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Introduction

In this paper we shall investigate the structure of locally finite Lie algebras
in which every soluble subalgebra is either abelian or almost-abelian.

Varea [8] has introduced the concept of (£*-algebras termed C-algebras,
namely, Lie algebras in which every subalgebra of a nilpotent subalgebra H of L

is an ideal in the idealizer of H in L, and he has shown for finite-dimensional

Lie algebras that (£*-algebras are precisely Lie algebras in which every soluble

subalgebra is either abelian or almost-abelian. Also Varea has introduced the
concept of (^-algebras termed c-algebras, namely, Lie algebras in which every 1-
dimensional subideal is an ideal. A Lie algebra L is called a 2-algebra if every

subideal of L is an ideal of L. The relation among (£*-algebras, CL-algebras and
2-algebras, and their structure are investigated in [8]. Infinite-dimensional

ε*-algebras are considered in [2] . A Lie algebra L is called an (A)-algebra in
[5] if any pair of elements x and y of L such that [x, y, y] = 0 satisfies [x, y]
= 0. Finite-dimensional (A)-algebras are investigated in [6] . Let Δ be one of

the relations asc, wsi, wasc and < ω. Following [2] and [3], we call a Lie

algebra L a Z (zf)-algebra (resp. G(zl)-algebra) when we replace the relation
"subideal" by A in the above definition of 2-algebra (resp. CL-algebra). We call

a Lie algebra L a Ϊ0 (zί)-algebra (resp. (£0 (zl)-algebra) if every J-subalgebra H of
L satisfies [L, H'] = H2. For a class 3E we call a Lie algebra L an P-algebra if
every subalgebra of L is an 3E-algebra.

In this paper we shall introduce the classes CEg and £(*) : A Lie algebra L is

a εj-algebra if every soluble subalgebra of L is abelian, and L is a £(*}-algebra
if any pair of elements x and y of L such that [x, y, y] 6 <j> satisfies

In Section 2, we shall show characterizations of GJ, (£(*) and (A)-algebras :

Ϊ0(asc)s = X0(si)s (Lemma 2.1). <£J = eo(asc)s = £0(si)s (Proposition 2.2).
2(wasc)s = ϊ(< ω)s (Lemma 2.3). e(*} = (£(wasc)s = <£(< ω)s (Proposition 2.4).

Ϊ0 (wasc)s = Ϊ0(< ω)s (Lemma 2.5). (A) = £0(wasc)s = eo(< ω)s (Proposition
2.6).

In Section 3, we shall show that L g n C g = Lgnϊ0(si)s (Theorem 3.3),
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Lgne^^LgnSίwsi)5 (Theorem 3.4), and Lgn(A) = Lgn20(wsi) s (Theorem
3.6).

In Section 4, we shall determine the structure of locally finite (£*-

algebras. If L is a locally finite (£*-algebra over a field of characteristic zero,
then L is a locally finite (A)-algebra, an almost-abelian Lie algebra, or a three-
dimensional split simple Lie algebra (Theorem 4.2). If L is a L (wser) g n £*-
algebra over a field of characteristic zero, then L is a reductive (A)-algebra, a
finite-dimensional almost-abelian Lie algebra, or a three-dimensional split
simple Lie algebra (Theorem 4.5).

In Section 5, we shall investigate other properties of the classes (£*, G$, (£(*}

and (A): K* n {L, έ} 91 = 9I0 and <£# n {L, έ} 91 = 91 (Corollary 5.2). Over an

algebraically closed field, Lgne( ί | t ) = 9I0 and L g n G J = 91 (Proposition 5.3).
In Section 6, we shall give exmples and show the following: (A) £ X

(Example 6.1). (A) U 9I0 < <£<*> (Examples 6.1 and 6.2). <£<*>< C(wasc)
(Example 6.3).

1. Notations

Throughout the paper Lie algebras are not necessarily finite-dimensional
over a field f of arbitrary characteristic unless otherwise specified. We mostly
follow [1] for the use of notations and terminology.

Let L be a Lie algebra over ϊ and let H be a subalgebra of L. For an
ordinal cr, H is a σ-step ascendant (resp. weakly ascendant) subalgebra of L,
denoted by H<ισL (resp. H<σL), if there exists an ascending series (resp.
chain) (#α)α<σ of subalgebras (resp. subspaces) of L such that

(1) H~= H and Hσ = L,
(2) Ha^Ha+1 (resp. [//α+1, //] £ #α) for any ordinal α < σ,
(3) Hλ = \JΛ<λHΛ for any limit ordinal λ < σ.

H is an ascendant (resp. a weakly ascendant) subalgebra of L, denoted by H asc
L (resp. H wasc L), if H^σL (resp. H <σL) for some ordinal σ. When σ is
finite, H is a subideal (resp. weak subideal) of L and denoted by H si L (resp. H
wsi L). For a totally ordered set Σ, a series (resp. weak series) from H to L of
type Σ is a collection [Aσ9 Vσ: σeΣ] of subalgebras (resp. subspaces) of L such
that

(1) H^Vσ^Λσ for all σeΓ,

(2) L\H = U«rKm
(3) Λ τ £ Ϊ J i f τ « 7 ,
(4) Kσ^ Λ, (resp. [Λσ, /f] c KJ for all σeΣ.

H is a serial (resp. weakly serial) subalgebra of L, denoted by H ser L (resp. H
wser L), if there exists a series (resp. weak series) from H to L of type 27 for
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Let Δ be any of the relations si, asc, ser, oσ, wsi, wasc, wser and
< σ . Z(Δ) is the class of Lie algebras L in which every Δ -subalgebra of L is an
ideal of L. (£(Λ) is the class of Lie algebras L in which every 1 -dimensional A-

subalgebra of L is an ideal of L. In particular we write Z and (£ for Z (si) and
(£(si) respectively, g, 91 and 91 are the classes of Lie algebras which are finite-

dimensional, abelian and nilpotent respectively.
Let ί be a class of Lie algebras and let A be any of the relations

< , o , si, ser, wsi and wser. A Lie algebra L is said to lie in L(J)3E if for any
finite subset X of L there exists an 3E-subalgebra K of L such that
X^KAL. We write LΪ for L(<)£. When LeLg, L is called locally
finite. For an ordinal σ, Eσ (A) •£ is the class of Lie algebras L having an
ascending series (Lα)α<σ of J-subalgebras such that

(1) LO = 0 and ~Lσ = L,
(2) Lα<α Lα + 1 and Lα + 1/Lαeϊ for any ordinal α < σ,

(3) Lλ = (JΛ<λLa for any limit ordinal λ < σ.

We write έ(J)3E = (Jσ>0Eσ(A)3ί and E(A)X = (Jn<ωEn(A)X. In particular we
write έϊ and E£ for έ(<) ϊ and E(<)£ respectively. Thus E9I is the class of

soluble Lie algebras. QΪ is the class of Lie algebras consisting of all
homomorphic images of ϊ-algebras. s3E is the class of Lie algebras consisting

of all subalgebras of ΐ-algebras. We say that 3£ is A-closed if X = AΪ, where A

is L, E, E, Q or s. We denote by P the largest s-closed subclass of X, that is, L

belongs to 3ES if and only if every subalgebra of L belongs to 3E.
Let H be a subalgebra of L. We denote by CL(H) (resp. IL(H)) the

centralizer (resp. idealizer) of H in L. For xeL we put #* = Σπ>0[#, „*],
where [H, nx] = [#, x, x, , x]. The Hirsch-Plotkin radical p(L) of L is the

π

unique maximal locally nilpotent ideal of L [1].

2. Characterizations

The class (£* is introduced in [8] as the class of Lie algebras L satisfying (4)

of the following equivalent conditions ([2, Proposition 3.2 and Theorem 3.5]):

(1) If <x> asc H < L, then <x><ι H.
(2) If <x> si H < L, then <x><ι H.

(3) For x, yeL, if [x, πy, x]e<x> for any n > 1, then <x><ι <x, y>.

(4) If H is a nilpotent subalgebra of L and K is a subalgebra of H, then

(5) Every soluble subalgebra of L is either abelian or almost-abelian.
The equivalence has been shown in [8] for finite-dimensional Lie algebras and

generalized in [2] for infinite-dimensional Lie algebras.
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We shall introduce the classes (£$ and (£(*}: A Lie algebra L belongs to (£ J
if every soluble subalgebra of L is abelian A Lie algebra L belongs to d(*) if
any pair of elements x and y of L such that [x, y, y] 6 <);> satisfies

Lχ9 y] e <)>)• A Lie algebra L belongs to (A) if any pair of elements x and y of
L such that [x, y, y] = 0 satisfies [x, y] = 0 [5]. It is easy to see that the

classes (£*,(£$, (£(j|c) and (A) are s-closed and L-closed. We shall give
characterizations of the classes (£$, (£(*) and (A) which are similar to [2,
Proposition 3.2, Lemma 3.3 and Theorem 3.5] and will be used in later
sections. We define the following classes of Lie algebras. Let Δ be any of the
relations si, asc, ser, <ισ, wsi, wasc, wser and <σ. Let Z 0 ( Λ ) denote the class
of Lie algebras L in which every A -subalgebra H satisfies [L, H~\ = H2. Let
(£0(zf) denote the class of Lie algebras L in which every 1-dimensional Δ-
subalgebra H satisfies [L, H~] = 0.

First, we shall investigate the class (£g.

LEMMA 2.1. Let L be a Lie algebra and let K be a subalgebra of L. Then
the following are equivalent:

(1) If K asc H < L, then [#, X] = K2.
(2) If K si H < L, then [tf, X] = K2.
(3) // X<α 2 H < L, fλέf/i [H, K] = K2.
(4) For xeL, ι/ [X, nx, X] c X /OΓ αrcy * > 1, λαi [x, K] c X2.

PROOF. (1)=>(2)=>(3) is clear.
(3)=>(4): Let xeL such that [X, πx, X] c X for all n > 1. Since

K<ι X*<] <X, x>, we obtain [x, X] £ χ2

(4) => (1): Let X asc H < L and let (^4α)α<σ be an ascending series from X to
#. We show by transfinite induction on α that \_AΛ, X] ^ X2. Let α > 0 and
assume that \_Aβ, X] c X 2 for all β < α. If α is a limit ordinal, then [v4α, X]
= L(Jβ<ΛAβ, X] c χ2. Otherwise by induction hypothesis
Xo Aa^l^ AΛ. Let xe^4α. Since [X, nx, X] ^ X for any n > 1, it follows
that [x, X] c χ2. Hence we have [Aα, X] c χ2. Π

By using the concept of subideals and ascendant subalgebras we can
characterize εg-algebras.

PROPOSITION 2.2. Let L be a Lie algebra. Then the following are
equivalent:

(1) L6(£o(asc)s.
(2) L€<£0(si)s.
(3) Leeo(<α2)s.
(4) For x, yeL, if [x, ny, x]e<x> for any n > 1 //ze« [3;, jc] = 0.
(5) If H is a nilpotent subalgebra of L, then IL(H) = CL(H).
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(6) Leeg.

PROOF. The equivalence of (l)-(4) can be proved by Lemma 2.1.

(2) => (5): Let H be a nilpotent subalgebra of L and let x be any element of

H. Since <x> is a subideal of IL(H), we have [/L(H), x] = 0. Hence IL(H)

= CL(H).
(5) => (6): Let H be a soluble subalgebra of L and denote N by the Hirsch-

Plotkin radical p(H) of H. For any x,yeN, <x, j;> is nilpotent since N is

locally nilpotent. Since /L«x, y» = CL«x, y», <x, y> is abelian. It follows
that N is abelian and H = IH(N) = CH(N). Furthermore by [1, Lemma
9.1.2(c)] we have CH(N)<N. Therefore H is abelian.

(6)=>(4): Suppose that [x, ny, x]e<x> for any n > 1. We put Mn

= Σi=o <[*> ί^]> for any n > 0 and M = Un°°=oMπ. Then Mn<ι M < L for all
n>0. Since Mπ = Mπ_! + <[x, „);]>, we obtain Miυ < Mn_!. Therefore
M^ + 1) = 0. We conclude that Mn is abelian for all n > 0 and so M is
abelian. Now we set K = M + <y>. Then K is soluble and therefore

abelian. Hence we have [y, x] = 0. Π

Second, we shall investigate (£(s|e)-algebras.

LEMMA 2.3. Let Lbe a Lie algebra and let K be a subalgebra of L. Then

the following are equivalent:
(1) If K wasc H < L, then K^H.

(2) If K < ωH < L, fλέ?/ι K<3 #.
(3) For xeL, i/ [x, K, X] <= x, ^π [x, X] c K.

PROOF. (1)=>(2) is clear.

(2)=>(3): Let x be an element of L such that [x, K, K] c K. Put H

= {yeL: [y, ΠX] ̂  K for some integer n > 1}. By [7, Lemma 1] we have
K <ω H <L. Hence [x, X] c X since xe#.

(3) =>(!): Let X wasc H < L and let (/lα)α<σ be a weakly ascending series
from X to //. We show by transfinite induction on α that [Aα, X] ^ X. Let
α > 0 and assume that \_Aβ, X] ^ K for all j8 < α. If α is a limit ordinal, then

[Aα, X] = [U^<α^/?» ^] — ̂  Otherwise by induction hypothesis [Aα_ι, X]
c X. Let xεAa. Since [x, X, X] £ X, it follows that [x, X] c X. Hence

we have [Λβ, X] s X. Π

The following result can be proved by using Lemma 2.3.

PROPOSITION 2.4. Let L be a Lie algebra. Then the following are

equivalent:

(1) Le(£ (wasc)5.

(2)

(3)
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Third, we consider (A)-algebras. The following results can be proved as in
Lemma 2.3 and Proposition 2.4.

LEMMA 2. 5. Let L be a Lie algebra and let K be a subalgebra of L. Then
the following are equivalent :

(1) // K wasc H < L, then [#, X] = K2.
(2) If K < ωH < L, then [H, X] = K2.
(3) For xeL, if [x, K, X] £ K, f/w?n [x, X] c X2.

PROPOSITION 2.6. Lei L be a Lie algebra. Then the following are
equivalent :

(1) Lee0(wasc)s.

(2) Le(£o(<ω)s.
(3) Lε(A).

A Lie algebra L is said to be almost-abelian if L is the split extension of an
abelian algebra by the 1 -dimensional algebra of scalar multiplications. We
denote by 2I0 the class of abelian or almost-abelian Lie algebras. It follows
from Propositions 2.2, 2.4, 2.6 and [3, Lemma 2.1] that

VI VI VI

21 < (A) < <£* .

It is easy to see that (£gne(*) = (A).
Almost-abelian Lie algebras belong to (£(*)N\(£5. A 3-dimensional simple

Lie algebra L over a field I is called split if L contains an element h such that
ad h has a non-zero characteristic root in I ([4, p. 14]). If char 1^2, then a 3-
dimensional simple Lie algebra L is split if and only if L has a basis [e, /, h}
such that [Λ, e\ = e, [h, /] = -/, [>, /] = Λ. Split 3-dimensional simple Lie

algebras belong to e*\((£Jue(*)). Hence we have

(A) <<£<*>, e*ue(*}<G*.

By [3, Lemma 4.1] a 3-dimensional simple Lie algebra is either a split 3-
dimensional simple Lie algebra or an (A)-algebra.

3. Locally finite Lie algebras

We consider locally finite Lie algebras. By [2, Theorem 3.9],
= Lgn3?. We shall show some results which correspond to this. It is
necessary to show some obvious equalities.
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PROPOSITION 3.1. (1) L g n 20(
ser)s = Lg n Σ0(si)s.

(2) L5nMser)s = LSn<£0(si)s.
(3) Lδ n 2(wser)s = Lg n £(wsi)s.
(4) L5ne(wser)s = Lδne(wsi)s.
(5) Lft n X0(wser)s = Lg n 20(wsi)s.

(6) Lδ n <Mwser)s = L^ n G0(wsi)s.

PROOF. We only show (5) because the others can be proved

similarly. Let LeLgΠΪ0(
wsi)5 and let ^ wser H < L. We can find a finite-

dimensional subalgebra F of L which contains x and y for any xeK and
ye/i. Then FπK wsi Fn#. Hence [H, X] = K 2. This shows that
LeX0(wser)s. The converse is clear. Π

REMARK. Almost-abelian Lie algebras belong to the classes of (3), (4) but
none of (1), (2), (5), (6) of Proposition 3.1.

We consider locally finite KJ-algebras.

LEMMA 3.2. Let Lbe a locally finite ^-algebra and let N be an ideal of

L. Then:
(1) [L,N] = AT.

(2) L/N is a Hξ-algebra.

PROOF. (1) We first assume that L is finite-dimensional and L= N

+ <x>. Let h be an element of N. Let H be a maximal soluble subalgebra of

L containing h. Then H is abelian. We can consider the Fitting decompo-

sition of L relative to ad H, say L= L0 + Lj . It turns out that L— H + N,
since H is a Cartan subalgebra of L and L t £ L2 £ N. Hence [L, h]^ N2

and [L, JV] c Λf 2 since ft can be taken as an arbitrary element of N. It follows

that

L2 c N2 + [x, N] <ΞΛ/Λ

By induction we have

Ln+1 c [L, N"] cjV + 1

for any n > 1. Consequently L= H + Λf ω and [L, /i] c ΛΓω. Hence we have

[L, N] = AT.
Now we go back to the general case. Let yεL and zeΛΓ. Since

[(NΠ<j,z» + <y>,Nn<^z>]=(Nn<^z» ω , we have [y,z]eNω. Hence

we have [L, N] = Nω.
(2) Let H/JV be a nilpotent subalgebra of L/N and let xe!L(H). Then we

have [x, H^^Hω^N by (1). Therefore IL/N(H/N) c CL/N(H/N) and L/N
satisfies the condition (5) of Proposition 2.2. Hence L/N is a (£g-algebra. Q
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The following result corresponds to [2, Theorem 3.9].

THEOREM 3.3. L g n G g = Lgn£0(si)s.

PROOF. By Proposition 2.2, it suffices to prove

Suppose that LeLgnGg and K si H < L. Then Kω^ H by [1, Lemma 1.3.2]
and K/Kω si H/Kω. By using Lemma 3.2 we see that H/Kω is a Kg-algebra.

For any elements x and y of K, «x, y> + Kω)/Kω is nilpotent and so abelian.
Therefore K/Kω is abelian and by Proposition 2.2

= 0

for any xeK. Hence [#, X] = Kω and Le£0(si)s. Π

For (£(!|c)-algebras we have the following

THEOREM 3.4. Lg n G(*) = Lg n £(wsi)s.

PROOF. It suffices to prove that LgnK ( * ) < Lgn3:(wasc)s. Let
0, and let K be a subalgebra of L. Suppose that x is an element of L such

that [x, X, X] c K. Let y be an element of X. Then [x, j;, }>]eK. Since

<x, y> is finite-dimensional, there exist α l 5 α 2,...,αneϊ such that

«ι[^ 2J>] + α2[^ s}7] + •- + απ[x, n+1y] = 0

and at least one α£ ̂  0. Since

and we may assume that a1 is not zero. Hence [x, y]εK and Leϊ(wasc)5 by

Lemma 2.3. Π

COROLLARY 3.5. Let Lbe a locally finite &*}-algebra and let N be an ideal

of L. Then L/N is a &*>-algebra.

PROOF. Let K/N wsi H/N < L/N. Then K wsi H < L. It follows from

Theorem 3.4 that K^ H. Hence K/N^ H/N and L/N is a G^-algebra by
Theorem 3.4. Π

We also consider (A)-algebras. The following results can be proved as in

Theorem 3.4 and Corollary 3.5.

THEOREM 3.6. L g n (A) = L g n X0 (wsi)s .

COROLLARY 3.7. L^ί Lbe a locally finite (A)-algebra and let N be an ideal
of L. Then L/N is an (A)-algebra.

REMARK. In Theorems 3.3, 3.4 and 3.6 the "local finiteness" is necessary
and the classes GJ, (£(*) and (A) are not Q-closed in general (Example 6.1).
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4. Structure theorems

In this section we shall investigate locally finite (£*-algebras over a field of
characteristic zero. The structure of G-algebras and (£(wsi)-algebras are shown
in [2] and [3]. By using the properties of (£-algebras shown in [2] and the
concept of (A)-algebras, we determine the structure of locally finite (£*-algebras

and L(wser) g n (£*-algebras, which are main results of this paper.

We first show properties of G$ -algebras and (A)-algebras.

LEMMA 4.1. Let L be a Lie algebra.
(1) If L= Y[λeΛ Lλ and each Lλ is a ^-algebra, then L is a ^-algebra.
(2) IfL=H@K is a <£*-algebra, H Φ 0 andK Φ 0, then L is a ^-algebra.

(3) If L = Y[χ€Λ Lλ and each Lλ is an (A)-algebra, then L is an (Δ)-algebra.
(4) If L=H@K is a &*}-algebra9 H Φ 0 and K Φ 0, then L is an

(Δ)-algebra.

PROOF. (1) Let x and j; be elements of L such that [x, ny, x] e <x> for any

integer n > 1. Put x = (xλ)λeΛ and y = (yλ)λeΛ. Then for any λeA,

Lxλ> nyλ> *λ]e<(*λ) f°Γ anY integer n > 1. Since Lλ is a (£g-algebra, [XA, yλ~]
= 0 and [x, y] = 0. Therefore L = (£$ by Proposition 2.2.

(2) Let M be a non-zero soluble subalgebra of H. Let x be a non-zero
element of K. Since L is a (£*-algebra, N = M + <x> is either abelian or
almost-abelian. If N is almost-abelian, then dim N / N 2 = 1, which is a

contradiction since N2 = M2 < M. Therefore M must be abelian and so H is

a (££-algebra. We can show similarly that X is a CLJ-algebra. Hence L is a
eg-algebra by (1).

(3) Clear by definition of an (A)-algebra.
(4) Let x and y be elements of H such that [x, y, y] = 0. We have [x, y~]

e<y> since L is a 0£(:|t)-algebra. Let z be a non-zero element of K. Then

[x, y + z, y + z] = 0 and [x, y -H z] e <y + z> since L is a (£(ί|ί)-algebra.

Therefore [x, y~] e <y> n <y + z> = 0. Hence H is an (A)-algebra and L is an

(A)-algebra. Π

We shall show a characterization of the class (£* for locally finite Lie

algebras.

THEOREM 4.2. Let L be a Lie algebra over a field of characteristic

zero. Then L is a locally finite &*-algebra if and only if one of the following

holds'.
(1) L is a locally finite (^-algebra.

(2) L is almost-abelian.
(3) L is a ^-dimensional split simple Lie algebra.
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PROOF. If (1), (2) or (3) holds, then clearly L is a locally finite d*-

algebra. To show the converse, first we shall show the finite-dimensional case

by induction on dim L, and then we shall show the locally finite case.

(a) Let L be a finite-dimensional (£*-algebra and assume that every proper
subalgebra of L satisfies one of (l)-(3). By [2, Theorem 2.3] we have L

= R 0 S, where R is an abelian or almost-abelian ideal of L and S is a

semisimple ideal of L. If S = 0, then L satisfies (1) or (2). Assume that

S φ 0. If R ^ 0 or S is not simple, then R and S belong to (£$ by Lemma 4.1
(2). Therefore R is abelian and S is an (A)-algebra. Hence L satisfies (1) by
Lemma 4.1 (3). Assume that L is simple and that L does not belong to
(A). Then there are x and y in L such that [x, y, y] = 0 and [x, y] φ 0. Put
z = [x, y\ . Then ad z is nilpotent by [4, Lemma 4 in Chapter 2] , and there

are non-zero elements h and e in L such that [ft, e] = e by [4, Theorem 17 in

Chapter 3]. Assume that /L«ft» / <A> and take ce/L«Λ»\<Λ>. For αel,
put Lα = {i eL: ι;(ad /z — α 1)" = 0 for some n} and set H = L^ + L2 + L3

4- •••. Since <c> + ff is soluble, it is either abelian or almost-abelian. If <c>
H- H is abelian, then [c, e] = 0. If <c> + H is almost-abelian, then [c, e] e <e>

since «c> + H)2 = H. Therefore <c> + </ι> + <e> is soluble and so almost-

abelian. Consequently «c> + </ι> -h <e»2 = <Λ> + <£> is abelian, which is a
contradiction. Hence <ft> is a Cartan subalgebra of L and L is 3-
dimensional. It follows that L satisfies (3).

(b) Let L be a locally finite (£*-algebra. First assume that L includes a

subalgebra S of type (3). By (a), <S, x> is of type (3) for any xeL and

therefore L= S is of type (3). Assume that L includes no subalgebras of type
(3), and assume that L includes a subalgebra of type (2). Then there are non-
zero elements w, v E L such that [M, ι;] = v. For any elements x and y of L,
<M, ϋ, x, >;> is of type (2). Hence <x, y>e9ί0. By [3, Lemma 2.1 (1)], Le9ί0

and L is of type (2). Finally assume that L does not include subalgebras of

type (2) or (3). Then for any elements x and y of L, <x, y> is of type

(1). Therefore L is of type (1). D

REMARK. In Theorem 4.2 we cannot remove the condition that L is locally

finite (Example 6.1). Also we cannot remove the condition that the field is of
characteristic zero (Example 6.2).

By Theorem 4.2 we have characterizations of LgnG^ and

COROLLARY 4.3. Let L be a Lie algebra over a field of characteristic
zero. Then L is a locally finite &*}-algebra if and only if either L is a locally
finite (^-algebra or L is almost-abelian.

PROOF. Lie algebras satisfying (3) of Theorem 4.2 are not
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algebras. Thus a locally finite (£(!|ί)-algebra must satisfy (1) or (2). Π

COROLLARY 4.4. Let L be a locally finite Lie algebra over a field of
characteristic zero. Then L is a ^-algebra if and only if L is an (A)-algebra.

PROOF. Lie algebras satisfying (2) or (3) of Theorem 4.2 are not G$-

algebras. Thus a locally finite Gg-algebra must be an (A)-algebra. Π

By Theorem 4.2 and [3, Corollary 3.4] we have a structure theorem of (£*-

algebras. We call a Lie algebra L reductive if L= R 0 (©λeΛ Sλ), where R is
an abelian ideal of L and each Sλ is a finite-dimensional simple ideal of L.

THEOREM 4.5. Let L be a Lie algebra over a field of characteristic
zero. Then L belongs to L(wser)5π(£* if and only if one of the following holds:

(1) L is a reductive (Δ)-algebra.
(2) L is a finite-dimensional almost-abelian Lie algebra.

(3) L is a ^-dimensional split simple Lie algebra.

PROOF. By Theorem 4.2, L satisfies one of (l)-(3) of Theorem 4.2. If L
satisfies (3) of Theorem 4.2, then L satisfies (3). We shall show that a Lie

algebra L which satisfies (1) and (2) of Theorem 4.2 satisfies (1) and (2)
respectively.

(1) By Proposition 3.1 and Theorem 3.6 we have LeL(<3)g. It follows

from [3, Corollary 3.4] that L = R © S, where R is an abelian ideal of L and S

is a semisimple ideal of L. By [1, Theorem 13.4.2] we have S= 0AeΛ 5A,

where each Sλ is a finite-dimensional simple ideal of S. Hence (1) holds.
(2) By [3, Lemma 2.1 (2)] we have LeL(<α)g. Let xeL\L 2 . Then there

is a finite-dimensional ideal H of L containing x. We have L = H and
therefore L is finite-dimensional.

COROLLARY 4.6. Let L be a Lie algebra over a field of characteristic

zero. Then L belongs to L(wser) g n K(*} if and only if either L is a reductive (A)-
algebra or L is a finite-dimensional almost-abelian Lie algebra.

PROOF. Lie algebras satisfying (3) of Theorem 4.5 are not G(s|c)-

algebras. Hence the assertion holds. Π

Let L be a Lie algebra over a field ϊ. An element x of L is ad-semisimple if

there is a basis {eλ}λeΛ for L ® f f and if there are elements {αλ}λeΛ of I such that

[eλ, x] = oίλeλ for any λeΛ. We call L ad-semisimple if x is ad-semisimple for

any xeL.

COROLLARY 4.7. Let L be a L(wser) ^-algebra over afield of characteristic

zero. Then the following are equivalent:

(1)
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(2) Le(A).
(3) L is a reductive (A)-algebra.
(4) Every subalgebra of L is reductive.

(5) L is ad-semisimple.

PROOF. Implications (5) => (2) =>(!), (3)=>(2) and (4)=>(1) are trivial.
Assume (1). Then L satisfies (1) of Theorem 4.5 by Theorem 4.5. Therefore
L satisfies (3) and (4). By [6, Theorem 1] each direct summand Sλ is ad-
semisimple. Hence L satisfies (5). Π

We can generalize [6, Theorems 1 and 2] in the following

COROLLARY 4.8. Let L be a Lie algebra over a field of characteristic
zero. If LeL(wsi)gΓ)L(ser)g (resp. LeL(ser)g), then the conditions (l)-(5) of
Corollary 4.7 and the condition LeK0(wsi) (resp. Le(£0(wasc)) are equivalent.

PROOF. The assertion follows from [3, Corollary 3.9] (resp. [3, Corollary

3.4]). D

REMARK. Since 3-dimensional split simple Lie algebras belong to
(£0(ser)\Cg, the above conditions are not equivalent to "Le(£0(si)" or
"Le(£0(asc)" even if L is finite-dimensional.

5. Conditions to be abelian or almost-abelian

The structure of generalized soluble K*-algebras over any field and locally
finite (£*-algebras over an algebraically closed field are investigated in [2]. In
this section we shall generalize them and apply to the classes (£J, (£(*} and (A).

First we shall generalize [2, Proposition 3.11]. Let £ be a class of Lie
algebras. We define the class {L, έ} X to be the smallest L-closed and έ-closed
class containing £. For any ordinal α, we inductively define the class (LE)α3E as

follows : (LE)°I = ϊ, (LE)α+ * ϊ = LE ((LE)αϊ) for an ordinal α, (LE)AΪ

= Uα<Λ(Lέ)α£ f°r each limit ordinal λ. We denote by (LE)*Ϊ the class of Lie
algebras L such that Le(LE)α£ for some ordinal α. It is easy to verify that
(LE)*£ is L-closed and έ-closed. Hence a Lie algebra L belongs to {L, έ}ΐ if
and only if L belongs to (LE)α£ for some ordinal α.

PROPOSITION 5.1. Let X be a class of Lie algebras. //*(£* n£ = 2Ϊ0, then

PROOF. Assume that (£*n£ = 9ί0. By the above remark it suffices to
show that (£*nLE£ = 2l0. Let Le(£*nLE£, and let x be any element of
L(2). Then there is an έ ΐ-subalgebra H of L such that xeH(2). Let (//α)α<σ

be an ascending X-series of H. We shall show by transfinite induction on α
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that HαeUl0 for any ordinal α < σ. Assume that Hβetyί0 for all β < α. If α is

a limit ordinal, then HΛ = (jβ<aLHβ is soluble. Therefore Ha is either abelian or

almost-abelian. Otherwise, if M/HΛ.1 is a soluble subalgebra of // α //f α _ l 5

then M is soluble. Hence we see that H<x/Ha^1 is a (£*-algebra. Therefore

HJHΛ-ι e(£* n£ = ^o It follows that #α is soluble and therefore ffα is either

abelian or almost-abelian. Hence we have xeH(2) = 0. Therefore L(2)

= 0. We can conclude that L is either abelian or almost-abelian by a

characterization of (£*. D

Let ϊ = E$I in Proposition 5.1. Then we obtain the following result.

COROLLARY 5.2. (1) K* n {L, έ} 21 = <£<*> n {L, E} 81 = ffl0

(2) c jn{L,E}ϊ i = (A)n{L,E}5i = βι.

Next we shall show the structure of (£g, (£(*} and (A)-algebras in a locally

finite case over an algebraically closed field.

PROPOSITION 5.3. Over an algebraically closed field

(i)
(2)
(3)

PROOF. By [2, Proposition 3.10] over an algebraically closed field locally

finite (£*-algebras are abelian, almost-abelian or 3-dimensional split simple, but

a 3-dimensional split simple Lie algebra does not belong to GJu

e(*}. Therefore the assertion is clear. Π

REMARK. An ad-semisimple Lie algebra over an algebraically closed field

is always abelian. If char f = 0, then there is a non-abelian (A)-algebra over ϊ

(Example 6.1).

6. Examples

In this section we shall give examples.

EXAMPLE 6.1. Let WQ be a Witt algebra, that is, a Lie algebra over a field

of characteristic zero with basis {w0, w l 5 w2,...} and multiplication [w£, w7 ]

= (*' -;)wί+J, Then ^0^(£*u9I0- Let W be the subalgebra of W0 generated

by w 1 ,w 2 , . . . . For a non-zero element x = ΣΓ=oα;w; of WQ, put max(x)
= max {n: an / 0}. Let x, j; e W0 such that [x, >;, 3;] e <};> and

[̂  y]Φ(y>. Put m = max([x, y ] ) and n = max(y). Since Pyo

2 - W; we have

m ^ O . Therefore we have m = n. Let O, )>] = X^α..*^ and y

= ΣΓ=o Awί Put z = ^m [x, y] ~ amy Then we have [z, 3;] e<y>. We have
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max(z) = 0 since max(z) < m. Consequently ze<w 0> and ye<wm>. We have

[^y]e«w0> + <wJ>n»^=O>. Hence WQ is a <£<*>-algebra. By [3,
Example 4] We (A). We easily see that W/<w4, vv5, ...>£(£ and therefore
WφZ. Hence over a field of characteristic zero the classes (EJ, (£(*} and (A) are
not Q-closed and

EXAMPLE 6.2. Let ! be a field of characteristic 2 and let ϊx be the field of
rational functions l(λ, μ). Let L be a Lie algebra over t^ with basis {w, x, y, z}
and multiplication [x, y] = λz, [y, z] = μx, [z, x] = y, [w, x] = 0, [w, y] = y,
[w, z] = z. Clearly L does not belong to (£gu2I0. Let H = <x, y, z> and let
u,veL such that [M, ι?, u]e<ι;>. Then [M, ι?]efί. We shall show that
[M, f] e <u>. Put t> = αw -f βx + yy + <5z and L0 = {ί eL: [ί, nt;] = 0 for some
integer n}. Then the characteristic polynomial of ad v is

X4 + (α2 + β2λ + Λ + (52μ)ΛΓ2 + α(y2Λ + <52)μΛΓ.

If α(y2/l H- ^2)μ / 0, then dim L0 = 1. Hence ue<ι;>. We consider the case
oc(y2λ H- δ2)μ = 0. If α = 0, then ι>e// and the characteristic polynomial of
ad υ\H is

If J?2A + y2Aμ + δ2μ Φ 0, then dim(L0n#) = 1 and [w, ι>]6<ι?>. Otherwise,

put β = βί/β2, y = 71/72 and δ = δjδ2, where βί9 β2,yι,y2> &ι> &2 are

polynomials of 1 and μ in f. Then we have

Since /?f y| δ2, βl 7ι ^2 and β\ 1\ δ\ are polymonials of λ2 and μ2, we have β = y
= δ = 0. Hence t; = 0. Finally we consider the case y2λ + δ2 = 0. Then y
= δ = 0. Therefore t;e<w, x>. The characteristic polynomial of ad v is

X4 + (a2 +β2λ)X2.

If α2 + β2λ φ 0, then dim L0 = 2. Hence we<w, x> and [w, ι;] = 0. If α2

4- β2λ = 0, then t; = 0. Hence L is a (£(*}-algebra. Over ϊ j we have

EXAMPLE 6.3. Let ϊ be a subfield of the field of real numbers or a field like
11 in Example 6.2. Then there is a 3-dimensional non-split simple Lie algebra
over f. Let us construct L = R © 5, where R is an almost-abelian ideal of L
and S is a 3-dimensional non-split simple ideal of L. By [3, Lemma 3.1], L
belongs to (E(wasc), and by Lemma 4.1 (4), L does not belong to (E(5|c). Hence
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over f we have

(£<*>< (£(wasc).
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