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Introduction

In this paper we shall investigate the structure of locally finite Lie algebras
in which every soluble subalgebra is either abelian or almost-abelian.

Varea [8] has introduced the concept of €*-algebras termed C-algebras,
namely, Lie algebras in which every subalgebra of a nilpotent subalgebra H of L
is an ideal in the idealizer of H in L, and he has shown for finite-dimensional
Lie algebras that €*-algebras are precisely Lie algebras in which every soluble
subalgebra is either abelian or almost-abelian. Also Varea has introduced the
concept of €-algebras termed c-algebras, namely, Lie algebras in which every 1-
dimensional subideal is an ideal. A Lie algebra L is called a T-algebra if every
subideal of L is an ideal of L. The relation among €*-algebras, €-algebras and
T-algebras, and their structure are investigated in [8]. Infinite-dimensional
E*-algebras are considered in [2]. A Lie algebra L is called an (A)-algebra in
[5] if any pair of elements x and y of L such that [x, y, y] = 0 satisfies [x, y]
= 0. Finite-dimensional (A)-algebras are investigated in [6]. Let 4 be one of
the relations asc, wsi, wasc and < . Following [2] and [3], we call a Lie
algebra L a T (4)-algebra (resp. €(4)-algebra) when we replace the relation
“subideal” by 4 in the above definition of T-algebra (resp. €-algebra). We call
a Lie algebra L a T (4)-algebra (resp. €, (4)-algebra) if every A-subalgebra H of
L satisfies [L, H] = H?. For a class X we call a Lie algebra L an ¥*-algebra if
every subalgebra of L is an X-algebra.

In this paper we shall introduce the classes €% and €*: A Lie algebra L is
a @¥-algebra if every soluble subalgebra of L is abelian, and L is a €*®-algebra
if any pair of elements x and y of L such that [x, y, y]e{y) satisfies
[x, yley>.

In Section 2, we shall show characterizations of €%, €* and (A)-algebras:
To(asc) = Iy (s1) (Lemma 2.1). ¥ = Gy (ascy’ = €, (si)’ (Proposition 2.2).
T (wasc)’ = T(< °)F (Lemma 2.3). €™ = §(wasc)’ = €(< ®)° (Proposition 2.4).
T, (wasc)’ = T(< @) (Lemma 2.5). (A) = §,(wasc)* = €4 (< ©)° (Proposition
2.6).

In Section 3, we shall show that LENCE =LFNT,(si)® (Theorem 3.3),
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LFNE® = LFnT(wsi)* (Theorem 3.4), and LFN(A) = LF NI, (wsi)* (Theorem
3.6).

In Section 4, we shall determine the structure of locally finite *-
algebras. If L is a locally finite €*-algebra over a field of characteristic zero,
then L is a locally finite (A)-algebra, an almost-abelian Lie algebra, or a three-
dimensional split simple Lie algebra (Theorem 4.2). If L is a L(wser) FnCE*-
algebra over a field of characteristic zero, then L is a reductive (A)-algebra, a
finite-dimensional almost-abelian Lie algebra, or a three-dimensional split
simple Lie algebra (Theorem 4.5).

In Section 5, we shall investigate other properties of the classes €*, €%, €™®
and (A): C*n{L, E} A = A, and Cn{L, £} A = A (Corollary 5.2). Over an
algebraically closed field, LFNE* = A, and LFnEF = A (Proposition 5.3).

In Section 6, we shall give exmples and show the following: (A) £I
(Example 6.1). (A)uA, < €* (Examples 6.1 and 6.2). EC™ < E(wasc)
(Example 6.3).

1. Notations

Throughout the paper Lie algebras are not necessarily finite-dimensional
over a field T of arbitrary characteristic unless otherwise specified. We mostly
follow [1] for the use of notations and terminology.

Let L be a Lie algebra over f and let H be a subalgebra of L. For an
ordinal ¢, H is a o-step ascendant (resp. weakly ascendant) subalgebra of L,
denoted by H<’L (resp. H <°L), if there exists an ascending series (resp.
chain) (H,),., of subalgebras (resp. subspaces) of L such that

(1) Hy=H and H,=1L,

2 H,<H,,, (resp. [H,,,, H] < H,) for any ordinal « < g,

(3) H; = y<;H, for any limit ordinal A < o.

H is an ascendant (resp. a weakly ascendant) subalgebra of L, denoted by H asc
L (resp. H wasc L), if H<a®L (resp. H <°L) for some ordinal ¢. When o is
finite, H is a subideal (resp. weak subideal) of L and denoted by H si L (resp. H
wsi L). For a totally ordered set X, a series (resp. weak series) from H to L of
type Z is a collection {A4,, V,: €2} of subalgebras (resp. subspaces) of L such
that

(1) HcV,c 4, for all 6eX,

() L\H = U,ez(4,\ ),

3 4,V ifrt<o,

4) V,< A, (tesp. [4,, H] = V) for all ceX.

H is a serial (resp. weakly serial) subalgebra of L, denoted by H ser L (resp. H
wser L), if there exists a series (resp. weak series) from H to L of type 2 for
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some 2.

Let 4 be any of the relations si, asc, ser, <1?, wsi, wasc, wser and
<. T(4)is the class of Lie algebras L in which every 4-subalgebra of L is an
ideal of L. @(4) is the class of Lie algebras L in which every 1-dimensional 4-
subalgebra of L is an ideal of L. In particular we write ¥ and € for T (si) and
@ (si) respectively. &, W and N are the classes of Lie algebras which are finite-
dimensional, abelian and nilpotent respectively.

Let X be a class of Lie algebras and let 4 be any of the relations
<, <, si, ser, wsi and wser. A Lie algebra L is said to lie in L(4) X if for any
finite subset X of L there exists an X-subalgebra K of L such that
XcKAL. We write LX for L(<)X. When LeL@, L is called locally
finite. For an ordinal o, E,(4)X is the class of Lie algebras L having an
ascending series (L,),<, of 4-subalgebras such that

() Ly=0and L,=1L,

2 L,<L,., and L,,,/L,eX for any ordinal « < o,

(3) L,=U,<iL, for any limit ordinal 1 < .

We write E(A)X = J,;50E,(4) X and E(4) X = ,<,E,(4)X. In particular we
write EX and EX for E(<)X and E(<)X respectively. Thus E is the class of
soluble Lie algebras. QX is the class of Lie algebras consisting of all
homomorphic images of X-algebras. sX is the class of Lie algebras consisting
of all subalgebras of X-algebras. We say that X is a-closed if X = A X, where A
iSL,E,E,Qors. We denote by X* the largest s-closed subclass of X, that is, L
belongs to X* if and only if every subalgebra of L belongs to X.

Let H be a subalgebra of L. We denote by C,(H) (resp. I, (H)) the
centralizer (resp. idealizer) of H in L. For xeL we put H* = ano[H’ wx]1,
where [H, ,x] = [H, x, x,---, x]. The Hirsch-Plotkin radical p(L) of L is the

unique maximal locally n'{lpotent ideal of L [1].

2. Characterizations

The class €* is introduced in [8] as the class of Lie algebras L satisfying (4)
of the following equivalent conditions ([2, Proposition 3.2 and Theorem 3.5]):

(1) If {x) asc H <L, then {x)< H.

(2) If <x) si H<L, then {x)< H.

(3) For x, yeL, if [x, ,y, x]e<{x) for any n > 1, then {x) < <{x, y).

(4) If H is a nilpotent subalgebra of L and K is a subalgebra of H, then

K< I,(H).

(5) Every soluble subalgebra of L is either abelian or almost-abelian.
The equivalence has been shown in [8] for finite-dimensional Lie algebras and
generalized in [2] for infinite-dimensional Lie algebras.
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We shall introduce the classes €% and €*: A Lie algebra L belongs to €}
if every soluble subalgebra of L is abelian; A Lie algebra L belongs to €™ if
any pair of elements x and y of L such that [x,y, yle{y) satisfies
[x, yJe<y>. A Lie algebra L belongs to (A) if any pair of elements x and y of
L such that [x, y, y] = 0 satisfies [x, y] =0 [5]. It is easy to see that the
classes C*, €% €™® and (A) are s-closed and L-closed. We shall give
characterizations of the classes €% €* and (A) which are similar to [2,
Proposition 3.2, Lemma 3.3 and Theorem 3.5] and will be used in later
sections. We define the following classes of Lie algebras. Let 4 be any of the
relations si, asc, ser, <1?, wsi, wasc, wser and <. Let I,(4) denote the class
of Lie algebras L in which every d-subalgebra H satisfies [L, H] = H?>. Let
@, (4) denote the class of Lie algebras L in which every 1-dimensional 4-
subalgebra H satisfies [L, H] = 0.

First, we shall investigate the class €%.

LEMMA 2.1. Let L be a Lie algebra and let K be a subalgebra of L. Then
the following are equivalent:

(1) If K asc H<L, then [H, K] =K?2.

2 IfKsi H<L, then [H K] =K?2.

(3) If K<w? H<L, then [H, K] = K?2.

(4) For xeL, if [K, ,x, K] < K for any n> 1, then [x, K] < K?.

Proor. (1)=>(2)=(3) is clear.

(3)=(4): Let xeL such that [K,,x, K]< K for all n>1. Since
K< K*<1 (K, x>, we obtain [x, K] < K2.

(4)=(1): Let K asc H < L and let (4,),., be an ascending series from K to
H. We show by transfinite induction on « that [4,, K] < K2. Let a >0 and
assume that [4;, K] < K? for all f <a. If « is a limit ordinal, then [4,, K]

= [Up<.4p, K1 = K?. Otherwise by induction hypothesis
K<1A4,_ <A, Let xed, Since [K, ,x, K]< K for any n > 1, it follows
that [x, K] < K2. Hence we have [4,, K] < K?2. O

By using the concept of subideals and ascendant subalgebras we can
characterize €¥-algebras.

PROPOSITION 2.2. Let L be a Lie algebra. Then the following are
equivalent :

(1) LeG,(asc).

(2) LeC,(si)y.

(3) LeCG,y(w? .

4) For x,yelL, if [x, ,y, x]e{x) for any n>1 then [y, x] =0.

(5) If H is a nilpotent subalgebra of L, then I,(H) = C.(H).
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(6) LeGk.

Proor. The equivalence of (1)—(4) can be proved by Lemma 2.1.

(2)=(5): Let H be a nilpotent subalgebra of L and let x be any element of
H. Since {x) is a subideal of I,(H), we have [I,(H), x] =0. Hence I,(H)
= C.(H).

(5)=(6): Let H be a soluble subalgebra of L and denote N by the Hirsch-
Plotkin radical p(H) of H. For any x, yeN, {x, y) is nilpotent since N is
locally nilpotent. Since I, (<{x, y)) = C.({x, y)), {x, y)> is abelian. It follows
that N is abelian and H = I4(N) = Cyx(N). Furthermore by [1, Lemma
9.1.2(c)] we have Cx(N) < N. Therefore H is abelian.

(6)=(4): Suppose that [x,,y, x]e<{x) for any n>1. We put M,
=Y1_o<[x, ¥]) forany n >0 and M = (J;2oM,. Then M,< M < L for all
n>0. Since M,=M,_, +{[x, y]1>, we obtain MV < M,_,. Therefore
M®*D =0, We conclude that M, is abelian for all n>0 and so M is
abelian. Now we set K=M + (y)>. Then K is soluble and therefore
abelian. Hence we have [y, x] =0. O

Second, we shall investigate €*)-algebras.

LEmMMA 2.3. Let L be a Lie algebra and let K be a subalgebra of L. Then
the following are equivalent:

(1) If K wasc H <L, then K< H.

2 If K<®H<ZL, then K< H.

(3) For xeL, if [x, K, K] € K, then [x, K] = K.

Proor. (1)=>(2) is clear.

(2)=>(3): Let x be an element of L such that [x, K, K]< K. Put H
= {yeL: [y, K] < K for some integer n > 1}. By [7, Lemma 1] we have
K <® H<L. Hence [x, K] <K since xe H.

(3)=(1): Let K wasc H < L and let (4,),<, be a weakly ascending series
from K to H. We show by transfinite induction on « that [4,, K] < K. Let
a > 0 and assume that [4;, K] < K for all B <a. If « is a limit ordinal, then
[A., K1=[Up<aA4p, K] < K. Otherwise by induction hypothesis [4,_;, K]
c K. Let xeA,. Since [x, K, K] < K, it follows that [x, K] = K. Hence
we have [4,, K] < K. O

The following result can be proved by using Lemma 2.3.

PropoSITION 2.4. Let L be a Lie algebra. Then the following are
equivalent :

(1) LeC(wasc)’.

(2) LeG(<©y.

(3) LeC™.
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Third, we consider (A)-algebras. The following results can be proved as in
Lemma 2.3 and Proposition 2.4.

LEMMA 2.5. Let L be a Lie algebra and let K be a subalgebra of L. Then
the following are equivalent:

(1) If K wasc H <L, then [H, K] =K?.

(2 If K<®HXZL, then [H, K] =K?2.

(3) For xeL, if [x, K, K] <K, then [x, K] = K?2.

PROPOSITION 2.6. Let L be a Lie algebra. Then the following are
equivalent .

(1) Le@y(wasc).

(2) LeGy(<?).

(3) Le(A).

A Lie algebra L is said to be almost-abelian if L is the split extension of an
abelian algebra by the 1-dimensional algebra of scalar multiplications. We
denote by U, the class of abelian or almost-abelian Lie algebras. It follows
from Propositions 2.2, 2.4, 2.6 and [3, Lemma 2.1] that

A < E® < E*
Vi Vi VI
A < (A) < G*.

It is easy to see that €XnE™ = (A).

Almost-abelian Lie algebras belong to €®\€*. A 3-dimensional simple
Lie algebra L over a field f is called split if L contains an element h such that
ad h has a non-zero characteristic root in f ([4, p. 14]). If char f # 2, then a 3-
dimensional simple Lie algebra L is split if and only if L has a basis {e, f, h}
such that [h,e]l=e, [h, f]1= —f, [e,f]=h. Split 3-dimensional simple Lie
algebras belong to €*\(€*yE€™). Hence we have

(A) < €®), GXyE™ < C*,

By [3, Lemma 4.1] a 3-dimensional simple Lie algebra is either a split 3-
dimensional simple Lie algebra or an (A)-algebra.

3. Locally finite Lie algebras

We consider locally finite Lie algebras. By [2, Theorem 3.9], LFnE*
=L¥NT’. We shall show some results which correspond to this. It is
necessary to show some obvious equalities.
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ProposITION 3.1. (1) LEnTy(ser)* = LFNI,(s1).
(2) LFnCy(ser)’ = LFNC,(si).

(3) LFnI(wser)* = LFNIT(wsi).

4) LFnC(wser) = LFNCE(wsi).

(5) LEFNT(wser) = LFNTy(wsi).

6) LFNCy(wser)* =LFNECy(wsi).

Proor. We only show (5) because the others can be proved
similarly. Let LeLFnT,(wsi)® and let K wser H < L. We can find a finite-
dimensional subalgebra F of L which contains x and y for any xeK and
yeH. Then FnK wsi FnH. Hence [H,K]=K?2 This shows that
LeZX,(wser)’. The converse is clear. O

REMARK. Almost-abelian Lie algebras belong to the classes of (3), (4) but
none of (1), (2), (5), (6) of Proposition 3.1.

We consider locally finite €¥-algebras.

LEMMA 3.2. Let L be a locally finite €§-algebra and let N be an ideal of
L. Then:

(1) [L,N]l=N®°.

(2) L/N is a C}-algebra.

Proor. (1) We first assume that L is finite-dimensional and L= N
+ {x). Let h be an element of N. Let H be a maximal soluble subalgebra of
L containing h. Then H is abelian. We can consider the Fitting decompo-
sition of L relative to ad H, say L= Ly, + L,. It turns out that L= H + N,
since H is a Cartan subalgebra of L and L, =< L> < N. Hence [L, h] < N2
and [L, N] < N2 since h can be taken as an arbitrary element of N. It follows
that

L’ N?+[x,NJ= N2
By induction we have
Ln+1 c [L, Nn] c Nn+1

for any n > 1. Consequently L= H + N® and [L, h] =< N®. Hence we have
[L, N]=N©°.

Now we go back to the general case. Let yeL and zeN. Since
[INN<y, 2)) + D>, Nnly, 2)]1 = (Nnly, z))®, we have [y, z]eN®. Hence
we have [L, N] = N°.

(2) Let H/N be a nilpotent subalgebra of L/ N and let xe I (H). Then we
have [x, Hl< H® = N by (1). Therefore I, y(H/N)< Cy(H/N) and L/N
satisfies the condition (5) of Proposition 2.2. Hence L/N is a §€§-algebra. (]



392 Hidekazu FURUTA

The following result corresponds to [2, Theorem 3.9].
THEOREM 3.3. LFNC¥ =LF NI, (si).

Proor. By Proposition 2.2, it suffices to prove LFNCE < LFNT,(si).
Suppose that LeLFnC¥ and K si H < L. Then K®< H by [1, Lemma 1.3.2]
and K/K® si H/K®. By using Lemma 3.2 we see that H/K® is a €¥-algebra.
For any elements x and y of K, ({x, y) + K®)/K® is nilpotent and so abelian.
Therefore K/K¢ is abelian and by Proposition 2.2

[H/K®, ({x> + K®)/K®]=0
for any xe K. Hence [H, K] = K® and LeT,(si). |
For €™)-algebras we have the following
THEOREM 3.4. LFNCE™® = LFn T (wsi).

Proor. It suffices to prove that LFNE™® <L FnI(wasc)’. Let LeLF
NE™ and let K be a subalgebra of L. Suppose that x is an element of L such
that [x, K, K] < K. Let y be an element of K. Then [x, y, y]eK. Since
{x, yy is finite-dimensional, there exist a,, a5,...,a,€f such that

ar[x, 2y] + oa[x, 391 + -+ + ,[X, 4411 =0
and at least one o; # 0. Since LeE®,

ag[x, y1 + ap[x, 2y] + -+ + a,[x, y1e<yd

and we may assume that o, is not zero. Hence [x, y]e K and Le T (wasc)® by
Lemma 2.3. O

COROLLARY 3.5. Let L be a locally finite €™®-algebra and let N be an ideal
of L. Then L/N is a €®-algebra.

Proor. Let K/N wsi H/N < L/N. Then K wsi H < L. It follows from
Theorem 3.4 that K<« H. Hence K/N< H/N and L/N is a €"™-algebra by
Theorem 3.4. O

We also consider (A)-algebras. The following results can be proved as in
Theorem 3.4 and Corollary 3.5.

THEOREM 3.6. LEN(A) =LFNIH(wsi).

COROLLARY 3.7. Let L be a locally finite (A)-algebra and let N be an ideal
of L. Then L/N is an (A)-algebra.

REMARK. In Theorems 3.3, 3.4 and 3.6 the “local finiteness” is necessary
and the classes €%, €* and (A) are not Q-closed in general (Example 6.1).
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4. Structure theorems

In this section we shall investigate locally finite €*-algebras over a field of
characteristic zero. The structure of €-algebras and €(wsi)-algebras are shown
in [2] and [3]. By using the properties of C-algebras shown in [2] and the
concept of (A)-algebras, we determine the structure of locally finite €*-algebras
and L(wser) & n@*-algebras, which are main results of this paper.

We first show properties of C¥-algebras and (A)-algebras.

LEMMA 4.1. Let L be a Lie algebra.

(1) If L=]sea L; and each L, is a C§-algebra, then L is a €¥-algebra.

(2) If L= H®K is a C*-algebra, H # 0 and K # 0, then L is a €¥-algebra.

(3) If L=]]sea L; and each L, is an (A)-algebra, then L is an (A)-algebra.

4 If L=H®K is a €®-algebra, H+#0 and K #0, then L is an
(A)-algebra.

Proor. (1) Let x and y be elements of L such that [x, ,y, x]e€{x) for any
integer n>1. Put x=(x;);cx, and y=(y));ca- Then for any A1e4,
[X1, wVi> X;]1€<x;) for any integer n > 1. Since L, is a C§-algebra, [x;, y,]
=0 and [x, y] =0. Therefore L= €} by Proposition 2.2.

(2) Let M be a non-zero soluble subalgebra of H. Let x be a non-zero
element of K. Since L is a G*-algebra, N = M + (x) is either abelian or
almost-abelian. If N is almost-abelian, then dim N/N2 =1, which is a
contradiction since N2 = M? < M. Therefore M must be abelian and so H is
a @%-algebra. We can show similarly that K is a €%-algebra. Hence L is a
E%-algebra by (1).

(3) Clear by definition of an (A)-algebra.

(4) Let x and y be elements of H such that [x, y, y] =0. We have [x, y]
e{y) since L is a €™-algebra. Let z be a non-zero element of K. Then
[x, y+2z y+2z] =0 and [x, y + z]e{y + z) since L is a E™-algebra.
Therefore [x, y]Je{y>N<{y +z) =0. Hence H is an (A)-algebra and L is an
(A)-algebra. O

We shall show a characterization of the class €* for locally finite Lie
algebras.

THEOREM 4.2. Let L be a Lie algebra over a field of characteristic
zero. Then L is a locally finite €*-algebra if and only if one of the following
holds

(1) L is a locally finite (A)-algebra.

(2) L is almost-abelian.

(3) L is a 3-dimensional split simple Lie algebra.
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Proor. If (1), (2) or (3) holds, then clearly L is a locally finite €*-
algebra. To show the converse, first we shall show the finite-dimensional case
by induction on dim L, and then we shall show the locally finite case.

(a) Let L be a finite-dimensional €*-algebra and assume that every proper
subalgebra of L satisfies one of (1)-(3). By [2, Theorem 2.3] we have L
=R®S, where R is an abelian or almost-abelian ideal of L and S is a
semisimple ideal of L. If S =0, then L satisfies (1) or (2). Assume that
S#0. If R+#0 or S is not simple, then R and S belong to € by Lemma 4.1
(2). Therefore R is abelian and S is an (A)-algebra. Hence L satisfies (1) by
Lemma 4.1 (3). Assume that L is simple and that L does not belong to
(A). Then there are x and y in L such that [x, y, y] =0 and [x, y] # 0. Put
z={[x, y]. Then ad z is nilpotent by [4, Lemma 4 in Chapter 2], and there
are non-zero elements k and e in L such that [h, ¢] = e by [4, Theorem 17 in
Chapter 3]. Assume that I;(<h)) # (h) and take ce I, (<h))\<h). For acf,
put L, ={veL:v(ad h—a-1)"=0 for some n} and set H=L, + L, + L,
+ ---. Since {c) + H is soluble, it is either abelian or almost-abelian. If {c)
+ H is abelian, then [c, e] = 0. If {¢) + H is almost-abelian, then [c, e]e<e)
since ({c¢) + H)®> = H. Therefore {c¢) + <h) + <{e) is soluble and so almost-
abelian. Consequently ({c) + <h) + {eD)? = (h) + {e) is abelian, which is a
contradiction. Hence <h) is a Cartan subalgebra of L and L is 3-
dimensional. It follows that L satisfies (3).

(b) Let L be a locally finite €*-algebra. First assume that L includes a
subalgebra S of type (3). By (a), S, x> is of type (3) for any xeL and
therefore L= S is of type (3). Assume that L includes no subalgebras of type
(3), and assume that L includes a subalgebra of type (2). Then there are non-
zero elements u, ve L such that [u, v] =v. For any elements x and y of L,
{u, v, x, yy is of type (2). Hence {x, y>e¥U,. By [3, Lemma 2.1 (1)], Le Y,
and L is of type (2). Finally assume that L does not include subalgebras of
type (2) or (3). Then for any elements x and y of L, <{x, y) is of type
(1). Therefore L is of type (1). O

REMARK. In Theorem 4.2 we cannot remove the condition that L is locally
finite (Example 6.1). Also we cannot remove the condition that the field is of
characteristic zero (Example 6.2).

By Theorem 4.2 we have characterizations of LFNE¥ and LFnE™.

COROLLARY 4.3. Let L be a Lie algebra over a field of characteristic
zero. Then L is a locally finite €®)-algebra if and only if either L is a locally
finite (A)-algebra or L is almost-abelian.

Proor. Lie algebras satisfying (3) of Theorem 4.2 are not E™-
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algebras. Thus a locally finite €™)-algebra must satisfy (1) or (2). O

COROLLARY 4.4. Let L be a locally finite Lie algebra over a field of
characteristic zero. Then L is a C§-algebra if and only if L is an (A)-algebra.

Proor. Lie algebras satisfying (2) or (3) of Theorem 4.2 are not E}-
algebras. Thus a locally finite €¥-algebra must be an (A)-algebra. O

By Theorem 4.2 and [3, Corollary 3.4] we have a structure theorem of €*-
algebras. We call a Lie algebra L reductive if L= R ® (P .4 S;), where R is
an abelian ideal of L and each S, is a finite-dimensional simple ideal of L.

THEOREM 4.5. Let L be a Lie algebra over a field of characteristic
zero. Then L belongs to L(wser) §NC* if and only if one of the following holds:

(1) L is a reductive (A)-algebra.

(2) L is a finite-dimensional almost-abelian Lie algebra.

(3) L is a 3-dimensional split simple Lie algebra.

Proor. By Theorem 4.2, L satisfies one of (1)—(3) of Theorem 4.2. If L
satisfies (3) of Theorem 4.2, then L satisfies (3). We shall show that a Lie
algebra L which satisfies (1) and (2) of Theorem 4.2 satisfies (1) and (2)
respectively.

(1) By Proposition 3.1 and Theorem 3.6 we have LerL(<)§. It follows
from [3, Corollary 3.4] that L= R ® S, where R is an abelian ideal of L and S
is a semisimple ideal of L. By [1, Theorem 13.4.2] we have S = @,., S;,
where each S, is a finite-dimensional simple ideal of S. Hence (1) holds.

(2) By [3, Lemma 2.1 (2)] we have LeL(<a)§. Let xeL\L?. Then there
is a finite-dimensional ideal H of L containing x. We have L= H and
therefore L is finite-dimensional.

COROLLARY 4.6. Let L be a Lie algebra over a field of characteristic
zero. Then L belongs to L(wser) §nC™ if and only if either L is a reductive (A)-
algebra or L is a finite-dimensional almost-abelian Lie algebra.

PrROOF. Lie algebras satisfying (3) of Theorem 4.5 are not €™-
algebras. Hence the assertion holds. O

Let L be a Lie algebra over a field f. An element x of L is ad-semisimple if
there is a basis {e,},.4 for L®,f and if there are elements {a,},., of T such that
[e;, x] = a,e, for any e 4. We call L ad-semisimple if x is ad-semisimple for
any xelL.

COROLLARY 4.7. Let L be a L(wser) §-algebra over a field of characteristic
zero. Then the following are equivalent:
(1) LeG}.
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(2) Le(A).

(3) L is a reductive (A)-algebra.

(4) Every subalgebra of L is reductive.
(5) L is ad-semisimple.

Proor. Implications (5)=(2)=(1), (3)=>(2) and (4)=(1) are trivial.
Assume (1). Then L satisfies (1) of Theorem 4.5 by Theorem 4.5. Therefore
L satisfies (3) and (4). By [6, Theorem 1] each direct summand S, is ad-
semisimple. Hence L satisfies (5). O

We can generalize [6, Theorems 1 and 2] in the following

COROLLARY 4.8. Let L be a Lie algebra over a field of characteristic
zero. If LeL(wsi)FnL(ser)F (resp. LeL(ser)§), then the conditions (1)—(5) of
Corollary 4.7 and the condition Le Qy(wsi) (resp. Le €,(wasc)) are equivalent.

Proor. The assertion follows from [3, Corollary 3.9] (resp. [3, Corollary
3.41). O

REMARK. Since 3-dimensional split simple Lie algebras belong to
Co(ser)\C§, the above conditions are not equivalent to “Le@,(si)” or
“Le§q(asc)” even if L is finite-dimensional.

5. Conditions to be abelian or almost-abelian

The structure of generalized soluble €*-algebras over any field and locally
finite €*-algebras over an algebraically closed field are investigated in [2]. In
this section we shall generalize them and apply to the classes €%, €* and (A).

First we shall generalize [2, Proposition 3.11]. Let X be a class of Lie
algebras. We define the class {L, E} X to be the smallest L-closed and E-closed
class containing X. For any ordinal «, we inductively define the class (LE)*X as
follows: (LE)°X =X, (LE*"'X =LE((LEX) for an ordinal o, (LE)*X
= U, <, (LE)*X for each limit ordinal .. We denote by (LE)*X the class of Lie
algebras L such that Le(LE)*X for some ordinal «. It is easy to verify that
(LE)*X is L-closed and E-closed. Hence a Lie algebra L belongs to {L, £} X if
and only if L belongs to (LE*X for some ordinal a.

PROPOSITION 5.1. Let X be a class of Lie algebras. If €*nX =W, then
C*n{L, E} X = U,.

ProOF. Assume that €*nX = U,. By the above remark it suffices to
show that €*nLEX = A,. Let LeC*nLEX, and let x be any element of
L®. Then there is an EX-subalgebra H of L such that xe H®. Let (H,),<,
be an ascending X-series of H. We shall show by transfinite induction on «
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that H,e U, for any ordinal o < 0. Assume that H;e, for all f <a. Ifais
a limit ordinal, then H, = {Jz<, Hy is soluble. Therefore H, is either abelian or
almost-abelian. Otherwise, if M/H,_, is a soluble subalgebra of H,/H,_,,
then M is soluble. Hence we see that H,/H,_, is a @*-algebra. Therefore
H,/H,_e€*nX =A,. It follows that H, is soluble and therefore H, is either
abelian or almost-abelian. Hence we have xeH®@ =0. Therefore L?
=0. We can conclude that L is either abelian or almost-abelian by a
characterization of €*. O

Let X = A in Proposition 5.1. Then we obtain the following result.

COROLLARY 5.2. (1) C*n{L, B} A =CXn{L, £} A = A,.
(2) Cn{L, B} A = (A)n{L, B} A = A

Next we shall show the structure of €%, €* and (A)-algebras in a locally
finite case over an algebraically closed field.

PROPOSITION 5.3. Over an algebraically closed field
() LFnCE =A.

(2) LFNE™ =A,.

(3) LFn@A) =AU

Proor. By [2, Proposition 3.10] over an algebraically closed field locally
finite €*-algebras are abelian, almost-abelian or 3-dimensional split simple, but
a 3-dimensional split simple Lie algebra does not belong to CFu
E®_  Therefore the assertion is clear. O

REMARK. An ad-semisimple Lie algebra over an algebraically closed field
is always abelian. If char f = 0, then there is a non-abelian (A)-algebra over f
(Example 6.1).

6. Examples
In this section we shall give examples.

EXAMPLE 6.1. Let W, be a Witt algebra, that is, a Lie algebra over a field
of characteristic zero with basis {w,, w;, w,,...} and multiplication [w;, w;l
=( —j)wi+;. Then Wo¢CFuA,. Let W be the subalgebra of W, generated
by w;, w,,.... For a non-zero element x = Y oaw; of W, put max(x)
=max{n:a,#0}. Let x,yeW, such that [x,y yle<yd and
[x, y1¢<y>. Put m = max([x, y]) and n = max(y). Since WZ = W, we have
m #0. Therefore we have m=n Let [x,y]= Zf‘; o%w; and 'y

=Y 2 ,Bw. Putz=p,[x, y]—a,y. Then we have [z, y]1e<y>. We have
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max (z) = 0 since max(z) < m. Consequently ze{w,» and ye{w,,>. We have
[x, y]Je({wo) + {w)d>NW=<y)>. Hence W, is a E™-algebra. By [3,
Example 4] We(A). We easily see that W/{(w,, ws,...»>¢C€ and therefore
W¢I. Hence over a field of characteristic zero the classes €%, €* and (A) are
not Q-closed and

A) £T, (AU, < EW,

ExaMmPLE 6.2. Let f be a field of characteristic 2 and let , be the field of
rational functions f(4, u). Let L be a Lie algebra over f, with basis {w, x, y, z}
and multiplication [x, y] = Az, [y, z] = ux, [z, x] =y, [w, x] =0, [w, y] =y,
[w, zZ] =z Clearly L does not belong to €5UU,. Let H =<x, y, z) and let
u,velL such that [u, v,v]e(v). Then [u,v]eH. We shall show that
[u, v]e<v). Put v=aw + fx + yy + dz and L, = {teL: [t, ,v] =0 for some
integer n}. Then the characteristic polynomial of ad v is

X4+ @2+ BPA+92u+ 2w X2 + a(y?A + %) uX.

If a(y?A + 6%)u # 0, then dim L, = 1. Hence ue{v). We consider the case
a(y?A+6Hu=0. If « =0, then veH and the characteristic polynomial of
ad vy is

X3+ (BPA+ 9y iu+*wX.

If 24+ y?Au+ 6%u # 0, then dim(LonH)=1 and [u, v]e{v). Otherwise,
put B=PB,/Bs, v=71/v. and J=35,/3,, where By, B, 1,72, 01,0, are
polynomials of 4 and u in . Then we have

193054 + P3yioju+ B3y30iu=0.

Since B2 y2 62, B2y% 63 and B33 62 are polymonials of A2 and u?, we have f =y
=6 =0. Hence »=0. Finally we consider the case y?A + 62 =0. Then y
=6 =0. Therefore ve{w, x)>. The characteristic polynomial of ad v is

X%+ (2 + B2 X2
If «>+ 24 #0, then dim L, =2. Hence ue<w, x) and [u,v]=0. If o
+ B%24 =0, then v=0. Hence L is a €®-algebra. Over f, we have
(A)UA, < EF.

ExaMPLE 6.3. Let I be a subfield of the field of real numbers or a field like
f, in Example 6.2. Then there is a 3-dimensional non-split simple Lie algebra
over . Let us construct L= R @ S, where R is an almost-abelian ideal of L
and S is a 3-dimensional non-split simple ideal of L. By [3, Lemma 3.1], L
belongs to € (wasc), and by Lemma 4.1 (4), L does not belong to €*. Hence
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over f we have

[1]
[2]

[31]

[4]
[5]

[6]
[7]

[8]

C™ < € (wasc).
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