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0. Introduction

Let us consider a viscous incompressible fluid which is bounded above by a
free surface and below by a fixed plane inclined at an angle « to the horizontal
(0<a<mn/2). The physical situation is described in Figure 1. We choose an
orthogonal coordinate system so that £,&,-plane (£;=0) coincides with the
fixed bottom Sg, and that £ -axis is in the direction of greatest slope down the
plane Sz. In this coordinate system the gravity force is given by (g9, g2, g3)=
(gsina, 0, —gcosa) where g is the accelation of gravity. The fluid motion
due to gravity is governed by the Navier-Stokes equations with appropriate
boundary conditions. At the bottom Sy the fluid satisfies the adherence condition
and at the free surface, which is not known a priori, satisfies the condition which
states the continuity of stress across the free surface. Surface tension is neglected.
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Thus, as in [2], we come to study the following problem: We are given an
initial domain Q< R3 bounded above by a surface Sy and below by the bottom
Sp, as well as an initial velocity v, in Q. We wish to find, for each te(0, T), a
domain () occupied by the fluid at the time ¢, a velocity field o( -, ¢) and a pressure
p(-, t) defined on €(t), and a transformation #(-, t): 2—R3 so that

0.1 Q) =n(,1), nSpt)=Ss 0<t<T,

0.2) om(x, t) = (von)(x, 1), x€Q, 0<t<T,

(0.3) o0 + (b, Pv; — v4, b; + (0pjon) = g; (i=1,2,3)in 1), 0<t<T,
©4) P, o=23-1(0;/n) =0 in 1), 0<t<T,

0.5) pn; — v33-1 ((8/ony)v; + (O]on)vn; = pon;
(i=1,2,3) on n(Sp,t), 0<t<T,
(06) v=0 on S,

0.7) o(x, 0) = vo(x), xe,
0.8) 7n(x,0) =x, xeQ.

Here (14, 15, n3) are the spatial coordinates of Q(t); F,=(0/0n,, d/0n,, 0/ons)
and 4,=33-,(9/0n;)?; 0, means 9/0t. The constant v is the kinematic viscosity
of the fluid, and p, is the atmospheric pressure assumed to be constant. n=
(ny, ny, n3) denotes the outward normal at each point of the free surface 5(Sp, ?).
Among such flows described by (0.1)—(0.8) the simplest case is treated in an
exercise in [5, Chap. 2, Sect. 17]: Assume that the fluid region is the inclined
slab X ={(&,, &,, &3); 0<&;3<1} (see Fig. 1), that is, it does not depend on ¢ and
has a constant depth equal to one everywhere. Furthermore, assume that the
flow has a velocity component only in the &,-direction and depends only on &,.
Then we obtain the flow described by the following velocity field and pressure

ws($) = (Wy, Wy, W3) = (£3(2—¢3)g sin«/(2v), 0, 0),

0.9)
Ps(&) = po — ({3—1)g cosa,

where £€X. We call (0.9) the unperturbed flow down the inclined plane Sg.

In this paper we discuss the solvability of the nonstationary problem (0.1)—(0.8)
when the initial domain Q is the image of X under a differomorphism. We now
rewrite the problem in the Lagrangian formulation to fix the domain of the
unknowns upon @ (see [2], [7], [8]): Let v(x, t) be the velocity at the time ¢
of the fluid particle, which is located at x € Q initially. Then define the transfor-
mation 5(-, t): Q- R3 by the relation
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(0.10) n(x, 1) = x + S; o(x, 7)dx.

If n(-, £): Q—>R3 is a regular diffeomorphism, the upper free surface of the fluid
region Q(?) at the time ¢ is (S, f), and the relation between v and # is that v(x, t)=
o(n(x, ), 1), xe R, 0<t<T. Further, if we set p(x, )= p(n(x, 1), t), then (0.2)-
(0.8) become

©11)  on(x, ) =0v(x,f) in @ x (0, T),

0.12)  8p — Vi dlidw) + Gadp=9;  (i=1,2,3) in @x (0, T),
(0.13) Lo, =0  in 2 x (0, T),

0.14) PN, — W0+ Cud0)N,; = poN;  (i=1,2,3) on Sp x (0, T),

(0.15) v=20 on Spx (0, T),
(0.16) v(x, 0) = vo(x) in Q,
(0.17) n(x, 0) = x in Q.

Here and hereafter we use summation convention; sum over repeated indices.
0, means 9/0x, (k=1, 2, 3). The coefficients ;; are the (i, j) entries of the matrix
(Dn)~'=(0;m)"*. N(x, t)is the normal to n(Sg, t) at n(x, ?) (x € Sg), i.e., N=nen.

As stated above, Q is assumed to be the image of the inclined slab X under a
mapping I: £—Q of the form I(&)=¢+P(€), pe C5(Z; R?). The conditions on
A(E)=(91(S), ¢2(2), $3(£)) are as follows:

(0.18) |(8/0¢)’¢il —> 0 as |{|—> o0 and (8/08)"¢;e LX(Z)
(1=1,2,3)
for any multi-index y = (yy, ¥, v3) With y; + 7, + 73 <5,
(0.19) |0g, /¢l <1/5  for ¢eZ  (i,j=1,2,3),
(0.20) #ls, = (0, 0,0).

An elementary calculation shows that I: 2—Q is a diffeomorphism of class C3.
We denote each point in Q by x=(x,, X,, Xx;). Notice that Sz={x;=0} and
Sp=I1({{3=1}).

We seek a solution of the form u(x, t)=u(x, 1)+ ws(x), p(x, £)=4g(x, )+
ps(x) where wg(x)=w(I~1(x)) and ps(x)=ps(I"1(x)). The relation (0.10) becomes

(0.21) n(x, £) = x + twg(x) + S; u(x, 7)dr.
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Substituting v=u+wg and p=q+ ps in (0.11)-(0.17), we obtain the problem for
u and g:
0.22) om(x, ) =u(x,t) + wg(x) in Qx(0,7T),
(0.23) Ou; — V(3 j0(L1;01u:) + (1i0kq
= v{,;001,0w) — Lubkps +9; (i=1,2,3) in Qx(0,T),
0.24) GiiOuj = — §aGwy - in Q x (0, T),
0.25)  gN; — v, 0+ Ludu)N; =0 (i=1,2,3) Sp x (0, T),
(0.26) u=0 on Szx(0,7),
0.27) u(x, 0) = uy(x) in Q,
(0.28) n(x, 0) = x in Q,
where wg=(w,, w,, w;) and uo=v,—wg. Here we have used the fact that
we(x4, X5, 0) = wg(I"1(x4, x,, 0)) = (0, 0, 0),
0jwi(x) = (0&;3/0x;) (0w;/0&3)(I"(x)) =0  for xe€Sp,
ps(x) = ps(I71(x)) = po for xeSg.
These follow immediately from (0.9). The purpose of this paper is to show

THEOREM. Let Q be as above. Suppose 3<r<7/2. Let ug=(uy,q, U 2,
Uo,3) € H~Y(Q; R3) satisfy the compatibility conditions

uo = 0 on SB,
(0.29) {23=1(0juo,i+ 0o Inj}ian = 0 on Sg,
(0.30) divuy, = — o,w, in Q.

Then, there is a T >0, depending on Q and the norm |ug|,_, such that (0.23)-
(0.27) has a solution (u, q) with ue K"(Qx (0, T)), Fqe K~>(Qx (0, T)) and
qls, € K"3/%(Spx (0, T)).

Here n(x)=(n,(x), n,(x), n3(x)) is the unit outward normal to Sy at point x € Sp.
{ - }an means the tangential component of the vector in brackets. Hr1(Q)
denotes the usual Sobolev space. K"(Qx(0, T))=H"*0, T; H(Q)) n H°(0,
T; H(Q)) etc. are the function spaces introduced in [6, Chap. 4] to study para-
bolic problems. (See Section 1 for precise definitions.) These function spaces
are effectively used by Beale in [2]. There he considered the Navier-Stokes flow of
fluid occupying a region which approaches, at infinity, to a horizontal slab vertical-
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to the gravity force, i.e., the case that the inclination approaches to zero at infinity.
Hence, he could choose w=0 as an unperturbed flow and linearize the problem at
w=0, and then showed the existence of a solution, local in time, by applying the
contraction mapping principle. We also use the same method as in [2] in showing
the existence of a solution. We, however, linearize the problem (0.23)—(0.27)
at the unperturbed fiow (0.9) which has a non-zero component in the velocity.
Therefore, our linearized problem is a little more complicated than the one in
[2], and estimates for the linearized problem must be carried out more carefully.

Besides the work by Beale [2], there have been several investigations of the
motion of viscous fluid with free boundary. In [3] Beale considered the incom-
pressible flow near equilibrium under the effect of surface tension at free surface,
and obtained a regular solution, global in time, for sufficiently small initial data.
Solonnikov considered in [8] the fluid which is bounded entirely by a free surface,
and proved the existence of a solution, local in time, in a suitable Holder class.
His method relies on the Schauder-type estimates and is rather involved compared
with [2]. For other results, both for incompressible and compressible fluids,
see [7] and the references in [2, 3] and [7].

We begin with introduction and statements of properties of some function
spaces in Section 1. We also introduce some notations which are used in the
later sections. In Section 2 we study an auxiliary linear problem. We regard
our linearized problem as a perturbed problem from the one in [2, Sect. 4], and
then solve it by using the results in [2]. Our main concern in this section is to
find a “good’’ estimate for the solution of the linearized problem. Based on the
results in Section 2 we shall prove our theorem in Section 3 using the contraction
mapping principle.

ACKNOWLEDGMENT. The author is deeply grateful to Dr. Akitaka Matsumura
in Kyoto University for calling author’s attention to the problem considered here.
He also thanks Prof. Tetsuro Miyakawa and Dr. Kimiaki Narukawa for helpful
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1. Preliminaries and basic notations

Throughout this paper 2 denotes the slab-like domain defined in the Intro-
duction. If s>0 is an integer, H(Q) is the usual Sobolev space of functions
whose distributional derivatives up to order s belong to L%(Q). For non-integer
§>0, H¥(Q) is the ““fractional order’’ Sobolev space defined in the usual way
(see [6, Chap. 1]); we denote its norm by |-|,. If X is a Hilbert space, H°(0, T';
X) and HY 0, T; X) are the spaces of X-valued L? and H! functions on the
interval (0, T) respectively. Their norms are denoted by |-|o,r and |-|;;7
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respectively. We next introduce fractional order spaces of X-valued functions on
(0, T), following [7, Sect.1]. If O<r<1, we set for an X-valued function v
on (0, T)

olver = (] . 1o6e2) = ot Bty — o1ty ) ™.
We say that v belongs to H"(0, T'; X) (0<r<2, r=1), if the quantiiy
[oly;r = [0lpyr + lat[‘r]v'r—[r];T
is finite. Set Q;=Qx (0, T). Asin [2, 3] and [7] we use the space
K"(Qr) = HO, T; H"(Q)) n H2(0, T; HY(L))

which is a Hilbert space with the norm
T ) ) 1/2
joler = (§] lo@2de + 0l2,r) "

Similarly we define K"(dQ2x (0, T)), K"(Sgx(0, T)) and K~ (Spx(0, T)). If
necessary, we shall write K"(Qr; R) or K"(Qr; R3) to indicate real-valued or R3-
valued functions; usually the distinction should be clear from the context.

REMARK 1.1. In [2, Sect.2] the fractional order space H"(0, T; X) is
defined as the domain of (r/2)-th power of the positive operator 1—0? with
Neumann boundary condition in HYO, T; X). Here we have followed [7,
Sect. 1]. When X=R, the equivalence of two definitions was shown in [1,
Chap. 7]. We can show that our fractional order space coincides with the one in
[2] by the same argument as in [1, Chap. 7]. (See also [6, Chap. 4].) Hence,
by the interpolation theory, H%(0, T; X)=[H™(0, T; X), H°(0, T; X)],, where
(1—6)m=s and m is a positive integer >s.

We now state some properties of the function spaces introduced above.

LEMMA 1.2. Assume 1<r<4.

(i) If an integer j satisfies 0< j<r—1/2, we can define the mapping u—0diu,
which is a bounded operator: K"(Qr)-K(0Qx(0, T)) (rj=r—j—1/2).
Here 0, is the normal derivative on 0Q.

(ii) If an integer k satisfies 0<2k<r—1, we can define the mapping u—
0%u(x, 0) which is a bounded operator: K'(Q)— Hr=2¥~1(Q).

For a proof of this Lemma, see [6, Chap. 4]. The following three lemmas
are variants of [7, Lemmas 3.7-3.9 and Corollary 3.10]; see also [2, Sect. 2].

Lemma 1.3. Suppose 3<r<7/2. Let ue K"(Qr). If u(0)=0u(0)=0, then
u can be extended to a function i € K"(2 x (0, 00)) such that
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[ krax (0,0 < Clulkror)

where C does not depend on T.

Proor. It was shown in [7, Lemma 3.7] that ueH%O0, T; H'(Q2)n
Hs(0, T; H%(Q)), s=1 or 2, with #u(0)=0 (0< j<s—1/2) can be extended to
i e HY(0, o0 ; H"(Q)) n H¥(0, co; HO(Q)) such that

[# o0, w;mr(0yy + B H300,0;H00))
< C(lulgoqo, 1;mm@yy + 1%l as(0,T;H0(0)))
where C does not depend on T. Hence, by interpolation we can show our case.

LeEMMA 1.4. Suppose 3<r<7/2. Let ueK"(Qr). Then there is a W€
Kr(Q % (0, o0)) such that

(L.1) [ kr@x 0,0y < C({u(0)|,—1 + [0,u(0)],—3 + lttlxr(@x0,1)))>
where C is independent of T.

Proor. By [6, Chap. 4, Theorem 2.3] we can find a function U e K"(Q x
(0, 0)) such that U(0)=u(0) and 4,U(0)=0,u(0) with

[Ulgr@x (0.0 < C(1t(O)l,— 1 + |0u(0),-5).

Applying Lemma 1.3 to u—U, we obtain the extension (u—U)~ of u—U in
K"(Qx(0, ©0)). Then, setting @i =(u— U)~+ U, we obtain the desired extension.

Lemma 1.5. Let r and u be as above. If 0<2p<r, u belongs to H?(0, T;
Hr2p(Q)) and satisfies

(L.2)  |ulgeo,1;mm-20(2y) < C({u(0)[,—y + [0,u(0)|,—a + |ulgr@xco,1)))>
where C does not depend on T.

PrOOF. Let i be the extension of u obtained in Lemma 1.4. By [6, Chap. 4,
Proposition 2.3], u belongs to H?(0, co; H"27(Q2)). The estimate (1.2) follows
from (1.1) immediately.

Following [2] we write °H"(Q) or (H"(Q) to denote the subspace of H"(Q)
consisting of functions which vanish on Sy or Sp, respectively. °K"(Qp) or
oK"(Q7) is the subspace of K"(Qr) consisting of functions which vanish on Sg
or Sp. The dual space of °H(Q) is denoted by (H~1(Q2). We set

Rr(Q7) = HO, T; HY(Q)) n H7%(0, T; (H~1(Q).

See [2, Sect. 4] to observe how one comes to consider the spaces (H~!(Q) and
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Rr(Qr). We need the following two lemmas to see that the multiplications in
(0.23)(0.25) make sense in the function spaces introduced above. For their
proofs see [2, Lemmas 2.5-2.6].

LemMMA 1.6. (i) Suppose r>3/2 and r>5>0. If ue H'(Q) and ve H¥(Q),
then uv € H5(Q) and |uv|,< Clul,|v|,.

(ii) Letrandubeasabove. Letoe H 1(Q). Ifweregard multiplication
by u on (H-1(Q) as the adjoint of multiplication on °H'(Q), then uo € JH1(Q)
and |uo|_, < Clul,lo]_;.

(i) If ue HY Q) and ve H(Q), then uv is defined in (H Q) and
Juv| _; < Clul,|vlo.

LemMA 1.7. Suppose that X, Y and Z are Hilbert spaces, and that there is
a bounded bilinear map M: X x Y-»Z. Let 1/2<s5<2, sx3/2. Let ue H%0,
T; X) and ve H¥0, T; Y). Then the Z-valued function uv defined by (uv)(t)=
M(u(t), v(?)) belongs to H50, T; Z) and satisfies

[utlgs(o,1;2) < Cllulgs + [U(0)]x) (I0]gs + [0(0)[y)
if 112<s5<3/2, and
[uvlgs(o,7;2) < Cllulms + [u(0)lx + 10,u(0)|x) (1vlas + [(O)ly + [0,0(0)] )
if 3/)2<s<?2. The constant C on the right hand side does not depend on T.
To deal with K7(Q;) we need

LEMMA 1.8. Let 0,, 0,€oH 1(Q). Then there is 6 € R"(2x(0, ©)) such
that 6(0)=0, and 0,06(0)=o0, with

I6lgr@x(0,m)) < C(lo1|-1 + |o2]-1)-

ProOF. Let (°HY(Q))* be the orthogonal complement of °H(Q) in H{(Q).
Setting (0, $)=0 for ¢ e (CH'(Q))* (j=1,2), we can regard o; (j=1, 2) as
an element of (H(Q)), the dual of H(Q). As characterized in [6, Chap. 1,
Sect. 12], (HY())’ consists of elements of H~1(R3) with support in 2. Hence,
&;, the Fourier transfrorm of o; (j=1,2), satisfies (1+]|y|?)~1/26; € HY(R?)
(yeR?. (i) We first assume ¢;=0. Take a real-valued function p(t)e C?
([0, o)) n H%0, oo) such that p(0)=0, p'(0)=1, and then set a(t)=F ~1(6,0(1)-
exp(—|y|?t)). It is easily checked that a(t) is the desired function. (i) We
next assume that 6,=0. The choice of p(¢) is now made so that p(0)=1, p'(0)=0.
The desired function is obtained by setting o(f)=F~1(6,p(t) exp (—[y|?t?)). By
combining (i) and (ii) we can prove the general case.

By the same argument as in the proof of Lemma 1.4, we obtain
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LemMma 1.9. Let 0e K"(Q7) (3<r<7/2). Then we can extend ¢ to Ge
Rr(@x (0, o)) satisfying
(1.3) |61 gr(@x(0,0)) £ C(I0gr@x(0, 1) + 10 (0)|-1 + 18,0(0)]-),
where C is independent of T.
The lemma below will be used in calculating ({;;)=(6;;+ to,w; + St Ojudr)t,
0

and in obtaining crucial estimates in the following two sections. For a proof
see [2, Lemma 2.4].

LemMA 1.10. Let X be a Hilbert space. Let Ty>0 be arbitrary, and choose
T<T, ForueH%0, T; X) define Ue H\0, T; X) by

UQt) = S' u(z)dx.
0
Then u—U is a bounded operator from H0, T; X) to H¥%0, T; X)
(0<d6<1), and
|Ulgi-s00,1:x) < CT?|utl goco, ;%)

Furthermore, if 0<6<1/4, then u—U is a bounded operator from H*¢(0, T; X)
to H*%0, T; X), and

[Ulgi+s0,1,x) < CT|ulg26(0,1;x)-
The constants on the right hand sides do not depend on T for 0<T<T,.

Let us introduce some notations to rewrite (0.22)—(0.28) in a more convenient
way. From now on the constant r is fixed so that 3<r<7/2 and write r =342,
0<d<1/4. First we set for ue K"(Qr; R3)

(A4)  nful(x, £) = x + twg(x) + S; u(x, Ddr, xeQ, t>0.

(Dn[u](x, 1)) denotes the Jacobian matrix (0;n,{u]) of n[u]. If (Dy[ul(x, H))*
exists, we set Z[u](x, )=({;;[ul(x, ) =(Dnlul(x, H)~!. In particular, for
u=0 we set #%x, )=n[0](x,?), and Z%x, t)=((;i(x, )=(Dn°)1=(5;;+
tojw;)~1. By an easy calculation

det (DnO%(x, 1)) = 1 + to,w(x).

Hence, from the assumption on the mapping I: Z—Q we can choose T,>0 so
that

min{l+19,w,(x); (x, ) e Q@ x [0, Ty]} > 0.

Consequently, on the interval [0, To] ({9;(x, f)) exists. Taking into account of
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the form of wg(x)=wy(I~(x)), we see that

1.5) &9y = 1/(1+1t0wy), {9, = — t0,w /(1 +101w,), {$5 = — tdsw,/(1+10 wy),
9, =9, =1,09 =9, =9, =2 =0
22 33 » 621 31 32 = (23 ,

and that their derivatives up to the fourth order are continuous and bounded on
Qr, Inthe sequel T, always denotes the constant chosen above.

For a while we assume that u e (K3+2%(Qy) (T <T,) is so small that each
entry of the series of the matrix

(1.6) T (=1 ((S; Dud-r) ZO)"

is convergent in Ht%(0, T; H>2%(Q))n H»-%(0, T; H?*2¢(Q)). Note that
this is possible by virtue of Lemmas 1.5, 1.6 and 1.7. Then, one can see that
Z[u]=({;;[u]) exists and is given by

1.7) Z[ul(x, ) = Z° + Z° 32, (— 1)k ((S; Dudl’) ZO>k

for (x, )€ Q2 x [0, T]. Therefore, n[ul(-, t): Q-n[u] (L, t) is a diffeomorphism
for each te[0, T]. The normal N=(N,, N,, N;) to n[u](Sg, t) appeared in
(0.25) may be described as follows: By the assumption on 2 we can take on Sg
a pair of vector fields 7,, 7, of class C#, which span the tangent space of Sy at each
point. The unit normal N[u](x, t) to n[u](Sg, t) at n[u](x, t), xe Sy, can be
written as

(1.8) N[u](x, ) = (¥ x13) (x, D/|(z} x 13 (%, 1)]

where t¥(x, )=(Dn[ul(x, ))t(x), (x, )e Sgx [0, T], j=1, 2.
Let us set for T < T,

Xr={(v, q); ve  K3**%(Qr; R?), F e K'*?%(Q7; R?),
and q|s. € K32*2%(Spx (0, T))}.
With N[u] and ({;;[u]) introduced above we put for (v, g) € Xr
1.9) Si[ul(v, @) (x, t) = qN;[u] — v({;[ul0v; + LululdewIN [ul,
i=1,2,3(x,)eSs x [0, T].
Let S...[u](v) denote the tangential part of S[u](v, q), that is,
Saal[ul(®) = S[ul(v, ) — (Si[ul(v, PN, [u])N[u].

Note that the right hand side does not depend on gq. Also note that S,,,[u](v)
(x, 0) does not depend on u, since {;;[u](x, 0)=4;; (xe Q) and N[u](x, 0)=
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(71 X 1) (x)/I(71 X T5) (x)| =n(x), i.e., the normal to Sy at xe Sg. Therefore, we
write S, (v(-, 0))(x) for S,,.[u]()(x, 0), x € S.

Let Y, be the space of (f, g, a, vy) € K1*29(Qy; R3) x K3+25(Q,) x K3/2+28
(Spx (0, T); R3) x (H2*2%(Q; R3) such that

(1.10) V-vg=0(0) in Q, S,.(vo) =a,,(0) on Sg.

Here a,,(0) means the tangential part of a(0). For ue K3+2%(Q+; R3) such
that the series (1.6) converges, we define the operator A[u]: X;— Y by

(1.11) A[u (v, q) = ((Ow;—vE, [u10(L1;[ul0w;)
+ Ca[u10kq)ss ij[u]akvja S[u] (v, 9), v(0)).

We have to check that the right hand side of (1.11) belongs to Y, under the
assumption that (1.6) converges in H!=%(0, T; H2+23(Q)) n H1*%(0, T; H3>2%(Q)).
First we consider the first component in the right hand side of (1.11).
Since veK3*2%(Qr; R3) belongs to H'2+*%0, T; H¥Q)) by Lemma 1.5,
Ov;e HY/2+%0, T; H'(Q)). Taking account of the form (1.5) of Z°=((Y;
and the fact that each entry of Z[u]—Z° belongs to H*%0, T; H2>~2%(Q)),
and by using Lemmas 1.6-1.7, we can deduce that {;;[u]0,((;;[u]0,v;) € H/2*5(0,
T; H(Q)). Similar argument gives that 0,(;;[u]o,v;)e H0, T; H'=2%(Q)).
By the Sobolev imbedding theorem, H!*%0, T; H?*23(Q))<= C ([0, T7;
H?*2%(Q)). From this and the form (1.5), it follows that {;;[u]0,({;;[u]0,v) €
H0O, T; H'*?%(Q)). Hence, {;;[uloy((,;[u]0,v)e K *?*(Qr). By applying
Lemmas 1.5-1.7 we can see more easily that d,v; and {,;[u]0,q belong to K124 (Q ).
We next consider the divergence term (i.e., the second component) of the right hand
side of (1.11). Since ;e H°(0, T; H>*2%(Q)), it follows from (1.5)<(1.7)
and Lemmas 1.6-1.7 that {;;[u]0,w;€ H°(0, T; H**24(Q)). To see {,;[ulow; e
H3/2%%0, T; (H~ (L)), we first notice that d,v; e H32*%0, T; (H~1(Q)) (see the
beginning of [2, Sect.4]). Then, by Lemma 1.6 (ii) and Lemma 1.7, {,;[u]0,v;
eH'(0, T; H"(2)). As noticed above, 0,0,v;)e H'/2*%0, T; H1(2)). By
direct calculation we have

0 Z[u](x, t) = — Z[u](D(w+u))Z[u]

and
at(ij[u]akvj) = (atij[u])akvj + ‘:kj[u]at(akvj)-

Taking account of the form of wg (1.5) and the fact that {;;[u]—{?; € H'*%(0,
T; H**29(Q)), we see that 0,({y;[uldw;)e H2*%0, T; (H-'(Q)), by Lemmas
1.6 and 1.7. Thus, we see that {;;[u]o; € R3+25(Q;). As to the boundary term
we observe as follows: Regard 7; (j=1, 2) as the restriction of a C* vector field
in Q. Then by an argument similar to the above we can see that S;[u](v, q9) €
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K2%26(Q,). By Lemma 1.2 (i) we have that S;[u](v, q) € K3/2*2%(S. x (0, T)).
The condition (1.10) is trivial.

Our problem (0.23)-(0.27) is now written as follows: Find (u, g)e Xt
such that (1.6) converges in H'*%(0, T; H2"2%Q))n H=%0, T; H?>*?%(Q)) so
that Z[u]=({;;[u])=(Dn[ul)~?* exists, and (u, q) satisfies

(1.12) A[u](u, @) = (®[ul, — i [uldw,, 0, uy)
where
(L13) o[u](x,0) = kaj[u]ak(Clj[u]alwi) = Galulowps + 9, i=1,2,3.

ReMARK 1.11. Let u be as above. We have to check that the right hand
side of (1.12) belongs to Y;. We first note that, by (0.18)-(0.19), the inverse
mapping of I is of the form, I-!(x)=x+E(x)(x € Q), where Ze H5Q; R3)n
C5(2; R3). Hence, from (0, 9) and (0.18) it follows that
(1.14)  9;w(x) = (0¢5/0x;) (9W/0&5) (I"(x)) € HH(Q) n CHD),

0;ps(x) = (0&3/0x,) (0Ps/0E3) (I (x)) € HHQ) n CHD), j =1, 2,.
Similarly we can see that
(1.15)  9,0;w, and 0;0,w, belong to H*(2) n C3(2)  (k, j=1,2).
By direct calculation, we have

P, [u] = g,(1—(083/0x3)?) + (02¢5/0x3) (6W1/0¢3) + W(£33[ul)* — 13w,
+ v33[u](95(33[u])dsw,; + VE§=1 Csj[“]aa(C:«xj[“]aswl)
+ V2 kxsorines G [0, ;[u]0wy) — u[uldps.
Then, taking account of the form of I=! and the fact that {;;[u]—(?; € H*%0,
T; H24(Q)nH'"%0, T; H**?4(Q)), and using (1.5) and (1.14)-(1.15), we
can see that @;[u]e K'*2%(Qr). By similar reasoning, one can see that &;[u]
(j=2, 3) belong to K!*2(Q,), and that —{,,[u]d,w,; € K3*2%(Q;). The con-

dition (1.10) follows from the compatibility conditions on uy, (0.29)-(0.30).
Consequently the right hand side of (1.12) belongs to Y.

2.  Auxiliary linear problem

In this section we study the following linear problem: For an arbitrarily
given (f, o, a, ug) e Yp (T < Tp) find (u, g) € X7 such that

2.1) A[0](u, 9) = (f, 0, a, uo).
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Regarding (2.1) as a perturbed problem of the one in [2, Sect. 4], we rewrite this
as follows
(2.2) Ou; — vAu; + Vg = fi + (200 —6x;01,)0,0,u; + V(R ,;0:L9;0,u;
+ (0u—0{)0q (i=1,2,3) in Qx(0,7),

2.3) V-u=o0+(6;—C)0u; in x(0,T7),
24 S{u,9) =a; (i=1,2,3) on Spx(0,7),
2.5) u(x, 0) = uy(x) in Q.

Here Si(u, q9)=gqn;—v(0u;+0u;)n; with the unit normal n(x)=(n,, n,, n3) to
Sy at x. Note that (9|5, =6,;, because d;w;=0 on Sy. The main result of this
section is the following proposition.

PROPOSITION 2.1. There is a positive number Ty < T, such that, for an arbi-
trarily given (f, 6, a, ug)€ Y, there exists a unique solution (u, g)e Xr, of
(2.2)~(2.5) with
(2.6) |ulgs+250x(0,10)) T IV qlki+250x0,11y) T+ glk32+26(5x(0,T1))

< C(| flgr+260x(0,10)) + |0lg3+200x(0, 1)) T |@lk3/2+25(5£x(0, T4y
+ luglz+2s + 1 (025 + 16(0)|-1 + 10,6(0)|-1 + |a(0)|g1/2+26(s5))-
The constant C does not depend on T.
We shall solve (2.2)—(2.5) by successive approximations: For (u, q) € X1 put

Fi[u, q] = v({%;09;— 04;0.;)0:0,u;
(2.7 + v{R;0:L0,0u; + Bu—{R)0g, i=1,2,3,

G[u] = (6;—LR)0ku;.
Take u(® e K3%25(Q x (0, o0)) so that u®(0)=u, and J,u(®(0)=0 with

[ g3+26(0x(0,00yy < Cltdolz 4265+

This is possible by [6, Chap. 4, Theorem 2.3]. Set ¢ =0. We take as the
n-th approximation (u™, g™)e X4, n=1, 2, 3,..., the solution of the initial
value problem

(2.8) oui™ — vAul™ + o,qm
=f,+ Fub, go-b](i=1,2,3) in 2x (0, T),
(2.9) um =0+ G[u™Y] in Qx (0, 7T),
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(2.10) Siu™, gm) =aq; (i=1,2,3) on Spx(0,7),
(2.11) um™ =0 on Sz x(0,7),
2.12) u™(x, 0) = uy(x) in Q.

To show that (u(™, g()e X can be determined from the known (n—1)-th ap-
proximation, we need to show the solvability of the problem

(2.13) ou—vdu+rg=y in @x(0,7),
(2.14) Vou=w in x(,T),
(2.15) Su,q)=> on Spx (0,7,
(2.16) u=20 on Sz x (0, 7),
2.17) u(x, 0) = uy(x) in Q,

where (Y, w, b, ug)€ Yy. Furthermore, for the convergence of {(u™, q(™)}%,
to the solution in X7, we need a priori estimates for the solution of (2.13)~(2.17).
Though this problem was investigated in detail in [2, Sections 3, 4], we have to
check the construction of its solution carefully to verify (2.6) with a constant
C which has the stated property. Therefore, we review here the arguments of the
construction carried out in [2, Sections 3, 4] to observe how the solution of
(2.13)~(2.17) depends on the given data.

(I) First we state the result in [2, Sect. 3] for the problem

(2.18) ou—vdu+rvq=f in Qx(0,T7T),
(2.19) V-u=0 in Qx(0,7),
(2.20) S(u,q) =0 on Spx (0, 7),
(2.21) u=0 on Spx(0,7),
(2.22) u(x, 0) =0 in Q.

Set H;={F ¢; ¢ e’ H(Q; R)}, and let H, be the L?-orthogonal complement of
H, in L*Q; R3). Let P be the orthogonal projection of L3(Q; R3) onto H,,
which is used to eliminate the unknown g from (2.18). (See [2, 3]. Also see [4]
and [9] for the problem in a fixed domain.) Beale [2, Theorem 3.2] obtained the
following

LEMMA 2.2. Given fe K'*2%(Qy; R3) with Pf(0)=O0, there is a unique
(u, q) satisfying (2.18)—~(2.22) with
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(223) IulK:Hzc(gx(o,T)) + |Vq|K1+za(gx(o,1*)) + |q|K3/2+za(st(o,T))
< C| flgi+250x(0, Ty)»

where C does not depend on T.

(II) We next treat (2.13)«2.17). As in [2, Sect. 4] we consider an operator
L: X;— Y defined by the left hand side of (2.13)<(2.15), (2.17). The problem
is rewritten in a form: For an arbitrarily given (¢, w, b, ug) € Yr, find (u, g9) € X1
such that

(2.29) L(u, q) = (¢, o, b, ug).
The purpose of this subsection is to show

LEmMMA 2.3. Let (¢, w, b, uy) be as above. Then there is a unique solution
(u, q9) € X1 of (2.24) satisfying
(2.25) |ulgs+26¢0x(0,1y) + 1P qlki+2500x(0,1)) + glk3/2+26(55x(0,T))
< C{l@lkiv25ax0,1y) T+ |@lg3+25(0x(0, 1)) + |blk3s2+25¢s1x(0, 1))
+ ltolas2s + 10025 + |0(0)-y + [0,0(0)|—y + |6(0)| g1/2+25(55)} 5

where C does not depend on T.

In [2, Sect. 4] the existence of the solution is proved, but the estimate like
(2.25) is not shown. To see that (2.25) holds, we review the argument in the proof
of [2, Theorem 4.1].

(i) The first step is the reduction of (2.24) to the case of zero initial data.
Define g} € H/2+25(S,) by the equation S(uq, q8)-n=>(0)-n, and then extend
gl to H'72%(Q). Then we choose gq!e K!*2¢(Qx(0, o0)) such that gi(0)=
qd in H'*2%(Q) with

(2.26) || k2+26¢0x 0,0y < C(lthola425 + 16(0)|g1/2+26sy)) -
We choose u! € K3+2%(Q x (0, o)) such that

ul(0) = u, in H2?%2(Q),

oul(0) = vdugy — F qd + ¢(0) in H?%(Q),

ul=0 on Sy x (0, 0),
with
(2.27)  |ut|gs+25(0x(0,0)) < ClUol2+25 + 17 gbl2s + 16(0)]25)

< C(luglz425 + 16(0) g1j2426¢s5y + |0(0)]25).

The choice of (u!, g') is possible by [6, Chap. 4, Theorem 2.3].
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(i) The second step is to adjust the divergence term. Set w'=F -ul.
By Lemma 1.8 and (2.27), we can extend w— ' to an element @& in K3*+2%(Q x
(0, 00)) in such a way that & satisfies
(2.28)  |®|gs+250x(0,m)) < C(l@lgs+2500x(0,1y) + |@(0)|-1 + [0,0(0)]-,
+ ltolz425 + [6(0) g1 /2+25(s,) + 14(0)]25),

where C does not depend on T. Then, for each t € (0, o), define 0(¢t) e H**23(Q)
by
40() = &(f) in Q,

0t)=0 on Sp 0:6()0=0 on S;
By [2, Lemma 2.8] we have
(2.29) 10Dlg+25 < ClO®)] 2425 for te(0, ).
Here C is independent of t. As in [2, page 376], we obtain
(2.30) [FO(t)—FO(t)lo < Cla(ty)— d(t)l -4 for t,t,>0,
where C is independent of ¢;, ,. From (2.28)—(2.30) we obtain
(2.31) [P O|gs+2500x(0,0)) < Cl@|gs+26¢0x(0,))

< C(lolgs+209x (0,1 + 10(0)]-1 + 10,0(0)],

+ |tolas2s + 18(0)|g1r2+26(s5y + [0(0)]25),

where C does not depend on T. We set u2=u'!+/80.

(iii) We next adjust the tangential boundary condition without changing
the divergence term. As in the proof of Lemma 1.4, we can extend b to an
element b e K3/2*25(S x (0, c0)) satisfying
(2.32) |5|K3/Z+26(SF)((0,(1))) S C(lb(O)IH1/2+26(sF) + [b|K312+26(st(0,T))),

where C is independent of T. Applying [2, Lemma 4.2] with o= {5 —S(u?, 4')},un
and = —F 0|5, (0, We find u’ € K329 (Q x (0, c0)) such that u'(0)=0,u’(0)=0,
V-uw'(0)=0, SU', q)n=a on Sgx(0, ) and u'=—F6 on Sgx(0, ). By
the construction of u’ in the proof of [2, Lemma 4.2], one can see
|u'IK3+u(9x(o,w)) < C(IE—S(uz, ql)lxa/uza(s,_.x(o,m)) + |70|K5/2+26(s5x(0,00))).
Hence, from (2.26), (2.27), (2.31) and (2.32), we can deduce
(2.33) lu’lK“”(ﬂx(O,w))
< C(lolgs+260x0,1) + [@(0)|-y + [0,0(0)| -y + |ttol2425
+ 16(0)| g1/2+26(55) + |Blg32+25(spx0,1y) T [ (0)]25)-
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Here C is independent of T. We set u3=u?+u'.
(iv) The final step is to find ¢’ € K2+2¢(Q2 x (0. o0)) so that ¢'(0)=0 and

g =b-n—Sw3 q")-n on Sgx (0, ).
This is possible by [6, Chap. 4, Theorem 2.3]. Moreover, g’ can be estimated as

(2.34) lq’lK“”(QX(o,w)) < C(IEIKSIZH«’(st(o,oo)) + |S(u3, ql)IK3IZ+25(S,.-x(0,oo)))-
If we set g®=¢q!+q’, we have

L(u3’ q3) = (¢39 , bs uO)’
where ¢3=0u3—v4u?+Vq3. Thus, for d=u—u3 §=q—q°> our problem is
reduced to
(2.35) L(ii, §) = (¢—¢3 0,0, 0).
By the construction of (u3, g3), ¢3 satisfies P¢3(0)=P¢(0), and the estimates
(2.26-27), (2.31) and (2.33-34) imply

|¢3|K1+26(nx(o,w)) < C(|u3|xs+26(9x(o,oo)) + |¢13l1(2+26(9x(o,oo)))
< C(1¢ 0125 + luolz42s + 16(0) | p1j24265,) + |0(0)]-¢
+ 10,0(0)|-1 + |blgssz+26(s.x(0, 1)) T+ |@|g3124262%(0,T)))>
where C does not depend on T. Then, applying Lemma 2.2 to (2.35), we obtain
(2.25).

Hereafter we denote the left hand side of (2.25) by |(u, ¢)lx,., and denote by
(@, w, b, up)ly,. the quantity in braces in the right hand side of (2.25).

Proof of Proposition 2.1: Since ({?)|=0=(d;;), G[u](0)=0 for any
(u, 9)€ Xy. Hence, the right hand side of (2.2)-(2.4), (2.6) belongs to Y.
From this and Lemma 2.3, it follows that {(u™), ¢(™)}%., can be determined
successively by the scheme (2.8)-(2.12). To see the convergence, set U=
y+) —ym QM =g+ _gm p=0, 1, 2,... From (2.8)-(2.12), we have

UM — yAU®™ 4 PO = F[UD, Q0=D]  in Q x (0, T),
F.-U®™ =G[U®D] in Qx (0, T),
S(U™, Qm) =0 on Syx(0,T),
UM(x,00=0 in £,
for n=1, 2, 3,.... By Lemma 2.3 we obtain for n=1, 2, 3,...,,

(236) (U™, QM)Ix, < CI(FLUCD, Q=V], GLU™V], 0, O) .
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We proceed to estimate the norms of F[U™, Q"] and G[U™] in K'+2¢(Q,)
and K3+25(Q), respectively. Note that, from (1.5), we have

18D ) — (R, DI < Clt—7], x€Q,0<1, 1< To.

Also note that, by Lemma 1.5 and the Sobolev imbedding theorem, U™ e
HY2+5(0, T; HX(Q))<=C([0, T]; H¥(Q)). Using these, we estimate the seminorm
162,49 — 010100, US 1 245, in HY2+9(0, T; HY(Q)) as follows
(T ~28| (70 ) '
So So [ty — 1,172 29 ({2,490 — 04,;0.1)0:.0,U M (2,)
— (82,09, — 6:,0,)0,0,U™(1,)3dt,dt,

T(T
<C {So So |t1‘t2[-2"dt1dt2} SUPo<.<r 10:0,U{™(1)13

T (T
+2 {go So lt‘_tZI_z—ulakalU'(")(tl)"akatUg”)(tz)lgdtldtz}
X Supor, I(cgjcs)j—ékjazj)lz
< CTZ—Z"'U?')I%(““ + CTZIU,(”)I%(“” .

The norm of this term in H0, T; HY(Q)) and HO0, T; H'*2%(Q)) can be
estimated more easily;

chjg?j_5kj51j)akalUgn)IHO(O,T;H’(Q))
< CTIUg")IHO(O,T;HS*Z(ﬂ)p s = 0, 1+ 26.

Similarly we can estimate the norms of other two terms in F,[U®, Q] in
K1+26(Q,). We next estimate GLU(™] in K3+25(Q,). By (1.5) we have

IGLU™ ] rogo, 7;m2+26 (@) = 10k — L2) 0T oo, 7312+ 200
< CTIU(")|HO(0,T;H3+“(9)) .

To estimate its norm in H3/2+%(0, T'; ,H-1(Q)), we need the fact that a,.U§"> €
HY(0, T; H?*%(Q)), which follows from Lemma 1.5. From this and the equality

2,U() = | 3(0,UM @,

by applying Lemma 1.10 we obtain
(2.37) !ajU;(n)lHlﬂ""(O,T;H25(.Q)) < CTI/Z—&'@jUgn)IHl(O, T;H26(Q)) *
Direct differentiation of GLU™] in ¢ gives

0,GLUM] = (8(6,;— (2N U™ + (61— 20,6, U ™.
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Since UM™(0)=0 for n=0, 1, 2,..., we see that d,G[U™](0)=0. Also note that
F[U™, Q](0)=0. Then, by [2, Theorem 4.3], we see that 3,U™(0)=0 and
0™ (0)=0. By the argument in [2, page 375], we obtain

10,0:U 51124800, Ts0m-100) S CIUSP|gs+20(0r) 5
where C is independent of T. Hence, by (1.5),
I((Sk-,_' 2j)a‘akU_(in)lHl/2+ "(O,T;QH"l(ﬂ)) S CTI U(")IK3+26(QT) .

Since we can regard H2%(Q) as the subspace of (H~1(Q) by the L2-inner product,
we obtain from (2.37)

10:Bx; = 8)) U w12+ o0, T30m-1(02y) < CTH2 3| UM | 3120007 -
Therefore, we obtain
la,G[U(")]le/sz(o' T;oH-1(2)) < CTI/Z-"IU(")Ixsno(QT) .

Similarly and more easily, one can see that |G[U™]| HO(o,T;ou—t(n))SCTIU(")
|g3+26¢05) Collecting these, we obtain

|F[U("), Q(")]IK““(QT) + IG[U(")]|K3+26(QT)
< CT1/2_6(|U(")|K3+26(QT) + IVQ(")IK1+26(QT)),

where C is independent of T. Hence, we can choose T; >0 so that for some
O<y<1

|(U(n+1)’ Q("+1))]XT1 < 'y|(U(n)’ Q("))IXT, for n= 0, 1, 2,....

From this, we can deduce that (4™, g() converges to some (u, q) € X, which is
a unique solution of (2.1). Also we can deduce

(2.38) (4, Dlxr, < (@D, g)x,, + Zio (U™, QM)|x,,
< A=N"U(Q=IED, 0)|x,, + (1D, gD)lx,).
Since (u(V), gM) satisfies (2.8)«(2.12) with n=1, by Lemma 2.3 we obtain
(239 IUD, ¢D)x,, < CI(f+F[u@, 0], ¢ + G[u@], a, ug)ly,,
Taking account of (2.7) and the choice of u(®, we have
[(F[u®, 0], G[u®], 0, 0)|y,, < Clu®|gs+20(g,,) < Clutolgz+26(2)

where C is independent of T;. From this, (2.38) and (2.39), the estimate (2.6)
follows, which completes the proof of Proposition 2.1.
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3. Proof of Theorem

We now proceed to solve the nonlinear problem (1.12). Let uo=(uo,,
Uo,2> Uo,3) € oH2+2%(Q; R3) be as in the Theorem. If a solution (u, q) is known,
then

0ijlulli=0 = — (0;w;+0;uo,y) -
Hence, (4, q) must satisfy
3.1 0LLi;[ulow =0 = — (0;w1)?* — (O;w1) (0110, -
By Lemma 1.8 we can choose g, € IZ“Z"(QTI) so that
6o(0) = — 0;wy, 0,605(0) = (0,w,)® + (O;w1) (O1uo,).

Here T, is the constant given in Proposition 2.1. As the first approximation
(u®, ¢°) to the solution (u, q), we take the solution of the problem

(32) A[0] (u05 qO) = (0’ Gy, 03 uO)'

Since ¥V -uo=—0;w; and S,,,(uo)=0 by the assumptions on uy, (0, g, 0, uy)
belongs to Yr,. The existence of (4% g°) e X, is assured by Proposition 2.1.
As the second approximation (u!, g') we take the solution of the problem

(3.3) A[0](u?, ¢") = (P[u°], — {;;[u®10w;— 0o, 0, 0).

(See (1.13) for the definition of @#.) To do so, we note that, by virtue of Lemma
1.10, if T(<LTy) is small, Z[uo]=((;;[u°])=(0m[u’])~! exists and each entry
of Z[u']—Z° belongs to H%0, T; H*2°(Q))n H=%0, T; H2*?%(Q)). By
the choice of o, the right hand side of (3.3) belongs to Y, for such a . Hence,
there exists (u!, g!) by Proposition 2.1. Provided T>0 is kept small so that
Z[u°], Z[u'] and Z[u°+u'] exist, we seek a solution of (1.12) in the form (u, g)=
°, ¢°)+(ul, q1)+(u? q?). The problem to find the unknown (u2, g2) is now
written as follows: Find (12, g?) € X1 such that
(34) A[O+u'+u2)(u?, ¢?) = — A[u®+u' +u2] (W0 +u', ¢°+q")
+ (PLu’+ut+u?], — (i [u+ut+u]ow;, 0, u,) .
By using (3.2) and (3.3), we can rewrite (3.4) as follows
(3.5) A[0](u? ¢»)=(P[u>+u'+u]— D[], (;;[u°]
—C,-j[u2+ u1+u0])ain, 0, 0)
+ (A[ut +u°]— ATu? +u + u°]) (W2 + u' + u°, g>+g* +4°)
+ (A[0] — A[u'+u°1) (u?, ¢*) + (A[0] — ALu' +u°]) (u' +u°, " +4°).
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For convenience we simply write A[u]v for A[u](v, q) etc., and set A,=A[0].
If we can define on some complete subset B of X the mapping R: B— B by
(3.6) R(u? g%
=AW (P[ur+ur +u®] - @ [u], ({;;[u®]—{;[u+ur+u’])o,w;, 0, 0)

+ A5 ((A[u' +u®] — A[w? +u' +u°]) (u? + u' + u°))

+ A5 ((Ag— A[u + u°]u?) + A'Y,
where ¥ =(Aq,—A[u'+u°])(ul+u° g'+q°), then our desired solution (u2, q2)
is a fixed point of R: B»B. To fix a subset B in X we need the following

LEmMMA 3.1. Let

X1, = {(t; 9 € Xr; v(0) = 9,(0) = 0, ¢(0) = 0},
Yr,0 = {(f, 0, a, 0) € Y1; f(0) = 0, 6(0) = 6,6(0) = 0, a(0) = 0}.

Then, Ay: X1,0—>Yro has a bounded inverse Ag': Yro—=Xro. The norms of
Ay and Ag! are bounded for 0<T < T.

Proor. We have only to show A5 (Y ,0)=X71. Itisshownin[2, Theorem
4.3] that L~Y(Yr,0)= X 1, with the norm independent of T, where L is the linear
operator defined in Section 2 (II). From this it immediately follows that each
(u™, g¢M) in the iteration scheme (2.8)~(2.12) for a given (f, o, a, 0) € Y1, belongs
to Xro. Therefore, the limit of {(u™, g™)}>, in X, also belongs to Xr,.
The assertion for the norm of Ag! follows from (2.6).

Let (u% q°) and (u?', q!) be as above. Let u?e K3*2%(Q) with u2(0)=0.
Assume |u?|gs+25gx(0,y) 18 Small enough so that Z[u®+u'+u?] exists. Then,
as calculated in the beginning of this section

0Lii[u®+u'] =0 = 0,;;[ul+u +u?]|,=o = — (9;w;+0ju,,) .

Using this and {;;[u®+u’+u%](0)={;;[u’+u'](0)=0;;, we can easily see that
the first and second terms in the right hand side of (3.5) belong to Yr,. For the
divergence term of the third term in (3.5), we have

(L2 —[uC+ u'Doudli=o = (0LL2; — L;;[u®+u'1)) (0)0,u3(0)
+ (€9 — i [u®+u'1)(0)0,0,u?)(0) = 0.
So the third term in (3.5) also belongs to Y o, if u?2(0)=0. Consequently, under
the assumption on u? stated above, R(u?, q?) defined by (3.6) satisfies that
R(u?, g*)—A5'¥P € X0
From this consideration, we take



640 Yoshiaki TERAMOTO

B = {(u? q*) € Xr; (u? q*) — A5'¥ € Xr,0, |(u?, ¢°) — A5'¥|x,<1}.

If we take T small enough, then the series (1.6) converges in H1*%(0, T'; H>~2%(Q))
n H-%0, T; H**25(Q)) for every (u?, q?)e B by virtue of Lemma 1.10. The
rest of this paper is devoted to show that the mapping R defined by (3.6) maps B
into itself and is a strict contraction mapping on B, provided that T is sufficiently
small. This is carried out by estimating the first three terms in the right hand
side of (3.5).

(I) To begin with, we estimate the first component of the second term in
(3.5), which is written as

B = v [ut+u1ou(C,lut +u®10uy) + (ulut +u°]og
+ vl [u10(C,;[ul0m) — Lululog
= = V(ij[ul'*‘“o] - ij[u])_ak(Clj[ul+u0]6lui) - kaj[u]ak(({,j[u1+u°]
= §[ul)du) + Culut+u°] — {ulul)og.

Here we have set (u, 9)=u?+u'+u° gq?>+q'+q° again. Note that for
uEK3+26(QT)

(3.8) ICij[u] - C(i)les(O,T;H"Z'(D)) =0(T%,s=1+6,1-39,

as T-0 by (1.7) and Lemma 1.10. Since 0,u;e H'/2*%0, T; H(Q)) by Lemma
1.5, {j[u*+u®Jou;e HY/2*%(0, T; H'(Q)) by Lemmas 1.6 and 1.7. Hence
Ol [ut +u®10u;) € HY/2%5(0, T3 H(Q)). Again by Lemmas 1.6 and 1.7, and
using (3.8), we obtain

[ Lut+u®] — C4 j[ud)0,(Cii[ut +u°10,u )| g1+ 60, T, H000)) = O(T?)

uniformly for (u2, g2)e B as T tends to zero. As to the estimate in HO(0, T;
H'+25(Q)), we first note that d,u; € H°(0, T; H>*?5(Q)). By the Sobolev imbedd-
ing theorem, {;;[u'+u®]—{?; belongs to C([0, T]; H?*2%(Q)). From this
and Lemma 1.5, it follows that {;;[u'+u°]0,u; belongs to H(0, T; H**2%(Q)),
and hence 0,({;;[u'+u’]0u;)e H°O, T; H'*2%(Q)). By the same reasoning
as above, we see that ({,;[u'+u®]—{, ;[u])0((,;[ut+u®]0,u;) belongs to HO(O,
T; H'*2%(Q)), and that its norm in H°(0, T'; H'*2%(Q)) is of order T? as T—0.
By the same argument, we can prove that

| — v [1]0k((Cy;[ut +u®] — {;;[ul)ou;)
+ (Cilut +u°] — C4i[ul)Oiglri+2600ry < CT?,

for every (u?, g*)eB. Let (@12, §?) also be in B. Set (i, §)=@#*+ul+u°,
G*+q'+4°. Note that
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Z[#1(x, ) — Z[ul(x, ) = — Z[i] (S;D(ﬁ—u)dt Z[u].
Applying Lemmas 1.5, 1.6 and 1.10 to each entry of the right hand side, we obtain
(3.9) ICU[ﬁ] - Cij[u]|ﬂa(0’T;H4—2:(Q))S CTéla - u‘K“”'“(QT)’ s=1 +5, 1-6.
Using (3.8)—(3.9), by an argument similar to the above, we can show
[(A[u'+u°] — A[a])(d, §))y — ((A[u'+u°] — A[ul) (4, 9))1lk1+25()
S CT&l(ﬁz’ qz) - (uZ’ qz)|x-,,
for (@2, 3%, (u? q*eB. Here (A[u](u, q)); denotes the first component of
A[u](u, q). Similarly, we can show that
|(D[u2+ ul+ uO] - Q[uo]lKu.zd(QT) < CT‘S,
P[4+ ut+u’] — PLu+u' +u®]|giv2000,y < CT?|(42, §2) — (42, ¢¥)|xy
and that

[((A[0]— ALu'+u°]) (42, g®))1lk1+2600y < CT?,
[((A[0] — A[u'+u°]) (@2, §%))1— ((A[0]— A[u'+u°]) (2, g*))1lki+26¢0x)
< CT|(#2, §%) — (u?, ¢%)|x.»
for (@2, §%), (u?, q*)€B.

(II) We next estimate the divergence term (i.e., the second component) in
R3+25(Q,). The estimates in H0, T'; H2*2%(Q)) can be carried out in just the
same way as in (I). 'We only have to be concerned with the estimates in H3/2*+3(0,
T; oH 1(Q). Since Oy(u*+u'+u;eH*%0, T; H(Q)) by Lemma 1.5, it
follows from Lemmas 1.6 and 1.7 and the estimate (3.8) that

[(Crilut+u®] — {4 ;[ud) 0 jlm1 0, T;H00)) = O(T?)
uniformly for (u2?, g?) € B as T-0. Next we estimate
(3.10)  8/(({;[ut +u°] — G ;lu +u +u°1)deu;)
= (O,lx;[ut +u]— 0,04 ;[ul)duu; + (Cijlut +u®]— Gy ;[u)0,(Ou )
in HY2+%0, T; (H-'(Q)). Since du;e H32*%0, T; (H~()), 0,(0u;) belongs
to H1/2+%(0, T; ;H-1(RQ)). Hence, by Lemmas 1.6 and 1.7, and by (3.8),
[(CrjLut+u] — {4 j[u])0.0kulati2+ 500, T:0m-1(2)) = O(T?)

uniformly for (u?, g?)e B as T-0. To estimate the first term on the right hand
side of (3.10), we express d,u; as
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B (1) = B 0) + S; 0.0y )d.
Note that, by Lemma 1.5, 0(d,u;) € H%0, T; H?>%(Q)). Then, applying Lemma
1.10 to the second term, we see that its norm in H'/2*+%(0, T; H2%(Q)) is of order
T8 Regarding 0,u;(0) as a constant function in H!/2*%(0, T; H2%(Q)),
we also see that the norm of d,u;(0) in H/2*%0, T'; H2%(Q)) is of order T1/279,
Consequently, we have

lakuj|H1/2+6(0’T;Hza(9)) S CTI/Z_‘S-

To estimate 9,{;;[u], we differentiate the matrices Z[u] and Z[u'+4°] in ¢t and
obtain

0,Z[u'+u°] — 0,Z[u] = — (Z[u' +u°]—Z[u]) (Dws+ D(u' +u®))Z[u' +u°]
+ Z[u] (Du®Z[u'+u°] — Z[u] (Dwg+ Du) (Z[u' +u°] — Z[u]).

Taking account of the form of wg, the fact that duje HV2*%(0, T; HY(Q))
(r=0, 1, 2), and the form of ({;;[u]), we can see that 0,{;;[u'+u°]—0,(;[ule
H1/2+%(0, T; HY(R2)). Hence, by Lemmas 1.6 and 1.7,

[0, Lx;[ut+u°] — 0,84;[ul)0stt | g1+ 60, 150012 = O(TH?79)

uniformly for (u?, g?) € B as T-0. Furthermore, we can show in the same way
that

[(Cajlut+u®] — o [1)0,0; — (Lo [ut +u° — (4 j[ul)0iujlgs+26(0p)
< CTl/Z—élﬁZ - u2'K3+za(QT)

for (u?, q2), (4%, G?)e B. We can similarly estimate other two divergence terms
in (3.5).

(IIT) To treat the boundary term (i.e., the third component), we regard the
vector fields 7,, 7, used for the construction of the unit normal N[u] as the
restrictions to Sy of vector fields in @Q of class C4. Further, we extend g|s, €
K3/24+3(§:x (0, T)) to gq*e K?>*2°(Qx (0, T)). Then, we can estimate the
extension of the boundary term in K2+2%(Qr; R3) in just the same way as in (I).
After this, we restrict it to Spx (0, T) and use Lemma 1.2(i) to obtain estimates
similar to those in (I) and (II).

Collecting the results in (I), (II) and (III) and using Proposition 2.1, we see
that the mapping R defined by (3.6) maps B into itself and is strictly contractive
in (u2, q2) € B, provided that T >0 is sufficiently small. Thus R has a fixed point
in B for small T>0. This completes the proof of the Theorem.
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