations T of q such that P(Tx) = P(x) for any
x e q and PePH(qc). It is obvious that H' is a closed subgroup of GL(q).
Thus H' is a Lie group. We denote by H the connected component of the
Lie group //'. Let Ad(H) be the Lie subgroup of GL(q) of all non-singular

transformations Ad(h) (heH). Then the Lie algebra of Ad(H) is ad I) which
is a Lie subalgebra of gl(q) of all linear transformations adx (xeί)). We assume
H is connected. Then the definition of H implies that Ad(H) is a connected
subgroup of //. Let ζ be the Lie subalgebra of gl(q) of all elements X such
that φ ( X ) p = 0 for any peP#(qc), where φ is defined in §2. Then it is clear
that ί) is the Lie algebra corresponding to H (or //') and ί) => ad I).

Under the identification of ^F(q) with ^P(qc) (see §2), the mapping
iz\ e\-^(de)z is a linear isomorphism (over C) of qc onto Holz(c(c) for any
zeq c. Let [z, I)c] be the subspace of qc of all elements [z, w] (wef)c) for each
zeq c and //0/z(qc; /) the subspace of Holz(qc) of all elements v such that (dp)zv
= 0 for any pePH(qc). Then we have the following.

PROPOSITION 4.1. If ze&qc then iz gives a linear isomorphism of [z, ί)c]
onto //0/z(qc; /).

PROOF. It is trivial that the map iz is linear and injective. But, it is

obvious that dim^ [z, ί)c] < n — I for any z e qc and dimc [z, I)c] = n — / if and
only if z6^q<Γ, where n = dimc q, / = rank q. Indeed, for each zeqc the map;

ί>c/% 3 w + % H-> [z, w] 6 [z, ί)c]
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is well defined and a linear isomorphism of ί)c/ί)c onto [z, ί)c] (for the notation

l)c, see § 1). By the similar proof of Proposition 5 in [7], we have dimcϊ)c/f£
= dimcqc/qc for any zeq c. Hence dimc [z, ί)c] = n — dimc q£ for any
zeqc. Thus we have the assertion from the definition of &qc (see § 1). On the
other hand, dimc Holz(qc; I) > n — I for any zeq c and if ze^qc then
dimc Holz(qc; I) = n — I. Indeed, we can easily see that

Holz(qc I) = {veHolx(qc); (dPj)(v) = 0 for any j (1 <j < /)}

from the definition of Holz(c\c\ /), where PH(qc) = C[Pι> •"»£/]• By the similar
proof of Theorem 13 in [7], we have that if ze&qc then (dp^z. -^dp^ are
linearly independent. Thus we have the assertion. This implies that the map
is surjective. So the proposition is proved.

For each zeqc, we define the linear map (over C) φz of gl(qc) into

Holz(qc) such that φz(X) = (φ(X))z for Xegl(q)c. Then we have the
following.

PROPOSITION 4.2. (1) φz(ί)c)
 c ffolz(qc; I) for any zGq c ,

(2) // z ε ̂ qc, φz (ad ί)c) = Hoi, (qc /).

PROOF. For any Xεϊ)c>
 Z E Cίc» pεPπfac)) we have

This implies (1). From the definition of φ, for any zeq c and WG^ C , we have
φ(adw)z = (δ[z, w])2. By Proposition 4.1, if ze^q then for any vεHolz(qc', I)
there exists weί)c such that ϊz([z, w]) = ι>. Hence φz (adw) = φ (adw)z

= (3[z, w])z = zz([z, w]) = v. This implies (2).

Let P(c\c)φ(ad t)c) be the Lie subalgebra (of ^P(qc)) of all elements D such

that D = ΣPi<P(Xi) f°r some Pi^Pfac) an(i Xi^ad\^c. Indeed, we have
[pφ(X)9 qφ(Y)]εP(qc)<P(adϊ)c) (for p, gεP(qc), X, yεαdί)c), because

, qφ(Y)]=pqφ(lX9 Y^) + pφ(X)(q)φ(Y) - qφ(Y)(p)φ(X).

Then we have the following.

LEMMA 4.3. For any Xeϊ)c and ze&qc, there exist a polynomial peP(qc)
and a domain W c qc .swcΛ //zαr z e P ,̂ p (w) ^ 0 /or any weW and

pφ(X)εP(qc)φ(adl)c).

PROOF. Choose a basis (over C) v 15 , t;w of qc which is a basis (over R) of

q. So we identify qc with Cn by the mapping;

z1t;1 + ••- + znυn\ — >(z1," ,
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Under this identification, for any Jfegl(q)0 we have

z = Σ 0j(z ' χ) ( ̂ - ) for any

where 0 y ( z ; X ) = - £ βyPOZj ( l < j < π ) (see Proposition 2.1). From
1 < / < n

Proposition 4.2, if z0e^qc then there exist H!,---,//^^ (ί = n — /) such that

H1)ZQ9" 9φ(ad Ht)zo is a C-basis of //0/Zo (qc; /). That is,

rank

. g i ( z ' 9 a d H t ) . ~ g H ( z ; a d H t ) ]

= t.

Since ^-(z; ad H^ (1 <7 < n, 1 < / < ί) is a continuous map on qc, there exists a
domain W of qc such that z0εW and for any zeW, rank(^ (z; ad Ht)) = t.
Thus for any ze W, φ(ad H1)z,- ,φ(ad Ht)z is a C-basis of Holz(qc; I). Since,

for any Xeϊ)c and ze W, φ(X)zeHolz(qc; I) from Proposition 4.2, there exists

A,- (1 < i < t) e C00 (W^) such that φ (X)z = ^ Λ f (z) φ (ad Ht)z for any zeW. So

for any z e W Hence g f _ / ( z ; X ) = Σ βj(z', ad H^h^z) (l<j<n) for any
i < i < ί

ze W. This implies that there exists geP'fac) such that 0/ZjeP(qc) (1 < i < ί)

and #(z) 7^ 0 for any ze W, since rank(^ (z; αd Ht )) = ί for any ze FK Hence

g(z)φ(X)g= Σ 0 W *ι W Φ (βrf »ι)r for

Since ght e P (qc) , we have g φ ( X ) e P (qc) φ (ad fyc) . Thus g is a desired
polynomial. Therefore the lemma is proved, because the above argument is
independent of a choice of a basis.

For each Lie subalgebra α of gί(q)c and an open subset U of qc, we denote

by ^α(^) a vector space of all holomorphic functions on U such that φ(X)f
= 0 for any Jf eα. Then it is obvious that &%(U) c &adi)C(U). But we have
the following.

COROLLARY 4.4. For any domain U of qc, (9%(U] = θa<H>c(U}.

PROOF. Let U is a domain of qc. Since it is well known that &qc is an

open dense subset of qc, ^q cnt/ Φ φ. From Lemma 4.3, for any Xε$c

 and

z0 e U there exist a polynomial p e P (qc) and a domain W of qc such that z0 e W,
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p(z) φ 0 for any zεWand pφ(X)εP(qc)φ(ad ί)c). Hence for any feΰadt)c(U),
we have p(z)(φ(X)f)(z) = 0 for any X e f ) c and zεUnW. But since p(w) Φ 0
for any weW, (φ(X)f)(z) = 0 for any Xe$c and zεUnW. Since / is
holomorphic on £7, φ(X)f is so. Hence, from the identity theorem for an
analytic functions, φ(X)f= 0 on U. This implies that feΦ$c(U). Thus the
corollary is proved.

§ 5. H-invariantness

In this section, we prove the following theorem.

THEOREM 5.1. If λε$qc, then

PROOF. From the definition of f̂ (q) and f̂ (q), it is obvious that

z> f̂ (q). Thus we must show that J^f (q) c: ̂ f (q). For any element

we denote by Px(qc) the ideal of all polynomials peP(qc) such that
pφ(X)eP(qc)φ(ad ί)c). Let P^ be the algebraic sub variety of qc defining by

Pxfac)- That is; Vx is the set of all elements zeqc such that p(z) = 0 for any
pePx(qc). If there exists an element ze J^n^qc, then p(z) = 0 and ze^qc for
any pePx(c\c). This contradicts Lemma 4.3. Thus VxΓ\$ς = φ. From
Proposition 1.2, we have

(z) = 0}.

By Hubert's Nullstellensatz,

where (A) is the ideal of P (qc) generated by A and ̂  a, is the radical of an ideal

a of P (qc) that is peP (qc) then p e y^ if and only if pfc e ̂  for some positive
integer k. Therefore for any X ε ί ) there exists a positive integer k such that

J fcePx(qc). That is; Ak φ(X)εP(qc)φ(ad ί)c).
We consider the following system of differential equations on q, for fixed λ

and k.

= v (β) (λ) fi for any eeSH (qc) ,

We put m = k(N — L) (see § 1, for N and L). From Proposition 2.2, for any

*?eSd(qc) there exists unique element D(e, Ak)εSm(d~l)(c\c) such that μ™(Ak)

= dD(e,Ak), since deg Ak = m. Let eeSH(qc) such that deg e = d. Then

μ™(Ak) is obviously an ff -invariant differential operator on q. So D(e, Ak) is
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//-invariant. When u is a solution of the above differential equations (#), it

is easily seen that μ^(Ak)u = (de - v(e)(λ))mAku = 0. So d(D(e,Ak))u =
v(D(e, Ak))(λ)u = 0. Hence, if there exists a homogeneous element eeSH(c\c)
for fixed Λ e q c and keN such that v(D(e, Ak))(λ) Φ 0, then u = 0. From

Lemma 2.3, when e = ω(ω is the Casimir element), we have \(D(ω, Ak))(λ)

= Δk(λ). Therefore if /le^qc, then any solution u of the differential equations

(#) is zero.

Finally, for any /e J*f (q) and Jf eϊ), we put g = φ ( X } f . Then there exists

a positive integer k such that AkEPx(c\c) and g is a solution of the system of the

differential equations (#), because φ(adl)c)f=0 and \βe, φ(X)~\ = 0 for any
eeSH(qc). Hence if λe&qc, then 0 = 0. Thus /e^f(q). This proves that
f̂ (q) d J*f (q) for any Ae^qc. Therefore the theorem is proved.

We consider Theorem 5.1 in the case when / = rank q = 1. In the case,
the polynomial Δ is a homogeneous polynomial of qc such that the

homogeneous degree of Δ is dim g - rank g (see § 1). Since rank g = dim ϊ)
— dim q + 2 rank q, dim g — rank q = dim ί) + dim q — rank g = 2 (dim q
— rank q) = 2 (dim q — 1). On the other hand, Δ is a polynomial of the
Casimir polynomial ω, because Δ is an //-invariant polynomial (we may use the
same notation ω for the Casimir element ω in 52(qc)). Hence there is a non

zero constant c such that Δ = cωdimq~1. Let Jf be the variety of all elements

zeq c such that ω(z) = 0. Then we have the following.

COROLLARY 5.2. When rank q = 1, if λφ^V, then

REMARK. In this case, the system of differential equations

( S e ) f = v ( e ) ( λ ) f for any

are written simplify so that (dω)f= μ/, where we set μ = v(ω)(λ). Under the
new parametrization (μeC), Corollary 5.2 can be rewritten such that;

If μ^O, then Λ?(q) = Λ?(q).

On the other hand, we consider about H. In this case, any //-invariant
polynomial is a polynomial of the Casimir polynomial ω. We can choose a

basis Xί9 ~,Xp9 9Yί9 9Yq of q such that A ^ e l Π q , Y j e p f l q , B ( X i 9 X j ) =
— δij and B(Yi9 ί}) = <5ί><; . Then the Casimir polynomial is written as such;

where X = £ XiXt + £ ^ 7f. Then from the definition of H, we have H
l<i<p l<ί<q
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~S00(p9q). On the other hand, in [1], Cerezo proved the following
assertion

(1) p = q=l case, dim ̂ f (q) = 4,

(2) p = 1 or q = 1 case, dim jf (q) = 3,
(except for case (1))

(3) p > 2 and q > 2 case, dim f̂ (q) = 2,

for any complex number μ.
Therefore we have the following.

THEOREM 5.3. When rank q = 1, if μ + 0, then

(1) p = q = 1 case, dim ̂ (q) = 4,

(2) p = 1 or q = 1 case, dim #Jf (q) = 3,
(except for case (1))

(3) p > 2 a/id g > 2 case, dim #Jf (q) = 2,

where p = dim (q ΠI) and q = dim (q Π p).

REMARK. In [2], Van Dijk listed up the dimension of invariant eigen

distributions. Since ®i>H(q) c *?(q) (see [2] for the definition of ^,H(q)), it
is clear that dim @'λ H(q) < dim J^(q). But from Theorem 5.3 and [2], if
λ 'Φ 0, then we have ®'λtH(c\) = ^f(q).
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