Spherical hyperfunctions on the tangent space of symmetric spaces

Atsutaka Kowata
(Received May 11, 1990)

Introduction

Let G be connected semisimple Lie group, σ an involutive automorphism of G and H an open subgroup of fixed points of σ. Then G / H is called a semisimple symmetric space and the tangent space at the origin of G / H is identified with a complement \mathfrak{q} of \mathfrak{b} in \mathfrak{g}, where \mathfrak{g} and \mathfrak{h} are the Lie algebras coresponding to G and H, respectively.

In this paper, we consider spherical hyperfunctions on \mathfrak{q} that are H invariant and simultaneously eigen hyperfunctions on \mathfrak{q}. There have appeared several papers dealing with spherical functions on \mathfrak{q} ([1], [2], [3], [5], [9], [10]). In his paper [2], van Dijk listed up spherical distributions for the rank 1 case. On the other hand, in his paper [1], Cerezo determined the dimension of $O(p, q)$ (or $S_{0}(p, q)$) invariant spherical hyperfunctions on \boldsymbol{R}^{p+q}, where \boldsymbol{R}^{p+q} can be regarded as the tangent space of the semisimple symmetric space; $S O_{0}(p+1, q) / S O_{0}(p, q)$. However, studying spherical hyperfunctions, the author found interesting phenomenon. That is; if f is an H-invariant eigen hyperfunction then f is \tilde{H}-invariant, where \tilde{H} is the connected component of the Lie group of all non-singular transformations T on \mathfrak{q} such that $p(T x)$ $=p(x)$ for any H-invariant polynomial p and $x \in \mathfrak{q}$. In fact, \tilde{H} is "large" (if $G=S L(m+1, \boldsymbol{R})$ and $H=G L^{+}(m, \boldsymbol{R})$, then $\operatorname{dim} H=m^{2}$ and $\operatorname{dim} \tilde{H}$ $\left.=2 m^{2}-m\right)$. It seems that this phenomenon is independent of the category of functions but is dependent on H or \tilde{H} orbits structure on q. In his paper [8], Ochiai deals with this problem as \mathscr{D}-module structure generated by the Lie algebra \mathfrak{h} or $\tilde{\mathfrak{h}}$ which is the Lie algebra corresponding to \tilde{H}.

In this paper, we prove that for "generic" eigen values if f is an H invariant eigen hyperfunction then f is \tilde{H}-invariant (see Theorem 5.1 in §5). From Cerezo's result and Theorem 5.1, we can determine the dimension of spherical hyperfunctions on \mathfrak{q} when rank $\mathfrak{q}=1$ and eigen value $\mu \neq 0$ (see §5).

§ 0. Notations and preliminaries

Let \mathfrak{g} be a real semisimple Lie algebra with Killing form B and σ an involutive automorphism of \mathfrak{g}. Denote $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ the corresponding decomposition on \mathfrak{g} into +1 and -1 eigenspaces of σ. In this paper, we denote by $V_{\boldsymbol{c}}$ the complexification of V, for any \boldsymbol{R}-vector space V. Then σ can be extended uniquely to the involutive automorphism (over \boldsymbol{C}) of $\mathfrak{g}_{\boldsymbol{c}}$ and $\mathfrak{g}_{\boldsymbol{c}}=\mathfrak{h}_{\boldsymbol{c}}+\mathfrak{q}_{\boldsymbol{c}}$ the corresponding decomposition on $\mathfrak{g}_{\boldsymbol{c}}$ into +1 and -1 eigenspaces of extended σ. Let G be the connected adjoint group of \mathfrak{g} and H the connected Lie subgroup of G with the Lie algebra $a d \mathfrak{h}$. Then H acts on \mathfrak{q} by the adjoint action. This action is analytic and can be extended uniquely to the holomorphic action on \mathfrak{q}_{c}. Let $P\left(\mathfrak{q}_{c}\right)$ and $S\left(\mathfrak{q}_{c}\right)$ be the polynomial ring and the symmetric algebra on q_{c}, respectively. Denote by $P_{H}\left(q_{c}\right)$ and $S_{H}\left(q_{c}\right)$ the subalgebras of all H-invariant polynomials on q_{c} and H-invariant elements in $S\left(\mathrm{q}_{c}\right)$, respectively.

We denote by $\mathscr{B}(\mathfrak{q})$ the vector space of all hyperfunctions on \mathfrak{q}. Let $G L(\mathfrak{q})$ be a Lie group of all non-singular linear transformations on \mathfrak{q}. Then $G L(\mathfrak{q})$ acts on \mathfrak{q} naturally. Let A be a subgroup of $G L(\mathfrak{q})$. We denote by $\mathscr{B}^{A}(\mathfrak{q})$ the subspace (of $\mathscr{B}(\mathfrak{q})$) of all A-invariant hyperfunctions. For each $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$, put $\chi_{\lambda}(e)$ $=v(e)(\lambda)$ (for the definition v, see $\S 2$), for $e \in S_{H}\left(q_{c}\right)$. Conversely, for any character χ of $S_{H}\left(q_{c}\right)$, there exists $\lambda \in q_{c}$ such that $\chi_{\lambda}=\chi$. Indeed, the map; $\lambda \mapsto\left(p_{1}(\lambda), \cdots, p_{l}(\lambda)\right)$ is of $\mathfrak{q}_{\boldsymbol{c}}$ onto \boldsymbol{C}^{l}, where p_{1}, \cdots, p_{l} are homogeneous H invariant polynomials on $q_{\boldsymbol{C}}$ and $P_{\boldsymbol{H}}\left(\mathfrak{q}_{\boldsymbol{C}}\right)=\boldsymbol{C}\left[p_{1}, \cdots, p_{l}\right]$ (that is a polynomial ring and see [7]).

For each $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$, We denote by $\mathscr{B}_{\lambda}(\mathfrak{q})$ the subspace (of $\mathscr{B}(\mathfrak{q})$) of all hyperfunctions f such that $(\partial e) f=v(e)(\lambda) f$ for any $e \in S_{H}\left(q_{c}\right)$ (for the definition of ∂, see $\S 2$). For each subgroup A of $G L(\mathfrak{q})$ and $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$, denote $\mathscr{B}_{\lambda}^{A}(\mathfrak{q})$ $=\mathscr{B}_{\lambda}(\mathfrak{q}) \cap \mathscr{B}^{A}(\mathfrak{q})$. An element f in $\mathscr{B}_{\lambda}^{A}(\mathfrak{q})$ is called an A-invariant eigen hyperfunction.

§ 1. Regular elements

In this section, we give two definitions of regular elements in two different ways and consider about their relations.

Let \mathfrak{g} be complex semisimple Lie algebra. Let t be an indeterminate and consider the polynomial;

$$
\operatorname{det}(t-a d X)=t^{N}+\Delta_{1}(X) t^{N-1}+\cdots+\Delta_{N}(X)
$$

where $N=\operatorname{dim} \mathfrak{g}$ and $\operatorname{det} A$ is the determinant of A. Then Δ_{k} is a homogeneous polynomial function on \mathfrak{g} with degree k. Let m be the smallest
integer such that Δ_{m} is not identically zero. It is well known that $N-m$ coincides with the dimension L of a Cartan subalgebra of g . Put $\Delta=\Delta_{m}$ $=\Delta_{N-L}$. Let $\tilde{\mathscr{R}}_{\mathfrak{g}}$ be the set of all elements $X \in \mathfrak{g}$ such that $\Delta(X) \neq 0$.

On the other hand, for any $X \in \mathfrak{g}$, let \mathfrak{g}^{X} be the centralizer of X in \mathfrak{g} and $\mathscr{R}_{\mathfrak{g}}$ the set of all elements $X \in \mathfrak{g}$ such that $\operatorname{dim} \mathfrak{g}^{X} \leq \operatorname{dim} \mathfrak{g}^{Y}$ for all $Y \in \mathfrak{g}$. That is $\operatorname{sim} \mathrm{g}^{X}=L$. Then we have the following assertion.

Proposition 1.1. $\quad \tilde{\mathscr{R}}_{\mathrm{g}} \subset \mathscr{R}_{\mathrm{g}}$.
Proof. For each $X \in \mathfrak{g}$, set $\tilde{\mathfrak{g}}^{X}=\left\{Y \in \mathfrak{g} ;(\operatorname{ad} X)^{k} Y=0\right.$ for some $\left.k\right\}$. It is well known that for any $X \in \tilde{\mathscr{R}}_{\mathfrak{g}}, \tilde{\mathfrak{g}}^{X}$ is a Cartan subalgebra of \mathfrak{g}. Furthermore, for any $X \in \mathfrak{g}, \mathfrak{g}^{X} \subset \tilde{\mathfrak{g}}^{X}$. Hence $\operatorname{dim} \tilde{\mathfrak{g}}^{X}=\operatorname{dim} \mathfrak{g}^{X}=L$ and $X \in \mathscr{R}_{\mathfrak{g}}$. Therefore $\tilde{\mathscr{R}}_{\mathfrak{g}} \subset \mathscr{R}_{\mathrm{g}}$.

Remark. It is not always true that $\tilde{\mathscr{R}}_{\mathrm{g}}=\mathscr{R}_{\mathrm{g}}$. If $\mathfrak{g}=\mathfrak{s l}(2, C)$ then $\Delta(X)$ $=x^{2}+y z$, where $X=\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]$. Let $e=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$. It is easily seen that $\Delta(e)=0$ and $\operatorname{dim} \mathfrak{g}^{e}=1$. Hence $e \notin \tilde{\mathscr{R}}_{\mathfrak{g}}$, but $e \in \mathscr{R}_{\mathrm{g}}$.

Let σ be an involutive automorphism of \mathfrak{g} such that $\sigma \neq 1$ and let $\mathfrak{g}=\mathfrak{h}$ $+q$ be the decomposition as in $\S 0$. Put $\widetilde{\mathscr{R}}_{\mathfrak{q}}=\widetilde{\mathscr{R}}_{\mathfrak{g}} \cap \mathfrak{q}$. For each $Z \in \mathfrak{q}$, let q^{z} be the centralizer of Z in q and \mathscr{R}_{q} the set of all elements that $\operatorname{dim} q^{Z} \leq \operatorname{dim} q^{Y}$ for all $Y \in \mathfrak{q}$. That is; $\operatorname{dim} \mathfrak{q}^{Z}=\operatorname{rank} \mathfrak{q}=l$ if and only if $Z \in \mathscr{R}_{\mathfrak{q}}$.

PRoposition 1.2. $\tilde{\mathscr{R}}_{\boldsymbol{q}} \subset \mathscr{R}_{q}$.
Proof. For any $Z \in \mathfrak{q}$, we can prove that

$$
\operatorname{dim} \mathfrak{h}-\operatorname{dim} \mathfrak{h}^{Z}=\operatorname{dim} \mathfrak{q}-\operatorname{dim} \mathfrak{q}^{z}
$$

by the similar way in Kostant-Rallis [7], where \mathfrak{h}^{2} is the centralizer of Z in \mathfrak{h}. On the other hand, for any $Z \in \mathfrak{q}, \operatorname{dim} \mathfrak{g}^{Z}=\operatorname{dim} \mathfrak{h}^{Z}+\operatorname{dim} \mathfrak{q}^{Z}$, since $\mathfrak{g}^{Z}=\mathfrak{h}^{Z}$ $+\mathfrak{q}^{z}$. Hence $\operatorname{dim} \mathfrak{g}^{Z}=\operatorname{dim} \mathfrak{h}-\operatorname{dim} \mathfrak{q}+2 \operatorname{dim} \mathfrak{q}^{z}$ for any $Z \in \mathfrak{q}$. It implies that $\operatorname{dim} \mathfrak{g}^{Z}=L$ if and only if $\operatorname{dim} \mathfrak{q}^{Z}=l$. It follows that $\mathscr{R}_{\mathfrak{q}}$ $=\mathscr{R}_{\mathbf{g}} \cap \mathbf{q}$. Therefore $\tilde{\mathscr{R}}_{\mathrm{q}} \subset \mathscr{R}_{\mathrm{q}}$ from Proposition 1.1.

§ 2. Polynomial differential operators

Let V be a vector space over \boldsymbol{R} of finite dimension n. We consider the symmetric algebra $S\left(V_{\boldsymbol{c}}\right)$ over the complexification $V_{\boldsymbol{c}}$ of V. For any $X \in V$, let $\partial(e)$ denote the differential operator on V given by

$$
(\partial(e) f)(x)=\left.\frac{d}{d t}\right|_{t=0} f(x+t e) \quad\left(x \in V, f \in C^{\infty}(V), t \in \boldsymbol{R}\right)
$$

Then it is well known that the mapping $e \rightarrow \partial(e)$ can be extended uniquely to the algebraic isomorphism of $S\left(V_{c}\right)$ (over C) into the algebra of differential operators on V. Now suppose there is given a real non-degenerate symmetric bilinear form $B(u, v)(u, v \in V)$ on V. We extend this form B on V_{c} by its linearity. Let $P\left(V_{c}\right)$ be the algebra of all polynomial functions on V_{c} and v denote the linear isomorphism of $V_{\boldsymbol{c}}$ into $P\left(V_{c}\right)$ given by $v(e)(z)=B(e, z)\left(z, e \in V_{c}\right)$. Then it is obvious that the mapping $e \rightarrow v(e)$ can be extended uniquely to the algebraic isomorphism of $S\left(V_{c}\right)$ onto $P\left(V_{c}\right)$. For each non-negative integer m, we denote $P^{m}\left(V_{c}\right)$ the subalgebra of all homogeneous polynomial functions of the degree m on V_{c} and $S^{m}\left(V_{c}\right)$ the inverse image of $P^{m}\left(V_{c}\right)$ by v.

Let $\mathscr{D}(V)$ be the algebra of all differential operators on V. Then $\mathscr{D}(V)$ $\supset C^{\infty}(V)$ and therefore $P\left(V_{c}\right)$ and $\partial\left(S\left(V_{c}\right)\right)$ are both subalgebras of $\mathscr{D}(V)$. Let $\mathscr{D}_{P}(V)$ denote the subalgebra of $\mathscr{D}(V)$ generated by $P\left(V_{c}\right) \cup \partial\left(S\left(V_{c}\right)\right)$. The elements of $\mathscr{D}_{P}(V)$ will be called polynomial differential operators on V.

Now, we consider differential operators on $V_{\boldsymbol{c}}$. We define the differential operator ∂^{\prime} on $V_{\boldsymbol{C}}$ such that $\left(\partial^{\prime}(e) f\right)(z)=\left.\frac{d}{d t}\right|_{t=0} f(z+t e)$ for any $e \in V_{\boldsymbol{C}}, z \in V_{\boldsymbol{C}}$, $f \in C^{\infty}\left(V_{\boldsymbol{c}}\right)$ and $t \in \boldsymbol{R}$. Then, for $e \in V_{\boldsymbol{c}}, \partial^{\prime}(e)$ is a first order C^{∞}-differential operator on $V_{\boldsymbol{C}}$. So we can define a C^{∞}-differential operator $\tilde{\partial}(e)$ on $V_{\boldsymbol{C}}$ such that $\tilde{\partial}(e)=\frac{1}{2}\left(\partial^{\prime}(e)-\partial^{\prime}(i e)\right)$ for $e \in V$, where $i=\sqrt{-1}$. Then $\tilde{\partial}(e)$ is a holomorphic differential operator on $V_{\boldsymbol{c}}$ for each $e \in V$. Indeed, for each $z \in V_{\boldsymbol{C}}$, let $\operatorname{Hol}_{z}\left(V_{c}\right)$ be a subspace (of $T_{z}^{c}\left(V_{c}\right)$) of all elements v such that $J_{z}(v)=i v$, where $T_{z}^{c}\left(V_{\boldsymbol{c}}\right)$ is the complexification of the tangent space $T_{z}\left(V_{\boldsymbol{c}}\right)$ of $V_{\boldsymbol{c}}$ at z in $V_{\boldsymbol{C}}$ and J_{z} the canonical complex structure. It is easily seen that $(\tilde{\partial}(e))_{z} \in \operatorname{Hol}_{z}\left(V_{c}\right)$, for any $z \in V_{\boldsymbol{c}}$. Then it is obvious that the mapping $e \rightarrow \tilde{\partial}(e)$ can be extended uniquely to the algebraic isomorphism of $S\left(V_{\boldsymbol{c}}\right)$ (over C) into the algebra of holomorphic differential operators on $V_{\boldsymbol{c}}$. Let $\mathscr{D}_{P}\left(V_{\boldsymbol{c}}\right)$ denote the subalgebra of the algebra of holomorphic differential operators on V_{c} generated by $P\left(V_{c}\right) \cup$ $\tilde{\partial}\left(S\left(V_{c}\right)\right)$. Then we can identify $\mathscr{D}_{P}(V)$ with $\tilde{\mathscr{D}}_{P}\left(V_{c}\right)$ by the algebraic isomorphism defined by $p \partial(e) \rightarrow p \tilde{\partial}(e)$, for $p \in P\left(V_{c}\right)$ and $e \in S\left(V_{c}\right)$. In this paper, under the above identification, we use the same notation ∂. That is if f is a C^{∞}-function on $V_{\boldsymbol{c}}$, we write $(\partial(e)) f$ instead of $(\tilde{\partial}(e)) f$.

Let $\mathfrak{X}(V)$ be the Lie algebra of all C^{∞}-vector fields on V. Then $\mathscr{D}(V)$ $\supset \mathfrak{X}(V)$. We put $\mathfrak{X}_{P}(V)=\mathscr{D}_{P}(V) \cap \mathfrak{X}(V)$. Then $\mathfrak{X}_{P}(V)$ is a Lie subalgebra of $\mathfrak{X}(V)$. Let E denote the Euler's vector field over V, that is,

$$
E f(x)=\left.\frac{d}{d t}\right|_{t=0} f(x+t x) \quad\left(f \in C^{\infty}(V), x \in V, t \in \boldsymbol{R}\right) .
$$

We denote by $\mathfrak{X}_{P}^{0}(V)$ the Lie algebra of all vector fields $X\left(\in \mathfrak{X}_{P}(V)\right)$ such
that $[E, X]=0$, where $\left[D_{1}, D_{2}\right]=D_{1} D_{2}-D_{2} D_{1}$. Indeed, if $X, Y \in \mathscr{X}_{P}^{0}(V)$ then

$$
[E,[X, Y]]=[X,[E, Y]]+[[E, X], Y]=0 \quad \text { (Jacobi's identity). }
$$

Hence $[X, Y] \in \mathfrak{X}_{P}^{0}(V)$.
Let $\mathfrak{X}_{P}^{0}(V ; \boldsymbol{R})$ denote the Lie subalgebra (over \boldsymbol{R}) (of $\mathfrak{X}_{P}^{0}(V)$) of all vector fields $X \in \mathfrak{X}_{P}^{0}(V)$ such that $X f$ is a real-valued function for any real-valued function f. Then it is clear that $\mathfrak{X}_{P}^{0}(V ; \boldsymbol{R})$ is a real form of $\mathfrak{X}_{P}^{0}(V)$.

Let $\mathfrak{g l}(V)$ be the Lie algebra of all linear transformations of V into itself. We define a mapping $\varphi ; \mathfrak{g l}(V) \rightarrow \mathscr{D}(V)$ by

$$
(\varphi(T) f)(x)=\left.\frac{d}{d t}\right|_{t=0} f(x-t T(x)) \quad\left(T \in \mathfrak{g l}(V), x \in V, f \in C^{\infty}(V)\right) .
$$

Proposition 2.1. φ is a Lie algebra isomorphism of $\operatorname{gl}(V)$ onto $\mathfrak{X}_{P}^{0}(V ; \boldsymbol{R})$.
Proof. Choose a basis v_{1}, \cdots, v_{n} of V. For each $T \in \mathfrak{g l}(V)$, let $M(T)$ be a matrix representation of T with respect to this basis $\left\{v_{1}, \cdots, v_{n}\right\}$; That is $M(T)$ $=\left(a_{i j}(T)\right)$, where $T v_{i}=\sum a_{j i}(T) v_{j}$. We identify V with R^{n} by the mapping; $x=x_{1} v_{1}+\cdots+x_{n} v_{n} \mapsto\left(x_{1}, \cdots, x_{n}\right)$. Under this identification, we have the following expression;

$$
\varphi(T)=-\left(x_{1}, \cdots, x_{n}\right)\left[\begin{array}{ccc}
a_{11}(T) \cdots & a_{n 1}(T) \\
\vdots & \vdots \\
a_{1 n}(T) \cdots & a_{n n}(T)
\end{array}\right]\left[\begin{array}{c}
\partial / \partial x_{1} \\
\vdots \\
\partial / \partial x_{n}
\end{array}\right]
$$

The above expression may be written simply

$$
\varphi(T)=-x^{t} M(T) \frac{\partial}{\partial x}
$$

It is easily seen that $\varphi(T) \in \mathfrak{X}_{P}^{0}(V ; \boldsymbol{R})$ and φ is a linear map. Moreover if $\varphi(T)$ $=0$ it is obvious that $T=0$. Hence φ is injective. Since $\operatorname{dim} \mathfrak{g l}(V)=n^{2}$ and $\operatorname{dim} \mathfrak{X}_{P}^{0}(V ; \boldsymbol{R})=n^{2}$, it follows that φ is bijective. Finally, we shall show that φ is a Lie algebra homomorphism. Indeed, for $S, T \in \mathfrak{g l}(V)$,

$$
\begin{aligned}
& \varphi([S, T])=-x^{t} M([S, T]) \frac{\partial}{\partial x}=-x^{t}(M(S) M(T)-M(T) M(S)) \frac{\partial}{\partial x} \\
& \quad=x\left[{ }^{t} M(S),{ }^{t} M(T)\right] \frac{\partial}{\partial x}=\left[-x^{t} M(S) \frac{\partial}{\partial x},-x^{t} M(T) \frac{\partial}{\partial x}\right]=[\varphi(S), \varphi(T)]
\end{aligned}
$$

Since the above proof is independent of the choice of a basis, the proposition is proved.

Remark. Let $\mathfrak{g l}(V)_{c}$ be the complexification of $\mathfrak{g l}(V)$. But, whenever convenient, we can regard an element of $\mathfrak{g l}(V)_{c}$ also as a C-linear transformation on V_{c}. We recall that $\mathfrak{X}_{P}^{0}(V)$ is the complexification of $\mathfrak{X}_{P}^{0}(V ; \boldsymbol{R})$. Thus φ can be extended uniquely to a Lie algebra isomorphism (over \boldsymbol{C}) of $\mathfrak{g l}(V)_{c}$ onto $\mathfrak{X}_{P}^{0}(V)$. Under the identification of $\mathscr{D}_{P}(V)$ with $\mathscr{\mathscr { D }}_{P}\left(V_{c}\right)$, we regard $X \in \mathfrak{X}_{P}^{0}(V)$ as a holomorphic vector field on $V_{\boldsymbol{c}}$.

For each $e \in S\left(V_{C}\right)$, let μ_{e} be the derivation of $\mathscr{D}_{P}(V)$ given by $\mu_{e}(D)$ $=[\partial(e), D]\left(D \in \mathscr{D}_{P}(V)\right)$. On the other hand, for each $q \in P^{1}\left(V_{c}\right)$, there exists unique derivation δ_{q} of $S\left(V_{c}\right)$ such that $\delta_{q}(v)=\langle v, q\rangle\left(v \in V_{c}\right)$, where $\langle v, q\rangle$ $=v(v)(q)(0)$. Let m be a positive integer, then we have

Proposition 2.2. If $q_{j} \in P^{1}\left(V_{c}\right)(1 \leq j \leq m)$ then

$$
\mu_{e}^{m}\left(q_{1} \cdots q_{m}\right)=m!\partial\left(\delta_{q_{1}}(e) \cdots \delta_{q_{m}}(e)\right)
$$

for any $e \in S\left(V_{c}\right)$.
Proof. We shall prove the proposition by induction on m. Let 3 be a subalgebra (of $\mathscr{D}_{P}(V)$) of all polynomial differential operators D such that $[\partial(v), D]=0$ for any $v \in V_{c}$. It is obvious that $\partial\left(S\left(V_{c}\right)\right) \subset 3$. Conversely, if $D \in \mathcal{3}$ there exist $q_{j} \in P\left(V_{c}\right)$ and $e_{j} \in S^{j}\left(V_{c}\right)$ such that $D=\sum q_{j} \partial\left(e_{j}\right)$ and $\sum \partial v\left(q_{j}\right) \partial e_{j}=0$ for any $v \in V_{\boldsymbol{c}}$. Hence $\partial v\left(q_{j}\right)=0$ for any $v \in V_{\boldsymbol{C}}$ (for any j such that $\left.e_{j} \neq 0\right)$. Then $q_{j} \in P^{0}\left(V_{c}\right)(=C)$, for any j such that $e_{j} \neq 0$. Therefore 3 $=\partial\left(S\left(V_{c}\right)\right)$.

Let $v \in V_{c}, q \in P^{1}\left(V_{c}\right)$ and $e \in S\left(V_{c}\right)$ then

$$
[\partial v,[\partial e, q]]=[\partial e,[\partial v, q]]+[[\partial v, \partial e], q]=[\partial e,\langle v, q\rangle]=0 .
$$

Hence $[\partial e, q] \in 3$. Therefore $[\partial e, q] \in \partial\left(S\left(V_{c}\right)\right)$ for any $e \in S\left(V_{c}\right)$ and $q \in P^{1}\left(V_{c}\right)$.
Let $m=1$. From the above argument, for each $q \in P^{1}\left(V_{c}\right)$, we can define a linear map τ_{q} of $S\left(V_{c}\right)$ into itself such that $\tau_{q}(e)=\partial^{-1}[\partial e, q]$. Moreover τ_{q} is a derivation of $S\left(V_{c}\right)$. Indeed, since $\partial^{-1}\left[\partial e_{1} e_{2}, q\right]=\partial^{-1}\left\{\partial e_{1}\left[\partial e_{2}, q\right]\right.$ $\left.+\left[\partial e_{1}, q\right] \partial e_{2}\right\}=e_{1} \partial^{-1}\left[\partial e_{2}, q\right]+e_{2} \partial^{-1}\left[\partial e_{1}, q\right]$, we have $\tau_{q}\left(e_{1} e_{2}\right)=e_{1} \tau_{q}\left(e_{2}\right)$ $+e_{2} \tau_{q}\left(e_{1}\right)$ for any $e_{1}, e_{2} \in S\left(V_{c}\right)$.

On the other hand, $\tau_{q}(v)=\partial^{-1}[\partial v, q]=\langle v, q\rangle$ for any $v \in V_{c}$. Therefore $\tau_{q}=\delta_{q}$ for any $q \in P^{1}\left(V_{c}\right)$. It follows that $[\partial e, q]=\partial \delta_{q}(e)$, for any $q \in P^{1}\left(V_{c}\right)$.

Now, let $q_{1}, \cdots, q_{m} \in P^{1}\left(V_{c}\right)$ and $e \in S^{1}\left(V_{c}\right)$, we have

$$
\mu_{e}^{m}\left(q_{1} \cdots q_{m}\right)=\sum_{0 \leq k \leq m}\binom{m}{k} \mu_{e}^{k}\left(q_{1} \cdots q_{m-1}\right) \mu_{e}^{m-k}\left(q_{m}\right),
$$

from the Leibniz rule for derivations. But, if $m \geq 2$ then

$$
\mu_{e}^{m}\left(q_{1} \cdots q_{m-1}\right)=0 \quad \text { and } \quad \mu_{e}^{m-k}\left(q_{m}\right)=0 \quad \text { for } 0 \leq k \leq m-2,
$$

because $\mu_{e}^{m-1}\left(q_{1} \cdots q_{m-1}\right)=(m-1)!\partial\left(\delta_{q_{1}}(e) \cdots \delta_{q_{m-1}}(e)\right)$ and $\mu_{e}\left(q_{m}\right)=\partial \delta_{q_{m}}(e)$ by induction hypothesis. Hence

$$
\mu_{e}^{m}\left(q_{1} \cdots q_{m}\right)=m \mu_{e}^{m-1}\left(q_{1} \cdots q_{m-1}\right) \mu_{e}\left(q_{m}\right)=m!\partial\left(\delta_{q_{1}}(e) \cdots \delta_{q_{m}}(e)\right) .
$$

Therefore the proposition is proved.
Let v_{1}, \cdots, v_{n} be a basis of V_{C}. Since B is a symmetric non-degenerate bilinear form, we can choose a basis u_{1}, \cdots, u_{n} such that $B\left(v_{i}, u_{j}\right)=\delta_{i, j}$, where $\delta_{i, j}$ is the Kronecker's δ.
Put

$$
\omega=\frac{1}{2} \sum_{1 \leq i \leq n} u_{i} v_{i} \in S^{2}\left(V_{c}\right) .
$$

This element ω is independent of a choice of a basis and is called the Casimir element. Then we have the following

Lemma 2.3. If $q \in P^{m}\left(V_{\boldsymbol{c}}\right)$ then $\mu_{\omega}^{m}(q)=m!\partial\left(v^{-1}(q)\right)$.
Proof. First we will show that $\delta_{q}(\omega)=v^{-1}(q)$ for any $q \in P^{1}\left(V_{c}\right)$. From the definition of δ_{q},

$$
\begin{aligned}
v \delta_{q}(\omega) & =\frac{1}{2} v \sum\left\{\delta_{q}\left(u_{i}\right) v_{i}+\delta_{q}\left(v_{i}\right) u_{i}\right\} \\
& =\frac{1}{2} \sum\left\{\left\langle u_{i}, q\right\rangle v\left(v_{i}\right)+\left\langle v_{i}, q\right\rangle v\left(u_{i}\right)\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
v \delta_{q}(\omega)(z) & =\frac{1}{2} \sum\left\{q\left(u_{i}\right) B\left(v_{i}, z\right)+q\left(v_{i}\right) B\left(u_{i}, z\right)\right\} \\
& =\frac{1}{2} q\left(\sum\left\{B\left(v_{i}, z\right) u_{i}+B\left(u_{i}, z\right) v_{i}\right\}\right) .
\end{aligned}
$$

But $\quad \sum B\left(v_{i}, z\right) u_{i}=\sum B\left(u_{i}, z\right) v_{i}=z$. Therefore $\quad \delta_{q}(\omega)=v^{-1}(q)$ for any $q \in P^{1}\left(V_{c}\right)$. Next, from Proposition 2.2, we have

$$
\mu_{\omega}^{m}(q)=\mu_{\omega}^{m}\left(q_{1} \cdots q_{m}\right)=m!\partial\left(v^{-1}\left(q_{1}\right) \cdots v^{-1}\left(q_{m}\right)\right)=m!\partial\left(v^{-1}(q)\right),
$$

for $q=q_{1} \cdots q_{m}\left(q_{i} \in P^{1}\left(V_{c}\right), 1 \leq i \leq m\right)$.
This shows that if $q \in P^{m}\left(V_{c}\right)$, then $\mu_{\omega}^{m}(q)=m!\partial\left(v^{-1}(q)\right)$.
Remark. Under the identification of $\mathscr{D}_{P}(V)$ with $\tilde{\mathscr{D}}_{P}\left(V_{c}\right)$, we have

$$
\tilde{\mu}_{e}^{m}\left(q_{1} \cdots q_{m}\right)=m!\tilde{\partial}\left(\delta_{q_{1}}(e) \cdots \delta_{q_{m}}(e)\right) \text { and } \tilde{\mu}_{\omega}^{m}(q)=m!\tilde{\delta}\left(v^{-1}(q)\right)
$$

where $\tilde{\mu}_{e}$ is the derivation of $\tilde{\mathscr{D}}_{P}\left(V_{c}\right)$ such that $\tilde{\mu}_{e}(D)=[\tilde{\jmath} e, D]$.

§3. Analytic solutions

Let θ be a Cartan involution of g such that $\theta \sigma=\sigma \theta$ (see $\S 0$, for the notations $\mathfrak{g}, \mathfrak{h}, \mathfrak{q}, \sigma$). Then $\mathfrak{h}=\mathfrak{h} \cap \mathfrak{f}+\mathfrak{h} \cap \mathfrak{p}$ (direct sum) and $\mathfrak{q}=\mathfrak{q} \cap \mathfrak{p}+\mathfrak{q} \cap \mathfrak{f}$ (direct sum), where $\mathfrak{f}=\{X \in \mathfrak{g} ; \theta X=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g}: \theta X=-X\}$. It is clear that

$$
\begin{array}{ll}
\mathfrak{h}_{\boldsymbol{c}}=\mathfrak{h} \cap \mathfrak{f}+\mathfrak{h} \cap \mathfrak{p}+i \mathfrak{h} \cap \mathfrak{f}+i \mathfrak{h} \cap \mathfrak{p} & \text { (direct sum as real vector spaces), } \\
\mathfrak{q}_{\boldsymbol{c}}=\mathfrak{q} \cap \mathfrak{f}+\mathfrak{q} \cap \mathfrak{p}+i \mathfrak{q} \cap \mathfrak{f}+i \mathfrak{q} \cap \mathfrak{p} & \text { (direct sum as real vector spaces). }
\end{array}
$$

Set $\mathfrak{f}^{d}=\mathfrak{h} \cap \mathfrak{f}+\mathfrak{h} \cap \mathfrak{p}, \mathfrak{p}^{d}=\mathfrak{q} \cap \mathfrak{p}+i \mathfrak{q} \cap \mathfrak{f}$ and $\mathfrak{g}^{d}=\mathfrak{f}^{d}+\mathfrak{p}^{d}$. Let G^{d} (or $G_{\boldsymbol{c}}^{d}$) be the connected adjoint group of g^{d} (or g_{c}^{d}) and K^{d} (or K_{c}^{d}) the connected Lie subgroup of G^{d} (or G_{c}^{d}) with Lie algebra $a d \mathfrak{f}^{d}$ (or $a d \mathfrak{f}_{c}^{d}$), respectively. It is known that the pair $\left(G^{d}, K^{d}\right)$ is a Riemannian symmetric pair with the Cartan involution σ and the Killing form of \mathfrak{g}^{d} is the restriction of the Killing form B of $\mathrm{g}_{\boldsymbol{c}}$. We define the linear map ξ (over \boldsymbol{R}) of $\mathrm{g}_{\boldsymbol{c}}$ into $\mathrm{g}_{\boldsymbol{c}}^{\boldsymbol{d}}$ such that

$$
\begin{array}{ll}
\xi(e \otimes a)=e \otimes a & \text { for } e \in \mathfrak{h} \cap \mathfrak{f}+\mathfrak{q} \cap \mathfrak{p}, a \in \boldsymbol{C} \\
\xi(e \otimes a)=(i e) \otimes(-i a) & \text { for } e \in \mathfrak{h} \cap \mathfrak{p}+\mathfrak{q} \cap \mathfrak{f}, a \in \boldsymbol{C} .
\end{array}
$$

Then it is easily seen that ξ is a linear isomorphism (over \boldsymbol{C}) of $\mathfrak{g}_{\boldsymbol{c}}$ onto $\mathfrak{g}_{\boldsymbol{c}}^{d}$. By restricting this map ξ, we have the linear isomorphisms (over \boldsymbol{C}) of $\mathfrak{h}_{\boldsymbol{c}}$ onto $\mathfrak{f}_{\boldsymbol{c}}^{\boldsymbol{d}}$ and of $\mathfrak{q}_{\boldsymbol{c}}$ onto $\mathfrak{p}_{\boldsymbol{c}}^{\boldsymbol{d}}$. Moreover, it is obvious that this map ξ can be extended uniquely to the algebraic isomorphism (over C) of $S\left(q_{c}\right)$ onto $S\left(p_{c}^{d}\right)$ and the map ξ of $\mathfrak{b}_{\boldsymbol{c}}$ onto $\mathfrak{E}_{\boldsymbol{c}}^{d}$ induces a Lie group isomorphism of $H_{\boldsymbol{c}}$ onto $K_{\boldsymbol{c}}^{\boldsymbol{d}}$. One can easily see that for any $h \in \mathfrak{h}_{\boldsymbol{c}}$ and $e \in S\left(\mathfrak{q}_{\boldsymbol{c}}\right) \xi([h, e])=[\xi(h), \xi(e)]$. Hence the restriction of ξ to $S_{H}\left(q_{\boldsymbol{c}}\right)$ is an algebraic isomorphism (over C) of $S_{H}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ onto $\quad S_{K^{d}}\left(p_{c}^{d}\right)$. Indeed, if $e \in S_{H}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ then $\xi(e) \in S_{K^{d}}\left(\mathfrak{p}_{\boldsymbol{c}}^{d}\right)$ by the above equality. Conversely, if $e \in S_{K^{d}}\left(\mathfrak{p}_{c}^{d}\right)$ then $\xi^{-1}(e) \in S_{H}\left(q_{c}\right)$ by the above equality. Let μ be the algebraic isomorphism of $S_{K^{d}}\left(p_{c}^{d}\right)$ onto $P_{K^{d}}\left(p_{c}^{d}\right)$ defined by the same way as the map v. Then it is easily seen that for any $e \in S_{H}\left(\mathfrak{q}_{c}\right)$ and $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$ we have $v(e)(\lambda)=\mu(\xi(e))(\xi(\lambda))$, because $B(\xi(e), \xi(\lambda))=B(e, \lambda)$ for any $e \in \mathfrak{q}_{\boldsymbol{c}}$ and $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$.

Let φ (or ψ) be the Lie isomorphism (over \boldsymbol{R}) of $\mathfrak{g l}(\mathfrak{q})$ (or $\mathfrak{g l}\left(\mathfrak{p}^{d}\right)$) onto $\mathfrak{X}_{P}^{0}(\mathfrak{q} ; \boldsymbol{R})$ (or $\mathfrak{X}_{P}^{0}\left(\mathfrak{p}^{d} ; \boldsymbol{R}\right)$) defined in $\S 2$, respectively. Then we have the Lie isomorphism φ (or ψ) (over (\boldsymbol{C}) of $a d \mathfrak{h}_{\boldsymbol{c}}$ (or $a d \mathfrak{f}_{\boldsymbol{c}}^{\boldsymbol{d}}$) onto $\varphi\left(a d \mathfrak{h}_{\boldsymbol{c}}\right)$ (or $\psi\left(a d \mathfrak{f}_{\boldsymbol{c}}^{\boldsymbol{d}}\right)$) whose restriction to $a d \mathfrak{h}$ (or $a d \mathfrak{f}^{d}$) is a Lie isomorphism (over \boldsymbol{R}) of $a d \mathfrak{h}$ (or $\left.a d \mathfrak{f}^{d}\right)$ onto $\varphi\left(a d \mathfrak{h}^{d}\right)$ (or $\psi\left(a d \mathfrak{f}^{d}\right)$), respectively.

Let V be a real vector space and \mathfrak{a} is a Lie subalgebra of $\mathfrak{g l}(V)$. We denote by $a(U)$ the vector space of all analytic functions on U which is an open
subset of V and $a^{a}(U)$ the vector space of all $\varphi_{V}(\mathfrak{a})$-invariant analytic functions on U (where φ_{V} is defined by Proposition 2.1). Let A be a connected Lie subgroup of $G L(V)$ corresponding with the Lie algebra \mathfrak{a}. If U is A-invariant (that is, $a x \in U$ for any $a \in A$ and $x \in U$), we denote by $a^{A}(U)$ the vector subspace (of $a(U)$) of all A-invariant analytic functions on U.

Let U be an open subset of $\mathfrak{q}_{\boldsymbol{c}}$. Then $\xi(U)$ is an open subset of $\mathfrak{p}_{\boldsymbol{c}}^{d}$. Let $\mathcal{O}(U)(\operatorname{or} \mathcal{O}(\xi(U)))$ be the vector space of all holomorphic functions on U (or $\xi(U)$), respectively. Then it is obvious that ξ^{*} is a linear isomorphism of $\mathcal{O}(\xi(U))$ onto $\mathcal{O}(U)$, where $\left(\xi^{*} F\right)(z)=F(\xi(z))$ for any $F \in \mathcal{O}(\xi(U))$ and $z \in U$.

Lemma 3.1. For any $h \in \mathfrak{h}_{\boldsymbol{c}}, F \in \mathcal{O}(\xi(U))$ and $z \in U$, we have

$$
\left(\varphi(a d h)\left(\xi^{*} F\right)\right)(z)=(\psi(a d \xi(h)) F)(\xi(z)) .
$$

Proof. From the definition of φ (or ψ), we have

$$
\begin{aligned}
\left(\varphi(a d h)\left(\xi^{*} F\right)\right)(z) & =\left.\frac{d}{d t}\right|_{t=0}(F \circ \xi)(z-t[h, z]) \\
& =\left.\frac{d}{d t}\right|_{t=0} F(\xi(z)-t[\xi(h), \xi(z)]) \\
& =(\psi(\operatorname{ad} \xi(h)) F)(\xi(z))
\end{aligned}
$$

for any $h \in \mathfrak{h}_{\boldsymbol{C}}, F \in \mathcal{O}(\xi(U))$ and $z \in U$, since F is holomorphic. This implies the lemma.

For each $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$ (or $\lambda^{\prime} \in \mathfrak{p}_{\boldsymbol{c}}^{\boldsymbol{d}}$) and an open subset U of \mathfrak{q} (or \mathfrak{p}^{d}), we denote by $a_{\lambda}(U)$ (or $a_{\lambda^{\prime}}(U)$) the vector space of all analytic functions f such that for any $e \in S_{H}\left(\mathfrak{q}_{c}\right)\left(\right.$ or $\left.e \in S_{K^{d}}\left(\mathfrak{p}_{c}^{d}\right)\right)(\partial e) f=v(e)(\lambda) f($ or $(\partial e) f=\mu(e)(\lambda) f)$, respectively. Set $a_{\lambda}{ }^{H}(U)=a_{\lambda}(U) \cap a^{H}(U), a_{\lambda^{\prime}}^{K^{d}}\left(U^{\prime}\right)=a_{\lambda^{\prime}}\left(U^{\prime}\right) \cap a^{K^{d}}\left(U^{\prime}\right), \quad a_{\lambda}^{h}(U)=a_{\lambda}(U)$ $\cap a^{\mathfrak{h}}(U)$ and $a_{\lambda^{\prime}}^{\mathrm{fd}}\left(U^{\prime}\right)=a_{\lambda^{\prime}}\left(U^{\prime}\right) \cap a^{\mathrm{td}^{d}}\left(U^{\prime}\right)$, for each open subset U of \mathfrak{q} and U^{\prime} of \mathfrak{p}^{d}.

It is well known that if $f \in a(\mathfrak{q})$ then there exist a domain U of $\mathfrak{q}_{\boldsymbol{c}}$ and unique holomorphic function $F \in \mathcal{O}(U)$ such that $U \cap \mathfrak{q}=\mathfrak{q}$ and f is the restriction of F to \mathfrak{q}. Set $\tilde{F}=\left(\xi^{-1}\right)^{*} F$. Then \tilde{F} is a holomorphic function on $\xi(U)$. Set $W=\xi(U) \cap \mathfrak{p}^{d}$. Then W is an open subset of \mathfrak{p}^{d} and $0 \in W$. Let g be the restriction of \tilde{F} to W. Then g is an analytic function on W. In this section we call that g is a pure imaginary analytic continuation of f.

Lemma 3.2. If $f \in a_{\lambda}^{H}(\mathfrak{q})$ then $g \in a_{\xi(\lambda)}^{t d}(W)$.
Proof. Let $f \in a^{H}(\mathfrak{q})$. Then $\varphi(a d h) f=0$ on \mathfrak{q}, for any $h \in \mathfrak{h}$. It is obvious that $\varphi(a d h) F=0$ on U for any $h \in \mathfrak{h}_{\boldsymbol{c}}$. Here $\varphi(a d h)$ is regarded as a holomorphic vector field (see Remark of Proposition 2.1). From Lemma 3.1, we have $\psi(a d \xi(h)) \tilde{F}=0$ on $\xi(U)$ for any $h \in \mathfrak{h} \boldsymbol{c}$, where $\tilde{F}=\left(\xi^{-1}\right)^{*} F$. Hence
$\psi(a d k) \tilde{F}=0$ on $\xi(U)$ for any $k \in \mathfrak{f}^{d}$, since ξ is bijective. It implies that $\psi(a d k) g=0$ on W for any $k \in \mathfrak{f}^{d}$. Therefore $g \in a^{\mathrm{I}^{d}}(W)$.

Let $f \in a_{\lambda}(\mathfrak{q})$. Then $(\partial e) F=v(e)(\lambda) F$ on U for any $e \in S_{H}\left(q_{c}\right)$. Here ∂e is regarded as a holomorphic differential operator (see §2). Indeed, the restricted function of $\partial(e) F-v(e)(\lambda) F$ to \mathfrak{q} is zero on \mathfrak{q}, since $(\partial e) f=v(e)(\lambda) f$ on \mathfrak{q}. But $\partial(e) F-v(e)(\lambda) F$ is holomorphic on U. Hence $(\partial e) F-v(e)(\lambda) F=0$ on U from the identity theorem for an analytic function. On the other hand, it is easily seen that for any $e \in S\left(q_{c}\right)$ and $z \in U$ we have $(\partial e)\left(\xi^{*} \tilde{F}\right)(z)=\partial(\xi e) \tilde{F}(\xi(z))$. Hence, for any $e \in S_{H}\left(\mathrm{q}_{c}\right)$ and $z \in U$, we have $\partial(\xi e) \widetilde{F}(\xi(z))=v(e)(\lambda) \widetilde{F}(\xi(z))$, since $\tilde{F}=\left(\xi^{-1}\right)^{*} F$. Therefore, by restricting the above equality to $\xi(U) \cap \mathfrak{p}^{d}$, we have $\partial(\xi e) g=v(e)(\lambda) g$ on W for any $e \in S_{H}\left(q_{c}\right)$. This implies that $g \in a_{\xi(\lambda)}(W)$, because $v(e)(\lambda)=\mu(\xi e)(\xi \lambda)$ and ξ is bijective. Therefore the lemma is proved.

Let B be the restricted Killing form of \mathfrak{p}^{d}. It is easily seen that B is a positive definite symmetric bilinear form on \mathfrak{p}^{d}. Since $0 \in W$ and W is an open subset of \mathfrak{p}^{d}, there exists a positive number r such that if $B(x, x)<r$ and $x \in \mathfrak{p}^{d}$ then $x \in W$. We fix r. But r is dependent on a given analytic function f, since W is so. Let W_{0} be a (connected open) subset (of W) of all elements $x \in \mathfrak{p}^{d}$ such that $B(x, x)<r$. Then W_{0} is a K^{d}-invariant open subset, since B is K^{d} invariant. We have the following lemma by the usual way in the analysis of Lie groups (see [6] or [11]).

Lemma 3.3. For any $\eta \in \mathfrak{p}^{d}$, we have

$$
a_{\eta}^{\mathrm{Id}^{d}}\left(W_{0}\right)=a_{\eta}^{K^{d}}\left(W_{0}\right) \quad \text { and } \quad \operatorname{dim} a_{\eta}^{k^{d}}=1 .
$$

Proof. For each $e \in S\left(p_{c}^{d}\right)$, set $\rho(e)=\int_{K^{d}} k e d k$, where $d k$ is the normalized Haar measure of K^{d} such that $\int_{K^{d}} d k=1$. Then ρ is the projection of $S\left(p_{c}^{d}\right)$ onto $S_{K^{d}}\left(\mathfrak{p}_{\boldsymbol{c}}^{d}\right)$. Let $u \in a_{\eta}^{K^{d}}\left(W_{0}\right)$. Then for any $e \in S\left(\mathfrak{p}_{\boldsymbol{c}}^{\boldsymbol{d}}\right)$,

$$
\begin{aligned}
\mu(\rho(e)) u(0) & =(\partial(\rho(e)) u)(0)=\int_{K^{d}}\left(L_{k} \circ \partial e \circ L_{k^{-1}}\right) u(0) d k \\
& \left.=\int_{K^{d}}(\partial e) u\right)(0) d k=(\partial e) u(0),
\end{aligned}
$$

where $\left(L_{k} u\right)(x)=u\left(k^{-1} x\right)\left(x \in p^{d}\right)$. This implies that if $u(0)=0$ then $u=0$ on W_{0}, since W_{0} is connected. Therefore $\operatorname{dim} a_{\eta}^{K^{d}}\left(W_{0}\right) \leq 1$ for any $\eta \in \mathfrak{p}_{\boldsymbol{c}}^{d}$. It is obvious that $a_{\eta}^{K^{d}}\left(W_{0}\right) \subset a_{\eta}^{\text {td }^{d}}\left(W_{0}\right)$. But if $u \in a_{\eta}^{\text {td }^{d}}\left(W_{0}\right)$ then $u \in a_{\eta}^{K^{d}}\left(W_{0}\right)$. Indeed, for any $X \in \mathfrak{f}^{d}$ and $x \in W_{0}$,

$$
\frac{d}{d t} u\left(e^{t X} x\right)=\left.\frac{d}{d s}\right|_{s=0} u\left(e^{s X} e^{t X} x\right)=(\psi(a d X) u)\left(e^{t X} x\right)=0
$$

Hence $u\left(e^{X} x\right)-u(x)=\int_{0}^{1} \frac{d}{d t} u\left(\operatorname{Ad}\left(e^{t X}\right) x\right) d t=0$ for any $X \in \mathfrak{f}^{d}$ and $x \in W_{0}$. This implies that u is K^{d}-invariant, since K^{d} is connected. Thus we have $a_{\eta}^{\text {td }}\left(W_{0}\right)$ $=a_{\eta}^{K^{d}}\left(W_{0}\right)$ for any $\eta \in \mathfrak{p}_{\boldsymbol{C}}^{\boldsymbol{d}}$.

For any $\eta \in \mathfrak{p}_{\boldsymbol{c}}^{d}$ and $w \in \mathfrak{p}_{\boldsymbol{c}}^{d}$, set

$$
\Psi_{\eta}(w)=\int_{K^{d}} e^{B(k w, \eta)} d k
$$

Then it is clear that Ψ_{η} is an entire holomorphic function of $\mathfrak{p}_{\boldsymbol{c}}^{d}$ such that $\Psi_{\eta}(0)$ $=1$.Moreover Ψ_{η} is $K_{\boldsymbol{c}}^{d}$-invariant. Indeed it is trivial that Ψ_{η} is K^{d}-invariant. But, for each $w \in \mathfrak{p}_{\boldsymbol{C}}^{d}$, it is obvious that the function $\Psi_{\eta}(k w)-\Psi_{\eta}(w)$ of $K_{\boldsymbol{C}}^{d}$ is an entire holomorphic function on $K_{\boldsymbol{C}}^{d}$, since the adjoint action of $K_{\boldsymbol{C}}^{\boldsymbol{d}}$ on $\mathfrak{p}_{\boldsymbol{C}}^{d}$ is holomorphic. Hence $\Psi_{\eta}(k w)-\Psi_{\eta}(w)=0$ for any $w \in \mathfrak{p}_{c}^{d}$ and $k \in K_{c}^{d}$ from the identity theorem for an analytic function. Therefore Ψ_{η} is $K_{\boldsymbol{c}}^{d}$-invariant. Moreover, it is easily seen that $(\partial e) e^{B(k w, \eta)}=B(k e, \eta) e^{B(k w, \eta)}$ for any $e \in \mathfrak{p}_{C}^{d}$ and $k \in K^{d}$. Thus if $e \in S_{K^{d}}\left(\mathfrak{p}_{\boldsymbol{c}}^{\boldsymbol{d}}\right)$ then $(\partial e) e^{B(k w, \eta)}=\mu(e)(\eta) e^{B(k w, \eta)}$. Therefore $(\partial e) \Psi_{\eta}$ $=\mu(e)(\eta) \Psi_{\eta}$ for any $e \in S_{K^{d}}\left(\mathfrak{p}_{c}^{d}\right)$. Let g_{η} be the restriction of Ψ_{η} to W_{0}. Then it is obvious that $g_{\eta} \in a_{\eta}^{K^{d}}\left(W_{0}\right)$ and $g_{\eta}(0)=1$. Hence the lemma is proved.

Now we have the following.
Theorem 3.4. $\operatorname{dim} a_{\lambda}^{H}(\mathfrak{q})=1$ for any $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$.
Proof. Let $f_{i} \in a_{\lambda}^{H}(\mathfrak{q})(i=1,2)$. Then there exist K^{d}-invariant open connected subset $W_{i}(i=1,2)$ of \mathfrak{p}^{d} and analytic functions $g_{i} \in a_{\xi(\lambda)}^{\mathrm{Id}}\left(W_{i}\right)$ such that $0 \in W_{i}$ and g_{i} is the pure imaginary analytic continuation of $f_{i}(i=1,2)$. Put $c_{i}=f_{i}(0)\left(=g_{i}(0)\right)(i=1,2), f=c_{2} f_{1}-c_{1} f_{2}, g=c_{2} g_{1}-c_{1} g_{2}$ and $W=W_{1}$ $\cap W_{2}$. Then it is obvious that $f \in a_{\lambda}^{H}(\mathfrak{q}), g$ is the pure imaginary analytic continuation of f and $g \in a_{\xi(\lambda)}^{\mathrm{td}}(W)$. But $g=0$ on W, since $g(0)=0$. From the identity theorem for an analytic function, we have $f=0$ on \mathfrak{q}. It implies that $\operatorname{dim} a_{\lambda}^{H}(\mathfrak{q}) \leq 1$ for any $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$.

Set $\Phi_{\lambda}=\xi^{*} \Psi_{\eta}$, where $\lambda=\xi^{-1}(\eta)$ (see Lemma 3.3, for the notations η, $\left.\Psi_{\eta}\right)$. Then Φ_{λ} is an $H_{\boldsymbol{c}}$-invariant entire holomorphic function of $\mathfrak{q}_{\boldsymbol{c}}$ and $(\partial e) \Phi_{\lambda}$ $=v(e)(\lambda) \Phi_{\lambda}$ for any $e \in S_{H}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$. Indeed, for any $z \in \mathfrak{q}_{\boldsymbol{c}}$, we have

$$
\Phi_{\lambda}(z)=\int_{K^{d}} e^{B(k \xi(z), \xi(\lambda))} d k
$$

Since Ψ_{η} is $K_{\boldsymbol{c}}^{\boldsymbol{c}}$-invariant and $\xi(h z)=\xi(h) \xi(z)$ for any $h \in H_{\boldsymbol{c}}$ and $z \in \mathfrak{q}_{\boldsymbol{c}}$, it is clear that Φ_{λ} is H_{c}-invariant. By the same way as Lemma 3.3, we have $(\partial e) \Phi_{\lambda}$
$=v(e)(\lambda) \Phi_{\lambda}$ on $\mathfrak{q}_{\boldsymbol{c}}$, for any $e \in S_{H}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$. Let f_{λ} be the restriction of Φ_{λ} to q . Then it is obvious that $f_{\lambda} \in a_{\lambda}^{H}(\mathfrak{q})$ and $f_{\lambda}(0)=1$. Therefore the theorem is proved.

Note that the technique described in this section is based on FlestedJensen's idea in [4].

§4. The definition of $\tilde{\mathbf{H}}$ and $\tilde{\mathfrak{h}}$

We consider a real semi-simple symmetric pair (G, H). We recall that g $=\mathfrak{h}+\mathfrak{q}$ and H is acting on \mathfrak{q} by the adjoint action. Let $P_{H}\left(q_{c}\right)$ (or $\left.S_{H}\left(q_{c}\right)\right)$ be a subalgebra of $P\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ (or $S\left(\mathfrak{q}_{\boldsymbol{c}}\right)$) of all H-invariant polynomials (or H-invariant elements) on q_{c} as the above H-action. Then from Chevalley's theorem, $P_{\boldsymbol{H}}\left(\mathfrak{q}_{\boldsymbol{C}}\right)=\boldsymbol{C}\left[p_{1}, \cdots, p_{l}\right]$, where p_{j} is a homogeneous polynomial and $\boldsymbol{C}\left[p_{1}, \cdots, p_{l}\right]$ is the polynomial ring $(l=\operatorname{rank} \mathfrak{q})$. Put $e_{i}=v^{-1}\left(p_{i}\right)(1 \leq i \leq l)$. Then $S_{H}\left(\mathfrak{q}_{\mathrm{c}}\right)$ is generated by $1, e_{1}, \cdots, e_{l}$.

Let $G L(\mathfrak{q})$ be the Lie group of all non-singular linear transformations on \mathfrak{q}. Then the Lie algebra of $G L(\mathfrak{q})$ is $\mathfrak{g l}(\mathfrak{q})$. Let H^{\prime} be the subgroup of $G L(\mathfrak{q})$ of all non-singular linear transformations T of q such that $P(T x)=P(x)$ for any $x \in \mathfrak{q}$ and $P \in P_{H}\left(q_{\boldsymbol{c}}\right)$. It is obvious that H^{\prime} is a closed subgroup of $G L(\mathfrak{q})$. Thus H^{\prime} is a Lie group. We denote by \tilde{H} the connected component of the Lie group H^{\prime}. Let $\operatorname{Ad}(H)$ be the Lie subgroup of $G L(\mathfrak{q})$ of all non-singular transformations $\operatorname{Ad}(h)(h \in H)$. Then the Lie algebra of $\operatorname{Ad}(H)$ is ad \mathfrak{h} which is a Lie subalgebra of $\mathfrak{g l}(\mathfrak{q})$ of all linear transformations $\operatorname{adx}(x \in \mathfrak{h})$. We assume H is connected. Then the definition of \tilde{H} implies that $\operatorname{Ad}(H)$ is a connected subgroup of \tilde{H}. Let $\tilde{\mathfrak{h}}$ be the Lie subalgebra of $\mathfrak{g l}(\mathfrak{q})$ of all elements X such that $\varphi(X) p=0$ for any $p \in P_{H}\left(q_{c}\right)$, where φ is defined in $\S 2$. Then it is clear that $\tilde{\mathfrak{h}}$ is the Lie algebra corresponding to \tilde{H} (or H^{\prime}) and $\tilde{\mathfrak{h}} \supset$ ad \mathfrak{h}.

Under the identification of $\mathscr{D}_{P}(\mathfrak{q})$ with $\widetilde{\mathscr{D}}_{P}\left(\mathfrak{q}_{c}\right)$ (see $\S 2$), the mapping $i_{z} ; e \mapsto(\partial e)_{z}$ is a linear isomorphism (over C) of \mathfrak{q}_{c} onto $\operatorname{Hol}_{z}\left(\mathfrak{q}_{c}\right)$ for any $z \in \mathfrak{q}_{\boldsymbol{c}}$. Let $\left[z, \mathfrak{h}_{\boldsymbol{c}}\right]$ be the subspace of $\mathfrak{q}_{\boldsymbol{c}}$ of all elements $[z, w](w \in \mathfrak{h} \boldsymbol{c})$ for each $z \in \mathfrak{q}_{\boldsymbol{c}}$ and $\operatorname{Hol}_{z}\left(\mathfrak{q}_{\boldsymbol{c}} ; I\right)$ the subspace of $\operatorname{Hol}_{z}\left(q_{\boldsymbol{c}}\right)$ of all elements v such that $(d p)_{z} v$ $=0$ for any $p \in P_{H}\left(q_{c}\right)$. Then we have the following.

Proposition 4.1. If $z \in \mathscr{R}_{\mathfrak{q}_{C}}$ then i_{z} gives a linear isomorphism of $\left[z, \mathfrak{h}_{c}\right]$ onto $\mathrm{Hol}_{z}\left(\mathfrak{q}_{\boldsymbol{c}} ; I\right)$.

Proof. It is trivial that the map i_{z} is linear and injective. But, it is obvious that $\operatorname{dim}_{\boldsymbol{c}}\left[z, \mathfrak{h}_{\boldsymbol{c}}\right] \leq n-l$ for any $z \in \mathfrak{q}_{\boldsymbol{c}}$ and $\operatorname{dim}_{\boldsymbol{c}}\left[z, \mathfrak{h}_{\boldsymbol{c}}\right]=n-l$ if and only if $z \in \mathscr{R}_{\mathfrak{q}_{C}}$, where $n=\operatorname{dim}_{\boldsymbol{c}} \mathfrak{q}$, $l=$ rank \mathfrak{q}. Indeed, for each $z \in \mathfrak{q}_{\boldsymbol{c}}$ the map;

$$
\mathfrak{h}_{\boldsymbol{c}} / \mathfrak{b}_{\boldsymbol{C}}^{z} \ni w+\mathfrak{h}_{\boldsymbol{C}}^{z} \longmapsto[z, w] \in\left[z, \mathfrak{h}_{\boldsymbol{c}}\right]
$$

is well defined and a linear isomorphism of $\mathfrak{h}_{\boldsymbol{c}} / \mathfrak{h}_{\boldsymbol{c}}^{z}$ onto $\left[z, \mathfrak{h}_{\boldsymbol{c}}\right]$ (for the notation $\mathfrak{h}_{\boldsymbol{c}}^{z}$, see $\S 1$). By the similar proof of Proposition 5 in [7], we have $\operatorname{dim}_{\boldsymbol{c}} \mathfrak{h}_{\boldsymbol{c}} / \mathfrak{b}_{\boldsymbol{c}}^{z}$ $=\operatorname{dim}_{\boldsymbol{c}} \mathfrak{q}_{\boldsymbol{c}} / \mathfrak{q}_{\boldsymbol{c}}^{z}$ for any $z \in \mathfrak{q}_{\boldsymbol{c}}$. Hence $\operatorname{dim}_{\boldsymbol{c}}\left[z, \mathfrak{h}_{\boldsymbol{c}}\right]=n-\operatorname{dim}_{\boldsymbol{c}} \mathfrak{q}_{\boldsymbol{c}}^{z}$ for any $z \in \mathfrak{q}_{\boldsymbol{c}}$. Thus we have the assertion from the definition of $\mathscr{R}_{\mathfrak{q}_{C}}$ (see $\left.\S 1\right)$. On the other hand, $\operatorname{dim}_{\boldsymbol{c}} \operatorname{Hol}_{z}\left(\mathfrak{q}_{\boldsymbol{c}} ; I\right) \geq n-l$ for any $z \in \mathfrak{q}_{\boldsymbol{c}}$ and if $z \in \mathscr{R}_{\mathfrak{q}_{c}}$ then $\operatorname{dim}_{c} \operatorname{Hol}_{z}\left(\mathfrak{q}_{c} ; I\right)=n-l$. Indeed, we can easily see that

$$
\operatorname{Hol}_{z}\left(\mathrm{q}_{\boldsymbol{c}} ; I\right)=\left\{v \in \operatorname{Hol}_{z}\left(\mathrm{q}_{\boldsymbol{c}}\right) ;\left(d p_{j}\right)(v)=0 \text { for any } j(1 \leq j \leq l)\right\}
$$

from the definition of $\operatorname{Hol}_{z}\left(q_{c} ; I\right)$, where $P_{H}\left(q_{c}\right)=\boldsymbol{C}\left[p_{1}, \cdots, p_{l}\right]$. By the similar proof of Theorem 13 in [7], we have that if $z \in \mathscr{R}_{q_{C}}$ then $\left(d p_{1}\right)_{z}, \cdots,\left(d p_{p_{l}}\right)_{z}$ are linearly independent. Thus we have the assertion. This implies that the map is surjective. So the proposition is proved.

For each $z \in \mathfrak{q}_{\boldsymbol{c}}$, we define the linear map (over \boldsymbol{C}) φ_{z} of $\mathfrak{g l}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ into $\operatorname{Hol}_{z}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ such that $\varphi_{z}(X)=(\varphi(X))_{z}$ for $X \in \mathfrak{g l}(\mathfrak{q})_{c}$. Then we have the following.

Proposition 4.2. (1) $\varphi_{z}\left(\tilde{\mathfrak{h}}_{\boldsymbol{c}}\right) \subset \operatorname{Hol}_{z}\left(\mathfrak{q}_{\boldsymbol{c}} ; I\right)$ for any $z \in \mathfrak{q}_{\boldsymbol{c}}$,
(2) If $z \in \mathscr{R}_{q_{C}}, \varphi_{z}\left(a d \mathfrak{h}_{c}\right)=\operatorname{Hol}_{z}\left(q_{c} ; I\right)$.

Proof. For any $X \in \tilde{h}_{\boldsymbol{c}}, z \in \mathfrak{q}_{\boldsymbol{c}}, p \in P_{H}\left(q_{c}\right)$, we have

$$
(d p)_{z}\left(\varphi(X)_{z}\right)=\varphi(X)(p)(z)=0 .
$$

This implies (1). From the definition of φ, for any $z \in \mathfrak{q}_{\boldsymbol{c}}$ and $w \in \mathfrak{h}_{\boldsymbol{c}}$, we have $\varphi(a d w)_{z}=(\partial[z, w])_{z} . \quad$ By Proposition 4.1, if $z \in \mathscr{R}_{\mathrm{q}}$ then for any $v \in \operatorname{Hol}_{z}\left(\mathfrak{q}_{c} ; I\right)$ there exists $w \in \mathfrak{h}_{\boldsymbol{c}}$ such that $i_{z}([z, w])=v$. Hence $\varphi_{z}(a d w)=\varphi(a d w)_{z}$ $=(\partial[z, w])_{z}=i_{z}([z, w])=v$. This implies (2).

Let $P\left(\mathfrak{q}_{\boldsymbol{c}}\right) \varphi\left(a d \mathfrak{h}_{\boldsymbol{c}}\right)$ be the Lie subalgebra (of $\left.\mathscr{D}_{P}\left(\mathfrak{q}_{\boldsymbol{c}}\right)\right)$ of all elements D such that $D=\sum p_{i} \varphi\left(X_{i}\right)$ for some $p_{i} \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ and $X_{i} \in a d \mathfrak{h}_{\boldsymbol{c}}$. Indeed, we have $[p \varphi(X), q \varphi(Y)] \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right) \varphi\left(a d \mathfrak{h}_{\boldsymbol{c}}\right)$ (for $p, q \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right), X, Y \in a d \mathfrak{h}_{\boldsymbol{c}}$), because

$$
[p \varphi(X), q \varphi(Y)]=p q \varphi([X, Y])+p \varphi(X)(q) \varphi(Y)-q \varphi(Y)(p) \varphi(X)
$$

Then we have the following.
Lemma 4.3. For any $X \in \tilde{\mathfrak{h}}_{\boldsymbol{c}}$ and $z \in \mathscr{R}_{\mathfrak{q}_{C}}$, there exist a polynomial $p \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ and a domain $W \subset q_{c}$ such that $z \in W, p(w) \neq 0$ for any $w \in W$ and $p \varphi(X) \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right) \varphi\left(a d \mathfrak{h}_{\boldsymbol{c}}\right)$.

Proof. Choose a basis (over C) v_{1}, \cdots, v_{n} of q_{c} which is a basis (over \boldsymbol{R}) of q. So we identify $\mathfrak{q}_{\boldsymbol{C}}$ with C^{n} by the mapping;

$$
\mathfrak{q}_{C} \ni z=z_{1} v_{1}+\cdots+z_{n} v_{n} \longmapsto\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n} .
$$

Under this identification, for any $X \in \mathfrak{g l}(\mathfrak{q})_{c}$, we have

$$
\varphi(X)_{z}=\sum_{1 \leq j \leq n} g_{j}(z ; X)\left(\frac{\partial}{\partial z_{j}}\right)_{z} \quad \text { for any } z \in \mathfrak{q}_{\boldsymbol{c}}
$$

where $g_{j}(z ; X)=-\sum_{1 \leq i \leq n} a_{i j}(X) z_{i}(1 \leq j \leq n)$ (see Proposition 2.1). From Proposition 4.2, if $z_{0} \in \mathscr{R}_{q_{C}}$ then there exist $H_{1}, \cdots, H_{t} \in \mathfrak{h}_{\boldsymbol{c}}(t=n-l)$ such that $\varphi\left(a d H_{1}\right)_{z_{0}}, \cdots, \varphi\left(a d H_{t}\right)_{z_{0}}$ is a C-basis of $\operatorname{Hol}_{z_{0}}\left(\mathfrak{q}_{\boldsymbol{c}} ; I\right)$. That is,

$$
\operatorname{rank}\left[\begin{array}{cc}
g_{1}\left(z ; \operatorname{ad} H_{1}\right) \cdots g_{n}\left(z ; \operatorname{ad} H_{1}\right) \\
\vdots & \vdots \\
g_{1}\left(z ; a d H_{t}\right) \cdots g_{n}\left(z ; \operatorname{ad} H_{t}\right)
\end{array}\right]_{z=z_{0}}=t .
$$

Since $g_{j}\left(z ;\right.$ ad $\left.H_{i}\right)(1 \leq j \leq n, 1 \leq i \leq t)$ is a continuous map on $\mathfrak{q}_{\boldsymbol{c}}$, there exists a domain W of q_{c} such that $z_{0} \in W$ and for any $z \in W$, $\operatorname{rank}\left(g_{j}\left(z ;\right.\right.$ ad $\left.\left.H_{i}\right)\right)=t$. Thus for any $z \in W, \varphi\left(a d H_{1}\right)_{z}, \cdots, \varphi\left(a d H_{t}\right)_{z}$ is a C-basis of $H o l_{z}\left(q_{c} ; I\right)$. Since, for any $X \in \tilde{\mathfrak{h}}_{\boldsymbol{c}}$ and $z \in W, \varphi(X)_{z} \in \operatorname{Hol}_{z}\left(\mathfrak{q}_{\boldsymbol{c}} ; I\right)$ from Proposition 4.2, there exists $h_{i}(1 \leq i \leq t) \in C^{\infty}(W)$ such that $\varphi(X)_{z}=\sum_{1 \leq i \leq t} h_{i}(z) \varphi\left(a d H_{i}\right)_{z}$ for any $z \in W$. So

$$
\sum_{1 \leq j \leq n} g_{j}(z ; X)\left(\frac{\partial}{\partial z_{j}}\right)_{z}=\sum_{\substack{1 \leq i \leq t \\ 1 \leq j \leq n}} g_{j}\left(z ; \text { ad } H_{i}\right) h_{i}(z)\left(\frac{\partial}{\partial z_{j}}\right)_{z}
$$

for any $z \in W$. Hence $g_{j}(z ; X)=\sum_{1 \leq i \leq t} g_{j}\left(z ;\right.$ ad $\left.H_{i}\right) h_{i}(z)(1 \leq j \leq n)$ for any $z \in W$. This implies that there exists $g \in P^{t}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ such that $g h_{i} \in P\left(q_{\boldsymbol{c}}\right)(1 \leq i \leq t)$ and $g(z) \neq 0$ for any $z \in W$, since $\operatorname{rank}\left(g_{j}\left(z ; a d H_{i}\right)\right)=t$ for any $z \in W$. Hence

$$
g(z) \varphi(X)_{z}=\sum_{1 \leq i \leq t} g(z) h_{i}(z) \varphi\left(\text { ad } H_{i}\right)_{z} \quad \text { for any } z \in W .
$$

Since $g h_{i} \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right)$, we have $g \varphi(X) \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right) \varphi\left(a d \mathfrak{h}_{\boldsymbol{c}}\right)$. Thus g is a desired polynomial. Therefore the lemma is proved, because the above argument is independent of a choice of a basis.

For each Lie subalgebra \mathfrak{a} of $\mathfrak{g l}(\mathfrak{q})_{c}$ and an open subset U of $\mathfrak{q}_{\boldsymbol{c}}$, we denote by $\mathcal{O}_{\mathrm{a}}(U)$ a vector space of all holomorphic functions on U such that $\varphi(X) f$ $=0$ for any $X \in \mathfrak{a}$. Then it is obvious that $\mathcal{O}_{\mathfrak{h}}(U) \subset \mathcal{O}_{\text {ad }}^{\boldsymbol{b}}(\mathbb{C}(U)$. But we have the following.

Corollary 4.4. For any domain U of $\mathfrak{q}_{\boldsymbol{c}}, \mathcal{O}_{\mathfrak{F}}(U)=\mathcal{O}_{a d \mathrm{~h}_{c}}(U)$.
Proof. Let U is a domain of q_{c}. Since it is well known that $\mathscr{R}_{q_{C}}$ is an open dense subset of $\mathfrak{q}_{c}, \mathscr{R}_{q_{c}} \cap U \neq \phi$. From Lemma 4.3, for any $X \in \tilde{\mathfrak{h}}_{c}$ and $z_{0} \in U$ there exist a polynomial $p \in P\left(q_{c}\right)$ and a domain W of $\mathfrak{q}_{\boldsymbol{c}}$ such that $z_{0} \in W$,
$p(z) \neq 0$ for any $z \in W$ and $p \varphi(X) \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right) \varphi\left(a d \mathfrak{h}_{c}\right)$. Hence for any $f \in \mathcal{O}_{a d \mathfrak{h}_{c}}(U)$, we have $p(z)(\varphi(X) f)(z)=0$ for any $X \in \tilde{\mathfrak{h}}_{c}$ and $z \in U \cap W$. But since $p(w) \neq 0$ for any $w \in W,(\varphi(X) f)(z)=0$ for any $X \in \tilde{\mathfrak{h}}_{c}$ and $z \in U \cap W$. Since f is holomorphic on $U, \varphi(X) f$ is so. Hence, from the identity theorem for an analytic functions, $\varphi(X) f=0$ on U. This implies that $f \in \mathcal{O}_{\mathfrak{F}_{c}}(U)$. Thus the corollary is proved.

§5. $\tilde{\mathbf{H}}$-invariantness

In this section, we prove the following theorem.
Theorem 5.1. If $\lambda \in \tilde{\mathscr{R}}_{q_{C}}$, then

$$
\mathscr{B}_{\lambda}^{H}(\mathfrak{q})=\mathscr{B}_{\lambda}^{\tilde{H}}(\mathfrak{q}) .
$$

Proof. From the definition of $\mathscr{B}_{\lambda}^{H}(\mathfrak{q})$ and $\mathscr{B}_{\lambda}^{\tilde{H}}(\mathfrak{q})$, it is obvious that $\mathscr{B}_{\lambda}^{H}(\mathfrak{q})$ $\supset \mathscr{B}_{\lambda}^{\tilde{H}}(\mathfrak{q})$. Thus we must show that $\mathscr{B}_{\lambda}^{H}(\mathfrak{q}) \subset \mathscr{B}_{\lambda}^{\tilde{H}}(\mathfrak{q})$. For any element $X \in \tilde{\mathfrak{h}}$, we denote by $P_{X}\left(q_{c}\right)$ the ideal of all polynomials $p \in P\left(q_{c}\right)$ such that $p \varphi(X) \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right) \varphi\left(a d \mathfrak{h}_{\boldsymbol{c}}\right)$. Let V_{X} be the algebraic subvariety of $\mathfrak{q}_{\boldsymbol{c}}$ defining by $P_{X}\left(\mathfrak{q}_{c}\right)$. That is; V_{X} is the set of all elements $z \in \mathfrak{q}_{c}$ such that $p(z)=0$ for any $p \in P_{X}\left(q_{c}\right)$. If there exists an element $\mathbf{z} \in V_{X} \cap \mathscr{R}_{\mathfrak{q}_{C}}$, then $p(z)=0$ and $z \in \mathscr{R}_{\mathbb{q}_{C}}$ for any $p \in P_{X}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$. This contradicts Lemma 4.3. Thus $V_{X} \cap \mathscr{R}_{\boldsymbol{q}}=\phi$. From Proposition 1.2, we have

$$
V_{X} \subset \mathfrak{q}_{\boldsymbol{c}} \backslash \mathscr{R}_{\mathfrak{q}_{C}} \subset \mathfrak{q}_{\boldsymbol{c}} \backslash \tilde{\mathscr{R}}_{\mathfrak{q}_{C}}=\left\{z \in \mathfrak{q}_{\boldsymbol{c}} ; \Delta(z)=0\right\} .
$$

By Hilbert's Nullstellensatz,

$$
\sqrt{(\Delta)} \subset \sqrt{P_{X}\left(q_{c}\right)},
$$

where (Δ) is the ideal of $P\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ generated by Δ and \sqrt{a} is the radical of an ideal a of $P\left(\mathfrak{q}_{c}\right)$ that is; $p \in P\left(\mathfrak{q}_{\boldsymbol{c}}\right)$ then $p \in \sqrt{a}$ if and only if $p^{k} \in a$ for some positive integer k. Therefore for any $X \in \tilde{\mathfrak{h}}$ there exists a positive integer k such that $\Delta^{k} \in P_{X}\left(\mathfrak{q}_{c}\right)$. That is; $\Delta^{k} \varphi(X) \in P\left(\mathfrak{q}_{c}\right) \varphi\left(a d \mathfrak{h}_{c}\right)$.

We consider the following system of differential equations on \mathfrak{q}, for fixed λ and k.

$$
\text { (\#) }\left(\begin{array}{l}
(\partial e) u=v(e)(\lambda) u \quad \text { for any } e \in S_{H}\left(\mathfrak{q}_{c}\right) \\
\Delta^{k} u=0
\end{array}\right.
$$

We put $m=k(N-L$) (see $\S 1$, for N and L). From Proposition 2.2, for any $e \in S^{d}\left(\mathfrak{q}_{c}\right)$ there exists unique element $D\left(e, \Delta^{k}\right) \in S^{m(d-1)}\left(q_{c}\right)$ such that $\mu_{e}^{m}\left(\Delta^{k}\right)$ $=\partial D\left(e, \Delta^{k}\right)$, since $\operatorname{deg} \Delta^{k}=m$. Let $e \in S_{H}\left(\mathfrak{q}_{c}\right)$ such that $\operatorname{deg} e=d$. Then $\mu_{e}^{m}\left(\Delta^{k}\right)$ is obviously an H-invariant differential operator on \mathfrak{q}. So $D\left(e, \Delta^{k}\right)$ is
H-invariant. When u is a solution of the above differential equations (\#), it is easily seen that $\mu_{e}^{m}\left(\Delta^{k}\right) u=(\partial e-v(e)(\lambda))^{m} \Delta^{k} u=0 . \quad$ So $\quad \partial\left(D\left(e, \Delta^{k}\right)\right) u=$ $v\left(D\left(e, \Delta^{k}\right)\right)(\lambda) u=0$. Hence, if there exists a homogeneous element $e \in S_{H}\left(\mathfrak{q}_{c}\right)$ for fixed $\lambda \in \mathfrak{q}_{\boldsymbol{c}}$ and $k \in N$ such that $v\left(D\left(e, \Delta^{k}\right)\right)(\lambda) \neq 0$, then $u=0$. From Lemma 2.3, when $e=\omega\left(\omega\right.$ is the Casimir element), we have $v\left(D\left(\omega, \Delta^{k}\right)\right)(\lambda)$ $=\Delta^{k}(\lambda)$. Therefore if $\lambda \in \tilde{\mathscr{R}}_{a_{C}}$, then any solution u of the differential equations (\#) is zero.

Finally, for any $f \in \mathscr{B}_{\lambda}^{H}(\mathfrak{q})$ and $X \in \tilde{\mathfrak{h}}$, we put $g=\varphi(X) f$. Then there exists a positive integer k such that $\Delta^{k} \in P_{X}\left(q_{c}\right)$ and g is a solution of the system of the differential equations (\#), because $\varphi\left(a d \mathfrak{h}_{c}\right) f=0$ and $[\partial e, \varphi(X)]=0$ for any $e \in S_{H}\left(\mathfrak{q}_{\boldsymbol{c}}\right)$. Hence if $\lambda \in \tilde{R}_{q_{C}}$, then $g=0$. Thus $f \in \mathscr{B}_{\lambda}^{\tilde{H}}(\mathfrak{q})$. This proves that $\mathscr{B}_{\lambda}^{H}(\mathfrak{q}) \subset \mathscr{B}_{\lambda}^{\tilde{H}}(\mathfrak{q})$ for any $\lambda \in \widetilde{\mathscr{R}}_{\mathfrak{q}_{C}}$. Therefore the theorem is proved.

We consider Theorem 5.1 in the case when $l=\operatorname{rank} \mathfrak{q}=1$. In the case, the polynomial Δ is a homogeneous polynomial of $\mathfrak{q}_{\boldsymbol{c}}$ such that the homogeneous degree of Δ is $\operatorname{dim} \mathfrak{g}-\operatorname{rank} \mathfrak{g}$ (see $\S 1$). Since rank $\mathfrak{g}=\operatorname{dim} \mathfrak{h}$ $-\operatorname{dim} \mathfrak{q}+2 \operatorname{rank} \mathfrak{q}, \quad \operatorname{dim} \mathfrak{g}-\operatorname{rank} \mathfrak{q}=\operatorname{dim} \mathfrak{h}+\operatorname{dim} \mathfrak{q}-\operatorname{rank} \mathfrak{g}=2(\operatorname{dim} \mathfrak{q}$ $-\operatorname{rank} \mathfrak{q})=2(\operatorname{dim} \mathfrak{q}-1)$. On the other hand, Δ is a polynomial of the Casimir polynomial ω, because Δ is an H-invariant polynomial (we may use the same notation ω for the Casimir element ω in $\left.S^{2}\left(q_{c}\right)\right)$. Hence there is a non zero constant c such that $\Delta=c \omega^{\mathrm{dimq-1}}$. Let \mathcal{N} be the variety of all elements $z \in \mathfrak{q}_{\boldsymbol{c}}$ such that $\omega(z)=0$. Then we have the following.

Corollary 5.2. When rank $\mathfrak{q}=1$, if $\lambda \notin \mathscr{N}$, then

$$
\mathscr{B}_{\lambda}^{H}(\mathfrak{q})=\mathscr{B}_{\lambda}^{\tilde{H}}(\mathfrak{q}) .
$$

Remark. In this case, the system of differential equations

$$
(\partial e) f=v(e)(\lambda) f \quad \text { for any } e \in S_{H}\left(q_{c}\right)
$$

are written simplify so that $(\partial \omega) f=\mu f$, where we set $\mu=v(\omega)(\lambda)$. Under the new parametrization $(\mu \in \boldsymbol{C})$, Corollary 5.2 can be rewritten such that;

$$
\text { If } \mu \neq 0 \text {, then } \mathscr{B}_{\mu}^{H}(\mathfrak{q})=\mathscr{B}_{\mu}^{\tilde{H}}(\mathfrak{q}) .
$$

On the other hand, we consider about \tilde{H}. In this case, any H-invariant polynomial is a polynomial of the Casimir polynomial ω. We can choose a basis $X_{1}, \cdots, X_{p}, \cdots, Y_{1}, \cdots, Y_{q}$ of \mathfrak{q} such that $X_{i} \in \mathfrak{f} \cap \mathfrak{q}, Y_{i} \in \mathfrak{p} \cap \mathfrak{q}, B\left(X_{i}, X_{j}\right)=$ $-\delta_{i, j}$ and $B\left(Y_{i}, Y_{j}\right)=\delta_{i, j}$. Then the Casimir polynomial is written as such;

$$
\omega(X)=x_{1}^{2}+\cdots+x_{p}^{2}-y_{1}^{2}-\cdots-y_{q}^{2},
$$

where $X=\sum_{1 \leq i \leq p} x_{i} X_{i}+\sum_{1 \leq i \leq q} y_{i} Y_{i}$. Then from the definition of \tilde{H}, we have \tilde{H}
$\simeq S O_{0}(p, q)$. On the other hand, in [1], Cerezo proved the following assertion;

$$
\begin{array}{ll}
p=q=1 \text { case, } & \operatorname{dim} \mathscr{B}_{\mu}^{\tilde{H}}(\mathfrak{q})=4, \tag{1}\\
p=1 \text { or } q=1 \text { case, } & \operatorname{dim} \mathscr{B}_{\mu}^{\tilde{H}}(\mathfrak{q})=3, \\
\text { (except for case (1)) }
\end{array}
$$

(3) $\quad p>2$ and $q>2$ case, $\quad \operatorname{dim} \mathscr{B}_{\mu}^{\tilde{H}}(\mathfrak{q})=2$,
for any complex number μ.
Therefore we have the following.
Theorem 5.3. When rank $\mathfrak{q}=1$, if $\mu \neq 0$, then
(1) $\quad p=q=1$ case, $\quad \operatorname{dim} \mathscr{B}_{\mu}^{H}(\mathfrak{q})=4$,
(2) $\quad p=1$ or $q=1$ case, $\quad \operatorname{dim} \mathscr{B}_{\mu}^{H}(\mathfrak{q})=3$, (except for case (1))
(3) $\quad p>2$ and $q>2$ case, $\quad \operatorname{dim} \mathscr{B}_{\mu}^{H}(\mathfrak{q})=2$,
where $p=\operatorname{dim}(\mathfrak{q} \cap \mathfrak{f})$ and $q=\operatorname{dim}(\mathfrak{q} \cap \mathfrak{p})$.
Remark. In [2], Van Dijk listed up the dimension of invariant eigen distributions. Since $\mathscr{D}_{\lambda, H}^{\prime}(\mathfrak{q}) \subset \mathscr{B}_{\lambda}^{H}(\mathfrak{q})$ (see [2] for the definition of $\mathscr{D}_{\lambda, H}^{\prime}(\mathfrak{q})$), it is clear that $\operatorname{dim} \mathscr{D}_{\lambda, H}^{\prime}(\mathfrak{q}) \leq \operatorname{dim} \mathscr{B}_{\lambda}^{H}(\mathfrak{q})$. But from Theorem 5.3 and [2], if $\lambda \neq 0$, then we have $\mathscr{D}_{\lambda, H}^{\prime}(\mathfrak{q})=\mathscr{B}_{\lambda}^{H}(\mathfrak{q})$.

References

[1] Cerezo, A., Equations with constant coefficients invariant under a group of linear transformations, Trans. Amer. Math. Soc. 204 (1975), 267-298.
[2] van Dijk G., Invariant eigendistributions on the tangent space of a rank one semisimple symmetric space, Math. Ann. 268 (1984), 405-416.
[3] Faraut, J., Distributions sphériques sur les espaces hyperboliques. J. Math. Pure Appl. 58 (1979), 369-444.
[4] Flensted-Jensen, M., Spherical functions on a real semisimple Lie group. A method of reduction to the complex cace. J. Funct. Anal. 30 (1978), 106-146.
[5] Harish-Chandra, Invariant distributions on Lie algebras. Am. J. Math. 86 (1964), 271-309.
[6] Helgason, S., Differential geometry, Lie groups and symmetric spaces, Academic Press, London, 1978.
[7] Kostant, B., Rallis, S., Orbits and representations associated with symmetric spaces. Amer. J. Math. 93 (1971), 753-809.
[8] Ochiai, H., Invariant hyperfunctions on a rank one semisimple symmetric space, to apper.
[9] Sekiguchi, J., Invariant spherical hyperfunctions on the tangent space of a symmetric space, Advanced Studies in Pure Math. 4 (1985), 83-126.
[10] Strichartz, Robert S., Harmonic analysis on hyperboloids, J. Funct. Anal., 12 (1973), 341383.
[11] Varadarajan, V. S. Lie groups, Lie algebras and their representations. Prentice-Hall Inc., Englewood Cliffs, N. J., 1974.

Department of Mathematics, Faculty of Science,
Hiroshima University

