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This paper is concerned with the asymptotic behavior of solutions of the

Cauchy problems for semilinear parabolic equations of the form

(0.1) du/dt - Δu + f{ύ) = 0, (x, t) eR" x (0, 4- oo),

(0.2) ιι(x, 0) = ιιo(x), xeR",

where u0 is a given initial-function, A is the N-dimensional Laplace operator, and

/ is a continuous nondecreasing function on R satisfying the sign condition

(0.3) sf(s) > 0 for s Φ 0.

Recently Gmira and Veron [4] have treated the asymptotic behavior as ί-> oo

of solutions of (0.1) in the canonical cases/(s) = s|s|p~1, p> 1. They studied the

asymptotic behavior of solutions of such typical semilinear equations by applying

a comparison theorem to the solutions of the associated ordinary differential

equation

(0.4) dz/dt + /(z) = 0, t e (0, + oo).

Further, in order to investigate more precise behaviors of the solutions, they

employed suitable scaling transformations and well-known results concerning the

order-preserving semigroup of nonlinear contractions which provides solutions

of (0.1) with f(s) = s\s\P-K

The purpose of this paper is to make an attempt to extend their results so

as to cover a much wider class of equations of the form (0.1). Here we assume

that/has the same order as the function s^'1 near s = 0 in the sense that \s~pf(s)\

is bounded and bounded away from 0 as s-»0. Under this condition we discuss

the asymptotic behavior of solutions of (0.1) by applying appropriate comparison

theorems to the solutions of (0.1) with/(s) = 5|s|p"1. We shall employ the scaling

transformations as well as basic properties of nonlinear semigroup providing

generalized solutions of (0.1) in a^way similar to [4]. In this sense our argument

relies heavily upon the work of Gmira and Veron, although our results extend

considerably those of [4] as illustrated via some examples in the last section of

this paper.



86 Ryuji KAJIKIYA

Solutions of (0.1) converge to zero in general, but solutions multiplied by an

increasing factor tΉ/2 might converge to some nontrivial functions. Here we show

that if the nonlinear function f(s) satisfies certain growth conditions and if initial

functions are nontrivial, then the solutions converge to C0(4π)~NI2 exp (— |x|2/4ί),

where Co is a constant depending only upon the initial function u 0. Further, we

give some sufficient conditions for the constant Co to be nonzero and these con-

ditions have not been known even for the case f(s) = s\s\p~1.

This paper consists of four sections. In Section 1 we discuss the existence of

solutions of the Cauchy problem (0.1)-(0.2) and give some basic estimates con-

cerning their asymptotic properties. Our main results are stated in Section 2

along with some comments. The full statements of the results and their proofs

are given in Section 3. Finally, in Section 4, several remarks on the main theo-

rems are given and concrete examples of nonlinearities f(s) are given to illustrate

the main results.

The author wishes to express his hearty thanks to Professors T. Miyakawa

and S. Oharu for valuable discussions and comments.

1. Existence and basic properties of solutions

We begin by introducing some function spaces. By Xq (1 ̂  q < oo) we denote

the usual Lebesgue spaces Lq(RN); for # = oo, we set

(1.1) X9 = {weC(R»); l i m , ^ w(x) = 0}.

The norm of the Banach space Xq is denoted by | \q. Further, Wm>q(RN) and

Wΐ^(RN) denote the usual Sobolev spaces.

In what follows/is a continuous nondecreasing function on R satisfying (0.3).

For each q e [1, oo] we consider the operator

Aqw = - Aw +/(w) in Xq

with domain D(Aq) specified as follows:

D(Aq) = {we W2>*(RN) f{w) eXq} if 1 < q < oo,

D(AX) = {weXii AwJ(w)eXu we W^(R") for l£r<JV/(iV-l)},

and

D(AJ = {weXOD;AweXO09we Wfa(RN) for some q > N}.

Notice that if w e D(A^\ then w e W2£(RN) for any q > N see [6]. Let 1 ̂  q ^ oo.

Since Aq is known to be a densely defined m-accretive operator in Xq9 a standard

generation theorem for nonlinear semigroups [3] can be applied to get for a given

κ o e X g a solution of (0.1) represented by the exponential formula



Asymptotic behavior of solutions 87

, t) = Sq(t)u0 = limπ_>

where {Sq(t); ί^O} denotes the nonlinear contraction semigroup in the Banach

space Xq generated by -Aq. It is well-known that for each t, Sq(t) is order-pre-

serving, namely: If ^ denotes the natural order relation in Xq9 then Sq(i)uot:

Sq(t)v0 whenever uo^vo. In what follows we call the function Sq(t)u0 the semi-

group solution of the problem (0.1)-(0.2) with uoeXq.

We now give a few basic properties of the semigroup solutions.

PROPOSITION 1.1 ([4], [5], [7]). Assume that

(i) Let uoeD(Aq) and u(t) = Sq(t)u0; then

(a) u: [0, oo)->Xg is Lipschitz continuous and W(0) = MO;

(b) for a.e.t> 0, u(t) e D(Aq), du(t)/dt eXqand du/dt + Aqu = 0.

(ii) // u0 e Xqi then u(t) eXqf] Z/^R*) for all t>0, and there is a constant

C = C(N)>0 for which

(1.2) |fi(0ίΓ ύ Crw-wv2\uo\q

holds for t>0 and re[q, oo].

(iii) IfuoeXqandl<*q^2, then:

(c) For each re [2, oo], u: (0, co)^>Lr(RN) is locally Lipschitz continuous.

(d) For a.e. t>0, du(i)\dt lies in Lr(RN)for2^r<oo and there is a constant

C = C(N)>0such that

(1.3) \du{i)jdt\r ^ Ct-i-»W*-W2\u0\q.

For the proof we refer to [4], [5] and [7]. We also use the next result
in the proof of Theorem 3.4.

PROPOSITION 1.2. Let l ^ g < o o , u0, voeXq9 u(t) = Sq(i)u0 and let v(i) =

Sq(t)v0. Then we have:

( i ) o^

( i i ) 0 ^

(iii) IfuoeXu then the limit l i m , ^ \ w(x, t) dx exists and equals
JRN

\ uo(x)dx~\">\ /(u(x, t))dxdt.
JRN JO JR*

PROOF. Since /(0) = 0, we easily see that v=0 if vo=0. So assertion (ii)

immediately follows from (i) by setting vo = 0. We therefore prove assertions

(i) and (iii). Suppose first that u0 and v0 belong to CQ(RN); then we have

d(u - v)ldt - A(u-v)+ /(II) - f(v) = 0 a.e. in RN x (0, oo).
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Multiplying both sides by (u-v)\u-v\q~2, integrating the terms on the resultant
equality over ΈLN and then using the inequality (see [2])

- { [A(u-vy\(u-v)\u-v\«-2dx ^ 0,
J R

we obtain

(d/*)|iι(0-i<ί)|| + q \RNU(u)-f(v)-](u-v)\u-v\«-2dx ί 0.

Integrating both sides of this inequality over (0, T) yields

(1.4) \u(T)-v(T)\l + « J O

Γ J H W [/(H)-/(I; )](«-») |H-» |«-^XΛ g \uo-vo\\.

Since CQXR*) is dense in Xq and Sq(t) is a contraction semigroup on Xq9 Fatou's
lemma implies that the estimate (1.4) also holds for w0, voeXq, u = Sq(t)u0, and
υ = Sq(t)v0. The second inequality in (i) is now obtained by letting T-»oo in (1.4)
and noting that / i s nondecreasing.

We then prove assertion (iii). First assume that uoeD(Aί). Then, by
Proposition 1.1 (i), du/dt, Δu and/(w) belong to Xx for a.e. ί>0. Hence

[ Δu{x, i)dx = 0 for a.e. t > 0

so that (0.1) gives

(dldt) { u(x, ί)dx + ί J(u(x, t))dx = 0 for a.e. t > 0.

Integrating this over (0, T) yields

(1.5) [ u(x9T)dx=[ uo(x)dx-{T[ /(M(X, i))dxdt.
JRN JRN JO JRN

We next consider the general case. Let u0 e Xx and choose a sequence {uOn} c
D(A)) so that uOn-+ u0 in Xx as n->oo. Assertion (i) with q = 1 and v0 = uOn implies
that

I Γ \ f(u)dxdt - Γ ί /(uJΛΛ ^ Γ ί \f(u)-f(un)\dxdt
I Jo J R ^ JO J R ^ JO JRN

as n-^oo

for any T>0, where un(0 = ̂ i(0MθR Since un(t)-+u(t) in Zj uniformly for ί^0,
we see that (1.5) is valid for any uoeX1 and any Γ>0. Since/(u) is integrable
over R^xΐO, oo) by (ii), assertion (iii) follows from (1.5) by letting T->oo. The
proof is complete.
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Finally we prepare a comparison theorem which is useful to investigate

the asymptotic behavior of solutions.

We denote by z(ί; β) the unique solution of the initial value problem:

(ODE) dzldt+f(z) = 0 (ί>0), z(0) = β.

LEMMA 1.1 (Comparison Theorem). Suppose both f and g are continuous,

nondecreasing functions satisfying condition (0.3), and that f(s)^.g(s) on some

interval [0, α]. Let u and v be the solutions of the problems

(1.6) du/dt - Δu +f(μ) = 0, u(x, 0) = uo(x)e\J^qSaoXq9

(1.7) dvjdt -Av + g(υ) = 0, v(x, 0) = v0(x)e\Jί^q^OQ Xq9

respectively. Then

(i) z(t;βί)^u( 9t)<z(t;β2) if βί^u0^β2,

(ii) 0 ^ «(•, 0 ^ v( , t) ̂  α if 0 <Lu0 <L v0 ^ oc.

PROOF. Since assertion (i) is a well-known result, we prove only assertion (ii).

Without loss of generality we may assume that both u0 and v0 are in CQ^R*), and

so u(t) and v(t) belong to Λi^^oo^, for all ί^0. Using the order-preserving

property and L°°-nonexρansiveness of the semigroup {S(t)}, we see that 0^u(ί)^α

and 0^t;(0^α if O^uo^α and 0^ι?o£Ξα. Hence, by assumption, /(u(ί))^

g(μ(t)) ̂ 0 . But/(«(0) e X2 since u{i) e D{A2) and so g(u(t)) e X2. Now multiply

both sides of the equation

d(u - v)jdt - Δ(u -v)+ f(μ) - g(u) + g(u) - g(v) = 0

by (M — V)+ and integrate the resultant terms over RN to get

+ 2 ( lg(μ)-g(vy](u-v)+dx ^ 0 for a.e. t.

Since the second and the third terms are nonnegative, we get

|(u(0-ι<0)Ίi ^ \iμQ-voy\l = 0 for all t ^ 0.

Hence u ̂  v and the proof is complete.

REMARK. Fix any t0 > 0 and set jS=|iι( , ίo)l«
 t h e n 0^j?< oo by

Proposition 1.1. Let z(t; tθ9 β) (t>t0) denote the solution of (ODE) with
z(t0; t0, β)=β. Then Lemma 1.1 implies

(1.8) z(t; t0, -β) ^ u(x, i) ^ z(t; ί0, β)
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for all

2. Asymptotic behavior of solutions

In this section we present a summarized exposition of our results on the
asymptotic behavior of solutions of the problem (0.1)-(0.2). The precise state-
ments of the results and their proofs will be given in the next section.

In what follows we set X = ̂ Jι^qg,ooXq and, for each uoeXq, we write
u = S(t)uo = Sq(t)u0 for simplicity in notation.

First we prove that any solution vanishes in a finite time if \ \f(s)\~1ds< oo.

Before we go into the detailed studies on the asymptotic behavior of solutions,
we observe that

(2.1) l im,^ 111(01. = 0.

for every uoeX. In fact, the above result follows from the inequality (1.2) if
uoeXq for some l^q<oo; and it follows from the inequality (1.8) if UQEX^.

Since the solutions always converge to zero, we are interested in the order of decay
of the solutions. We shall see that it depends strongly upon the order of f(s)
as s tends to zero.

Secondly, we prove that the solutions exponentially decay if 0<

As mentioned in Section 1, each S(f) is order-preserving; hence
whenever wo^O. So, as far as nonnegativd initial data are concerned, the above

conditions may be modified into the following: \ f(s)~ίds<oo in the first
Jo

result; and liminfsio/(s)/s>0 in the second result.
We also consider the solutions multiplied by suitable increasing factors (for

example ί1/̂ "1*, tN/2), and investigate their asymptotic behaviors. Here we
discuss the problems in the case where/(s) is comparable with the function sls^"1

near s = 0. More precisely, we consider the following three types of order con-
ditions for/(s):

(C.I) 0 < Kt = liminfsi0f(s)/sP ^ lim supsi0/(s)/s* = K2 < oo

for some constants Kl9 K2, and some pe( l , oo),

(C.2) 0 ^ lim sup^o l/00l/M1+2/ΛΓ < oo,

and

(C.3) 0 < liminfs^0 ]/(s)|/|s|1+2/* ^ oo.

Assume condition (C.I) and that f(s)/s is nondecreasing on some interval
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(0, η). If u o ^ 0 , and ess. l im,*,^ | X | 2 ^ - 1 > M O ( X ) = OO, then

(K2ly)-y ^ l i m i n g Vu{x, t) ύ l imsup^ f*u{x, t) ^ (KJγ)^

where y = l/(p-l).
Suppose condition (C.2) and uoeXt; then

{tNί2u(x, ί )-C 0 (4π)-^ 2 exp(-|x | 2 /4ί)} - 0 as t -+ oo

where C0 = limf_+O0\ u(x, i)dx = \ uo(x)dx — \ \ f(u(x, t))dxdt. In other
JRN JΈLN J o JRN

words the solution is similar to the solution of the linear heat equation as t tends

to oo. We note that in this case, the asymptotic behavior is determined by the

diffusion term Au and does not reflect the nonlinearity of/. Moreover if/ satisfies

a stronger condition
lim sups 4 0/(s)/sp < oo for some p > 1 + 2/iV,

then Co = C0(u0) is positive for any u0 e Xt with u0 ^ 0 and \uo\ t > 0.

Suppose condition (C.3) and u0 e Xx then

tN/2u(x, 0 -* 0 as t -> oo.

It should be noted that in this case the asymptotic behavior of the solutions

is determined by the nonlinear term/(w) rather than the diffusion term Δu.

However if/satisfies both (C.2) and (C.3), the asymptotic behavior is specified

by not only the nonlinear term but also the diffusion term.

In each case, it will be shown that the convergence is uniform on Ec={xeRN:

\x\<LCtx'2} for any C>0.

3. Main results and their proofs

In this section we state main results and their proofs. We begin with the
following theorem.

THEOREM 3.1. Suppose \ \f(s)\~ίds<co and uoeX. Then there exists

a positive number Tsuch that

u(x, 0 = 0 for t^T and xeRN.

PROOF. We consider the function z(t; ί0, ±β) as defined in the Remark

after Lemma 1.1. It is well-known that the assumption on/ is equivalent to the

existence of T=T(t0, β)>0 such that z(t; t0> ±β) = 0 for all ί^Γ. Hence the

conclusion follows from the inequality (1.8).
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The next theorem asserts that the solutions decay exponentially if
is bounded away from 0 as

THEOREM 3.2. J/liminfs_0 \f(s)/s\=K>0 and ίfuoeXqfor some l 5 ^ ^
then

for any ε>0 and any re[q, oo]. If the limit inferior is + oo, then K — ε may be
replaced by any positive number.

PROOF. In view of the usual decomposition u0 = MQ — Mo> Mo = uo v 0>

UQ= - ( M O Λ 0 ) , and the order-preserving property of the semigroup {S(t); ί^O},
it is sufficient to consider the case where wo^0 or else wo = O Here we assume
that wo^0, since another case is similarly treated by using the dual statement of
Lemma 1.1. We show that for any K1 e (0, K) and any r e [#, oo],

lim sup^^ exp (K^) \u(t)\r < oo.

By assumption there exists for any K± a constant <5>0 such that K^^fis) on
[0, <5]. On the other hand, it follows from (2.1) that there exists a T>0 such that

for all t^T. Let v be the solution of

dv/δt - Av + K^ = 0, t > T, v(x9 T) = u(x9 T).

We see in a way similar to Proposition 1.1 that

K , 01, ύ ( ί - T ) - ^ ^ - 1 / o / 2 e χ p ( _ κ 1 ( ί ~ T ) ) | W ( . , T)\q

for all t^T9re lq, oo]. Applying Lemma 1.1 with g(v) = K1υ9 we get 0^u(x, 0 ^
ι?(x, t) for ί^T, which proves Theorem 3.2.

In the next theorem, we state an asymptotic property of the solutions multi-
plied by an increasing factor ty

9 γ = l/(p-l).

THEOREM 3.3. Let γ = l/(p-l). Let f satisfy condition (C.I) and f(s)/s
be nondecreasing on (0, η) for some η>0. Suppose uoeX9 wo^0 and
ess. lim î̂ oo |x|2yw0(x)=oo. Then, for any C>0,

(K2/γ)-y ^ liminf^^ [inf£c FM(X, 0]

^ lim sup^^ [sup£ c tyU(x9 0] ^ (KJγyy,

where Ec={xeRN: \x\^Ct^2}.

The next corollary follows immediately from Theorem 3.3.

COROLLARY 3.1. //in particular Kί=K2 = K in Theorem 3.3, then
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and the convergence is uniform on £ c ={xeR i V ; \x\^Ct1/2} for each C>0.

PROOF OF THEOREM 3.3. Using the same argument as in [4, Proposition 2.1]
together with Lemma 1.1, we get

(3.1) ess. lim,,,.^ |x | 2 M*, 0 = oo

for any ί>0.
Choose any pair of numbers Cu C2 such that 0<Cί<Kί^K2<C2. Then

by assumption one finds a constant <5>0 such that C1s
p^f(s)^C2s

p on [0, <5].
Hence it follows from (2.1) that there is a constant T>0 such that 0^u(x, t)^δ
for t ̂  T and x e RN. Let ̂ (x, i) (i = 1, 2) be the solution of the equation

dvjdt - Avt + CiVp = 0 (t> T), vfc, T) = u(x, T).

Then Lemma 1.1 implies that v2(x, t)^u(x9 0^i(x> 0 o n RNx(T, oo). The
application of [4, Theorem 2.1] and (3.1) implies that

l i m ^ {^(x, O-ίCyy)-?} = 0

holds uniformly on Ec for each C>0. Thus we obtain

(C2ly)-v ^ liminf^., [inf£c ί̂ u(x, ί)]

^ limsup^^ [sup£ c ί^(x, ί)] ̂

for each C>0. Since Cx and C2 are arbitrary in so far as 0<Cί<Kί^K2<C2,
the assertion follows.

Next, we consider the solutions multiplied by another increasing factor
t\ v = N/2.

THEOREM 3.4. Let v = N/2. Suppose condition (C.2) and uoeXί. Then
we have

(i) l im,^ {ίMx, 0 - C o ( 4 π ) - exp(-|x|2/4ί)} = 0,

and the convergence is uniform on EC={XERN: \x\^Ct1/2} for each C>0, where

Co = l i m ^ [ u(x, t)dx = { uo(x)dx - Γ [ f(u(x, ί))dxdt.

(ii) // in addition u o ^ O and I U Q I ^ O , then for any compact subset G of
N and any to>l, there exists a constant M > 0 such that

Γ(log t)vu(x, t)^M on G x [ί0, oo).
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In order to prove Theorem 3.4, we employ the following scaling trans-

formations (see [4]): Fix any sequence {tk} with tk | oo and define

w*O> 0 = tiu(ty2x, tkt), k = 1, 2,...,

where w(x, t) is the solution of (0.1)-(0.2). Each uk satisfies

dujdt - Δuk + tl+vf(tk

vuk) = 0 in RN x (0, oo)

uh(x, 0) = ίϊιιo(*i'2x) in R».

We can then give a proof of Theorem 3.4 by using the following lemma

which is parallel to [4, Proposition 3.1].

LEMMA 3.1. Under the hypotheses of Theorem 3.4, the sequence {uk} con-

verges uniformly on any compact subset of RNx(0, oo) to the function

(3.2) w(x, 0 = Co(4π0"v exp ( - |x

PROOF. By Proposition 1.1 we get

(3.3) iM^ .OIf^Cr^-^l i io l ! for 1 ̂  q ̂  oo,

(3.4) \(dldt)uk\g ^ Cr^1-1/*)"1!^! for 2 ̂  ̂  < oo, and

(3.5) lu^O^HiioU.

Also, by assumption there exist constants ε, K> 0 such that

(3.6) |/(s)| ^ X|5|1+2/^ on [-ε, + ε ] .

For any δ>0, (3.3) implies that there exists a constant Cδ>0 such that

|ufc( , 0 L ^ C < 5 for any t^δ and k = 1, 2,....

From this inequality and (3.6) we see that there exists a constant ko = ko(δ) such

that

(3.7) tl+*\f(tΓuk(x, 01 ^

for fe^feo and ί^<5. Let 2 ^ # < o o . Then using (3.3), (3.4), (3.7), and the

relations Auk = duk/dt + tl+vf(tk

vuk)9 one finds a constant C(δ, q)>0 such that

\Auk( , t)\q ̂  C(<5, ̂ f) for t^δ and k^k0.

Fix a g with JV+l<#<oo. Using the regularity theory for elliptic operators,

compact imbedding results in Sobolev spaces and then applying the diagonal

process, we can choose a subsequence {ukn} and a function weC(R N x(0, oo))
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such that {ukn} converges to w uniformly on any compact subset of R^ x (0, oo).

We can now employ the same method as in [4, Proposition 3.1] to show that w

coincides with the function (3.2). The proof is complete.

PROOF OF THEOREM 3.4 (i). Lemma 3.1 implies that for each C>0,

9 ts) - C0(4πs)"v exp ( - \y\2/4s)

converges to 0 as t tends to oo, uniformly for y and s with lyl^C, 1/C^s^C

Setting s= 1 and y = xftll2

9 we obtain Theorem 3.4 (i).

To prove the second assertion of Theorem 3.4, we need the following lemma

which is verified in [4, Theorems 4.1 and 4.2].

LEMMA 3.2. Let w(x, t) be the solution of

(3.8) δw/dt - Aw + \w\2'Nw = 0, w(x, 0) = wo(x).

// woeXl9 then lim^^ Γw(x, t) = 0 holds uniformly on Ec for each C>0.

IfwoeX1, w o ^ 0 and IWQI^O, then for each compact subset G o/RN and each

ί o > l , there exists a constant M > 0 such that

r( log t)vw(x, ή^M on G x [ ί 0 , oo).

PROOF OF THEOREM 3.4 (ii). By assumption there exist constants K, <5>0

such that

(3.9) f(s)^Ks1+2'N on [ 0 , 5 ] .

Set t>0(x) = min [uo(x), <5]. Then υoeXί9 vo^.0 and |tfoli>0 Let v(x, t) and

w(x, i) be the solutions of (0.1) and (3.8) with the initial conditions v(x, 0) = υo(x)

and w(x, 0) = ι>o(x/K1/2), respectively. If we define wm(x, t) = w(K^2x9 Kt)9

then w* satisfies

dwjdt - Aw* + Kwi+VN = 0, w*(x, 0) = υo(x).

Lemma 1.1 then implies v(x9 t)^w*(x9 t) = w(K1/2x9 Kt). Moreover we get

w(x, t)^v(x9 0 since uo^vθ9 so that we obtain u(x, t)^w(K1/2x9 Kt). We can

now apply Lemma 3.2 to obtain the assertion.

Under condition (C.3), we consider the asymptotic behavior of the solutions

multiplied by ίv.

THEOREM 3.5. Suppose condition (C.3) and u0 e Xv Then

l i m ^ Pu(x, 0 = 0

holds uniformly on Ecfor any C>0.
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PROOF. We assume that u0 ̂ 0 by the same reason as in the proof of Theo-
rem 3.2. By assumption there exist K, δ>0 such that f(s)^Ksί+2'N on [0, <5].
On the other hand (2.1) implies that there exists a Γ > 0 such that 0gu(x, t)^δ
for all t^T. Let w(x, t) be the solution of (3.8) with initial condition w(x, 0) =
u(x/KV2, T). Set Wl>(x, 0 = w(K^2x, K(t - Γ)). Then

dwjdt - Aw* + Xwi+2/N = 0 (ί> Γ), vv*(x, Γ) = u(x9 T).

Further, Lemma 1.1 implies 0^u(x9 t)^w*(x, t) = w(K1/2x, K(t-T)) for any
ί^ T. Therefore the assertion follows from Lemma 3.2.

Finally, we consider the solutions under conditions (C.2) and (C.3).

COROLLARY 3.2. Suppose conditions (C.2), (C.3) and uoeXv Then:

( i ) lim^oo tvu(x, t) = 0 uniformly on Ecfor any C>0.

(ii) Γ ί f(μ(x, t))dxdt = \ uo{x)dx.
Jo JRN JRN

(iii) limf_co|iι(-, Oli = 0.

PROOF. Theorems 3.4 and 3.5 together imply that lim^^ tvu(x, t) = 0 holds
uniformly on Ec for each C > 0, and that Co = 0. Therefore we get

Π f(u(x, t))dxdt = \ uo(x)dx and
JO JRN

 J R ^

x, t)dx = 0.\
JR

This means that lim ,_»̂  |M( , ί)li = 0 if M0 = 0 O Γ e l s e Mo = 0 F ° r the general case
we consider u$ and MQ defined as in the proof of Theorem 3.2. Then the assertion
is obtained via the order-preserving property of the semigroup {S(t): ί^

4. Remarks and examples

In this section, we make some remarks on the main theorems and give some
examples to illustrate our results.

In Theorem 3.4, it is important to know whether or not Co is nonzero. Recall
that C0 = C0(u0) is a real number defined for initial function uoeXγ by

C0 = limf_00 \ S(i)uo(x)dx. We here give a sufficient condition for Co to be
JRN

nonzero.

PROPOSITION 4.1. Suppose there exists a nondecreasing function h(s)
satisfying
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(i) f(s)^sh(s) on [0,η], and

(ii) (" h(s)lsι+2'Nds < oo for some η > 0.
Jo

IfuoeXί9 uo^0and |iιoli>0, then C0>0.

PROOF. Without loss of generality we may suppose that h(s) is defined on
all of [0, oo), nondecreasing, and satisfies

(i)' f(s) ^ sh(s) on [0, oo), and

(ϊi)' [T h(s)lsί+2'Nds < oo for any T> 0.
Jo

Suppose u0eD(A^), uo^0 and \uo\i>0. Set y(t) = \ u(x, t)dx. Proposi-

tion 1.1 implies that y is a Lipschitz continuous, nonnegative, and nonincreasing
function. On the other hand, in the proof of Proposition 1.2, we showed the
relation

(d/dt) [ u(x9 t)dx+[ f(u(x, i))dx = 0.
JRN JRN

Applying condition (i); and then Proposition 1.1, one finds a positive constant
K = K(N) such that 0^/(iι(x, 0) ̂  θ(t)u(x, t\ where g{t) = h{KrNl2\u0\ x). There-
fore we have

dy/dt + g(t)y(t) ^ 0.

Since }>(0) is positive by assumption on w0, there exists a constant <5>0 such that
y(t)>0 on [0, δ]. So GronwalΓs inequality implies

y(t) ^ y(δ) exp Γ - ί' gf(s)ds') for any ί ^ <5.

At this point condition (ii)' is applied to get

0 < Γ g(s)ds = L[Th(s)/sί+2ίNds<oo,
Jί Jo

where L=(2/iV)(iquoli)2/iV and T=<5"iV/2iC|M0|1. Hence we have the estimate

y(t) ^ y(δ) e x p ( ~ ^ Γ h(s)/sί+2^ds) for any ί ^ δ.

Using the continuous dependence on initial data w0, we see that the above
inequality holds for any uoeX1 with wo^0 and |MOII>0 Thus we have



98 Ryuji KAJIKIYA

COROLLARY 4.1. Suppose limsups;0/(s)/s^<oo for some p>ί + 2/N. If

uoeXί9 uo_O, and | M 0 I I > ^
 tnen Q)(Mo) I S positive.

PROOF. Set h(s) = Csp~1, where C is a constant satisfying lim supsJrO/(s)/sp<
C. Then the assertion follows directly from Proposition 4.1.

Finally, we give some examples of/and investigate the asymptotic behavior
of the associated solutions. Consider the following function.

(1) f(s) = Σ?«i<V".

Suppose / is nondecreasing on [0, oo), 0<pί<p2<-'<pk, and atΦθ for
all ί. Hence we have at >0. Assume u0 e X and u0 ̂ 0 .

( i ) For 0</? 1<l, Theorem 3.1 implies that there exists a constant T>0
such that

u(x, 0 = 0 for all t = Γ.

(ii) When pχ = l and WQEX^ for some lίgg^oo, Theorem 3.2 can be
applied to conclude that

l im,^ exp ((aί -ε)t) \u(t)\r = 0

for any ε>0 and any r e \_q, oo].
(iii) If pt > 1 and ess. lim^i^^ |x|2ywo(x)= oo, then, by Theorem 3.3,

l i m ^ [tyu(x9 0 - W y ) - y ] = o,

and the convergence is uniform on Ec = {xeRN: \x\gCt1/2} for any C>0, where

(iv) If 1 <p t < 1 + 21N and w0 e Xl9 then Theorem 3.5 states that

lim^oo tvu(x9 t) = 0 uniformly on £ c for any C > 0,

where v = JV/2.
(v) If l + 2/N<p± and M0 e Z 1 ? then it follows from Theorem 3.4 that

l i n w [Γu(x, 0-C o (4π)-exp(- |xP/40] = 0

uniformly on Ec for any C>0, where C0 = limf_00 \ w(x, t)dx. Moreover if

|ιioli>0,thenCo = Co(iio)>0.
(vi) If pγ — 1+2/JV and uoeXl9 then Corollary 3.2 implies that

lim^oo ίvw(x, 0 = 0 uniformly on Ec for any C > 0,

U0(x)dx, and
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Moreover if | M O I I > 0 , then for any compact subset G of RN and any to>ί,

there exists a constant M > 0 such that

ίv(log t)vu(x, t)^M on G x [ί0, oo).

We next consider a function / such that f(s)jsp is nondecreasing for some

p > 0 . We can write

(2) f(s) = s'g(s),

where g is continuous, nondecreasing on [0, oo) and satisfies 0<g(O)<g(s) for

any s>0. Then we have the same results as those for (1) with aί9 px replaced

respectively by 0(0), p.
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