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§1. Introduction

In this paper we shall consider the system of linear ordinary differential
equations with a parameter

(1.1) = A(t, ε)X,

where ε is a complex parameter, t is a complex variable and X is an unknown
vector function of t and ε. Let ί0, ε0 and θ0 be positive constants. We shall
introduce the following assumptions.

( i ) A(t, ε) is an n by n matrix function of t and ε which is holomorphic
in the domain:

D(t09 ε0, θ0) = {(*, ε)| |tI ^ t0, 0 < |ε| ^ ε0, |argε| ^ ε0}

(ii) A(t, ε) admits an asymptotic expansion:

uniformly for \t\<t0, as ε tends to zero in the sector

(1.2) 0 < | ε | ^ ε

where each A^t) is holomorphic in the closed disk | ί | ^
(iii) the function AΌ(t) has the form

A0(t) =

1

0

0

1

•0)

•0

tq 0 0
•.. l
• 0 J

where q is a positive integer.
Assumption (iii) means that t = 0 is a turning point of order q of the differential

equation (1.1) and there is no other turning point in the closed disk \t\^t0. In
order to investigate the asymptotic behavior of solutions of the system (1.1) in a
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full neighborhood of the turning point ί = 0, we usually try to find a matrix Q(t, ε),

which is holomorphic in the domain D(tί,ε1,θί) (0<tί<to, 0 < ε 1 < ε o , 0 <

θί<θ0) and admits an asymptotic expansion of the form

as ε-»0 in the sector (1.2), where the coefficients Pf(ί) (Ϊ = 0, 1,...) are holomorphic

in the closed disk \t\^tί9 such that the transformation Y=Q(t, ε)X reduces the

system (1.1) to a system of linear differential equations for Y, whose asymptotic

behavior can then be in an easy way analyzed in the closed disk l ί l ^ ^ .

W. Wasow [8] solved such a problem to seek a simplifying transformation

Q(t, ε) which admits the uniform asymptotic expansion in a full neighborhood of

a turning point for the case in which n = 2 and q = ί, by utilizing the properties of

Airy's integral Ai(t). Wasow's result was subsequently generalized to the case

qz=2 by R. Y. Lee [5], using the Whittaker's parabolic cylinder functions. Y.

Sibuya [7] solved such a problem for the general case, by utilizing the sub-

dominant solutions of the differential equation

y" - P(t)y = 0, P(t) = ί« + a^-1 +•••+ aq.tt + aq.

In [4], by utilizing the extended Airy function of the first kind defined by M.

Kohno [3], we have solved such a problem for the case in which n is any integer

and q = ί. In this paper we shall make use of the method of Sibuya [7].

THEOREM 1.1. (See [4]). Let us denote the matrix Λ1(t) = (aik(t); i, k =

1, 2,...,n). Under the assumption that αίfc(0 = ̂ ( ί € " 1 ) (k<i; i, fc=l, 2,..., ή),

we can find a formal transformation

where the coefficient matrices P f(ί) (ΐ = 0, 1,...) are holomorphic for \t\<t0 and

in paticular, P0(0) = I (identity matrix), which reduces ε—j— = A(t, ε)X to

4^dt
=B(ί, ε)Ywith

B(t, ε) =

0

0

1

0

ό

where

bt(t, ε) =

βj(ε) = Σ

o o

1 0

ό ό

b3(t,ε) bn.

r , bk{t, ε) = ε2 Σ

= 2, 3,..., n-ί;j = ί, 2,..., n-ί).

0

0

i

0
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Considering the first component of the column vector Y and putting x =

tε~nίin+9) (if n is odd, applying the change of the independent variable

x = tε~nlin+9)ω~1 (ω = exp(πi/(n + g)), we easily see that the reduced system of

linear differential equations becomes the single linear differential equation of the

form

(1.3) ig-

where

μ -nmβm+i(ε) (n , CWtTί)

1 μ(n + qHn-2)-n^-(n+q)k+nk-nmβm+i^ωn-k (fl odd),

(m = 0, I9...,q-2;k = θ9 1,..., w - 2 )

and μtι+q = ε~ί. If q(n—2)<2n, we can see for each p9 r,

(1.6) bpr = O(ί) as ε tends to zero in the sector (1.2).

This fact is important in the following analysis.

In §3, we shall derive the following theorem.

THEOREM 1.2 (Uniform Simplification in a sector). For each integer

k (fc = 0, 1,..., n + q — 1), there exists an n by n matrix function Qk(t, ε) such that

(i) the components of Qk(t, ε) are holomorphic for D(tί9 εί9 0 t ) ;

(ii) Qk(t> έ) admits an asymptotic expansion

(1.7)

uniformly for te§k and as μ tends to infinity in the sector

(1.8) \aτ

where

(1.9) S^niΆ^S*, Sk:\t\Sh and

and δ, t2 are sufficiently small positive numbers and M is a sufficiently large

positive number;

(iii) the transformation

(1.20) X = Qk(t, ε)Y

changes the system of differential equations ε—τ—=A(t, ε)X into ε—r- = β(t,ε)Y9

where
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0 1 0 0

0 0 1 0

0 0 0 0

t9 ε) B2(t, ε) B3(t, ε) ••• hn.

0)

0

i

o)

Bj(t, ε) a* bjt, ε) (j = 1, 2,..., n - 1).

ί μ tends to infinity in (1.8).

Sectors i§Λ for fc = 0, 1,..., n + g —1 cover a neighborhood of the turning point

ί = 0 completely. However, since the transformation (1.20) depends on k, in order

to establish a uniform simplification of (1.1) in a full neighborhood of ί = 0, we

shall choose βy(ε) by the aid of the implicit function theorem, so that the matrices

Qk(t, ε) become independent of k. To do this, we must investigate the so-called

connection formulas and Stockes multipliers for solutions of the reduced dif-

ferential equation (1.3). In §4, applying the Mellin transformation to (1.3), we

shall show that the recessive solution of the differential equation (1.3) corresponds

to the principal solution of a difference equation. In §5, and 6, utilizing the

form of the principal solution, we derive that the partial derivatives of Stockes

multipliers on the coefficients of bpr (pq — nr^n + q) do not vanish. In §7, we

shall prepare some lemmas on relations between Stockes multipliers. In §8 and

9, we shall complete the proof of the following main theorem on uniform sim-

plification of this paper.

THEOREM 1.3. We assume that

and <?(n-2)<2n,

then there exists an n by n matrix Q(t, ε) such that

(i) the components of Q(t9 ε) are holomorphic for D(tl9 εl9

(ii) Q(t, ε) admits an asymptotic expansion

uniformly for \t\^tl9 and as ε tends to zero in the sector

\ε\ ^ εx and |argε| ^ ε l 5

where the components of the n by n matrices P^t) are holomorphic for \t\^t0

and Po(0) = J (identity matrix);

(iii) the transformation X = Q(t, ε)Y changes the system of differential

equation ^~ = A(t, ε)X into a system = ${t, ε)Y.
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The major contribution of this uniform simplification theorem is the study

of the case in which n ^ 3 and g = 2. (cf. [4] and [7]) Therefore, in the following

analysis, we may assume that n _ 3 and q^2. Furthermore, from the condition

q(n — 2)<2n, we shall consider the following cases;

case (I): n>2 and <? = 2, case (II): n = 3 and q = 3,

case (III): n = 3 and q=4, case (IV): n = 3 and q = 5,

case (V): n = 4 and q = 3, case (VI): n = 5 and q = 3.

§2. Recessive solutions of the reduced equation

We consider the single linear ordinary differential equation of the form

where a/x) is a polynomial of degree rrij (j = 1, 2,..., n). We assume that

(2.2) rπjlj < mjn 0 = 1, 2,..., n - 1 )

and that the leading coefficient of an(x) is ( —l) π + 1 . Under this condition,

B. L. J. Braaksma [2] obtained the following results.

THEOREM 2.1. The differential equations (2.1) has a solution y(x,a) =

y(x; al9 02> > <*n) which is an entire function of x and the coefficients of the

polynomials a^x), α 2 ( 4 } an-ι(x) and an(x) and which has an asymptotic

representation:

(2.3) ^(JC, a) * χ«n + mn(a)-(n-l)mn/2n e χ p

as x->oo uniformly on \3Lτgx\^(n + l)πl(n + mn) — σ for any positive constant

σ<(n + ί)π/(n + mn) and the coefficients of the polynomials α/x) on compact

set. Here αo(α), α^α),..., ocn+mn(a) are defined by

(2.4) [*""•/" Σ?=oαi(α)Λ:- ' / ' ι ] w + ΣUi ak(x)Lxmnίn Σ?=o <*j(a)χ-M*y-k = 0

(2.5) αo(α) = - 1.

The coefficients At (Ϊ = 0, 1, 2,...) are functions of the coefficients of the polyno-

mials aj(x) 0" = l, 2,..., n) and ^40

 = l Furthermore, the solution y(x, a) is

recessive on |argx|<nπ/2(n + mπ) and therefore it is uniquely determined.

If we assume that q(n-2)<2n, it is easy to see that the equation (1.3) satisfies
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the assumption (2.2). Therefore, applying Theorem 2.1 to the reduced dif-

ferential equation (1.3), we can obtain the following lemma.

LEMMA 2.2. Let δ be a small positive number. There exists a solution

y(x; b) = y(x; b2)θ9..., &2,<z-2> , bPtr,...9 bnt0,..., bttiq-2) of the differential equa-

tion (1.3) such that

( i) y(x; b) is an entire function of x and bp>r (p = 2, 3,...,n; r = 0, 1,

2,..., 4-2);

(ii) y(x; b) admits an asymptotic representation:

(2.6) $(X; b) * χ«n+q(b)-(n-l)q/2neχp^Σnta-l £*>&}. Jcθ + f-J)/-!

x

as x->>oo uniformly in the sector |argx|^(rc + l)π/(n + g) — δ and for bpr (p = 2,

3,..., n; r = 0, 1,..., q — 2) on compact sets. The quantities <Xj(b) (7 = 0,1,...,

n + q) are determined by the following equalities:

(2.7) αo(6) = - 1, Z = Λt/» Σ ? = o α/6)χ-^/»,

In the equation (1.3), by the change of the independent variable

x = ωξ, ω = exp [2πi/(n

we can easily find that the equation (1.3) becomes

(2.8) 4JL +

+ ί(-Dn+1ξq + Σq

m=2obn,mω + "ξ^y = 0.

Therefore, for each integer k (k=0, 1, 2,...), if we put

(2.9)

then yk(x; b) are solutions of the differential equation (1.3). At the same time,

the quantities α/G*(i>)) 0 = 0 , 1, 2,..., n + g; fe=0, 1, 2,..., n + ή[-l) are deter-

mined by the following equalities:

(2.10)
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Hence, by an easy calculation, we can derive the following lemma.

LEMMA 2.3. Let us put

(2.11) Sk: - (n + l)π/(n + q) + 2kπ\(n + q) + δ ^ arg x

^ (w + l)π/(n + 4) + 2fcπ/(π + q) - δ

and

(2.12) Ek(x; b) = Σ j i J " 1

δ is α smα/Z positive number. Suppose that

(2.13) yfe(x; fc) = Hω"*x

(2.14) Λ(x; &) = Λ(x; &) i/ fc = Λ (modn

eαc/i yk(x', b) is a solution of the reduced differential equation (1.3) which

is an entire function of x and bpr (p = 2, 3,..., n; r = 0, 1,..., q — 2) and admits

an asymptotic representation:

(2.15) yk(Xl b) Cϋ ω-*(«"

as x->oo uniformly for xeSk and for bpr on compact sets, where

(2.16) a/Gk(b))a>JU" = α/fe) ( j = 0, 1,..., n + g ; fc = 0, 1,..., n + 4 - 1).

Furthermore, it holds that for each k (fc = 0, 1,..., n + q — ϊ)

(2.17) Wron lyk(x; b), yk+ί(x; &),..., Λ+»-I(Λ;; 6)]

q(n-i)/2nfct |(exp [-2A/wπ///ι])|

m = 0, 1,..., w — 1.

We shall now prove the following lemma.

LEMMA 2.4. Lei f, R and M be arbitrary but positive numbers, and let δ

be a sufficiently small positive number. Suppose that ψP)Xμ) (p = 2, 3,...,n;

r = 0, 1,..., q — 2) are given functions of μ which are holomorphic in the sector

( 2 1 8 ) | | ^ 5 / ( l ) \ \ ^ M(2.18)

and



500 Shigemi OHKOHCHI

(2.19) ί » « 0 (p=2, 3,...,n;r=0, l,...,q-2)

as μ tends to infinity in (2.18). Then, for m=0, 1,..., n — 1,

(2.20) (^y.iμ-t, b+φ) - -j^ryk(μnf, b))txp ί-Ek(μ"t; ft)] a 0

uniformly for

(2.21) |f| g *, |arg ί - 2feπ/(n + 9 ) | ^ (n + l)/(n + €) - δ, Σn

P=2 Σ?=o2 1^1 ̂  * ,

as μ tends to infinity in (2.18).

PROOF. Put x=μnt. For a given positive constant R, there exists a positive
constant cx such that

\yίm)(χ; b+Φ) - yfr\χ\ 6)1 ̂  C l Σ?=2 Σ?=o2 IMμ)l ( m = ° ' !— n - χ)

for

|x| ^ ^ ? Σ?=2 Σ?=o2 |6P i r | ^ Λ,'|argμ| ^ 5/(n + l), |μ| ̂  M,

where cx depends on R, R, M and ψPtr{μ). On the other hand, the function
exp [ — Ek(x, by] is bounded in the domain

Therefore, in order to complete the proof of the lemma, it is sufficient to consider
(t, μ) in the domain

M ^ R, 1*1 ύ t largί - 2kπl(n + q)\ :§
(2.22)

Σ?=2 Σ?=o2 |6 Λ r | ^ Λ, |argμ| ^ ί/(n + l), |μ| ̂  M.

Let us put

ε(μ,θ) = (..., |μ|-(»+«-2) e x p [iθΛr],...),

where θpr (p = 2, 3,..., n; r = 0, 1,..., q — 2) are real variables. We shall now
prove that

(2.23) \yί»\x; 6 + ε)exp [-JB^x; 6)]| ^ c2|μ|^ (m = 0, 1,..., n-1)

in the domain (2.22) uniformly in 0p>r, where c2 is a positive constant and β is a
non-negative constant. Since we have

|argx - 2kπ/(n + q)\ ̂  (n + l)π/(π + «) - 5/(n + l)

in the domain (2.22), we can use asymptotic representations (2.15). In fact, we
get
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\y(

k

m\x; b + ε)expl-Ek(x; b)]\

; b + ε) - Ek(x;

in the domain (2.22) uniformly in θpri where c3 is a positive constant and

r(m9 k) = απ+,(G*(fc)) - ( n - l ) / n + ^m/n

(m = 0,..., n - 1; fc = 0, 1,..., n + q - 1).

Observe that the function r(m, k) is bounded for

Σ?=2 Σ?=o2 |ftPirl ^ Λ and I A I I ^ M ,

uniformly in 0 p r . We have also

R S \x\ = \μ\n\t\ ύ t\μ\".

Hence, we get

for (2.22), where c 4 is a positive constant. Thus we get

( m = 0, 1,..., n - 1 ; fe = 0, 1,...,

in the domain (2.22) uniformly in θPtf, where c5 is a positive constant and p* is a

non-negative constant. Observe next that

Ek(x;b + ε)-Ek(x;b)

/G fc(b ) /G*(fe))] exp [ -

and

in domain (2.22) uniformly in θpr, where c6 is a positive constant. Hence, the

function Ek(x; b + ε) — Ek(x; b) is bounded in domain (2.22) uniformly in θPtr.

Thus we proved (2.23).

We shall now estimate the function

[yίm>(μMt; b + ψ) - yίm)(μnt; ft)] exp l~Ek(μnt; fc)]

in (2.22). Note first that

yίm\χ; b) = (2π)-(»+«-2) ^π - \2

o

πyίm)(χι b+έ)dθ2>0...dθPtr...dθn>q-2,
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and that

(2.24) | ^ » | u\W<n+q-V (P=2, 3,..., n; r = 0, 1,..., q-2)

if \μ\ is sufficiently large. Since β^|x |^f |μ |" in (2.22), (2.24) holds in (2.22) if
R is sufficiently large. Then, by virtue of Cauchy's integral representation theorem
we get

[2*... f2* ' yί™\x;
Jo Jo Π?=oΠ?=o2d-'/'p<r

xdθ2,0...dθp

Therefore,

where

Hence the estimates of (2.23) yield that

\Lyίm)(μnt, b + ψ(μ)) - y(

k

m)(μnt; ft)] exp l-Ek(μ»t;

in (2.22), where c is a positive constant. Thus we have proved Lemma 2.4.
(cf. [7] Lemma 3.1.)

§ 3. Existence theorem in the sector

Hereafter we shall consider the system of linear differential equations (1.1).
Let P(t, ε) be an n by n matrix satisfying the following conditions:

(i) the components of P(t, ε) are holomolphic in domain D(t0, ε0, θ0),

(ii) , m P(t, ε) = P(m)(ί, ε) admit the asymptotic expansions

(3.1) PW(t, ε) ^ Σ?=o PKOβ 1 (^ = 0, 1,..., n-1) ,

uniformly for |ί| ^ ί 0 , as ε->0 in the sector (1.2), where
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is the formal matrix given by the formal reduction Theorem 1.1. The existence
of such a matrix P(ί, ε) is a consequence of the theorem of J. F. Ritt. (See [8]
§9.) Since Po(0)=J (identity matrix), the inverse matrix P(ί, ε)"1 of the
formal matrix is well defined. The components of the inverse matrix P(ί, ε)"1

are formal power series in ε whose coefficients are holomorphic in the closed disk
Mύh^to' The inverse matrix P(t, ε)"1 also exists in the domain D(tx, εl9 Θx)9

where tί^tθ9 εί^ε0 and Θ^ΘQ. The components of P(t, ε)"1 are holomorphic
in the closed disk \t\^h and in (1.2) and it holds that

(3.2) P(ί, ε)"1 c* P(ί, ε)"1

as ε->0 in the sector (1.2), uniformly for | ί | ^ ί i .
Let

(3.3) β - ^ = [ B ( ί , e ) + £(ί

be the system to which the system of linear differential equations (1.1) is reduced
by the transformation

(3.4) Y=P(ί,ε)X.

This means that E(t, ε) must satisfy the relation

E(t, ε) = P(t, e)A(t, ε)P(ί, ε)"1 + P(t, β ) " 1 ^ , ε) - B(t, ε).

On the other hand, from Theorem 1.1, P(ί, ε) formally satisfies the following
relation

B(t, ε) = P(ί, ε)A(t, ε)P(ί, ε)"1 + εP(ί, β ) " 1 ^ , ε).

Therefore, according to (3.1) and (3.2), we can easily get

(3.5) JE(ί,β)«O

uniformly for | ί | ^ ί l 5 as ε^O in (1.2)

We shall apply to the system (3.3) the transformation

(3.6) Y = exp Γ-^-ε"1 Γ trace [£(s, ε)Ίds]Z.

Then, the system (3.3) becomes

(3.7) ε^- = [B(ί, ε) + F(t, ε)]Z,

where

(3.8) Fit, β) = E(t9 ε) - \ trace [E(ί, ε)].
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The components of the matrix function F(f, ε) are holomorphic in the closed
disk | ί |^ ί i and it holds that

(3.9) F(t9 ε) * 0

uniformly for \t\^tl9 as ε->0 in (1.2). Furthermore, we can easily see that

(3.10) trace [B(t, ε) + F(t, ε)] = trace B(t, ε) + trace F(t, ε) = 0

and that

(3.11) exp [-i-ε"1 £ trace [£(5, β)]ds] * 1,

uniformly for 1 * 1 ^ as ε-»0 in (1.2).
In order to investigate the property of solutions of the system (3.7), we

shall now compare the system (3.7) with the simpler system

(3.12) = B(t, ε)Z.

The system (3.12) is equivalent to the single linear differential equation (1.3).
Therefore, according to Lemmas 2.2 and 2.3, the system (3.12) admits solutions

(3.13) hit, ε) =

where

(3.14)

1 0 0 0

0 A*"1 0 - 0

0 0 μ-2 0 yl(x,b)

[0 0 0 •• μ-"+1

(k = 0,l,...,

x = μ"t and μ = £-V(>>+<i).

Let us put n by n matrices Φk{t, ε) and Dk{t, έ) (fe=0, 1, 2,..., n + q — 1) as
follows

(3.15) Φk{t, ε) = {zk(t, ε), z t + 1 (ί , ε),..., zk+n-i(t, β)),

(3.16) Dk(t, ε) = diag(exp[£ t(x; i>)

Then, for each k (fc=0, ί,...,n + q — ί), Φk(t, ε) is a fundamental matrix solution
of the system (3.12). In fact, according to the fact that trace [B(ί, ε)]=0,
det Φk(t, έ) is independent of ί. Therefore, we have only to show that

d e t Φ t ( ί , ε ) # 0 for x 6 Λ £ r ' S »
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It is obvious from (3.13) and Lemma 2.3 that

(3.17) det Φk(t, ε) = μ - ^ - D / W ^ Γ 1 <*«n+«<G*<&))-*«(n-i)/2ii)

x det I (exp [ — qhmπilnj)\

h = kyk+ 1,..., fc + n - 1

m = 0, 1,..., n — 1

If we put

(3.18) Φk(t, s) = £fc(f, ε)DΛ(f, ε) (k = 0, 1,..., n + q - 1),

then, each ^Λ(f, ε) satisfies the condition

(3.19) \\$&9 e)\\ £ c\μ\*

in the domain

(3.20) \t\£tl9

where c is a positive constant, q* is a non-negative constant and M is a sufficiently

large positive number. We here defined the norm ||i4|| for a matrix A={atj)

( i , ; = l, 2,..., n) by

Moreover, inverse matrices $k(t, ε)" 1 of Φk(t, ε) exist and then

φk(t9 ε )- i = Dk(t, ε)Φk(t, ε)" 1

I

where A(Φk(t, ε)) is a cofactor matrix of ΦΛ(f, ε). Therefore, utilizing (2.16),

(3.17) and (3.19), we can obtain

(3.21) \\$k(t, εyi\\ ^ c\μ\«\

where c is a positive constant and r̂* is a non-negative constant.

Let Φ(ί, s, ε) be the n by n matrix function such that

(3.22)

Then the uniqueness of solutions shows that

(3.23) Φ(t, s, ε) = Φk{u ε)Φk(s, ε)" 1

= Φ,(ί, έ)Dk{u ε)Dk(s, ε ) " 1 ^ , ε)" 1 (fc = 0, 1,...,
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It follows from (3.16) that

(3.24) Dk(t, ε)Dk(s9 ε)-1 = diag [exp [£fc(x; b)-Ek(ξ; 6)],...,

where

(3.25) { = μ»s.

Hence, according to (3.18), (3.21), (3.23) and (3.24), we have

\\Φ(t, 5, ε)|| ί \\Φk(t, ε)||. \\Dk(t9 ε)Dk(s9 ε )" l \\$k(s,

ύ c2\μ\2«* Σ J ί Γ 1 lexp LEj(x; b)-Ej(ξ;

in the domain (3.20).

We are now in a position to state the following theorem.

THEOREM 3.1. The system of differential equations (3.7) admits a solution

z = zk(t, ε) such that

(i) the components of zk(t, έ) are holomorphic in the domain D(tu εl9 0χ);

(ii) zk(t, ε) satisfies the asymptotic condition

(3.27) exp [ - £ k ( x ; *>)] [zΛ(ί, ε)-zk(t9 ε)] ^ 0

uniformly for

(3.28) |*| ^ ί2, |argί - 2kπl(n + q)\ ^ (n + l)πl(n + q) - δ,

as μ tends to infinity in the sector

(3.29)

where δ and t2 are sufficiently small positive numbers and M is a sufficiently

large positive number.

PROOF. Let us reduce the system (3.7) to the integral equation

(3.30) z(t, έ) = zk{t, ε) + ε"1 [ Φ(t9 s, ε)F(s9 ε)z(s9 έ)ds9to

and put as follows, assuming that N is a sufficiently large positive number,

zk(t9 ε) = μ«explEk(x; b)lζk(t9 ε)9

$(t9 5, ε) = exp l-Ek(x; fe)]Φ(ί, s, ε) exp \Ek(ξ9 b)~\,

where
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ξ = μns.

Then, the above integral equation (3.30) becomes

(3.31) ζ(t, ε) = ζh(t, ε) + ε"1 [ Φ(t, s, ε)F(s, ε)C(s, ε)ds.
Jti

The norm of the matrix Φ(t, s, ε) is estimated as follows;

ί, 5, 8)|| = H t e ε)exp [-£ t (x; 6)]Dk(f, ε)Dfc(s, ε)"1

ί, b)-]Φk(s, ε)-i\\

^ c2\μ\2«* Σ'jiΓ1 lexp LEj(x; b)-Ek(x; b)-(Ej(ξ; b)-Ek(ξ;

If JV is sufficiently large, ζk(t, ε) is bounded for (3.28).
We shall construct a bounded solution of the integral equation (3.31). To

do this, we shall fix tt and a path of integration y(i) so that the function
|| ε " 1 ^ , s, ε)F(s, ε)|| is sufficiently small along the path y(t). Let us consider
the mapping

(3.33) f = ^

in the domain

(3.34) |*| ^ tί9 |arg ί - 2kπ/(n + ̂ )| ^ (n + l)π/(n + «) - δ.

The image of this domain under the mapping (3.33) is given by

(3.35)

|arg?| ^ (n + l)π/n - (n-fl)5/n = (n + l)π/n - ^.

Put

(3.36) ΰ:\i\£i2 and |arg ί| ^ (n 4- l)π/n - 8, (See fig 1,),

where ?2 is
 a sufficiently small positive number such that

(3.37) sin α = \2\\x < sin P ^ π - ^ Ί .

Then every point Πn D can be joined to ίt either by a line segment:

(i)

where



508 Shigemi OHKOHCHI

(ϋ)

and

where

\ v --7

/ ^ * —r
/ N 2 — — " ^ y

/

Ί-plane

Fig. 1.

ΐ = ?t + s exp[ϊ arg(£ 0-?i)]

ί = s exp [i arg(ί-f0)]

|arg(f0 —?0) —π| ^ π/n — S and |arg(ί —f0) —π| ^ π/n — δ.

For every point in ΰ, we shall denote this path by £(ί). Let γ(t) be the path which

is mapped onto %ί) by the mapping (3.33). Then this path γ(t) is a desirable

one. Now we consider an arc which is defined by

(3.38) s e»9

where f0 is a point in D, and θ is a fixed real number such that

(3.39) | 0 - π | g π/n - £.

Taking account of (3.38), (3.39) and

exp [-2fcπi] [ί(

we observe that
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- exp (~

Since

Re[^β(l-exp[2(fc-m)πi/n])] < 0 (fc#m; m = /c+l,...,

we get

w(μ"ί(S); 6) - £*(μ»ί(s); i ) ] ] < 0,

provided that \μnt(s)\^.N*9 where N* is a sufficiently large positive number. If

|μ"ί(s)| ^ N * , it is obvious that Em(μnt(s); b) are bounded.

Therefore,

Re[[£ m (x; * ) - £ * ( * ; i ) ] - [£ w (£; 6 )-£*({ ; 6)]]

admit uniform upper bounds along the path γ(t) for every t in D.

Let us consider the domain (3.28) and (3.29), where M is a sufficiently large
positive number. Denote by BM the set of all n-dimensional vector ζ(t, ε) whose
components are bounded and continuous in this domain and holomorphic in
the interior of this domain. The set BM becomes a Banach space if we define
a norm of ζ(t, ε) by ||£|| =sup ( M ) \ζ(t, ε)\. Define a linear transformation L[£] by

(3.40) L[ζ] = ε"1 ( ί ( ί , s, ε)F(s9 ε)ζ(s, έ)ds.
hit)

The definition of the integral path γ(t), the estimate of Φ(ί, s, ε) and the asymptotic

property (3.9) of F(t9 ε) imply that

(a) L[ζ\ 6 BM for every ζ in BM

(b) L[ζ\ (t, ε) * 0 uniformly for (3.28) as ε-»0 in (3.29)

(c) the norm of L is bounded by 1/2 if M is sufficiently large. Since

ζk(t, ε) is in BM, we can define an n-demensional vector ζ(t, ε) by

and this vector is in J5M if M is sufficiently large. Furthermore, we have

C(ί,e) = « ί , β ) + LK](<,β).

Now if we put

z = zk(t, ε) = μ"exp [£Λ(x; &)]£(*, ε),

then zΛ(ί, ε), for each fe, is a solution of the system (3.7) which satisfies all of the

requirement given in Theorem 3.1. Furthermore, zk(t9 ε) is holomorphic in the
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domain D(ti9 εl9 θ^, since there is no singular point of the system (3.7) with

respect to t in the closed disk |ί| ̂  tv This completes the proof of Theorem 3.1.

(3.41)

with

Let us consider now the system of differential equations

di = B(t, e)ί

where

(3.42)

and

(3.43)

£(t,ε

Sι(t,

Bj(t,

δf(ε

) =

ε) =

ε) =

)=*<

0

0

v Biit, ε)

t" + ε2]

ε2 ΣU

) ( f c = l ,

1

0

B:

2(t, ε)

Lm=O L P Γ W

[βj(ε) + Sj(i

2,...,n-l)

o
1

B'3(t, ε)

+ ίT<β)]

ϊ)~\tm

as ε

... o

• ' U

tm,

i(ί,

ϊ,3,

in

ε)

...,

(1

0 N

0

o

n - l

2).

Applying the change of the independent variable, we easily see that the system

(3.41) becomes as follows; (cf. (1.3) and (1.4))

Σ r 2 °r=2° hn-k

where

(3.45)

x = μnt, μ =

i = 0 >

= 0> i—, β-2)

and έ x is the first component of the n-dimensional vector i. Therefore, it holds

from (3.43) that

(3.46) ΨPM~° a s ε-*° i n C1-2)-

Furthermore, from (3.13), the system (3.41) admits solutions

(3.47)

0

0

ό

0 ••• 0

0 ••• 0

μ~2— 0

0 ..'u-'"-1

f yk(x;b+ψ)

y'k(x;b+ψ)

y'ί(χ;b+ψ)
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From Lemma 2.4, we can easily derive that

(3.48) exp ί-Ek(x; fc)] [>,(*, ε)-z fc(ί, ε)] * 0

uniformly for (3.28), as μ tends to infinity in (3.29).

In order to show the existence of analytic transformations in the sector,

we make some preparation for it. We now define

(3.49) S i - Λ i + r 1 ^ . (cf. (2.11))

Then §kO§k+i^0 (fc = 0, 1,..., n + q — 1) and n + q sectorial domains §θ9 §ί9...9

§n+q-i cover a full neighborhood of the turning point ί = 0 .

As we defined Φk(t, ε) which is a fundamental matrix solution of the system

(3.12), using Theorem 3.1 and (3.47), we here define n by n matrix functions

Ψk(t, ε) and Ψk(t, ε) as follows;

(3.50) Ψk(t, ε) = lzk(t, ε), zk+1(t, ε),..., z ^ ^ ^ ί , ε)],

Φk(t, ε) = [zfc(ί, ε), zk+ί(t9 ε),..., zk+n.t(t, ε)] (fc = 0,1,..., n + q-1).

Then it is easily seen from (3.27) and (3.48) that Ψk(t, ε) and Ψk(t, ε) are funda-

mental sets of solutions of the systems (3.7) and (3.41), respectively, and satisfy

the asymptotic conditions

(3.51)

uniformly for (3.49), as ε->0 in (1.2). Moreover, if we put

(3.52) Tk(t, ε) = Ψk(t, ε)Ψk(t, ε)"1 (fc = 0, 1,...,

the components of the n by n matrices ΓΛ(ί, ε) are holomorphic in the domain

D(tί9 εl9 θx) and Tk{t9 ε) satisfy the asymptotic condition

(3.53) Tk(t, ε) = Ψk(t, έ)Dk(ty s)Dk(t9 ε ) "^ f c ( ί , ε)- 1

^ Φk(t9 ε)Dk(t, έ)Dk(t, εy*Φk(t, ε)"*

^ / (identity matrix)

uniformly for (3.49) as ε->0 in (1.2). Here we used (3.27) and (3.48). Hence,

if we put

(3.54) Qk(t, ε) = P(t9 ε ) e x p [ i ε - 1 ^trace [£(s, ε)]^]τΛ(ί, ε),

we have obtained Theorem 1.2.
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§ 4. Difference equation and Stokes multipliers (I)

The n + 1 solutions yj(x; b) (j = k9 /c + 1,..., k + ri) of the differential equation

(1.3) are linearly independent. Therefore, there are C){b) (fc = 0, 1,..., n + q — \\

7 = 1, 2,..., n), which are independent of x, such that

(4.1) yk(x; b) = Σ]=i C)(b)yk+j(x; b).

Relation (4.1) is a connection formula for yk(x; b) and the coefficients C){b) are

the Stokes multipliers for yk(x; b) with respect to yk+j(x; b). In this section we

shall consider the Stokes multipliers as functions of bpr, utilizing the solutions

of difference equations which are obtained by the Mellin transformation.

We now represent y(x\ b) as a power series of bpr (/?=2, 3,..., «; r = 0 ,

1,..., q — 2) with coefficients that are entire functions of x as follows;

(4.2) y(x b) = y(x,..., bPit.,...)

= ίίoW + Σ ? = 2 Σ?=o ηP,r(χ)bP,r + [higher order].

This series is uniformly and absolutely convergent on each compact set of the

(x; fc)-space, so we can differentiate (4.2) termwise. Inserting (4.2) into (1.3),

we get the following differential equations for the coefficient functions ηo(x)

and ηPir(x).

(4.3) η(

o

n\x) + ( - 1)"+Ix«ifc>(*) = 0,

1P

n,l(x) + (-l)n+ίxqηPtr(x) + xrη(

o

n-p\x) = 0

Since

(4.4) ηPtr(x) = -g£-^y(xm> b)\b=o (P = 2, 3,..., n; r = 0, 1,..., q-2),

applying a theorem on differentiation of asymptotic expansions with parameters

to the representation (2.3), we can obtain the asymptotic expansion as follows;

(4.5)

_

_
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as x tends to infinity uniformly for

(4.6)

where δ is a small positive number. Here we used the condition O/(6)|6=0 = 0

(7 = 1, 2,..., n + q), which is easily derived from (2.7).

In order to know the asymptotic expansion (4.5) precisely, we shall prove

the following lemma.

LEMMA 4.1.

f»=0

PROOF. Differentiating (2.7) by bpr, we can get

(4.7) = 0.1 ^ ^
OOp,r 0Dp,r

If we put fo = 0 (bPir = 0 for p = 2, 3,..., n; r = 0, 1,..., q-2) in (4.7), we get

(4.8)

Since

n Z n

6 = 0
+ XrZn~P = 0.

b=0

Z\b=0 = - x«/n,

(4.8) becomes

xq/nΣ7=o-
b = 0

From this relation, we can easily obtain Lemma 4.1.

Hence, using this lemma and (4.5), we can obtain the following results;

(4.9) ηP9r(x)

r(B-l) f/2ne χpL «
b=0

x~Jln (pq —

(pq—nr = n + q),

χ-(n-l)q/(2n)+(n + q-

nr n+q
A I y -j/n

--OAj\b=Ox '

— nr<n+q)
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as x tends to infinity uniformly for (4.6).

Let M/fj* be the class of functions on (0, oo), which are summable in the

sense of Lebesgue on each compact set of (0, oo) and which, with /</*, satisfy

the two boundary conditions

F(t) = O(Γ0 (ί-»0) and F(t) = O(Γ1*) (*-> + oo).

Then for each F e Mltl* the integral

exists in the strip Z<Re[s]<Z* and represents there a holomorphic function.

We write

f(s) = M[F, 5]

and call / the Mellin transform of F.

Now the solution y(x; ft) of the equation (1.3) is an element of MOtl* for

any Z*>0, so its Mellin transform

(4.10) H(s, ft) = Af[Kx; ft), 5]

exists as a holomorphic function in the right half-plane Re[s]>0. Moreover,

we have the following lemma. (See Wyrwich [9].)

LEMMA 4.2. The Mellin transform H(s; b) of y(x; b) has the following

properties:

(i) It is a meromorphic function of s with at most simple poles in s= —fc,

fc=0, 1,.... The residues of H(s, b) are given by

(4.11) Res s = . f c i ί (5, b) = ^ ( f c ) ( 0 ; 6), fc = 0, 1,... .

(ii) It is a solution of the difference equation

(4.12) (-l) Λ s(s+l) (s + n~l)H(s, b) + (-l)n+1H(s + n + q9 b)

+ ΣZ=§ Σq

m=2o ftΛ-fe,m(-l)kΦ + l)-(s + fe-l)iί(S + n-fe+m, ft) = 0.

(iii) For each complex number s ( s # 0 , — 1 , —2,...), H(s, ft) is an entire

function of the parameters bpr (p = 2,..., n; r = 0, 1,..., q — 2).

Using this lemma, we represent H(s, ft) as a power series of bpr;

(4.13) H(s, b) = Was) + Σ ? = 2 Σ r % 2 WPιr(s)bp,r +••• .

For the coefficients W0(s) and Wp>r(s) of this expansion we have
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LEMMA4.3. The coefficient functions Wpr(s) of (4.13) are meromorphic

functions. They are connected with ηP)r(x) by

(4.14) W,Js) = Mίηp>r(x), s]

and

(4.15) Res s = _ t ^, r (s) = ^ ^ > ( 0 ) , fc = 0, 1,... ,

and they satisfy the following system of difference equations

(4.16) W0(s + n + q) = s

(4.17) (^l)» s(s + l).. (s + n - l ) ^ p>

= 0.

In order to know the asymptotic properties of W0(s) and WPfr(s), we need the

following lemma. (See Wyrwich [9] Lemma 18.)

LEMMA 4.4. Let F(t) be summable in the sense ofLebesgue on each compact

subset o/(0, oo) and satisfy the two conditions:

(i) F(0 = O(r<), t >0,ceR

(ii) ^(O^expC-αί^r^logO*, t > oo, feeN, α, β > 0, y eC.

Then the Mellin transform f{s) of F{i) exists in the half-plane Re[s]>c and

satifies

(4.18)

as s->oo in any half-strip

(4.19) Re[s]>c, |Ims|<a\

Now, utilizing (4.9), we can state

LEMMA 4.5. Putting v = l/(n + q), the associated coefficient functions admit

the asymptotic representations:

(4.20) W0{s) * j

xΓ(nvs-(qvl2)(n-l)-jv),

(4.21) WPif(s)
p, b=O

x Γ ( « v 5 - ( / 2 ) ( l )

(if pq-nr>n+q)9
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(4.22) Wp,r(s) « ( _ }

x4[(«v)
CIS

(if pq-nr=n+q),

( 4 . 2 3 ) Ϊ Γ Λ r W « ( - D ^

X

x Γ(nvs-(qvj2){n-Ί) + (n+q-pq + nr)v-jv)

(if pq-nr<n+q),

as s tends to infinity in any half-strip (4.19).

We shall now attempt to seek explicit solutions of difference equations
(4.16), (4.17). At first, from (4.16) and (4.20), we can obtain

(4.24) W0(s) = (2π)(1

In fact, a special solution of the difference equation (4.16) is

Ω0(s) = v » " Π5=έ Γ(y(s + j))9 v=ll(n

As the general solution of (4.16) is the product of Ω0(s) and an arbitrary periodic
function p(s) of period n + q, we can put

W0(s) = Ω0(s)p(s)

and have to determine p(s) from the asymptotic representation for W0(s). Lemma
4.5 provides

W0(s) * {nvy+^l2Kn-Vn-n

as s tends to infinity in (4.19). This gives

p(s) ~

as s tends to infinity in (4.19).
Applying the multiplication theorem of the Γ'-function and the asymptotic

property of Γ(z):

(4.25) ^ " τ { f τ t = 1 + < f l-*>ξg

+ f t-1> +O(Z-
2)> z —oo,α,ft6C,

we get
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as s tends to infinity in (4.19). As p(s) was supposed to be periodic, we even have

equality in this relation and finally obtain (4.24).

Now if we put

(4 26) Θ (s)-
W0{s{n+q)) '

we can rewrite the difference equation (4.17) in the form

(4.27) θ,Js+i) = 6>p>r(s) + Λp,(s) (p=2, 3,..., n; r=0, 1,..., q-2),

where

(4.28) ΛP,,(S) = (-1)P

χ W0(s(n+q)+p + r)
[s(n+q) + n-p'][_s(n+q)+n-p+\~]-'[s(n+q)+n-\] W0(s(n+q)) '

This is an inhomogeneous difference equation of the first order. Applying

(4.16), (4.24) and (4.25) to (4.28), we can easily find that

(4.29) Λp>r(s) = 0(5-<i>«-»'>/

= <9(s-1-^-/ir(M+«)>/('l+4)) in (4.19).

Therefore, if

(AO pq-nr>n + q,

we can apply the following lemma to the inhomogeneous difference equation

(4.27)

LEMMA 4.6. // φ(s) is holomorphic in a half-strip (4.19), and if

φ(s) = O(s-i-°)

with σ>0, then the difference equation

has a solution

(i) /o(s)=-Σ?=o

which is holomorphic in (4.19) and satisfies

(ii) f0(s) = O(s-°).

Hence, we can obtain
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(4.30)

(pq-nr>n + q),

where

(4.31) Kp>r(s) = ( -I )* Σ?=iΛp>Γ(

In fact, by Lemma 4.6, we get a solution <9*>r(s) of (4.17) in the form

Θ*p,r(s)= - Σ ? = o ^ + J),

which is holomorphic in (4.19) and satisfies 6>*jr(s) = O(s-^«~πr"w"«>/(|I+«>) there.

Since the general solution of (4.17) is the sum of the special solution Θ*r(s)

and an arbitrary periodic function of period 1, it is clear that Θ*r(s) is the only

solution of (4.17) with this property. On the other hand, since A0 = l, we have

from Lemma 4.5,

ΘPtr(s) = O(s"(p«"wr"/I~«)/(n+«>)

and this asymptotic condition implies Θpr(s) = Θ*fr(s) (pq — nr>n + q). Re-

writing this in terms of W0(s), we have (4.30).

Furthermore, it follows from (4.28) and (4.31) that

1

Therefore, we get from (4.24) that

Kp,r(s)>0 for s> -(n + q).

Next we shall consider the case in which

(A2) pq - nr < n + q.

We have the following lemma concerning inhomogeneous difference equations.

LEMMA 4.7 (Nδrlund [6]). Let k be a non-negative integer, such that

(i) geCk(s0, oo);

(ii) gik\s) = Oίs"1-*) for s^sί> s0 and σ > 0.

Then
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F(s) = lim^oQ" ffWe- 'Λ - Σ?-o0(ί + *)e-'(i+*)] (c\

exists and ίftis is a solution of the difference equation

These solutions are called principal solutions.

If we can show that Θpr(s) is a principal solution of the difference equation

(4.27), each Wpr(s), which is a solution of (4.17), has the following form:

(4.32) WPtr(s) = W0(s)[c-(-

where

(4.33) *;„(*•) = l i m e . o [ £ - ( - l)>ΛPtr(t)e—dt

and

c =

Since ΛPtr(s) is a real-valued function, c is a constant real number which depends

on p, r, n, # and c'.

In order to show that Θpr(s) is a principal solution of (4.27), we use the

following lemmas.

LEMMA 4.8 (Nδrlund [6]). Let k be a non-negative integer. We assume

that g(s) satisfies the following two conditions:

(4.34) g e Ck(s0, oo) and g^k\s) = OCs"1-') for s ^ s± > sθ9 σ > 0.

Then each principal solution f(s) of the difference equation

(4.35) f(s+l)=f(s) + g(s)

satisfies the following two conditions:

(i) /(s)eC*(s0, oo),

(ii) lims^+(»f<<k\s) exists.

LEMMA 4.9 (Nδrlund [6]). Letf(s) be a solution of the difference equation

(435) and let g{s) satisfy (4.34). Tften, if
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lims_>+00 f
ik)(s) exists,

f(s) is a principal solution of the equation (4.35).

LEMMA 4.10 (Wyrwich [9]). We assume that h(s) is holomorphic in (4.19)

and

h(s) = O(sa) in (4.19) with α e R .

Then it holds that

h^\s) = O(sa) in (4.19).

It follows from (4.28) and (4.16) that

Therefore, Λpr(s) is holomorphic in R e s > —(p+r)/(n + q).

Furthermore, we get from (4.24), (4.25) and (4.28) that

— (—\\P— —ί , ^ , S-(P1-nr)/(n + q) ι Q(s~A-(pq-nr)/(n + q)\

Using Lemma 4.10, we can obtain

APtr(s) =

Since (pq — nr)l(n + q)>0 under the condition q(n — 2)<2n, we find that Λpr(s)

satisfies the conditions (4.34). It holds from (4.20), (4.23), (4.26) and (4.28)

that

Noting that (pq-nr)/(n + q)>0, we can get that

e x i s t s

Therefore, we have obtained from Lemma 4.9 that each Θpr(s) is a principal

solution of the difference equation (4.27). Thus we have obtained (4.23).

Summarizing these results concerning difference equations (4.16) and (4.17),

we have the following

LEMMA 4.11.
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(4.24) W0(s) = (2π)( 1 - w )/ 2 « 1

(4 30) W (s) = - (~l)

(if pq — nr>n+q)

and

(4.32) WPi,{s) =

(if pq-nr<n+q)

for s > - ( p + r); s^O, - 1 , . . . , - ( p + r) + l, w/zβre Kp>r(s) αnrf K'Ptr(s) are given

by (4.31) and (4.33), respectively. Furthermore,

KPΛS)>° M s> -(n + q)

and c is a constant real number which depends on p, r, n, q and c*.

Now we shall consider Kp>r(s) [X;>r(s)] and KPfr(s+l) [K;>r(s + 1)]. From

(4.33) and (4.28), we can get

(4.35)

-p)W0(m)W0(m + p +

where

(4.36) m = (n + q)(ys + k) = s+ (n + q)k and s' = s + 1.

Using (4.24) and (4.25) for a sufficiently large integer fc, we have from

(4.35)

= (n + 5 + (n + g)k)Γ(k + v(n + s))Γ(fc + v(s + p + r)
(n + s - p + (n + q)k)Γ(k + vs)Γ(fc + v(s + p + r + n))
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v«(vιι+2vj-l) • -
+

Since

under the condition q(n — 2)<2n, we can get

(4.37) (

for a sufficiently large integer fc.

Next we assume that (4.37) holds for fc^fc' and we consider the (fc' —l)-th

term. Using the fact that W0(s) satisfies the difference equation (4.16), we can get

(-l)PΛPtr(vs'+kf -

(mf + n-p-(n+q)) W0{m'-(n+q)) W0(m' + l+p + r-(n

(m'-p-q)(m'+p+r-(n+q))JV0(m' +

(m' + n - p)(m! - n - q)(m' + p + r - q)
(mt + n)(m'-p-q)(m'+p + r-p-n) '

where

m' = s +

Here we used the assumption of the induction that (4.37) holds for fc = fc'. Since

pq — nr>0 and
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[_(mf + n-p)(m' -n-q)(m'

= (pq-nr)mr + pq(-2n + p + r-q) + nr(2p-ή),

we can obtain the following lemma from above results.

LEMMA 4.12. Suppose that

(4.38) D [Λ, q, p, r; s*, fc ]

= (p«-wr)(s + (π + «)(fc* + l)) + pq(-2n + p + r-q) + nr(2p-n) ^ 0.

Then (4.37) holds for s^s* and fe^fe*. Furthermore, if

D*(n, q, p, r; s*,l) ̂  0,

^ , r ( s ) > Kp>r(5 +1) [ K ; » > i C ; , r ( 5 +1)] /or s ^ s*.

We shall here make preparations for the use in §6. Assuming that

pq — nr > n + q and (p — ϊ)p — n(r+l) < n + q9

we shall consider

(4.39) W*p>r(s) = LWp,r(s) - Wp.Ur+ ,{s),

where L is a constant number. From (4.17), Pf*jΓ(s) satisfies the following

difference equation;

(4.40) (-l)"s

+ (-iy-Ps(s + l)-'(s + n-p-l)(s + n-p + L)W0(s+p + r) = 0.

Putting

6>*(5 +1) = W*Mn + q))/W0(s(n + q)),

we can easily obtain that (4.40) becomes

where

Γ4 4Π A* (rt = ( - n p Wn +<l) + n-p-l+Ll W0(s(n +g)+p +
φΛl) ΛpAS) ^ 1) ^ n + q ) + n _ p _ ί y m m [ 5 ( n + g ) + n _ l 2 1 V o

Therefore, using Lemmas 4.7-4.9, we can similarly obtain

(4.42) W*tr(s) = WQ{s)lc*-{-\yK*Ptr{s)-]

n-p-l+L)W0{s + p + r)
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where

(4.43)

and if L is a real number, c* is a constant real number.

Lastly we prove the following lemma, which we often use in §5 and §6.

LEMMA 4.13. Let a, b (b>a) be non-negative integers. Then, we have

( 4 4 4 ) W0(a + l)W0(b) χ
K } JV0(a)ΪV0(b + l) ^ L'

PROOF. From (4.24), it follows that

K*m } W0{a)WQ(b + \) Γ(yά)Γ(y(

Since log \_Γ{x)~] (x>0) is a strictly convex function, we have

and

Therefore, we can easily obtain

log Γ(vb) + log Γ(v(α + n)) < log Γ(v(b + n)) + log Γ(ya).

Using (4.45), we have obtained Lemma 4.13.

REMARK. If it holds that

(4.46) (pq-nr)(m + n + q) + pq(-2n + p + r-q) + nr(2p-ή) ^ 0,

then it follows from (4.35) and (4.38) that

{m + p + r) .

Therefore, using Lemma 4.11, we can get
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1 -» W0(m + \)W0(m + p+r) m + n-p
W0(m)W0(m + p + r + l) m + n

under the conditions (4.46) and m^O.
Furthermore, from (4.24), it holds that

a 4 f n W0(m + l)W0(m + p + r) Γ((m + n)l(n+q))Γ((m + p + r)l(n+q))
y ' f W0(m)1V0(m+p+r + l) Γ(ml(n+q))Γ((m + n+p+r)l(n+q)) '

Putting m=(n + q)k, p=2 and r=q—2, we get

nl(n+q))Γ(k + ql(n
(Aτ-l)ϋfc!

(k-l)l

-

_ (k-l+nl(n+q))-(l+nKn+qmk-l+ql(n+q))-(l+ql(n+q))

(k~l)\k\

_nq_
(n+q)2 sin (nπ/(n+q)) '

Therefore, it follows from (4.27) that

nq{k-\)\k\

[fc(yι+g) + fi]π
{

> sin (nπ\(n+q))

ng(k-\)\

k\π
(l+ql(n+q))(n+q)2 '

REMARK. In the differential equation (1.3), if we put b=0, then (1.3) becomes
an extended Airy equation. Since y(x; 0) is a principally recessive solution on
the positive real axis argx=0, an extended Airy function of the first kind Ai(x)
coincides with that. It follows that (See M. Kohno (3))

A,(x)=ΣUdι Ai(ω'"x),

where
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— ωki)' -(ωkn — ωki)

and fef (ί = l, 2,..., ή) are mutually distinct modulo n + q. Hence we can easily

obtain

Φ 0 (fc = 0, 1,..., n + q-l;j = l, 2,..., n).

§ 5. Difference equations and Stokes multipliers (II)

In §4, we obtained

C}(0) Φ 0 (fc = 0, 1,..., n + β - 1 ; j = l, 2,..., n).

In this section, making use of solutions of the difference equations W0(s) and

WPtXs), we shall prove the following lemma.

LEMMA 5.1. In the connection formula (4.1) it holds that

d ^ ( b ) Φ 0 (pq-nrΦn + q; fc = 0, 1,..., n + q-1).

To do this, we prove the following

LEMMA 5.2. Suppose that

(5.1) g £ p } =0 (pq-nrΦn + q).
C ϋ b0

ϋp,r

Then

(5.2)

b=0

υp,r

PROOF. From the Cramer rule and the connection formula (4.1), we see

that the Stokes multipliers C\(b) are given by the formula

(5 3Ϊ CHb) = W r o n [_yk(x\ b\ yk+2(x; b),..., yk+n(x; b
KP V ^A ) W r o n ίyk+ί(x; b) Λ ( x ; b ) y ( x ;

It follows from Lemmas 2.3 and 4.1 that

Wron D W * ; b), yk+2(x; b),..., yk+n(x; b)~\

q(n-i)/2ni x det |(exp [ -

does not depend on bpr (pq — nrΦn + q). Therefore, we get from (5.1)
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and

(5.5) Wron [yk+1(0; b)9 yk+2(0; 6),..., yk+n(0; 6)] \b=0 = 0.

Furthermore, from the definition (2.13), it holds that

(5.6) yίm)(0; b)\b=0 = ω'kmj;W(0; b)\b=0

-^—y(

k

m)(0; b)\b=0 = ω(p+r-^k-^—p
υυp,r uυp,r

(m = 0, l , . . . ,«- l ; fc = (

We get from Lemma 4.3

^ ^ ( 0 ; b)\b=Q = m! Ress=_m W0(s)

and

= ml x
b=0

Therefore, we can easily verify from Lemma 4.11 that y(m\0; b)\b=0 and

3j?(m)(0; b)/dbpr \b=0 (pq-nr^n + q; m = 0, 1,..., p + r-1) have real values.

Furthermore, it holds from (4.24) and (4.16) that

for m = 0,2,4,...,

and

Res s =_m W0(s) < 0 for m = 1, 3, 5,...,

Noting these facts, we consider the following cases;

Case (I) q = 2; In this case, using (5.6) and letting fef be mutually distinct modulo

n + 2, we put

(5.7)

where

(5.8)

Wron [ykι(β; b), Λ ϊ ( 0 ; b),..., yjβ; ί>)] | t = 0 =

Π|=έ y(fc)(0; 0)

x det
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Here we put

Now in the determinant of (5.8), for each jΦp — \,p — 2 (mod n + 2), there is

another row which coincides with the O'+l)-th row. So we can get L J + 1 = O

for jφp — 1, p — 2. Hence, in order to seek the value of (5.7), we have only to

consider the cases in which j = p — l,p — 2. To do this, the following notation

of the determinant is put to use:

(5.9) Vn+1(λ) = det

1

λ

1 .. 1 ..

λ\ - λn - .

Then we can get

(5.10)

J ^
kφp-l

In order to consider the conditions (5.4) and (5.5), we must seek the values

of dp(k, fc + 2,...,fc + n), dp{k + U fc + 2,..., fc + n), dp_2 (k, fc + 2,..., fe + n) and

dp_2 (fc + 1, fe + 2,..., fc + n). For that purpose, we put

(5.11) Πϊ=i (λ-ω-*"0 =

Using the identities

and

we can easily obtain

and

= 0 * = 2, 3,...,
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= 0,

gn = 1, ^o = - ω2*"1

and

^ω'^ = 0 (y = 2, 3,..., n),

flf. = 1, g0 = - ω2k.

Therefore, it holds that

< 5 1 2 > ^ ^ ^
and

( 5 1 3 ) ^

Since Vn+1(λ) is a Vandermonde determinant, it holds that

Vm+1(λ) = ( - l ) < +«/» x Π7-i(A-Λ)Πι<ί(A,-Ay).

Therefore, from the definition of dp (ku k2,-.., ka), we get

(5.14) dm(k+l,k+2,...,k+n) = (-ί)"(-+^gm x Πι<j(β>-*-'-ω

and

(5.15) dm(fe, fc+2,..., fc+n) = (-1)"<»+1>/2£M x ΓLwίω^-ω-*-1)

x Π2< ί<y(ω- t- ί-ω-'-J)
(m=0, l,...,n).

Using these results, we can rewrite (5.4) and (5.5) as follows;

(5.16) i - r 2 ) ( 0 ; 0 ) Π ! : J j>w(0; O X - l ) - - 1 ^ ^ , fc+2
uυp,0 kφp-2

(5.17) - ^ J (p-2)(0; 0 ) Π g = J 2 ί w ( 0 ; 0)(-l)«-1rfp_2(fc +1, k+2,..., k + n)

= 0.
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=_ f c W0(s)

5
J+k

0,

in order to prove (5.2) from (5.16) and (5.17), we have only to show that the
following determinant of the coefficient matrix does not vanish. In fact, we get

= Π?= o-*-*- ω-k-ω-k-J) UUi (ω~k-or*"')

Gp-2 cogp

Furthermore, using (5.12) and (5.13), we get

9p-2 dp

9p-2 ω9p

ω
2k-2+2pk

ω~ί — ω~p — ω~ι~~p

Therefore, it holds that

9p-2 9p

9p-2 ω9p

Hence, we have obtained (5.2) for case (I)

for p = 2, 3,..., n.

Case (II) n = 3 and q = 3; In this case, pq — nrΦn + q means (p9 r) = (3, 0),
(2,1). Since it holds from (2.13) and (4.1) that

C\(b) = C?(Gk(b)) (fe = 0, 1,...,;

we put fc=0 in (5.4) and (5.5). Then (5.4) and (5.5) become

-JΓT—Wron [j>o(O; b), y2(0; b), y3(0;

ω2(p+r) ω3(p+r)

ω~2 ω~3

1 ω" 4

J—H0;b)\b=0y'(0;0)nθ;0)
Jup,r



1 1

1 ω2(p+r-ί) ω3(p+r-l)

Uniform simplification

1

1 CO

1 1

1 co~2

CO' 6

ω"3

(5.18)

I ω2(p+r-2) ω3(p+r-2)

/>\ d

; 0)y'(0;

Wron [ y i ( 0 ; b), y2(0; b),

H0;0)jg--y'(0;b)\b=oy"(0;0)

H0;0)y'(0;0)-£-y"(0;b)\b=o

'(0; 0)y"(0; 0)

no; b)\a=0 = o,

co(P+r)

ω"2

ω2(p+r)

ω~2

ω" 4

ω

ω

ω

- 3

1 1 1

ω(P+r-D ω2(p+r-l) ω3(p+r-l)

/"#"l^ ^ / " l i ^ ^ * / * # 1 ~ " ^

1 1 1

ω ω
-2 CO- 3

531

; 0)^(0; O)j£—y"(0;b)\a=0
P,r

ω(p+r-2) ω2(p+r-2) ω3(p+r-2)

,=oy'(0;0)y"(0;0)

'(0;b)\b=oy"(0;0)

^p,r

+ (l-ω)K0;<
υp,r

0 ) ^ ( 0 ; < "(0; b)\b=0 = 0,

for(p, r) = (3,0), (2,1).
δ ΛNoting that £<w>(0; 0) and -~jf— y^m\0; b)\b=0 (m=0, 1, 2) have real values,

we can easily obtain from (5.18)

J-yφ; b)\b=0 = -J-y'Φ; b)\b=0 = -^—y"(0; b)\b=0 = 0.
υp,r uυp,r vop,r
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Case (HI) n = 3 and q=4; In this case, pq — nrΦn + q means that (p, r) =

(2, 0), (3, 0), (2, 1), (3, 1), (2, 2), (3, 2). Then, by a similar calculation to case

(II), we get

(5.19)
(ω 6 - ω5 - ω 4 + ω2 + ω -1)^^^'^" + ( ~ ω 6 4- 3ω3 - ω2 - ω ) ^ ' ^ " = 0,

for (/>,/•) = (2,0),

(5.20)

ω3-3)yby'y"

+ ( ω 6 - ω 5
')>£ = 0,

;/j;ί = 0

for (/>,/-) = (3,0)and(2,l),

(5.21)

(5.22)

/

<y; = 0,

/

<y" + (-ω6-ω5 + 2)yy'by" +

4- (ωβ-ω5 + ω4 + ω3-ω-Ί)yyfyl = 0

for ( Λ r ) = (3, 1) and (2, 2),

ω) îy;>;// + ( ω 6 - ω 5 + ω 4 - ω 3 - ω 2 + l)>'>'^ϊ = 0,

(- ω6 - ω5 + ω3 + ω2 - ω + l)yy'by" + (ω5-ωz-2ω+2)yy'yl = 0

for (/>,r) = (3, 2).

Similarly, noting that <y(w|) = <y(m)(O;O) and yb

m) = ~— ^(^(O; b) | f e = 0 (m = 0, 1, 2)

have real values, we can obtain

; 0) = K(0; 0) = o

; 0) = ;;(0; 0) = K(0; °) =

K(0; 0) = j;(0; 0) = 0

for Q>, Γ) = (2,0),

for (p, r) = (3, 0), (2, 1), (3, 1), (2, 2),

for (p, r) = (3, 2).

Hence we have proved (5.2) for case (III).

For other cases, by a quite similar manner, we can prove (5.2). Thus we

have finished the proof of Lemma 5.2.

PROOF of LEMMA 5.1. Case (/) and 2p>n + 2; If we assume (5.1), then,

using Lemmas 4.3 and 5.2, we can get
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(5.23) Res5=1 _ p WpΛ(s) = Res s = 2_ p

Furthermore, in this case, (4.30) becomes

(5.24) ^ ^ - (

= 0.

Since

(-1)-"-1

s + p-2 (-D-

it holds from (5.23) that

-p + l)l(2p-n-2)\ '

= 0,

= 0.

(5.25)

Therefore, (5.25) means that

Res,v=1-P ^ ( 5 ) ^ ( 2 - j > ) _ (n-p)\(2p-«-!)!(-1)-"~2Wo(2)
ί 5 2 6

Since, using the difference equation (4.16), we have

Ress=_Λ JV0(s) Ί
- i ) J

(k=Q 1 n

we can see from (5.26) that

,o(2- P) = (2p-n-l)W0(2)
(l-p) (n-p + l) WO{1)

In this case, we have

D*(n,2,p,0;s*,l) = 2p(

and then, using Lemma 4.10,

KPtO(l-p)>Kp,o(2-p).
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Therefore, it must hold from (5.27) that

(p-l)W0(2-p + n+2)W0(l) .
(2)(2p-n-l)W0(l-p + n

that is,

^• Z δ ; (2p-n-l)W0(l-p + n

Applying (4.47) to (5.28) [put m = l - p + n + 2 ] , we can get

-

Noting the condition 2p>n + 2, we then have from (5.29)

- np2 + (n2 + n-l)p < 0,

that is,

p > n + 1 — 1/n.

This is a contradiction. Thus we have proved Lemma 5.1 for the case in which
2p>n + 2.

Case (I) and 2p<n+2; If we assume (5.1), then we can obtain from Lemma
4.3 and Lemma 5.2

(5.23) Res s = 1_p^o(s) = 0 and Res s=2_p Wo(s) = 0.

Furthermore, noting 2p<n + 2, we can easily derive

- j p - l ) | s = 1 _ p = 0 and s(s + l) (s + n -p- l ) | s = 2 _ p = 0.

Using (5.23) and (5.24), if we put s = l— p and s = 2—p in the difference equation
(4.17), we get

(5.25) ^,0(^ + 3-^) = 0 and

Therefore, it follows from (4.32) that

<5 2 6> (2n + 3 - 2 ^

Since

D*(n, 2, p, 0; n + 3-p, 1) = βp > 0,
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it holds from Lemma 4.10 that

K'PiQ(n + 3-p)>K'p,0(n+4-p),

that is,

{-lye - K'PiO(n + 3-p) < (-l) 'c - K'PiO(n+4-p).

Therefore, we can easily obtain from (5.26) and (5.27)

K2Λ\ W0(n+3)W0(n+4-p) 2n + 3-2p
κ ' W0(n+4)W0(n + 3-p) 2n + 3-p '

On the other hand, applying (4.47) to the left hand member of (5.28), we get
[put m = n + 3—p.]

W0(n + 3)W0(n+4-p) 2n + 3-2p
W0(n+4)W0(n + 3~p) 2n + 3-p '

This is a contradiction. Hence we have proved Lemma 5.1 for case (I).

Case (II) and pq—nr>n + q i.e., (p, r)=(3, 0); Assuming (5.1), we get from
Lemma 4.3 and Lemma 5.2

(5.29) Res s = 0 W3t0(s) = Res^-i W3t0(s) = Ress=_2 W3t0(s) = 0.

Then, using (4.30) [put n = 3, q = 3, p = 3, r = 0.], we have from (5.29)

SWQ(S + 3)

s=O
Res s = 0 W0(s) x ϋΓ3lO(0) = 0,

s=-l

and

• Res,,-! FΓO(J) x ^3,o(~l)=O,

fr+2)yo(j+3) + R e S s = 2 ^ ( J ) χ K3 ( _ 2 ) = 0

s=-2

Since it holds from the difference equation (4.16) that

W 0 (-m+n + g) = (-l) '»m!(π-m-l)!Res s =_m»f 0(s) (m=0, 1,...,»-1),

it follows from these conditions that

This is a contradiction. (Lemma 4.11.)

Case (II) and pq-nr<n + q i.e., (p, r) = (2, 1); In this case, assuming (5.1),
we can similarly obtain
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(5.30) Ress=0 W2Λ(s) = R e s ^ W2Λ(s) = Res s =_2 W2Λ(s) = 0.

Using (4.32), we get

and

s==_1

0.

Therefore, using the difference equation (4.16), we have

(5.31) c = K'2Λ(0) and c - ^ , l ( - l ) =

On the other hand, it follows from the condition

D ( 3 , 3 , 2 , l ; - l , l ) =

that

(5.32) K i , 1 ( 0 ) > X

Noting that

(5.33) K'2Λ(-l+6) =

we can obtain from (5.31), (5.32) and (5.33)

ΊW0(5) > 7WO(5) +Ki>Λ5> K2ΛW-K2Λ{ 1) K2Λ{0) - ηy

Since it holds from (4.24) that

W0(s) > 0 for 5 > 0 ,

this is a contradiction. Hence we have obtained Lemma 5.1 for case (II).

Case (HI) and pq — nr>n + q; (i) (p, r) = (2, 0); Assuming (5.1), we get

(5.34) Res5=0 W2t0(s) = 0, R e s ^ W2>0(s) = 0.

It follows from (4.30) that

( 5 3 5 > R e s

s=0
x K2>0(0) = 0.

The condition (5.35) contradicts the fact that
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Ress=0 W0(s) > 0 and K2>0(0) > 0.

0 0 (P. r ) = ( 3 , 0); In this case, we can similarly obtain from (5.1)

Res s = 0 W3i0(s) = Ress =_! W3ι0(s) = Res s =_2 W3<0(s) = 0.

It follows from (4.30) that

( s W0(s
s=0

l)W0(s

(s+2)W0(s + 3)

s=-l

s=-2

11/ (v\ w Ίf /(W Λ
O"OVV X Λ 3 , 0 V " V — v >

+ Res s = 1 W0(s) x K3>0(-l) = 0,

+ Ress=_2W0(j) x K3t0(-2) = 0.

From (4.16), these conditions mean that

WoO) + Wo(7)K3,o(0) = 0,

Wo(2)+

W0(ί) + C3 0 ( _ 2 ) = 0.

Using the condition D*(3, 4, 3, 0; - 2 , l ) = 6 0 > 0 , we can get

- W0(2)IW0(6) = X 3 > 0 ( - l ) > K3,o(0) = - \

Therefore, it must holds that

W0{2)WQV) ^ t

which contradicts Lemma 4.13.

(Hi) (p, r)=(3, 1); Assuming (5.1), we get

Res5=0 W3ιl(s) = Res^. i W3<1(s) = Res s =_2 W3Λ(s) = 0.

Therefore, using (4.30) and (4.16), we get

Wo(4) + WoO)K3Λ(0) = 0, Wo(3) + WO(6)K3Λ(-1) = 0.

It follows from the condition D*(3, 4, 3, 1; - 1 , l ) = 6 > 0 that

-W0(4)/W0(Ί) = ίC3>1(0) < K3<1(-ί) = -WO(3)/WO(6),

that is,

^o(4)^o(6) t
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This a contradiction. Thus we have proved Lemma 5.1 for pq — nr>n + q.

Case (III) and pq — nr<n + q; (i) (p, r)=(2, 1); If we assume (5.1) in this
case, we can similarly obtain

Res s = 0 W2Λ(s) = Res^.i W2Λ(s) = Res s =_2 W2Λ{s) = 0.

Putting s = 0, — 1, —2, in the difference equation (4.17), we get

(5.36) W2Λ{Ί) = W2tl(6) + Wo(2) = W2Λ{5) + 2Pfo(l) = 0.

Furthermore, using (4.32), we get
„ JIT" /„ i O\

= 0,

(5.37) = 0,
s=- l

= 0.
s=-2

Since

W2tί(6) =

we can obtain from (5.36) and (5.37)

Wo(6) ίK'2Λ(0)-K'2Λm = Wo(6) ίc-K'2Λ(6)-]

= W0(9)Π-S - W2Λ{6) = »fo(9)/7 8 - WQ(2) = - 4W0(2)/7 < 0.

Here we used the difference equation (4.16). It follows that

(5.38) K'2Λ(0)<K'2ιl(6).

On the other hand, the condition O*(3, 4, 2, 1; — 2, l ) = 7 > 0 means that

This fact contradicts (5.38).
(ii) (p, r)=(2, 2); Assuming (5.1), we get

Res5=0 W2t2(s) = Res s =_! W2t2(s) = Res s =_2 W2>2(s) = 0.

Putting s = 0 , - 1 , - 2 in (4.17), we get

^2>2(7) = W2y2(6) + Wo(3) = W2ι2(5) + 2W0(2) = 0.

Since

I ^2,2(7) - Wo(7)[c-JC2,2(7)] - WO(1W x 9,

1 PΓ2,2(6) = W0(6)ίc-K'2ι2(6)-] - WQ(ί0)Π x 8,
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we get

c ~ K'2t2(Ί) = WO(U)Π2WO(T)9 c - K'2t2(6) = l-W0(3)+W0(10)l56]IW0(6).

On the other hand, the condition Z)*(3, 4, 2, 2; 0, 2) = 0 means that

Therefore, we get

72 W0(Ί) 240^o(14) W0(β)

thatis,

(5 3QΛ WO(1S)WO(13) 3443-41184 _ χ ^
yJDy) W(ΛΛ\W(\Ί\ > 76230-1132 ~ 1 o ' t J

Here we used the difference equation (4.16). It holds from (4.47) that

16 j 4 2

Therefore, (5.39) contradicts this fact.
(hi) (p, r) = (3, 2); Assuming (5.1), we can similarly obtain

_1Pf3,2(s) = 0 and Ress=_2 W3t2(s) = 0.

It follows from (4.32) that

ί Res^. ! W0(s)lc-(-iyK'3t2(-l)-] - ( - 1 ) 3 ( 5 + 1 ) ^ + 5 ) 1 ^ = 0,

1 Ress=_2 W0(s)lc-(-iyκ3>2(-2) ] - (-1)3(5 + 2)^O(S + 5)|S =_ 2 = 0,

that is,

(5.40) * U - l ) = K3.2(-2).

On the other hand, the condition D*(3, 4, 3, 2; - 2 , l) = 30>0 means

X/3.2(-l)<«3.2(-2),

which contradicts (5.40). Thus we have proved Lemma 5.1 for case (III).

For other cases [cases (IV), (V), (VI)], by a quite similar manner to the
proof of cases (II) and (III), we can prove Lemma 5.1.
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§ 6. Difference equations and Stokes multipliers (III)

In the case qφ2, in order to prove the uniform simplification theorem, we
need the following

LEMMA 6.1.

(6.1) det
dbP,r

dC°2φ)
9bP,r b=0

for p = 3, 4,..., n; r=0, 1,..., n — 1.

PROOF. Case (//) i.e., (p, r)=(3, 0) and (p-1, r+1)=(2, 1); We assume
that (6.1) does not hold. Then, from Lemma 5.1, there exists a constant L ι
such that

(6.2) L
b = 0

dCo

xφ)
db2Λ b = 0

= 0, L dC°2(b)
b=0 db2Λ

= o.
6 = 0

Noting (5.3H5.6) and

Co(b) = Wron [yx(x; b), yo(x; b\ y3(x; fr)]
2V Wron [y^x; b), y2(x; b), y3(x; bj] '

we can get from (6.2)

' (2ω-2-2)[L^3 > 0(0; 0) - yb2l(0; 0)]/(0; 0)^(0; 0)

+ (2ω 2-2ω" 2M0; 0)[L^3 f 0(0; 0) - y'ί2ί(0; 0)]/(0; 0) = 0,

( — co"2 — ω~x)[Lyb3 o(0; 0) — yb21(0; 0)]j>'(0; 0)/'(0; 0)

+ (1-ωMO; 0)[L>>;3)0(0; 0) -y'b2Λ(0; 0)]j;w(0; 0)

+ (ω 2-ω" 2)X0; 0)> '̂(0; G)[Ly'^ o(0; 0)-/^ 2 1(0; 0)] = 0,

(-2)-2ω-ι)[Lyb3O(0; 0)-yb2tί(0; 0)]^'(0; 0)/'(0; 0)

+ (2co-1-2co)X0; 0)^X0; 0)[L/^3 o(0; 0)-y'ί21(0; 0)] = 0,

where

Since

ω = exp [2πij(n + qy] = exp [πi/3].

2ω"2-2

— C O " 2 — CO 1 1 — C O CO2 — CO

2co2-2co"2

2 _ r,Λ-2 # 0 ,

-2-2CO-1
2ω"1-2ω
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we can obtain

(6.3) Lyb3tΌ(0; 0) - ^ 2 1 ( 0 ; 0) = Ly'b3O(0; 0) - y'b2ί(0; 0)

that is,

(6.4) Res s = 0 Wlo(s) = Res s = _ x W3* 0(s) = Res s = _ 2 JF£o(S) = 0.

Furtheremore, noting that yb

m\0; 0) ( m = 0 , 1, 2) have real values, we see from

(6.3) that the constant L must be a real number.

Next we shall show that the constant L is a positive real number. In fact,

it holds from (6.3) that

L x Res s = 0 Wa.oOO = Ress=0 W2tί(s), L x R e s , ^ ^ ( s ) = Res5 =_! W2Λ{s),

that is,

(6.5)

ί L[^o(3)/2+Res5 = o ^0(s)ί:3 t 0(0)] = Res5=0 W0(s)ίc-K'2Λ(0)-],

1 s ^ . ! Wo(s)K3iO(-ί)-Wo(2)-] = R e s ^ ^ W0(s)[_c-K'2Λ(-ί)-] - Wo(2),

where we used (4.30) and (4.32). Using the difference equation (4.16), we have

from (6.5)

(6.6) LlKχo(-ί)-K3tO(0)+Wo(2)IWo(5)-Wo(3)IWo(6)-]

= K'2Λ(0) - K'2Λ(-1) + WO(2)IWO(5)

= K'2Λ(0) - K'2Λ(5) + 3W0(2)ΠW0(5).

Since D*(3, 3, 3, 0; - 1 , l ) = 4 5 > 0 and D*(3, 3, 2, 1; 0; ί) = 3>0, we get from

Lemma 4.13

* 3 > 0 ( - l ) - £3,0(0) + WO(2)IWO(5) - WO(3)IWO(6) > 0

and

«2.i(0) - K'2Λ{5) + WO(2)PWO(5) > 0.

Therefore, we see from (6.6) that the constant L is a positive real number in this

case.

Since the constant L is positive, using the difference equation

we get

ί 6 7 ) *n.o(5) ^?.o(6) _ Fn,o(H) WtoJU)
( ' ffo(5) ~~UW) ^ o ( H ) 1Fo(T2Γ 3 > o ( } 3 o i )

Λ3*o(Π) -



542 Shigemi OHKOHCHI

F%(11)
3 > θ W *

< Λl0(4) - Λ3* 0(5)

Furthermore, it follows from (4.40) and (6.4) that

(6.9) W a* o(6) + LW0(3) = 0, W 3* 0(5) + (L - 1)WΌ(2) = 0,

W3* o(4) + (L-2)W0(l) = 0.

Using (6.9), (4.16) and (4.41), we get from (6.7)

2 x 3 x 4

" 4 x 5 x 6 x 7

8 x 9 x 1 0 x 2 x 3 x 42 x 3 x 4 n n nW0(2) _ 3 x 4 x 5
11x12x13 *• ; ^ o ( 5 ) 5 x 6 x 7 x :5 x 6 x 7 x l θ x

9 x 1 0 x 1 1 x 3 x 4 x 5
o(6) 11x12x13x14x6x7x8

that is,

<6 10> ^ A + έ ^ + ^

where we put

Since

W=

it follows from (4.47) that

(6.11) 1792 x 15/3025 x 17 = 0.5227... <W< 1792/3025 = 0.59239....

Therefore, it must hold from (6.10) that

(6.12) L<2.33....

Similarly, we get from (6.8)

.Wo(4) κ } Wo(5) 4 x 5 x 6 x Wo(4)

_ 7 x8 x9x 1 x 2 x 3 x (9 + L) W0(l)
4 x 5 x 6 x 7 x Wo{5) 9x10x11 x 1 2 x 4 x 5 x 6 x Wo(4)
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Putting

W' = WO(2)WO(4)IWO(5)WO(1),

we get

(6.13) 2 - W - 1/20 - 21/1100 + 4/35 < L [ l - J Γ +1/60 + 7/3300-1/35 Ϊ Γ ] .

Since

= ΊW0(S)W0(10)
w =

WO(5)WO(1)

it follows from (4.47) that

(6.14) 0.35 = 7/20 < W' < 7/16 = 0.4375.

Therefore, it must hold from (6.12) that

L>2.44....

This contradicts (6.12). Thus we have proved Lemma 6.1 for case (II).

Case (III) and (p, r) = (3, 0), ( p - 1 , r + l ) = (2, 1); If we assume that (6.1)

does not hold, then there exists a constant L(#0) such that

Similarly, we get

4 = 0 6 = 0 '2,1
= 0.

*=o

b3J0; 0 )- Λ ϊ > 1 (0;

4 _ ω 2 _ ω ) j ; ( 0 .

(ω+ω*+ω2-ω5-ω6-ω3)y(0;

)/'(0; 0)

; 0)-/S 2 > 1(0; 0)]/(0; 0)

>(0; 0)-^ 2 > 1 (0; 0)] = 0,

(0; 0)

3 o(0; 0)-^ 2 > 1 (0; 0)]/'(0; 0)

(0; 0)] = 0,

; 0)

'(0; 0)

; 0)] = 0.

Then we can easily obtain

(6.16) Lyb3J0; 0) = Λ ϊ i l ( 0 ; 0), Ly'b3>0(0; 0) = ̂ ^ , ( 0 ; 0),
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that is,

(6.17) Ress=0 Wto(s) = R e s ^ Wto(s) = Ress=_2 Wto(s) = 0.

It follows from (6.16) that

L[s(J+°l)£+2) L=o + R e s-o^oW^3,o(0)] = Ress=0W0(s)(c-K'2Λ(0))

and

_1FFo(ί)(c-ΛΓi,1(-l)) - Wo{2).

Then, using the difference equation (4.16), we get

(6.18) L\WO(2)IWO(6) - W0(2)IW0(6)+K3>0(0) - K3ι0( - 1 ) ]

= K'2Λ{-1) - K'2Λ(0) - WO(2)IWO(6)

= - 4WO(2)PWO(6) + K'2Λ{6)- K'2<1(0).

Since £>*(3, 4, 3, 0; - 1 , l)>0andD*(3, 4, 2, 1; 0, 1) > 0, it holds that

[Wo(3)/Wo(7)] - [Wo(2)/^o(6)] + X3,o(0) - K3>0(-ί) < 0

and

Therefore, the constant L must be positive.
From (4.40) and (6.17), it follows that

(6.19) Wf,0(7) + LW0(3) = 0, W3* 0(6) + ( L - 1 ) ^ 2 ) = 0,

Wto(5) + (L-2)W0(ί) = 0.

Since the constant L is positive, we can similarly obtain

, 3̂*,o(6) (5 + L)W0(9) (6 + L)Wo(l0)
W(6) 5 x 6 x 7 x 8 x ίΓ(6) 6 x 7 x 8 x 9 x ^

W0{Ί) Wo(6) 5 x 6 x 7 x 8 x ίΓo(6) 6 x 7 x 8 x 9 x ^ ( 7 )

^ 12 x 13 x 14 x 15 x W
0
(l3) 13 x 14 x 15 x 16 x

and

(67U <
1 ; H^o(5) ^o(6) 4x5x6x7x Wo(5) '

From (6.19) and (4.16), (6.20) and (6.21) become
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r *9T> τ W0(3)W0(β) , n _ n (5 + L ) 2 x 3 x 4
1 ' ; W0(ί)W0(2) K } 5 x 6 x 7 x 8

(4 + L) lx2x3 WO(3)WO(6) (12 + L)9x lOx 11 x2x 3x4
4 x 5 x 6 x 7 W0(Ί)W0(2) 12x13x14x15x6x7x8

_ (13 + L)10x 11x12x3x4x5 W0(3)W0(6)
13x14x15x16x7x8x9 W0(Ί)W0{2) *

W (y\W (*λ 1 y 9 y ^ y M α - Γ ^
v ' \ J \ J WO(6)WO(1) 4x5x6x7

Since

_ 3Wo(ί0)Wo(ί3) _ 36Wo(17)Wo(20) 36
5W(14)W(9) 65W(21)W(16) ^ 65W0(Ί)W0(2) 5^0.(14)^0(9) 65WO(2Ϊ)WO(16) 65'

it follows from (6.22) that

(6.24) L<2.08... .

On the other hand, it holds that

W0(6)W0(ί) 5W0(ί3)W0(S) HW0(20)W0(ί5) '

Therefore, we get from (4.47)

4 WO(2)WO(5) 32
11 ^ W0(6)W0(ί) * 99 '

and then we get from (6.23)

(6.25) L>2.34....

This fact contradicts (6.24). Thus we proved (6.1) for this case.

Case (III) and (p, r)=(3, 1), ( p - 1 , r + l ) = ( 2 , 2); If we assume that (6.1)

does not hold in this case, there exists a constant L ( # 0 ) such that

(6.26)
3*3.1 *=0

, dCUb) _ 0 L dC°2(b)
»=0 *=0

= 0.
*=0

Then we get

β '(0; 0)/'(0; 0)

(ί+ω2+ω3-ω6-ω5-ώ)y(0; 0)lLy'h31(0; 0)-y'b2>2(0; 0)]/'(0; 0)

(3ω<-ω'-ω-ω*)y(0; 0)/(0; 0)[L^,tl(0; 0)-j^M(0; 0)] = 0,

'(0; 0)/'(0; 0)
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; o)/(O; 0) [ 1 / ^ ( 0 ; O)-yl2JO; 0)] = 0,

3l(0; 0)-yb2J0; 0)]/(0; 0)/'(0; 0)

S-ω*)y(0; 0)[L^3>1(0; 0)-K2>2(0; 0)]/'(0; 0)

(ω*+α>3+o»6-l-ω-ω5)j<0; 0)/(0; 0)[L^ 3 ι(0; 0)-/ί2>2(0; 0)] = 0.

It follows that

(6.27) Lyb31(0; 0) = yfc2>2(0; 0), Ly'b3Λ(0; 0) = yί22(0; 0)

L/^1(0;0) = /ί2i2(0;0),

that is,

(6.28) Res s = 0 ^, i(ί ) = 0, R e s ^ ^ l ^ C ϊ ) = 0 and Res s = _ 2 ^ ; 1 (ί ) = 0.

Furthermore, (6.27) means that the constant L is a real number.
Next we shall show that the constant L is positive. In fact, it follows from

(6.27) that

LίW0(4)IW0(T)+K3Λ(0)l = c - K'2>M,
and

LIWO(3)/WO(6) + K3Λ(-1)-] = c - K U - 1 ) +

Here we used (4.16), (4.30) and (4.32).
Then we get

LίK3Λ(-l)-K3Λ(0)+ WO(3)IWO(6)-WO(4)IWO(7)

= -K'2ι2{-1) + K'2aφ) + WO(3)IWO(6)

= -K2,2(6) - 3 x 4 x 5 x Wo(3)/6 x 7 x 8 x W0(6) + K'2t2{2)

> W0(ίl)Π x 8 x 9 x W0(Ί) - WO(17)/13 x 14 x 15 x Wo(13)

+ WO(3)IWO(6) - 3 x 4 x 5 x Ŵ o(3)/6 x 7 x 8 x Wo(6)

= 4 x 5 x 6 x W0(4)p x 8 x 9 x Wo(7)

+ (1 -1/60-5/28) W0(3)l Wo{6) > 0.

Here we used the condition D*(3, 4, 2, 2; 0, 2)=0 and (4.16). Since

K3Λ(-ί)>K3Λ(0) and WO(3)IWO(6)>WO(4)IWO(Ί),

we could find that the constant L is a positive real number.
From (6.28) and (4.40), it follows that
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(6.29) WitiT) + LW0(4) = 0, Wξ, t(6) + (L-l)W0(3) = 0,

Wttf) + (L-2)W0(2) = 0.

Since the constant L is positive, we can obtain

_ WU(7) >
WQ(Ί) 5 x 6 x 7 x 8 x Wo(6) 6 x 7 x 8 x 9 x

+ (12 + L)FFp(17)
12 x 13 x 14 x 15 x H ô(13) 13 x 14 x 15 x 16 x W0W

and

^3*,i (6)

W(6)Wo(5) W0(β) 4 x 5 x 6 x 7 x WQ{5) 5 x6 x7 x8 x W0(β)

+
I l x l 2 x l 3 x l 4 x

From (6.28) and (4.16), (6.30) and (6.31) become

> (5 + ̂ ) 3 x 4 x 5 _ (6 + L)4x5x6
' 5 x 6 x 7 x 8 6 x 7 x 8 x 9

(12 + L ) 1 0 x l l x l 2 x 3 x 4 x 5
WO(7)WO(3) 1 2 x 1 3 x 1 4 x 1 5 x 6 x 7 x 8

(13 + L)llxl2xl3x4x5x6WΌ(4)WΌ(6)
13 x 14 x 15 x 16x7x8x9^0(7)^0(3)

C 6 ^ (2 Iλ (I n ^ o ( 3 ) ^ o ( 5 ) < (4 + 1 ) 2 x 3 x 4(6.33) ( 2 - L ) - ( l L)Wo(2)Wo(6) < 4 χ 5 χ 6 χ 7

(5 + L)3x4x5 WO(3)WO(5) ( 1 1 + L ) 9 X IOX 11 X 2 X 3 X4
5 x 6 x 7 x 8 ^o(2)PFo(6) 11 x 12x lSx 14x5 x6 x7

Furthermore, since

^o(7)^o(3)

and

WO(2)WO(6)

we get from (4.47)

108 ^O(4)PΓO(6) 120 51 WO(3)WO(5) 3
169 ^ W0(Ί)W0(3) ^ 169 ' 95 ^ W0(2)W0(6) 5

Therefore, we get from (6.32) and (6.33)
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L<3,32... and L> 3.334....

This is a contradiction. Thus we have proved (6.1) for this case.

For other cases;

[ case (IV) ( i ) (p, r) = (3, 0), (p-1, r+1) = (2, 1)

(ii) (p,r) = (3,1), ( p - l , r + l ) = (2,2)

(iii) (p,r) = (3,2), ( p - l , r + l ) = (2,3)

case(V) ( i) (p,r) = (3,0), (p-1, r+1) = (2, 1)

(ii) (p,r) = (4,0), ( p - l , r + l ) = (3,l)

case (VI) ( i) (p, r) = (3, 0), (p-1, r+1) = (2, 1)

(ii) (p,r) = (4,0), ( p - l , r + l ) = (3,l)

(iii) (p,r) = (5,0), (p-l,r+l)-(4,l),

we can prove Lemma 6.1 by a similar manner to the proof of cases (II) and (III).
So we omit them.

REMARK. In (6.11), for example, it holds that

WO(3)WO(5) _ Γ(5/6)Γ(5/6) _ .
w~ W0(β)W0(2) ~ Γ(8/6)Γ(2/6) ~ υ D J D 4

(See [1] pp. 267-270.)

§ 7. Relations between Stokes multipliers

Case (I) q=2; Let xk(t) and xk(t) be solutions of the differential equation (1.3)
and

(7.1) xk(t) = xk(t), xλ(ί) = x*(0 (k=h(modn+2)).

Furthermore, we write their connection formulas as follows;

(7.2) xik(0 = Σ?=1α*xt+ί(f) and xk(i) = ΣΓ-i*ϊ**+»(O

In this case, we shall derive the following

LEMMA 7.1. Suppose that

(7.3) al = bl*0 0 = 0 , l,2,...,n

and

(7.4) al = b\ (s=0, l ,2,. . . ,n-2).
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Then it holds that

(7.5) ai = bi 0 = 0 , l,...,n + l ; m = l,2,...,n).

Utilizing the Cramer rule, we get from (7.2)

(7.6) Wron [xt(ί), x*+i(0> , x*+ π-i(ί)]

= (-I)"" 1 ** Wron[x t + 1(ί), xk+2(t),..., x*+π(ί)]

and

) , Xk(t), Xk+m+ι(t),...,
a =

m Wron [x t + 1(ί),. , xk+m-i(t),xk+m(t),xk+m+1(t),...,xk+n(tΏ '

Noting (7.1), we consider the following connection formula

i ( 0 = aϊ+m+1xk+m+2(t) + - + ak

tt±%+1xk+n+ι(t) +

Then, from the Cramer rule, it holds that

k+m+ί = W r o n [Xfc+m+2» " ? Xk + n> x+m+l9 *&>•-•> xk+m+2+n-\\

()2
πk+m+ί =

an.m

Here, using (7.6), we can get

(7.9)

= ( - l ) ( w - 1 ) ( m + 1 ) UZίΐ ak

n

+° Wron

Since

Λ + O T + 1 , . . . , x f c + π , χk9 xk+1,...9xk+m-1']

= (""1) n m m π Wron [x f c + 1,..., x f c + m _ l 5 xΛ, x k + m + 1 , . . . , x f c + π ] ,

(7.7), (7.8) and (7.9) mean that

(7.10) ak

m = - Π S ί ( β ϊ ^ - ^ ϊ i r 1 (^ = 0, 1,.., π + 1; m = l, 2,..., n-1).

This relation is important in the proof of Lemma 7.1.

Next we shall seek other relations of the Stokes multipliers. Let us put

,. ., ** + w -i(0) and

(7.11) A = Ak + J,
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where

(7.12) Ak =

and suppose that

(7.13)

•a\

a\

a*

0

0

π

Φ

Shigeml OHKOHCHI

o
f\

ί

, J=

0 (fc=0, 1,...,

0 1

0 0

ii ό

n + 1).

o

1 •••

0

0

i
o
\J /

Then n by n matrices Xk(t) are fundamental sets of solutions of (3.1) and from the
connection formula (7.2) and (7.1) it holds that

(7.14) = (Ak+n+1+J)-..(Ak+1+J)(Ak

We shall introduce the following notation. In this section, an n by n matrix
A is called j-th column matrix 0 = 1, 2,..., n), if only j-th column elements may
have non-zero elements. Then, in (7.12) each matrix Ak is a first column matrix
and Ak J

m(m = 0, 1,..., n — 1) are (m + l)-th column matrices. Furthermore,
let B be any n by n matrix and A a first column matrix, then BA is a first column
matrix. Noting these results and (7.14), we put

(7.15) W

where

0' = 2, 3,..., ή).

(7.16)

U/k + n-ϊ) =

Then we can easily obtain

where we put

(7.17)

n-1) O O

n-ϊ) O O 0 = 1, 2,..., n).

Furthermore, the condition (7.14) can be written as
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(ak

2

+n+a\+n+1ak

l

+» a\ 0

a k

n

+ n + a k

n ± n

ί

+ 1 a k

1

+ n

nk+n+lnk+n nk

an ax an

o ••.

\ 1

0 0
0 0 )

q\

il

q\ ίΓ' ίi

= /.

From this relation we get

(7.18) ak+n+ιa\+nq{{k + n-\) + ak+n+ίqJ

2(k + n-l) =

(7.19) lak+n

(7.20) lak±»m

0 (y

1 O* = l),

_ ί 0 OV2)

" 1 } " [ 1 t/ = 2),

0 OVm + 1)

[ 1 (y = m + l) (m = 2, 3,..., « —1).

From (7.13) and (7.18), the conditions (7.19) and (7.20) become

(7.21) 4{(fc + n - l ) = 0 for j 'Φ 1,2;

(7.22) α{j+n+1α{j+πgl(/c + n — 1) + flϊ-ϊ+1 = 0;

(7.23) a n+w41 (fc + n ~ 1) = 1

and

(7.24) ak±^+ίq{(k-\-n-l) + qJ

n-m+2(k + n-ϊ) = 0 OVm + 1,1);

(7.26) ajij,+1^
+1(fc + n - l ) + <?^+2(fc + n - l ) = 1 (m = 2, 3,..., rc-1).

Therefore, we can obtain from (7.18), (7.21), (7.24) and (7.26)

0 O O ql(k + n-l) q\(k + n-i

0 O O ql(k + n-l) q$(k + n-l

n-l) qKk + n-1(7.27) O -O
1

[0 0 - 1 ql(k + n-

It holds from (7.16) that
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(7.28) q)(k + n-l) = αfc/«-i (; = 1, 2,..., n)

and

(7.29)

Putting (7.28) into (7.18) and (7.25), we get

/*7 *3ΛΛ lc¥n 1 _ 1/ fc + π + 1 fc + w fc + /i 1
I / j\J I Ωiί — Lid ~~~ d\ d\

and

Similarly, we can get (7.10), (7.30) and (7.31) for b).

We are now in a position to prove Lemma 7.1.

PROOF OF LEMMA 7.1. From (7.4) and (7.30), we can easily obtain

(7.32) ai = bl (5=0, 1,..., n - 3 ) .

Using this relation and putting m = n —1 in (7.31), we can get

(7.33) a% = b% (5=0, 1,..., n - 4 ) .

Similarly, putting m = n — 2, n —3,..., 2, we get from (7.31)

(7.34) a*m = bs

m ( s = 0 , 1,..., n - m - 1 ; m = l, 2,..., n - 1 ) .

Next, using the relation (7.10), we get from (7.34)

(7.35) as

n-m = bs

n-m (s = m + l, m + 2,..., n; m = l, 2,..., n ~ l ) .

Therefore, we have obtained

(7.36) as

m = bs

m (m = l, 2,..., n - 1 ; 5 = 0, 1,..., n-m-1, n-m + 1,..., n).

Now we have obtained from (7.36)

(7.37) Ao = Bo and An = Bn.

Then, putting fe=l in (7.14), we have

(Ί ΊQ\ A Tin—I A R Γ T w - 1 f$
\t'Jθ) Λn+ί 1 lί=0 Λi+ί ~ ΰn+l l l i=0 *>i+U

that is,
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a1+1 1 0 0 U 0 0 q\{n) q\(n) )
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a"2

+i 0 1 0

α2+ 1 0 0 0) o' ql(n) ϊί(n)

( bl+1 1 0

γ ι 0 1

0 0

0 0 q\(ή) q\{ή)

0

0

•0 J

(0 0 q\(n) q\(n)

0 0 ql(n) q\{ή)
1

o'

where we put

0

0

0 0

0 0
1

l θ 0 ί ql(k + n-l) <

Since it holds from (7.28) that

q)(n) = *} = b j = q)(n) {j=\,2,...,ή),

the ( , n)-elements of (7.39) give us

(7.40) α f ^ f c f 1 0 = 1,2,..., n) i.e., Λ + i = βn+i-

Then, from (7.39), it holds that

(7.41) q%n) = qj(n) 0 = 1, 2,..., n) i.e., ( Λ + ^Mπ-i = (Bn+J)Bn.v

The conditions (7.41) and (7.37) mean ^ n _ 1 = B n _ 1 . Therefore, from (7.4),
(7.37) and (7.40), we have obtained

(7.42) a\ = b\ (s=0, l,...,n

Hence, we can easily obtain (7.5) by the use of (7.30) and (7.31).

Now we shall consider the case in which qφl. For case (II)-(VI), we shall
derive the following lemmas.

LEMMA 7.2 (Case (II) n = 3 and q = 3). Let αf, bit ct, a'h b't(¥=Q) be complex
numbers and
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(a, 1 0N

bt 0 1

c, 0 0,
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* a\ 1 0

6ί 0 1

c, 0 0

0=0, 1,..., 5).

Then, if

and

we have

LEMMA 7.3 (Case (///)n = 3 and <z=4). Lei af, i>(, c(, a'h b'ι(^O) be complex

numbers and

M0M1M2M3M4M5 = MόMJM^M 3M4M5 = 7

at = a[, α 3 = α 3 , α 0 = a'o, b0 = b'o,

ai = a'i and bi = b'i (i = 0, 1,..., 5).

Mt =

at I 0)

b, 0 1

ct 0 O)

, M't =

a', 1 0

*; 0 1

c. 0 0

(/=0, 1,..., 5, 6).

Then, if

and

we have

0 = 1,2,3,4), bj = b'j (7 = 3,4),

(i = 0, 1,...,5,6).

LEMMA 7.4 (Case (IV) n = 3 and q = 5). Let at, bt, c,, aj, b\ ( # 0 ) be complex

numbers and

at 1 0

b, 0 0

U, 0 0

, M',=

aj 1 0

b[ 0 1

ί 0 0)

0 = 0,1 5,6,7).

Then, if

and

M
0
M
ί
M
2
M
3
M
4
M
s
M
6
M
7
 = M'fyM^M^M^M'JA^M^M'η =

= a: 0 = 1,2,3,4,5), 0 = 3,4,5),
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we have

(i = 0,l,..., 5, 6, 7).

LEMMA 7.5. (Case(V) n = 4 and q = 3). Let ab bi9 cu di9 a'u b[, c'h (φϋ)

be complex numbers and

(a, 1 0 0 )

i 0 1 0

ι 0 0 1

{ d' 0 0 0

a'ι I 0 0)

% 0 1 0

c'ι 0 0 1

I rf, 0 0 0)

0 = 0, 1,..., 6).

ΓΛen, if

and

we have

M0M1M2M3M4MsM6 = M^M^M^M'^M^M^M^ =

«i = «j U = 0 , 1,2,3), bk = b'k (fc=2,3),

M i = Mi ( i=0, l , . . . , 5, 6).

LEMMA 7.6 (Case (Kf) n = 5 and q = 3). Lei af, 6j, cf, dt, et; a\, b\, c\, d\

be complex numbers and

(a{ 1 0 0 0

bi 0 1 0 0

c, 0 0 1 0

di 0 0 0 1

e f 0 0 0 0J

[a\ 1 0 0 0 ]

&: 0 1 0 0

cΊ 0 0 1 0

a1; o o o l

e, 0 0 0 0 J

(/=0, 1,..., 7).

Then, if

and

we nat e

0=0,1,2,3,4), &4 = ^ (fc=2, 3, 4),

PROOF OF LEMMA 7.2. Since MO=M'O and
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MιM2M3M4M5 = b1a2-\-c2

cί

a4a5+b5 a4 1 )

bAa5 + c5 b4 0

c4a5
0

it follows from the condition MίM2M3M4M5 = M'ίM'2M3M4M'5 that

( ai(a2a3 + b3) + b2a3 + c3 = aί(a'2a3 + b'3) + b2a3 + c3,

I fci(«2«3 + ̂ 3) + c2β3 = K(^3 + b3) + c2α3,

I b3) = c ^ α ^

Therefore, it holds that bί = b[ or a2a3 + b3 = af

2a3 + b3 = 0. We assume that

α2^3 + b3 = 0. Then, from the condition MQM1M2M3M4M5 = I, we can get

ao(b2a3 + c3) + c2a3 = 0, 6 0 ( M 3 + c3) = 0, c o ( M 3 + c3) = 1.

This is a contradiction. Thus we have obtained bί = b[. (i.e., M t =M[)

Since

cL2ci3-\-b3 a2

b2a3 + c3 b2
M2M3M4M5 =

we can get from the condition M2M3M4M5 = M2M3M4M'5

' β 2#3 ~^~ b3 = # 2 #3 -f" b3, cι2{fi3cι4-\-b4) 4- b3a4 + c 4

b5 0 1

U 5 o o I

b2a3 + c3 = b'2a3 + c 3,

From the conditions, we can easily obtain

a2 = ^2? a4- = a4-i "2 = "29 ^ 3 = ^ 3 a n ( ^ &4

Thus we have obtained Lemma 7.2.

PROOF OF LEMMA 7.3. It holds from the assumption that

f 1 )(M 2 M 3 M 4 )(M 5 M 6 )

01 *

0 2 *•

( aoaί+bί a0 1 )

i b0 0

c0 0

* Λ

*

* >

* .

* '

* 0

» 0 ,
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and

/ =

af

oai+b[ a'o 1

c, b'o 0

c0 0)

where

9ί = ^2(^3^4 + ^4) + ^3^4 + C4> 02

03 = ^2(^3^4 "I" ̂ 4)9 02 :=: b2{a3a4 + b

Then we can easily obtain from this relation

' 01

02

v 0 3

* Λ

*

ί *

v *

*

*

1

0

c3a4.

ί 4- b0g2 = 0 = (

gί + a0g2 + g3 = 0 = (β'o

These conditions means that

g2 = ^2 (i e , ^2 = ̂ 2) and b0 = b'o.

Therefore, it holds that M5M6M0Mί=M'5M'6M'0M'1, that is,

a'0g'2 + g3.

a5

Oj

b'5a'6 + c6 a'5 0

c5b
f

5 c5 0 ,

' aoaί-\-bί a0 1

1 &o 0

c 0 0 J

boaί + cί b0 0

c 0 0

It follows that

and

Hence we get a6 = αg, α 0 = αo and bx = b[. Thus we have obtained Lemma 7.3.

By a similar manner to the proof of Lemma 7.3, we can prove Lemmas7.6-7.6.

Therefore we here omit them.
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§ 8. Uniform simplification (q = 2)

In this section we shall prove the main Theorem 1.3 for the case in which

q = 2. (i.e., case (I)) To do this, we shall consider the systems of differential

equations (3.7), (3.12), (3.41). Let us put their connection formulas as follows;

(8.1) zk(t, ε) = Σ?=i dkj(ε)zk+j(t, ε),

(8.2) zk(t, ε) = Σj=i c)(ε)zk+J(t, ε),

(8.3) zk(t, ε) = Σ ? = i e X ε ) W ί , ε) (fc = °> 1 — n + q-i).

Each solution yk(x; b) of the differential equation (1.3) has the connection

formula (4.1). Noting that

(8.4) C){b) = C%G\b)) (fc = 0, 1,..., n + q-l;j = l, 2, . . . , ή)

in (4.1), we can show the following

LEMMA 8.1. Let δ and M be the same as in Theorem 3.1. Then, in the

connection formulas (8.1), (8.2), (8.3), the Stokes multipliers d)(ε) c){ε) and

e){ε) are holomorphic in (3.29) and satisfy the following conditions:

(8.5) d)(ε) - C){b{έ)) = d){ε) - C%G\b{ε))) * 0,

(8.6) c)(ε) - C){b{ε)) = c){ε) - C%G\b{ε))) = 0,

(8.7) e){ε) - C%b(ε) + ψ(ε)) = C%G\b(ε) + ψ(ε)) c C%G'(b(ε)))

0 = 1, 2,...,n;fc = 0, l,...,n + ^ - l )

as μ tends to infinity in (3.29).

PROOF. From (3.13), we can easily obtain (8.6). Similarly, (3.47) means that

From the Cramer rule, d)(ε), c)(ε) and e){ε) are given by

j-U Zk,

. O j C Λ8) —
J

Wron[zt+1,...,z,+n]

l>~' > zk+nJ

Wron[z t+1,...,z t+π]

(p\ =

W Wron[zk+1,...,zt+B]

Since
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trace [B(ί, ε)+F(f, ε)] = trace B(t, ε) = trace 6{t, ε) = 0,

559

each right hand member of (8.8) is independent of ί. Theorefore, from (3.27)
and (3.48), we can prove

d%ε) a φ) = C)(b(ε)) - φ) as /*-»<» in (3.29).

In §3, we defined the n by n matrices Φk(t, ε), Ψk(t, ε) and Φk(t, ε). ((3.15),
(3.50)) Furthermore, we put

' c\(ε) 1 O .

c|(ε) 0 1 -
(8.9)

(8.10)

and

(8.11)

U*(ε) 0 O

dk

2(ε) 0 l

0 O

1 O

eψ) 0 l

lβj|(β) 0 O

•0

•0

1
•0

•0

•0

(Λ=0, 1 f i+g-1).

Then it holds from connection formulas (8.1), (8.2) and (8.3) that

(8.12) Φk(t, ε) = Φk+t(t, β)Λ(β), Ψk(t, ε) = Ψk+&, ε)Γt(ε),

Ψk(t,ε) = Ψk+ί(.t, ε)tk(ε).

Since

Φ,(ί? ε) = #/,(*> β), ^ ( ί 5 β) = Ψh(t, β), ^ f c (ί , ε) = £„(*, ε)

for k = h (mod n + ̂ f),

we can obtain from (8.12)

(8.13) Πjίg"1 Γk(t9 ε) = 7, Π j ί Γ ' Γk(ί, ε) = 7, Πjίg"1 Λ(ί, β)

By computing the determinants on both sides of (8.13), we get
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(8.14) Ulit1 cj

n(ε) = h Π j i r l ω = i ί Πji8"1^(β) = i.

From Lemma 8.1 and (8.9)-(8.11), it holds that

(8.15) Γk(ε) * Γk(ε) * f k(ε)

as μ tends to infinity in (3.29). Then, if we obtain the relation

(8.16) Γk(ε) = tk(ε) (/c = 0, 1,..., n + « - l ) ,

it follows from the definition (3.52) and (8.12) that

(8.17) TΛ(ί, ε) = Ψk(t, ε)Ψk(t, ε)"1 = ψk+1{t, ε)Γk(ε)Γk(ε)-iφk+1(t, ε)"1

Putting

Γ(f, ε) = Tk(t, ε) = Tk+1(t9 ε) = . - . = T ^ ^ . ^ t , ε),

we define

Q(ί, ε) = P(t, ε)exp[-i-ε"1 £ trace E(s, β)ώ]r(ί, ε).

Since, from the above definition,

Q(t, β) = Q Λ ε) = βfc+i(ί, ε) = . . - = β k + l l + β - 1 ( ί , ε ) ,

we finish the proof of the uniform simplification in a full neighborhood of the

turning point ί = 0.

Therefore, we have only to prove (8.16), by choosing ψPtr(ε) (p = 2, 3,..., n;

r = 0, 1,..., q — 2) and the modification γ(μ)zk(t, ε). Here y(μ) is a scalar function

of μ such that

(i) y(μ) is holomorphic in (3.29)

and

(ii) y(μ) ca 1 as μ tends to infinity in (3.29).

Then y(μ)zk(t, έ) is a holomorphic solution of the system (3.7) and furthermore,

satisfies the condition (ii) in Theorem 3.1. In fact, from (3.27) it follows that

exp [ - Ek(x ft)] [y(μ)zk(t, ε) - zk(t9 ε)]

= exp l-Ek(x; 6)] [y(μ)zfc(ί, ε)-γ(μ)zk(t, ε)]

+ exp t-Ek(x; ft)] ί(y(μ)- l)zk(ί, ε)]

uniformly for (3.28) as μ tends to infinity in (3.29).

Case (I) and n is odd. In the connection formula (4.1), from (2.17) and the
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Cramer rule, the Stokes multipliers Ck(b) are given by

rs m ck(b) = f- i ) "- 1 W r o n ίy*^> f e )> ?*+i(*; ft), . , y*+,»-i(*; ft)]
1 ; " W l ' Wron D W * ; ft), >>fc+2(x; ft),..., ^ + π ( x ; ft)]

— (jjnan + 2(b) exp [-2kπi/π]-(π-l)β

Since n is odd and

we get from (8.18)

(8.19) C*(ft) = ω-^"1) (fc = 0, 1,...,

It follows from Lemma 8.1 that for fc=0, 1,..., n + 1,

(8.20) c*(ε) = ω-ί""1), rfj(ε) a ω~^Lί\ ek

n(ε) z> ω"

as μ = ε"1/<'I+2> tends to infinity in (3.29).

If we put

(8.21) yk(ε) = ffυ (fc=0, l,...,

the quantities yk(έ) are holomorphic in (3.29) and

(8.22) yk(ε) * 1

as μ tends to infinity in (3.29). From (8.14) it holds that

(8.23) y n + i ( 4 ( £ ) - r i ( Φ o ( β ) = I-

Let us put

(8.24) ζo(t, ε) = zo(t9 ε), ζmn(t, ε) = [ΠϊlΓo1 yMΊzJίt, β) (m = l, 2,..., n + 1),

where

A e) = fMΊi(ί» ε ) f o r m " = w'π (mod n + 2).

Then Ck(ί, ε) (fe = 0, 1,..., n + 1) are solutions of the system (3.7) which satisfy the

same conditions as zk(t, έ) (fc=0, 1,..., n +1). If we substitute ζk(t, ε) for zk(t, ε),

the connection formula (8.1) becomes

(8.25) C*O,ε)= Σnj=lj^j(e)ζk+j(t9ε) + ω-^yζk+n(t,ε) (fc = 0, l , . . . ,n

where 5}(ε) are holomorphic in (3.29) and

(8.26) άfc) - c%ε) = 3)(e) - C}(ft(ε)) ^ 0 as μ • oo in (3.29).

Here we used (8.22) and the fact that n is odd. Furthermore, (8.3) is written as
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(8.27) tβ, ε) = Σ5=l e%e)ίk+/t, β) + ω~^~^k+n{U β) (fc = 0, 1,..., n + 1).

We shall now construct n —1 functions ψPt0(ε) (p = 2, 3,..., n) so that
(a) each φPt0(ε) is holomorphic for |argμ|g<5/(n + 2), |μ |^M', where M'

is a sufficiently large positive number;
(b) ΨPto(έ)~0 as μ tends to infinity in (3.29);

(c) C}(

To do this, we need the following lemma.

LEMMA 8.2. Let us put

b = (0, b 2 > 0, i)3 ) 0,..., t W f 0 ), b = (Bo, £»!,..., 5 Π - 2 ) J

fc = 0, 1,..., n - 2.

Assume that εί and ε2 are fufficίently small positive numbers. Then, if

(8.28) ΣJ-2 l*,.ol £ «i, Σ3=8lδjl^β a,

ί/iere exisίs α unique solution

(8.29) V = 0(6, £) = (0, g2(b, 6), g3φ, £),..., gnφ, B))

of the system of equations

(8.30) Mb,ψ) = Bk (fe=0,l,...,»-2)

so ί/iαί ^ 2 ( ^ J £)J > 9n(b, B) are holomorphic in the domain (8.28) and

(8.31) 9j(b,0) = 0 ( j = 2, 3,..., n).

PROOF. Since

G*(ί>) = (0,

we can easily get

This means that the Jacobian determinant of the system (8.30) with respect to
ΦP,o (P = 2, 3,..., n) at 6 = 0, ^ = 0 is given by
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CO

ω° ω
In b=0

ω2(n-2) ω3(«-2) ωn(n-2)

By virtue of Lemma 5.1, this Jacobian determinant is different from zero. This
proves Lemma 8.2.

Let us now put

(8.32) Bk(ε) = 5*(ε) - C?(G*(&)) = ̂ (έ) - C\{b) (fc = 0, 1,..., n - 2 ) ,

and

(8.33) î .oOO = 9P(b(e), B(ε)) (p = 2, 3,..., ή).

Since

fk(b(ε)> *Kε)) = &k(ε) (fe = 0, 1,..., n —2),

we get

(8.34) 2j(e) = CXb(ε) + Ψ(β)) = ̂ ϊ(β) (fc = 0, 1,..., n - 2 ) .

Hence, in the connection formulas (8.25) and (8.27), utilizing Lemma 7.1 and
(8.34), we can easily obtain

(8.35) a

If we put again

0=0, 1,..., n + 1; m = l, 2,..., n-1).

and

we get

Since

. β) = ( « ί , ε), C4+1(ί, ε),...,

5ϊ(β> i 0

Bk

2(ε) 0 1

I ω-(»-υ 0 Ό )

Tt(t, ε) = Ψt(t, ε)Ψk(t, β)"1 (fc = 0? 1,..., n + l ) ,

and Tf(f, ε) = Tfc*+1(ί, ε) (fc = 0, 1,..., n + 1).
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Tt(t, ε) * /

uniformly for (3.49) as μ tends to infinity in (3.29), and sectors (3.49) for k =

0, 1,..., n + 1 cover a full neighborhood of the turning point ί = 0,

Γ*(ί, ε) = Tt(t, s) = Tt+1(t, ε) = - = Tί+ J I + 1(f, ε)

is a desirable transformation.

Case (/) and n is even; From (8.14) and (8.18), it holds that

that is,

(8.36) ω"«n

Using (8.5) and (8.18), we get

(8.37) dk

n(ε) a ω««n + 2(6)exp[-2Λπi/π]-(Λ

as μ tends to infinity in (3.29). Therefore,

(8.38) Π i ^ o 2 ^ 2 " 1 dn

n

h(ε) ^ ^

as // tends to infinity in (3.29). Here we put

dnn\ε) = dj'(ε) if n/i = /i' (mod n + 2).

We now define a function 5(ε) which is holomorphic in (3.29) and satisfies the

following two conditions:

(8.39)

and

(8.40) d(ε) £=sί ωwα"+2<fr> as μ tends to infinity in (3.29).

Similarly, it holds form (8.37) that

γγ(n+2)/2-l rfnh + ίφ ^ ( __ J)n-lω(l/2)ιι(«+2)αn +2(ί>) exp [-2ιci/π]

as μ tends to infinity in (3.29). Therefore, there exists a function 3*(ε) which is

holomorphic in (3.29) and satisfies the following two conditions:

(8.42) (

and

(8.43)
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as μ tends to infinity in (3.29). Since

ΠZίέ «(β) = ί^12-1 d»Λε) x Πitt 2 *' 2 - 1 ^ Λ + 1 ( β ) ,

it follows from (8.14), (8.39) and (8.32) that

/ 3(ε) Y"+2>/2 _ -
v a (β) /

Therefore, there exists an integer p* (p*=0, 1,..., (n + 2)/2-l) such that

Then, using asymptotic conditions (8.40), (8.43) and (8.36), we get

(8.44) CO2P* = 1, i.e., 3(ε) = <?*(ε).

Let us put

Then the quantities γj(ε) are holomorphic in (3.29) and

(8.46) y/ε) 2- 1 as μ tends to infinity in (3.29).

Furthermore, from (8.39) and (8.42), it holds that

(8.47) Πitt 2 " 2 " 1 ynh(e) = 1, n

Now, let us put

( ηo(t, ε) = zo(ί, ε), ηnm(t, ε) = [
(8.48)

[ (ί, ε) = Zi(ί, ε), ^ m + i(ί, ε) = [ΓlJPo1 y»*+ i(β»»m+ ift ε)»

Then fyk(ί, ε) (fc = 0, 1,..., n + 1) are solutions of the system (3.7) which satisfy the
same conditions as zk(t, ε) (fc = 0, 1,..., n+l) . Furthermore, ηk(t, ε) (/c = 0, 1,...,
n +1) admit connection formulas:

fηnm(t, ε) = Σ?=i

(m = 0, 1,..., (Λ
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where

(8.50)

ijm+1(ε) * dnjm+1(ε) * C%Gnm+ί(b)),

as μ tends to infinity in the sector (3.29). On the other hand, from the asymtpotic

property (8.40) of d(ε), there exists a function φ(ε) which is holomorphic in (3.29)

and satisfies the following two conditions:

(8.51) 5(ε)ω""α"+ 2 ( ί > ) = ωφ(ε)

and

(8.52) φ(ε) ^ 0 as μ tends to infinity in (3.29).

We shall now construct n — 1 functions φPt0(ε) (p = 2, 3,..., ή) so that

(a) each ψPt0{ε) *s holomorphic for |argμ|^<5/(n-l-2), | μ | ^ M " , where M"

is a sufficiently large positive number;

(b) ψPfo(ε) ^ 0 as μ tends to infinity in (3.29).

(c)

(8.53)

(A = 0, 1,..., zi/2-2),

, nctn+2(b(ε) + ι/ (̂ε)) = nan+2(b(ε)) + φ(ε),

where

^r(e) = (0, ^ 2 > 0(ε), ^ 3 f 0(β),.. ., φn>0(ε)).

To do this, we shall prove the following

LEMMA 8.3. Let us put

and

Assume that ε1 and ε2 are sufficiently small positive numbers. Then, if
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(8.54) Σn

P=2\bp,o\^sί9 Σ*}Zl\Bj\ge2,

there exists a unique solution

(8.55) ψ = g(b, B) = (0, g2(b, B), g3(b, 5),..., gn(b, B))

of the system of equations

(8.56) fk(b, ψ) = Bk (fc = l, 2,..., n-2), ocn+2(b + ψ) - ocn+2(b) = bn-ί9

such that g2(b, B), g3(b, B),..., gn(b, B) are holomorphic in the domain (8.54) and

(8.57) g/b, 0) = 0 0 = 2, 3,..., n).

PROOF. Since

G*(ί>) = (0, ω2kb2t0, ω*kb3t0,..., ωnkbnt0),

we can easily get

dfikib, Φ)
j,o ψ=o b=O

We also derive from Lemma 4.1

CΨj,0

0 (jΦnjl + l)

Putting

denote by D the determinant of the («—2) by (« — 2) matrix whose components

are the ω,-^ Then

?2
jφn/2+ί

where

1

ωn/2

α;n(/i-2)/2

Since

+ 1 # 0 U = 2, 3,..., n/2, π/2 + 2,..., π),
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Now it is easily shown that the Jacobian determinant of system (8.56) with respect
t o ΦP,o (P = 2, 3,..., ή) at ί> = 0, ^ = 0 is given by

1 x n x Γπ« dC?(6) "I
— X JJ X 1 1 J = 2 — ^ T

n L jφn/2+1 ΰt)j,0 b=OJ

Therefore, by virtue of Lemma 5.1, this Jacobian determinant is deifferent from

zero. This proves Lemma 8.3.

Let us put

(8.58)
(A = 0, 1,..., n/2-2),

and

(8.59) ^(ε) = 0/ί>(ε), 5(ε)) (7=2, 3,..., n).

Then, using Lemma 8.3, we can obtain (8.53). If we put

(8.60) « ε ) - ^

then, using (8.50), we can get that the function β(έ) is holomorphic for

(8.61) |argμ|:g<5/(n + 2), \μ\^M\

and

(8.62) β(έ) ^ 1 as μ tends to infinity in (7.62).

If M" is sufficiently large, from this asymptotic property (8.62), we may assume that

jff(ε)#O in (8.61). Therefore, from (8.53), it holds that

(8.63)

Now, if we put

= l , 2,..., n/2-1),

= 0, 1,..., τi/2-2).
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then connection formulas (8.49) for ηk(t, ε) become

( CnrnO, β) = Σ]=iβ(ε)άr(ε)>1nm+j(t, a) +

(8.65)
ί, β),

ί, β)

ί, ε).

(8.66)

On the other hand, in the connection formulas (8.3) for £k(ί, ε):

2 (^ g\ ___ y«_ en.m(s)% .(t ε̂

(m = 0, 1,..., w/2),

we can derive from (8.36) that

' Cnm(ε) = C^m(h-\-\IA = r/)πα» + 2(b+^) exp[-2nmπi//i]-(«-l)

(8.67)
exp[-2(πm+l)πί/n]-(n-1)

(m = 0, 1,..., n/2).

Furthermore, in the connection formulas (8.65), it holds that

(8.68)

for nm" = 0, 2,..., n - 4 (modn + 2).

Hence, if we rewrite two connection formulas (8.65), (8.66) as

for nm' = 2,4,...,n — 2 (modn+2),

(8.69) (fc=o,
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then it holds from (8.67) and (8.68) that

df(ε) = Ck

n(b + ψ) = eΐίε) (fc = 0, 1,...,

and

d?(e) = C\(b + φ) = e{(ε) 0 = 0, 1,..., n-2) .

Then, using Lemma 7.1, we can derive

df(ε) = φ) (j = l, 2,..., n; fc = 0, 1,...,

Similarly, if we put again

t, ε) = (« ί , ε), CΛ+1(ί, ε),..., ζk+H^(t9 ε)),

rff» 1 0

df(ε) 0 1

0

0
'.. 1

0

and

we get

Therefore,

Γ*(f, ε) = Tk*(ί, ε) = n+1(t, ε) = .- = Γf+ B + 1(ί, β)

, ε) = Ψi(t, ε)Ψk(t, ε)"1 (fe=O, 1,..., n + 1),

onH T*it P\ — Ύ1* (t P\ (IT — Π 1

is a desirable transformation. Thus we have obtained Theorem 1.3 for the case

in which q = 2.

§ 9. Uniform simplification (q Φ 2)

Case (II) n = 3 and q = 3; In this case, connection formulas (8.1) and (8.3)

become

(9.1)

and

zo(t, ε) = d?(ε)Zl(ί, ε) + d°2(έ)z2(t, ε) + ^(ε)z 3(ί, ε),

Z l ( ί , ε) = dKε)z2(t, ε) + d2(ε)z3(t, ε) + d^z^t, ε),

z5(ί, ε) = d\(έ)zo{t, ε) + ds

2(ε)Zl(t, ε) + d%(ε)z2{t, ε),
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' 20(f, ε) = e?(ε)z t(ί, ε) + eQ

2(ε)z2(t9 ε) + φ)S3(t9 ε),

i(ί, β) = eίOO^fo β) + eίOOzafo β) + ej(β)24(ί, β),

zs(t, ε) = e?(β)zo(f, ε) + eli^z^t, ε) + e|(e)z 2(ί, ε) .

Furthermore, using (2.17) and the Cramer rule, we get

(9.3) C\(b) = ω3αβ(ί>) exp[-2*πi/3]-3 (fc = Q > 2 ? ? 5 ) >

Therefore, using Lemma 8.1, we can get

as μ tends to infinity in (3.29). From these results, we now define functions

d(έ), d*(ε), <2**(ε) which are holomorphic in (3.29) and satisfy the following

conditions:

(9.4) Ά(έ) * ω3α«<*>-3, l3(ε)¥ = d°3(ε)d3

3(ε)

(9.5) 3*(ε) * ω3"*^ eχP i-wπ-\ [d*(ε)]2 = d\(ε)d%(έ)

(9.6) 5**(ε) ca ω3α6(ft) eχP [-4«i/3]-3> [ 3

as μ tends to infinity in (3.29). Then it hods from the asymptotic property of

3(β), 2 (β), 3**(ε) that

(9.7) d(ε)d*(ε)Z**(ε) = - 1.

Let us put

r VoOO = ^(e)/2(β), y3(e) = dl(ε)/d(ε),

(9.8) 7 l ( ε ) = d3(ε)/d*(ε), y4(ε) = d%{ε)jd%ε),

I y2(ε) = di(e)/3 (β), r5(ε) = d5

3(ε)/5**(ε).

Then the quantities y/ε) ( j = 0, 1,..., 5) are holomorphic in (3.29) and

(9.9) ?o(Φ3(ε) = l, 7i(e)y4(e) = 1, 72007500 = 1,

7y(ε) 2ί 1 as μ tends to infinity in (3.29).

Now, let us put

' ηo(t, ε) = zo(f, ε), ^ ( ί , ε) = z^t, ε), f/2(ί, ε) = z2(t, ε),

ί, ε) = z3(ί, e)yo(β),

ί, ε) = z5(ί, ε)y2(ε).
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Then ηk(t, ε) (fc = O, 1,..., 5) are solutions of the system (3.7) which satisfy the

same condition as zk(t, ε). Furthermore, from the condition (9.9), the con-

nection formulas (9.1) become

( ηo(t, ε) = d^η^t, ε) + d°2(ε)η2(t, ε) + 3(ε)η3(t, ε),

ηx(t9 ε) = d{(ε)η2(t9 ε) + 4^rnAU β) + 3*(ε)ιy4(ί, ε),

(9.10)

ε ) =

ε) =

' ε )

ί, ε)

ε)

d|(e)ι;5(ί, β) , β),

, s) = y2(β)d5(β)ι?0(ί, β) + y2(β)<*5(β)ih(ί, β) + 2**(e)η2(t, ε).

On the other hand, from the definition of d(ε) and d*(ε), there exist functions

Φi(ε) and φ 2 ( ε ) which are holomorphic in (3.29) and satisfy the following

conditions

exp[-2πi/3]-3+φ2(ε)

and

Φι(ε), φ 2 ( ε ) — 0 as μ tends to infinity in (3.29).

Then, from (9.7), it follows that

(9.Π) 5**(ε) = α) 3 α 6 ( ί > ) e x p C ~ 4 π i / 3 ] " 3 " ^ l ( ε ) " ψ 2 ( ε ) .

We shall construct functions ψ2,o(ε)> ̂ 2,i(βX Ψa.oί8)* Ά3,i(ε) s o

(a) each φp$r(ε) is holomorphic for (3.29);

(b) ψPtr(ε) zί 0 as μ tends to infinity in (3.29);

(c) r rf?(ε)yo(ε) _

d(b(ε)+φ(ε))

(9.12)

= 3α6(ό(ε)) + φi(ε),

exp [-2π//3] = 3α6(^(ε)) exp [-2π//3]

To do this, we shall prove the following lemma.

LEMMA 9.1. Let
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and

Assume that εx and ε2 are sufficiently small positive numbers. Then, if

(9.13) |fc2i0| + | 6 2 f l | + |63.ol + I&3.1I ̂  *i,

\ho\ + Ii2.1l + lβ3,ol + Ii3.1l ^ e2,

ί/ẑ r̂  ̂ x/5ί5 a unique solution

φ = g(b9 6) = to2fO(6, 5), g2,i(
b> t)> ΰ2,oQ>> 6)> 03.i(P> β))

of the systems of equations

(9.14) F(b,ψ) = S2,0, F*(b,φ)-62Λ,

<x6(b+ψ) - α6(i>) = 5 3 > O , α 6 ( G ( b + ^ ) ) - α6(G(i>)) = B3>1,

such that gp,,{b, 8) are holomorphic in the domain (3.29), and

gPιr(b,O) = 0 ( p = 2 , 3 ; r = 0 , l ) .

PROOF. We defined G\b) (fe=0, 1,..., 5) by

G\b) = (ω2kb2t

Furthermore, we put from Lemma 5.1

/ = x b3<0 + —jsj-—
6=0 δb2,i

xb2tl.

Then the Jacobian determinant of the system (9.14) with respect to ψ2to> Ψ$ti and
/at 6 = 0, ι^=0 (i.e./=0) is given by

δFφ, ψ) δFφ, ψ)

Sf

δf

δFφ,
δb3t

δx6φ
δb3

δoc6(G

Ψ)
1

+ψ)
,1

(b+Ψ))
b=0
ψ=0
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ω3-!
C?(0)

0

0

J_
3 9 x C?(0) Q

Therefore, we have determined ψ2>0(ε) and Ψ3>ί(ε). Next, we fix them and
consider the following Jacobian determinant:

df df
^ 3 , 0

db3>0

δC<j(b)

b=O,ψ=O

db 3,0

3CΪ(b)

3,0 ^ 3 , 0

dC°2(b)

Co(0)
6=0
ψ0

dC^jb) dC°2(b)
db3>0 db2Λ

Therefore, by virtue of Lemma 6.1, this determinant is different from zero. Thus
we have proved Lemma 9.1.

Let us put

(9.15) £2,o C\{b) '

63,0 = Ψi(
3>1 = φ2(ε),

and

Then, from Lemma 9.1, we can obtain (9.12). Furthermore, if we put

(9 16) B (ε) - CUH»)+ *(*)) a n d β (ε) _ Cm*)+Ψ(«))(9.16) ^ ( ε ) ^ ^ and β2(ε) ^ ,

then the functions β^ε) and β2(ε) are holomorphic for (3.29) and
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(9.17) β^ε), β2(ε) ca 1 as μ tends to infinity in (3.29).

Here we used (8.5). From (9.16) and (9.12), we can derive

575

(9.18) .
" " = Cg(&(8) + ̂ (8)) =

"3 = C°3(G(b(ε)+φ(ε))) =

, (?**(ε) = ω 3 -

Therefore, if we put

ηo(t, ε) = ξo(t, ε), ?/3(ί, ε) = ξ3(t, ε),

ί, ε) = β2(ε)ξ2(t, ε), q5(ί, ε) = β2{έ)ξ5{t, ε),

the connection formulas (9.10) for ηk(t, ε) become

( ξo(t, ε) = eϊ(e)ξi(t, >

(9.19)

4 (ί , ε),

ξ2(t,ε) = t, ε)

ί,ε) = ei(ε)ξ4(t,ε) ήM

ί, ε),

e\(ε)ξo(t, ε),

We rewrite these connection formulas as

ξk(t, ε) = df(ε)ξk+ι(t, ε) + dfk(β)^+2(ί, β) + df(ε)ξk+3(t, ε)

(fc = 0, 1.....5).

Then, using Lemma 7.2, we can derive

dj\e) = ej(β) (fc=0, 1,..., 5; j=ί, 2, 3).
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Thus we have obtained Theorem 1.3 for the case (II).

Case (HI) n = 3 and q = 4; Since

in this case, it follows that

C\(b) = α>3«*<*> «pc-2*«ι/3]-4 (A: = 0, 1,..., 6 ) .

Then, using (8.14), we can easily derive

ω3*7(b) exp [-2fcπi/3] = X ( ^ = O j 1 ? ? 6 ) ^

It follows from Lemma 8.1 that

(9.20) C§(6) = ω " 4 « dj(β) (fc = 0, 1,..., 6).

If we put

(9.21) 7fc(ε) = rf*3(ε)/ω-4 (fc = 0, 1,..., 6),

the quantities γk(ε) are holomorphic in (3.29) and

(9.22) yk(έ) c* 1 as μ tends to infinity in (3.29).

From (8.14) and (9.21), it holds that

(9.23)

Furthermore, let us put

ξ2(t9 ε)

(9.24)

{ξ6(t9ε) = γo(ε)yz(e)z6(t9ε).

Then, from (9.23), the connection formulas for zk(t9 ε) become
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( ξo(t, ε) = ίd<l(ε)lyo(ε)y3(εyγ6(εyγ2(έ)γ5(εmi(t, ε)

+ Ld%έ)lyo{ε)yMy6(Bm2(t, ε) + αr*ί 3(f, ε),

ξi(t, ε) = ys(ε)y2(ε)d\(ε)ξ2(t, ε) + y3(ε)y6(ε)yi(ε)dι

2(ε)ξ3(.t, ε) + ar*ζA{t, ε),

ξ2(t, ε) = yMy6(έ)dKe)ξ3(t, β) + [dl(ε)/y5(ε)y2(ε)yi(ε)]^(ί, ε) + α»-*{5(ί, ε),

6(ε)y2(ε)y1(ε)]ξ4(ί, ε)

)y2(ε)]ξ5(ί, ε) + ar*ξ6{t, ε),

ί, β) + y5(ε)y6(ε)y2(ε)yi(ε)ίί!(ε)ξ6(ί, ε) + ω-4ξ0(<, ε),

U ε) = yJeyy2(e)di(eK6(t, β) + vMΫάΦβitoiffllXβKάt, «) + ω^ίiίί, «),

I {6(ί, ε) = r3(ε)yo(ε)<*ί(εKo(ί, β) + [d!(8)/y2(£)y5(e)y6(8)]^(i, ε) + α>-'ξ2(<, ε).

These connection formulas are written as

(9.25) ξk(t, ε) = d\(ε)ξk+t(t, ε) + d%ε)ξk+2(t, ε) + ω~*ξk+3(ί, ε),

where d\(ε) and ^ϊ(ε) (fc=0, 1,... 6) are holomorphic in (3.29) and

(9.26) a*(ε) 3

We shall construct functions i/^/ε) (p=2, 3; r=0, 1, 2) so that

(a) each φPtr(ε) is holomorphic for (3.29)

0>) "Ap,r(ε) ^ 0 as |i tends to infinity in (3.29).

(c) CXW+ΨW) = d\(ε) (fe=0, 1, -1(=6), -2(=5)),

Ci(b(ε) + φ(ε)) = di(ε) 0 = 0,1).

To do this, we need the following lemma.

LEMMA 9.2. Let

b = (b2,0, ί>3,o, b2,u b3>u b2t2, b3ι2),

b~ = (^2,o> £3,0* b~2>u B31, B22, B32),

Φ = (^2,0, ^3,0, ̂ 2,1, Ψ3,U Ψl,2> ̂ 3.2)

(fc = 0, 1, - 1 , -2),

6, φ) = C8(G'(6 + ̂ )) - CS(C(6)) (7=0, 1).

Assume ίΛaί εx and ε2 are sufficiently small positive numbers. Then, if
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(9.27)
l^2,θl + | £ 3 i 0 | + l^2,ll + lS3.ll + 1̂ 2,21 + 1̂ 3,21 ^ ε2»

there exists a unique solution

φ = g(b, B) = (g2t0(b, 6),..., g3>2(b, B))

of the systems of equations

(9.28) F0(b, φ) = B2θ9 Fι(b,φ) = h3Q, F-ι(b, φ) — B2 l9 F-2{

(9.29) Fξ(b,φ) = B2t2, Ff(b, φ) = B32,

such that gPtXb, B) are holomorphic in the domain (9.27)

gPιXbf 0) = 0 (p = 2, 3 ; r = 0, 1 , 2 ) .

P R O O F . Us ing Lemma 5.1, we put

_dcm_
db 3,0 b=0 b=0

xb2tl

and

^2,2 b = 0
^2,2-

Since we defined Gk(b) (fc=O, 1,..., 6) as

2>2, ω5kb3>2),

we can easily obtain

dF0(b, φ) dF0(b, φ) dF0(b, φ) dF0(b, φ)
db2>0 δ/i df2 db3ί2

dF.jb, φ) dF.jb, φ) dFt(b, φ) dFx(b, φ)
db 2,0 df2

db 3,2

b, φ) dF-άb, φ) dF.x{b, φ) dF-t(b, Φ)

P_2(fe, φ) dF_2(b, φ) dF_2(b, φ) dF.2(b9 φ)
db2)Q dfγ df2 db 3,2

1 1 1 1

ωό
ωD

ω~2 ω~3 ω~4 ω"5

ω ~4 ω " 8 ω" 1 0

^2,0 b=0 db 3,2

6=0,^=0

b=0
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and

δb3,0

δb2Λ

δf2

δb2Λ

\Φ) δFξφ, Φ)
δb2Λ

δb3Λ

δf2

δb3ι0 δb2Λ δb3>ί

δFUb, φ) δF$ψ, φ) δFUb, φ)

δh
δb2>2

δh
δb2t2

,Φ) dFξψ, Φ)
δb2,2

, Φ)
δb 3,0

δCjφ)

δb3,o

0

db2Λ
db

δb3t0

δCUb)
δb2Λ

0

δC°2(b)

0

δb3Λ

δC°2(b)
δb3Λ

δCΊψ) 3 δC°2(b)
J

3,o
b3Λ

2,2

0

δCKb)

δClψ)
δb2>2

^2,2

6=0,^=0

b=0

Therefore, by virtue of Lemmas 5.1 and 6.1, these Jacobian determinants are

different from zero. Thus we have proved Lemma 9.2.

If we put

£2,2 = £3,2 =

then we can obtain from Lemma 9.2 that

(9.30) ^ί(β) = Cϊ(*(β) + φ(ε)) = e\(ε) (fc = 0, 1, - 1 , -2)

and

(9.31) a & ) = Ci(b(έ) + ψ(ε)) = e{(ε) (j = 0, 1).

Using Lemma 7.3, we derive from (9.30) and (9.31)

3%έ) = ej(β) (fc=0, 1,..., 6; j = l, 2, 3).

Thus we have proved Theorem 1.3 for case (III).

The proof of Theorem 1.3 for cases (IV), (V), (VI) is quite similar to that of
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case (III). Therefore, we have finished the proof of the main theorem on full
uniform simplification of the turning point in this paper.
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