On self \boldsymbol{H}-equivalences of an \boldsymbol{H}-space with respect to any multiplication

To the memory of Shichirô Oka
Norichika Sawashita and Masahiro Sugawara
(Received January 17, 1985)

Introduction

Let X be an H-space. Then a homotopy equivalence $h: X \rightarrow X$ is called a self H-equivalence of X with respect to a multiplication $m: X \times X \rightarrow X$ if $h m \sim$ $m(h \times h): X \times X \rightarrow X$ (homotopic); and all the homotopy classes of such self H-equivalences form the group

$$
\operatorname{HE}(X, m) \text { (the notation } \mathscr{E}_{H}(X, m) \text { is used in the recent papers) }
$$

under the composition. In general, X has several multiplications and this group depends on m. For example, the complex conjugate $C: S U(n) \rightarrow S U(n)$ of the special unitary group is an H-map with respect to the usual multiplication, but not so to some one on $S U(n)$ for $n \geqq 3$, as is proved by Maruyama-Oka [9].

In this note, we consider the group

$$
\operatorname{HE}(X)=\cap_{m} \operatorname{HE}(X, m)(m \text { ranges over all multiplications on } X)
$$

formed by all self H-equivalences of X with respect to any multiplication, and study its basic properties. The main result is stated as follows:

Theorem. Let X be the unitary group $U(n)(n \geqq 3)$, the special unitary group $S U(n)(n \geqq 1)$ or the symplectic group $S p(n)(n \geqq 1)$. Then, any self H-equivalence $h \in \operatorname{HE}(X)$ with respect to any multiplication induces the identity map $h_{*}=\mathrm{id}$ on $\pi_{*}(X) \otimes \mathrm{Z}_{(p)}$ for a large prime p; and $\operatorname{HE}(X)$ is a finite nilpotent group.

We prove the basic equality on $\mathrm{HE}(X)$ in Proposition 1.4, and study it in case that X is a product H-space in Theorem 2.4. Furthermore, by using the fact that the localization $X_{(p)}$ of $X=S U(n)$ or $S p(n)$ at a large prime p is homotopy equivalent to the product space of the localizations of some odd spheres, we study HE $\left(X_{(p)}\right)$ in Corollary 3.4; and the main result is proved in Theorem 4.1 and Corollary 4.2 by a similar method to that used in [9].

§1. Basic equality on $\mathrm{HE}(X)$

Throughout this note, we assume that all spaces, maps and homotopies are based and spaces have homotopy types of $C W$-complexes. A map $f: X \rightarrow Y$ and its homotopy class f in the homotopy set $[X, Y]$ are always denoted by a same letter.

When $X=(X, m)$ is an H-space, i.e., X admits a multiplication $m: X \times X \rightarrow X$ such that $m \mid X \vee X=\nabla$ (the folding map) in $[X \vee X, X]$, we consider the set
(1.1.1) $\quad \mathrm{M}(X)(\subset[X \times X, X])$ of all homotopy classes of multiplications on X.

Then, using the sum + on $[, X]$ induced by m, we have easily a bijection
(1.1.2) $[X \wedge X, X] \cong M(X)$ by sending

$$
\alpha \in[X \wedge X, X] \text { to } m_{\alpha}=m+\alpha \pi \in \mathbf{M}(X),
$$

where $\pi: X \times X \rightarrow X \times X / X \vee X=X \wedge X$ is the collapsing map (cf., e.g., [11; Th. 2.3]).

When $Y=\left(Y, m^{\prime}\right)$ is also an H-space, $f:(X, m) \rightarrow\left(Y, m^{\prime}\right)$ is an H-map if $f m=m^{\prime}(f \times f)$ in $[X \times X, Y]$, and such H-maps form the subset

$$
\begin{equation*}
\left[X, m ; Y, m^{\prime}\right]_{\mathrm{H}} \subset[X, Y] \quad\left(m \in \mathbf{M}(X), m^{\prime} \in \mathbf{M}(Y)\right) . \tag{1.1.3}
\end{equation*}
$$

By taking their intersection, we have also the subsets
(1.1.4) $\quad[X, Y]_{\mathrm{H}}=\cap_{m \in \mathrm{M}(X), m^{\prime} \in \mathrm{M}(Y)}\left[X, m ; Y, m^{\prime}\right]_{\mathrm{H}}$ of $[X, Y]$, and

$$
\operatorname{HMap}(X)=\cap_{m \in \mathrm{M}(X)}[X, m ; X, m]_{\mathrm{H}} \supset[X, X]_{\mathrm{H}} \text { of }[X, X] .
$$

Lemma 1.2. (i) $[X, Y]_{\mathrm{H}}=\left[X, m ; Y, m^{\prime}\right]_{\mathrm{H}} \cap \mathrm{O}[X, Y]$ for any $m \in \mathrm{M}(X)$ and $m^{\prime} \in \mathbf{M}(Y)$, where $\mathrm{O}[X, Y]$ consists of all $f \in[X, Y]$ satisfying

$$
\begin{align*}
f_{*} & =0:[X \wedge X, X] \longrightarrow[X \wedge X, Y] \text { and } \tag{1.2.1}\\
(f \wedge f)^{*} & =0:[Y \wedge Y, Y] \longrightarrow[X \wedge X, Y] .
\end{align*}
$$

(ii) $\operatorname{HMap}(X)=[X, m ; X, m]_{H} \cap \mathrm{I}(X)$ for any $m \in \mathrm{M}(X)$, where
(1.2.2) $\mathrm{I}(X)=\left\{f \in[X, X] \mid f_{*}=(f \wedge f)^{*}:[X \wedge X, X] \longrightarrow[X \wedge X, X]\right\}$.

Proof. Take $f \in\left[X, m ; Y, m^{\prime}\right]_{\mathrm{H}}$. Then, for $m_{\alpha}=m+\alpha \pi \in \mathrm{M}(X)(\alpha \in[X \wedge$ $X, X])$ and $m_{\beta}^{\prime}=m^{\prime}+^{\prime} \beta \pi \in M(Y)(\beta \in[Y \wedge Y, Y])$ in (1.1.2), the equality $f m=$ $m^{\prime}(f \times f)$ implies the ones

$$
\begin{aligned}
& f m_{\alpha}=f(m+\alpha \pi)=f m+^{\prime} f \alpha \pi, \\
& m_{\beta}^{\prime}(f \times f)=m^{\prime}(f \times f)+^{\prime} \beta \pi(f \times f)=f m+^{\prime} \beta(f \wedge f) \pi
\end{aligned}
$$

in $[X \times X, Y]$; and $f \in\left[X, m_{a} ; Y, m_{\beta}^{\prime}\right]_{\mathrm{H}}$ means that these are equal to each other. Therefore, [6; Th. 1.1] and the injectivity of $\pi^{*}:[X \wedge X, Y] \rightarrow[X \times X, Y]$ imply that
(1.2.3) $f \in\left[X, m_{\alpha} ; Y, m_{\beta}^{\prime}\right]_{\mathrm{H}}$ if and only if $f \alpha=\beta(f \wedge f)$ in $[X \wedge X, Y]$.

This shows the lemma by definition.
q.e.d.

Now, for an H-space X, consider the group

$$
\begin{equation*}
\mathrm{E}(X)=\{h \mid h: X \rightarrow X \text { is a homotopy equivalence }\}(\subset[X, X]), \tag{1.3.1}
\end{equation*}
$$ with group-multiplication given by the composition, and its subgroups

(1.3.2) $\quad \mathrm{HE}(X, m)=\mathrm{E}(X) \cap[X, m ; X, m]_{\mathrm{H}}$ for each $m \in \mathrm{M}(X)$, and
(1.3.3) $\quad \mathrm{HE}(X)=\cap_{m \in \mathrm{M}(X)} \mathrm{HE}(X, m)=\mathrm{E}(X) \cap \operatorname{HMap}(X)$.

Furthermore, consider the action of $\mathrm{E}(X)$ on $[X \wedge X, X]$ given by

$$
\begin{equation*}
h * \alpha=h^{-1} \alpha(h \wedge h) \in[X \wedge X, X] \text { for } h \in \mathrm{E}(X) \text { and } \alpha \in[X \wedge X, X] . \tag{1.3.4}
\end{equation*}
$$

Then, we have the isotropy subgroup and their intersection

$$
\begin{align*}
& \mathrm{E}(X)_{\alpha}=\{h \in \mathrm{E}(X) \mid h * \alpha=\alpha\} \quad \text { at } \alpha \in[X \wedge X, X] \text { and } \tag{1.3.5}\\
& \operatorname{IE}(X)=\cap_{\alpha \in[X \wedge X, X]} \mathrm{E}(X)_{\alpha}=\mathrm{E}(X) \cap \mathrm{I}(X) \text { (see (1.2.2)), }
\end{align*}
$$

where $\operatorname{IE}(X)$ is a normal subgroup of $\mathrm{E}(X)$.
The following equalities play a basic role in our study.
Proposition 1.4. For any H-space $X, \operatorname{HE}(X)$ is a normal subgroup of $\mathrm{E}(X)$; and for each multiplications m and $m_{\alpha} \in \mathrm{M}(X)(\alpha \in[X \wedge X, X]$, see (1.1.2)), we have

$$
\begin{align*}
& \operatorname{HE}(X, m) \cap \operatorname{HE}\left(X, m_{\alpha}\right)=\operatorname{HE}(X, m) \cap \mathrm{E}(X)_{\alpha}, \tag{1.4.1}\\
& \operatorname{HE}(X)=\operatorname{HE}(X, m) \cap \operatorname{IE}(X) . \tag{1.4.2}
\end{align*}
$$

Proof. If $h \in \mathrm{E}(X)$, then $m^{\prime}=h^{-1} m(h \times h) \in \mathrm{M}(X)$ and $h^{-1} \mathrm{HE}(X, m) h=$ $\operatorname{HE}\left(X, m^{\prime}\right)$. Thus, we see the first half. (1.2.3) for $Y=X, m^{\prime}=m$ and $\beta=\alpha$ means (1.4.1), and (1.4.2) follows from (1.4.1) and (1.3.5).
q.e.d.

Example 1.5 ($\left[12 ;\right.$ Th. 4.1]). If X is $S^{n}(n=3,7)$ or the Eilenberg-MacLane space $K(\pi, n)$ for an abelian group π, then $\operatorname{HE}(X)=\operatorname{HE}(X, m)$ for any $m \in M(X)$ and

$$
\operatorname{HE}\left(S^{n}\right)=1, \quad \operatorname{HE}(K(\pi, n))=\text { aut } \pi .
$$

Now, let p be a prime $\geqq 3$ and consider
(1.6.1) the localization $S=S_{(p)}^{n}$ of the n-sphere $S^{n}(n \geqq 1)$ at p,
(1.6.2) the subring $Z_{(p)}=\{s / t \mid s, t \in Z, t>0,(t, p)=1\}$
of the rational field Q, and
(1.6.3) the multiplicative group $Z_{(p)}^{*}$ consisting of all units in $Z_{(p)}$.

Then, we can identify as follows (cf. D. Sullivan [14; 4.9, Cor.1]):
(1.6.4) $\begin{aligned} \pi_{n}(S)=Z_{(p)},[S, S] & =\operatorname{Hom}\left(\pi_{n}(S), \pi_{n}(S)\right)=Z_{(p)} \text { as rings, and } \\ \mathrm{E}(S) & =Z_{(p)}^{*} .\end{aligned}$

Furthermore, J. F. Adams [1] proved the following
(1.6.5) $S=S_{(p)}^{n}(n:$ odd) is an H-space with a homotopy commutative multiplication m.

In this case, for any s / t in $Z_{(p)}=[S, S], s$ and t are H-maps in $[S, m ; S, m]_{\mathrm{H}}$, and so is s / t since $(t, p)=1$. Thus, we see the following
(1.6.6) In case of (1.6.5), $[S, m ; S, m]_{\mathrm{H}}=[S, S]=Z_{(p)}$ and

$$
\mathrm{HE}(S, m)=\mathrm{E}(S)=Z_{(p)}^{*} .
$$

Also, we denote the p-component of $\pi_{i}(X)$ by $\pi_{i}(X ; p)$, and consider the subgroup
(1.6.7) $\quad U_{p^{r}}=1+p^{r} Z_{(p)}$ when $r \geqq 1$ or $U_{1}=Z_{(p)}^{*}$ when $r=0$ of $Z_{(p)}^{*}$ in (1.6.3).

Proposition 1.7. For a prime $p \geqq 3$ and an odd integer $n \geqq 1$, let p^{r} be the largest order of elements in $\pi_{2 n}\left(S^{n} ; p\right)$. Then, $\mathrm{HE}(S)=U_{p^{r}}$ for the H-space $S=S_{(p)}^{n}$ in (1.6.5).

Proof. Let $S^{\prime}=S_{(p)}^{n^{\prime}}\left(n^{\prime} \geqq n\right)$. Then, we can identify as follows:

$$
\begin{equation*}
\left[S^{\prime}, S\right]=\pi_{n^{\prime}}\left(S^{n}\right) \otimes Z_{(p)}=\pi_{n^{\prime}}\left(S^{n} ; p\right)\left(n^{\prime}>n\right), \quad=Z_{(p)}\left(n^{\prime}=n\right) \tag{1.7.1}
\end{equation*}
$$

Here the group structure is given by the suspended space S^{\prime} of $S_{(p)}^{n^{\prime}-1}$, and is also induced from $m \in M(S)$, and we see that $t \alpha s=s \alpha t(s, t \in Z)$ and so
(1.7.2) $\quad \alpha q=q \alpha=q \cdot \alpha$

$$
\text { for any } q=s / t \in \mathrm{E}\left(S^{\prime}\right)=\mathrm{E}(S)=Z_{(p)}^{*} \text { and } \alpha \in\left[S^{\prime}, S\right] .
$$

By (1.3.5) and (1.7.2), $q \in \mathrm{E}(S)=Z_{(p)}^{*}$ is in IE (S) if and only if

$$
\alpha=q^{-1} \alpha(q \wedge q)=q \cdot \alpha \text { for any } \alpha \in[S \wedge S, S]=\pi_{2 n}\left(S^{n} ; p\right)
$$

which is equivalent to $q \in U_{p^{r}}$ by the definition of p^{r} and $U_{p^{r}}$. Thus, $\operatorname{HE}(S)=$ $U_{p^{r}}$ by Proposition 1.4 and (1.6.6).
q.e.d.

§2. Product \boldsymbol{H}-spaces

In this section, we consider
(2.1.1) H-spaces $\left(X_{k}, m_{k}\right)$ and their product H-space $X=\prod_{k=1}^{n} X_{k}$ with $m_{X}=\left(\Pi m_{k}\right) T: X \times X \approx \Pi\left(X_{k} \times X_{k}\right) \rightarrow X$ as multiplication (T : the permuting homeomorphism).

Also, for any H-space (Y, m), we consider the n-fold product H-space
(2.1.2) $\quad\left(Y^{n}, m^{n}\right)=\left(\Pi Y_{k},\left(\Pi m_{k}\right) T\right)$ with $\left(Y_{k}, m_{k}\right)=(Y, m)$ for $1 \leqq k \leqq n$, the iterated multiplication
(2.1.3) $\bar{m}: Y^{n} \rightarrow Y$, given inductively by $\bar{m}=m$ when $n=2$ and

$$
\bar{m}=m(\bar{m} \times 1),
$$

the obstruction $h(\bar{m})$ for \bar{m} to be an H-map $\left(Y^{n}, m^{n}\right) \rightarrow(Y, m)$, i.e.,
(2.1.4) $h(\bar{m}) \in\left[Y^{n} \wedge Y^{n}, Y\right]$ with $m(\bar{m} \times \bar{m})=\bar{m} m^{n}+h(\bar{m}) \pi$ in $\left[Y^{n} \times Y^{n}, Y\right]$,
and the one $c(m)$ or $a(m)$ for m to be homotopy commutative or homotopy associative, i.e.,
(2.1.5) $c(m) \in[Y \wedge Y, Y]$ with

$$
m T=m+c(m) \pi\left(=m_{c(m)} \text { in (1.1.2)) in }[Y \times Y, Y]\right.
$$

(2.1.6) $a(m) \in[Y \wedge Y \wedge Y, Y]$ with

$$
m(m \times 1)=m(1 \times m)+a(m) \pi \text { in }[Y \times Y \times Y, Y]
$$

By the k-th inclusion and projection $X_{k} \xrightarrow{i_{k}} X \xrightarrow{p_{k}} X_{k}$, we define the maps
(2.1.7) $[X, Y] \xrightarrow{i^{*}} \Pi_{k=1}^{n}\left[X_{k}, Y\right] \xrightarrow{\theta_{m}}[X, Y]$ by $i^{*} f=\left(f i_{1}, \ldots, f i_{n}\right)(f \in[X, Y])$,

$$
\theta_{m}\left(f_{1}, \ldots, f_{n}\right)=\bar{m} \tilde{f}, \tilde{f}=\Pi f_{k} \in\left[X, Y^{n}\right], \quad\left(f_{k} \in\left[X_{k}, Y\right], 1 \leqq k \leqq n\right) ;
$$

and consider the following subsets of $\Pi\left[X_{k}, Y\right]$, where $I_{a}(m)$ is given only when $n=2$:

$$
\begin{align*}
& \mathrm{H}\left\{m_{k} ; m\right\}=\left\{\left(f_{1}, \ldots, f_{n}\right) \mid f_{k} \in\left[X_{k}, m_{k} ; Y, m\right]_{\mathrm{H}} \text { are } H \text {-maps }\right\} \tag{2.1.8}\\
& \mathrm{I}_{h}(m)=\left\{\left(f_{1}, \ldots, f_{n}\right) \mid h(\bar{m})(\tilde{f} \wedge \tilde{f})=0 \quad \text { in }[X \wedge X, Y]\right\}, \\
& \mathrm{I}_{c}(m)=\left\{\left(f_{1}, \ldots, f_{n}\right) \mid c(m)\left(f_{k} \wedge f_{l}\right)=0 \quad \text { in }\left[X_{k} \wedge X_{l}, Y\right](k<l)\right\}, \\
& \mathrm{I}_{a}(m)=\left\{\left(f_{1}, f_{2}\right) \mid\right. \\
& \quad a(m)\left(m\left(f_{1} \times f_{k}\right) \wedge f_{l} \wedge f_{2}\right)=0 \quad \text { in }\left[\left(X_{1} \times X_{k}\right) \wedge X_{l} \wedge X_{2}, Y\right] \text { and } \\
& \left.\quad a(m)\left(f_{1} \wedge f_{k} \wedge f_{l}\right)=0 \quad \text { in }\left[X_{1} \wedge X_{k} \wedge X_{l}, Y\right], \quad \text { for } k \neq l\right\}
\end{align*}
$$

Lemma 2.2. (i) $\theta_{m} i^{*} 1=1$ and $i^{*} 1 \in \mathrm{H}\left\{m_{k} ; m\right\} \cap \mathrm{I}_{b}(m)(b=h, c, a)$ if (Y, m) $=\left(X, m_{X}\right)$.
(ii) $i^{*} \theta_{m}=\mathrm{id}$, and by restricting i^{*} and θ_{m}, we have the bijection

$$
i^{*}:\left[X, m_{X} ; Y, m\right]_{\mathrm{H}} \cong \mathrm{H}\left\{m_{k} ; m\right\} \cap \mathrm{I}_{h}(m) \text { with } \theta_{m} i^{*}=\mathrm{id}
$$

(iii) $\mathrm{H}\left\{m_{k} ; m\right\} \cap \mathrm{I}_{h}(m)$ is contained in $\mathrm{I}_{c}(m)$, and coincides with $\mathrm{H}\left\{m_{k} ; m\right\} \cap \mathrm{I}_{c}(m)$ if m is homotopy associative, and $\mathrm{H}\left\{m_{k} ; m\right\} \cap \mathrm{I}_{c}(m) \cap \mathrm{I}_{a}(m)$ if $n=2$.

Proof. Let $Y=X$ and $m=m_{X}$. Then $\theta_{m} i^{*} 1=\bar{m} \tilde{\imath}=1 \quad\left(\tilde{\imath}=\Pi i_{k}\right), m(\bar{m} \times \bar{m})$. $(\tilde{\imath} \times \tilde{\imath})=m=\bar{m} \tilde{\imath}\left(\Pi m_{k}\right) T=\bar{m}\left(\prod m\left(i_{k} \times i_{k}\right)\right) T=\bar{m} m^{n}(\tilde{\imath} \times \tilde{\imath}), \quad$ and $\quad m T i^{\prime}=m i^{\prime}, \quad \bar{m} i^{\prime \prime}=$ $m(m \times m) i^{\prime \prime}$, etc. for $i^{\prime}=i_{k} \times i_{l}, i^{\prime \prime}=i_{1} \times i^{\prime} \times i_{2}(k \neq l)$. Thus we see (i).

Now, for any (Y, m), (i) shows that
(2.2.1) if $f \in\left[X, m_{X} ; Y, m\right]_{\mathrm{H}}$, then

$$
\theta_{m} i^{*} f=f \text { and } i^{*} f \in \mathrm{H}\left\{m_{k} ; m\right\} \cap \mathrm{I}_{b}(m)(b=h, c, a)
$$

because $\bar{m} f^{n}=f \bar{m}_{X}$ and f commutes with the obstructions in (2.1.4-6), e.g., $h(\bar{m})\left(f^{n} \wedge f^{n}\right)=f h\left(\bar{m}_{X}\right)$. Conversely, let $\left(f_{k}\right)=\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{H}\left\{m_{k} ; m\right\}$. Then $m^{n}(\tilde{f} \times \tilde{f})=\left(\prod m\left(f_{k} \times f_{k}\right)\right) T=\left(\Pi f_{k} m_{k}\right) T=\tilde{f} m_{X}$. Therefore, if $\left(f_{k}\right) \in I_{h}(m)$ in addition, then
(2.2.2) $\quad m(\bar{m} \times \bar{m})(\tilde{f} \times \tilde{f})=\bar{m} m^{n}(\tilde{f} \times \tilde{f})=\bar{m} \tilde{f}_{X}$ and so

$$
\theta_{m}\left(f_{k}\right)=\bar{m} \tilde{f} \in\left[X, m_{X} ; Y, m\right]_{\mathrm{H}}
$$

Thus we see (ii). If $\left(f_{k}\right) \in \mathrm{I}_{c}(m)$, then $m\left(f_{k} \times f_{l}\right)=m\left(f_{l} \times f_{k}\right) T$ for $k \neq l$. Therefore, by the definition of m^{n}, we can certify the first equality in (2.2.2) when m is homotopy associative, i.e., $m(\bar{m} \times 1)=m(1 \times \bar{m})$ in (2.1.3), or when so are several compositions of product maps of f_{k} 's and those of \bar{m} 's, e.g., when $n=2$ and $\left(f_{1}, f_{2}\right) \in$ $\mathrm{I}_{a}(m)$. Thus we see (iii).
q.e.d.

We now consider the set of matrices
(2.3.1) $\mathrm{M}\left\{m_{k}\right\}=\left\{\left(a_{j k}\right) \mid a_{j k} \in\left[X_{k}, X_{j}\right](1 \leqq j, k \leqq n)\right\}$, with multiplication

$$
\left(a_{j k}\right)\left(b_{j k}\right)=\left(\bar{m}_{j}\left(\Pi_{l} a_{j l} b_{l k}\right) \Delta\right) \quad\left(\Delta: X_{k} \rightarrow\left(X_{k}\right)^{n} \text { is the diagonal map }\right)
$$

and the following maps and subsets of $\mathrm{M}\left\{m_{k}\right\}$:

$$
\begin{gather*}
{[X, X] \xrightarrow{\phi} \mathbf{M}\left\{m_{k}\right\} \xrightarrow{\theta}[X, X], \text { given by } \phi(f)=\left(p_{j} f i_{k}\right)(f \in[X, X]),} \tag{2.3.2}\\
p_{j} \theta\left(a_{j k}\right)=\bar{m}_{j} \tilde{a}_{j}, \tilde{a}_{j}=\prod_{k} a_{j k} \in\left[X,\left(X_{j}\right)^{n}\right],\left(a_{j k} \in\left[X_{k}, X_{j}\right]\right) ;
\end{gather*}
$$

$$
\begin{align*}
& \mathrm{HM}\left\{m_{k}\right\}=\left\{\left(a_{j k}\right) \mid a_{j k} \in\left[X_{k}, m_{k} ; X_{j}, m_{j}\right]_{\mathrm{H}}\right. \text { i.e. } \tag{2.3.3}\\
& \left.\left(a_{j 1}, \ldots, a_{j n}\right) \in \mathrm{H}\left\{m_{k} ; m_{j}\right\}\right\}, \\
& \mathrm{I}_{b} \mathrm{M}\left\{m_{k}\right\}=\left\{\left(a_{j k}\right) \mid\left(a_{j 1}, \ldots, a_{j n}\right) \in \mathrm{I}_{b}\left(m_{j}\right)\right\}(b=h, c \text {; and } b=a \text { for } n=2) .
\end{align*}
$$

Then, Lemma 2.2(ii) implies the following
(2.3.4) $\phi \theta=\mathrm{id}$, and the restrictions of ϕ and θ give $u s$ the multiplicative bijection

$$
\phi:\left[X, m_{X} ; X, m_{X}\right]_{\mathrm{H}} \cong \mathrm{HM}\left\{m_{k}\right\} \cap \mathrm{I}_{h} \mathrm{M}\left\{m_{k}\right\} \quad \text { with } \phi^{-1}=\theta .
$$

In fact, let $f \in\left[X, m_{X} ; X, m_{X}\right]_{\mathbf{H}}$. Then $p_{j} f=p_{j} \theta \phi(f)=\bar{m}_{j}\left(\prod_{l} p_{j} f i_{l}\right)$,

$$
p_{j} f g i_{k}=\bar{m}_{j}\left(\Pi_{l} p_{j} f i_{l} p_{l} g i_{k}\right) \Delta \text { and so } \phi(f g)=\phi(f) \phi(g)(g \in[X, X])
$$

by the definition of the multiplication in (2.3.1). Therefore, we have the isomorphism
(2.3.5) $\phi: \mathrm{HE}\left(X, m_{X}\right) \cong \operatorname{HGL}\left\{m_{k}\right\} \cap \mathrm{I}_{h} \mathrm{M}\left\{m_{k}\right\}$ of the group in (1.3.2), where HGL $\left\{m_{k}\right\}=\left\{\right.$ invertible matrices in HM $\left.\left\{m_{k}\right\}\right\} \quad$ (cf. [12; Th. 3.8]).

By using the sets in (1.1.4), we define the following subsets of $\mathrm{HM}\left\{m_{k}\right\}$:

$$
\begin{align*}
& \text { 6) } \quad \mathrm{HM}=\left\{\left(a_{j k}\right) \mid a_{j k} \in\left[X_{k}, X_{j}\right]_{\mathrm{H}}(k \neq j), a_{k k} \in \operatorname{HMap}\left(X_{k}\right)\right\}=\cap \mathrm{HM}\left\{m_{k}^{\prime}\right\} \tag{2.3.6}\\
& \supset \mathrm{HGL}=\mathrm{HGL}\left\{m_{k}\right\} \cap \mathrm{HM}=\{\text { invertible ones in } \mathrm{HM}\}=\cap \mathrm{HGL}\left\{m_{k}^{\prime}\right\},
\end{align*}
$$

where the intersections are taken over all multiplications $m_{k}^{\prime} \in \mathrm{M}\left(X_{k}\right)(1 \leqq k \leqq n)$. Then (2.3.5) and Lemma 2.2 imply the following theorem on the group

$$
\begin{equation*}
\operatorname{HE}(X)=\mathrm{HE}\left(X, m_{X}\right) \cap \operatorname{IE}(X) \quad \text { (see Proposition 1.4): } \tag{2.3.7}
\end{equation*}
$$

Theorem 2.4. Let $X=\prod_{k=1}^{n} X_{k}$ be a product H-space in (2.1.1) of H-spaces $\left(X_{k}, m_{k}\right)$.
(i) Then the restrictions of ϕ and θ in (2.3.2) give us the isomorphism

$$
\begin{aligned}
\phi: \mathrm{HE}(X) & \cong \mathrm{HGL}\left\{m_{k}\right\} \cap \mathrm{I}_{h} \mathrm{M}\left\{m_{k}\right\} \cap \phi \mathrm{IE}(X) \\
& =\mathrm{HGL} \cap \mathrm{I}_{h} \mathrm{M}\left\{m_{k}\right\} \cap \phi \mathrm{IE}(X) \quad \text { with } \phi^{-1}=\theta .
\end{aligned}
$$

(ii) $\phi \mathrm{HE}(X)=\mathrm{HGL} \cap \phi \operatorname{IE}(X)$ if each m_{k} is homotopy associative.
(iii) $\phi \mathrm{HE}(X)=\operatorname{HGL} \cap \mathrm{I}_{a} \mathrm{M}\left\{m_{k}\right\} \cap \phi \operatorname{IE}(X)$ if $n=2$.

Proof. It is sufficient to show that if $h \in \operatorname{IE}(X)$, then $\phi(h)=\left(p_{j} h i_{k}\right) \in$ $\mathrm{I}_{c} \mathrm{M}\left\{m_{k}\right\}$, which is shown by definition (1.3.4-5) as follows:

$$
c\left(m_{j}\right)\left(p_{j} h i_{k} \wedge p_{j} h i_{l}\right)=p_{j} c\left(m_{X}\right)(h \wedge h)\left(i_{k} \wedge i_{l}\right)=p_{j} h c\left(m_{X}\right)\left(i_{k} \wedge i_{l}\right)=0(k<l) .
$$

q. e.d.

Example 2.5. (i) Let Y be a 2-connected H-space. Then,

$$
\operatorname{HE}\left(S^{1} \times Y\right) \cong\left\{(\varepsilon, h) \mid \varepsilon= \pm 1 \in Z_{2}=\operatorname{HE}\left(S^{1}\right), h \in \operatorname{HE}(Y)\right.
$$

with the following (2.5.1) $\}$:

$$
\begin{array}{ll}
(\varepsilon \wedge h)^{*}=h_{*} \text { on }\left[S^{1} \wedge Y, Y\right], & (\varepsilon \wedge h \wedge h)^{*}=h_{*} \text { on }\left[S^{1} \wedge Y \wedge Y, Y\right], \tag{2.5.1}\\
(1 \wedge h)^{*}=h_{*} \text { on }\left[S^{2} \wedge Y, Y\right], & (1 \wedge h \wedge h)^{*}=h_{*} \text { on }\left[S^{2} \wedge Y \wedge Y, Y\right] .
\end{array}
$$

In particular, $\operatorname{HE}\left(S^{1} \times S^{n}\right)=Z_{2}$ for $n=3,7([12 ; T h .4 .3])$.
(ii) For the Eilenberg-MacLane spaces $K(G, k)$ and $K(H, l)$ with $k<l$ and abelian groups G and H,

HE $(K(G, k) \times K(H, l)) \cong P H^{l}(G, k ; H) \times{ }_{s} D($ the semi-direct product $)$,
where $P H^{l}(G, k ; H)$ is the subgroup of all primitive elements in $H^{l}(G, k ; H)$,
$D=\left\{(g, h) \in\right.$ aut $G \times$ aut $H \mid(g \wedge g)^{*}=h_{*}$ on $\left.H^{l}(K(G, k) \wedge K(G, k) ; H)\right\}$,
and s is given by $\alpha s(g, h)=h^{-1} \alpha g$ for $\alpha \in P H^{l}(G, k ; H)$ and $(g, h) \in D$.
Proof. (i) Since $\left[S^{1}, Y\right]=0=\left[Y, S^{1}\right]$ by assumption, we have $H G L=$ $\operatorname{HE}\left(S^{1}\right) \times \operatorname{HE}(Y)$ and $\mathrm{HE}(X) \cong \mathrm{HGL} \cap \phi \operatorname{IE}(X)$ for $X=S^{1} \times Y$ by Theorem 2.4(iii). (2.5.1) for $(\varepsilon, h) \in \operatorname{HE}\left(S^{1}\right) \times \operatorname{HE}(Y)$ means $\varepsilon \times h \in \operatorname{IE}(X)$ by definition, since $[X \wedge X, X]=[X \wedge X, Y]$ can be identified with $\prod_{\delta}\left[\wedge_{\delta_{i}=1} Y_{i}, Y\right]$ ($\delta=$ $\left(\delta_{1}, \ldots, \delta_{4}\right) \in\{0,1\}^{4}, \delta_{1}+\delta_{2} \neq 0 \neq \delta_{3}+\delta_{4}, Y_{1}=Y_{3}=S^{1}, Y_{2}=Y_{4}=Y$).
(iii) Since $[K(H, l), K(G, k)]=0(l>k)$ and $[K(G, k), K(H, l)]_{\mathrm{H}}=P H^{l}(G$, $k ; H)$, we have HGL $=P H^{l}(G, k ; H) \times s($ aut $G \times$ aut $H)$ and $\mathrm{HE}(X) \cong \mathrm{HGL} \cap$ $\phi \operatorname{IE}(X)$ for $X=K(G, k) \times K(H, l)$. Since $\quad[X \wedge X, X]=H^{l}(K(G, k) \wedge K(G$, $k) ; H$), we see that $(x,(1,1)) \in \phi \operatorname{IE}(X)$ for any $x \in P H^{l}(G, k ; H)$ and that $(0,(g, h)) \in \phi \operatorname{IE}(X)(g \in$ aut $G, h \in$ aut $H)$ if and only if $(g, h) \in D$. q.e.d.

Theorem 2.6. Let a simply connected CW-complex X be an H-space of rank 2. Then $\mathrm{HE}(X)$ is trivial unless X is homotopy equivalent to $S^{l} \times S^{l}(l=3,7)$, and

$$
\operatorname{HE}\left(S^{l} \times S^{l}\right) \cong H=\left\{\left(a_{i j}\right) \mid a_{i j} \in Z(1 \leqq i, j \leqq 2), \operatorname{det}\left(a_{i j}\right)=1, a_{i j} \equiv \delta_{i j} \bmod 2 k_{l}\right\}
$$

for $l=3,7$ by the isomorphism ϕ in Theorem 2.4, where $k_{3}=12$ and $k_{7}=120$.
Proof. In the first case, $\operatorname{HE}(X, m)=1$ for some or any m by [7], [8; Th. 4.1] and [13; Th. 5.8]. Let m be the usual multiplication on $S^{l}(l=3,7)$. Then, by [6; p. 176], [16], [13; p. 325] and [2; Prop. D], we have
(2.6.1) $\quad \pi_{2 l}\left(S^{l}\right)=Z_{k_{l}}$ generated by $c(m)$ and $k_{l} \pi_{r l}\left(S^{l}\right)=0(r=2,3,4)$,

$$
\begin{equation*}
\left[S^{l}, m ; S^{l}, m\right]_{\mathrm{H}}=\left\{n \in Z \mid n^{2} \equiv n \bmod 2 k_{l}\right\} . \tag{2.6.2}
\end{equation*}
$$

Thus, for $X=S^{l} \times S^{l}$ and $Y=S^{l}, \mathrm{I}_{c}(m)=\left\{\left(n_{1}, n_{2}\right) \mid n_{1} n_{2} \equiv 0 \bmod k_{l}\right\}, \mathrm{H}\left\{m_{k} ; m\right\} \cap$ $\mathrm{I}_{c}(m) \subset \mathrm{I}_{a}(m)\left(m_{1}=m_{2}=m\right)$ in (2.1.8) by (2.6.1-2) and so $\operatorname{HE}\left(X, m_{X}\right)$ is isomorphic to

$$
\begin{align*}
& \left\{\left(a_{i j}\right) \mid \operatorname{det}\left(a_{i j}\right)= \pm 1, a_{i j}^{2} \equiv a_{i j} \bmod 2 k_{l}, a_{i 1} a_{i 2} \equiv 0 \bmod k_{l}\right\} \tag{2.6.3}\\
& \quad=H \cup\left\{\left(a_{i j}\right) \mid \operatorname{det}\left(a_{i j}\right)=-1, a_{i j} \equiv 1-\delta_{i j} \bmod 2 k_{l}\right\}
\end{align*}
$$

by (2.3.5) and Lemma 2.2 (iii) (cf. [12; Ex. 3.10]). Also, $\mathrm{O}\left[S^{l}, S^{l}\right]=\{n \mid n \equiv 0$ $\left.\bmod k_{l}\right\}$ and so $\left[S^{l}, S^{l}\right]_{\mathrm{H}}=\left\{n \mid n \equiv 0 \bmod 2 k_{l}\right\}$ by Lemma 1.2(i). Therefore, we see that
(2.6.4) HGL in (2.3.6) for $X=S^{l} \times S^{l}$ is contained in H.

Now, we see $\phi: \operatorname{HE}(X) \cong H$ by Theorem 2.4(i), (2.6.3-4) and the following

$$
\begin{align*}
& h=\theta\left(a_{i j}\right) \text { for }\left(a_{i j}\right) \in H \text { satisfies } \tag{2.6.5}\\
& \quad(h \wedge h)^{*}=\mathrm{id}=h_{*}:[X \wedge X, X] \longrightarrow[X \wedge X, X],
\end{align*}
$$

because this shows $h \in \operatorname{IE}(X)$. To prove (2.6.5), consider the exact sequence

$$
0 \longrightarrow\left[S^{2 l} \wedge X, S^{l}\right] \xrightarrow{(\pi \wedge 1)^{*}}\left[X \wedge X, S^{l}\right] \longrightarrow\left[\left(S^{l} \vee S^{l}\right) \wedge X, S^{l}\right] \longrightarrow 0
$$

and take any $\alpha \in\left[X \wedge X, S^{l}\right]$. Then, by the sum + induced by \bar{m}, we have
(2.6.6) $\alpha=\alpha\left(i_{1} p_{1} \wedge 1\right)+\alpha\left(i_{2} p_{2} \wedge 1\right)+\omega(\pi \wedge 1)$ for some $\omega \in\left[S^{2 l} \wedge X, S^{l}\right]$.

Consider $h=\theta\left(a_{i j}\right)$ with $p_{j} h=m \tilde{a}_{j}, \tilde{a}_{j}=a_{j 1} \times a_{j 2}$, for $\left(a_{i j}\right) \in H$. Then, by (2.6.6) and (2.6.2),

$$
\alpha\left(\tilde{a}_{j} \wedge 1\right)=\alpha\left(i_{1} a_{j 1} p_{1} \wedge 1\right)+\alpha\left(i_{2} a_{j 2} p_{2} \wedge 1\right)+\omega\left(\left(a_{j 1} \wedge a_{j 2}\right) \pi \wedge 1\right)=\alpha\left(i_{j} p_{j} \wedge 1\right),
$$

since $\quad a_{i j} \equiv \delta_{i j} \bmod 2 k_{l}$. Hence $\beta\left(p_{j} h \wedge 1\right)=\beta\left(m i_{j} p_{j} \wedge 1\right)=\beta\left(p_{j} \wedge 1\right)\left(\beta \in\left[S^{l} \wedge X\right.\right.$, $\left.S^{l}\right]$). Also $\pi h=\pi$ on $\left[X, S^{2 l}\right]$ since $\operatorname{det}\left(a_{i j}\right)=1$. Therefore, by (2.6.6), we have

$$
\begin{aligned}
\alpha(h \wedge 1)=\alpha\left(i_{1} p_{1} h \wedge 1\right)+\alpha\left(i_{2} p_{2} h \wedge 1\right)+\omega(& \pi h \wedge 1)=\alpha, \text { i.e. } \\
& (h \wedge 1)^{*}=\text { id on }\left[X \wedge X, S^{l}\right] .
\end{aligned}
$$

Similarly $(1 \wedge h)^{*}=\mathrm{id}$ and so $(h \wedge h)^{*}=\mathrm{id}$ on $[X \wedge X, X]$. We can prove that $h_{*}=$ id by a similar way, considering $[, X]$ in addition to $\left[, S^{l}\right]$ and noticing that h is an H-map with respect to m_{X} by (2.6.3). Thus we see (2.6.5).
q.e.d.

§3. Localizations of $S U(n)$ and $S p(n)$

The rest of this note is based on the following classical result due to J.-P. Serre:
(3.1.1) $\pi_{n+k}\left(S^{n} ; p\right)\left(n:\right.$ odd $\geqq 3, p$: odd prime) is 0 if $0<k<2 p-3$ and $Z_{p^{r}}$ $(r \geqq 1)$ if $k=2 p-3$.

We consider the case that X_{k} in Theorem 2.4 is the one in (1.6.5) stated as follows:
(3.1.2) Let p be a prime $\geqq 5$ and $N=\left(n_{1}, \ldots, n_{l}\right)$ be a sequence of odd integers with $1 \leqq n_{1}<\cdots<n_{l}$ and

$$
\pi_{n_{j}}\left(S^{n_{i}} ; p\right)=0\left(\text { e.g. } n_{j}-n_{i}<2 p-3 \text { by (3.1.1)) for any } i<j \text { with } n_{i}>1,\right.
$$

and consider the localizations and their product H-space

$$
S_{i}=S_{(p)}^{n_{i}} \text { in (1.6.5) and } S=S(N)=\prod_{i=1}^{l} S_{i} \text { in (2.1.1) }
$$

with multiplications $m_{i} \in \mathbf{M}\left(S_{i}\right)$ and $m=\left(\Pi m_{i}\right) T \in M(S)$, respectively, where
(3.1.3) m_{i} is taken to be homotopy commutative and homotopy associative by [1].

Then $\left[S_{j}, S_{i}\right]=0(i \neq j)$, and (2.3.2-5) and Theorem 2.4(ii) imply the following
(3.1.4) $\operatorname{HE}(S, m) \cong \operatorname{HGL}\left\{m_{i}\right\}=\prod_{i=1}^{l} \operatorname{HE}\left(S_{i}, m_{i}\right)=\left(Z_{(p)}^{*}\right)^{l} \quad$ (see (1.6.6)), $\operatorname{HE}(S) \cong \mathrm{I}(N)=\operatorname{HGL}\left\{m_{i}\right\} \cap \phi \operatorname{IE}(S)(S=S(N))$,
and $a=\left(a_{1}, \ldots, a_{l}\right)\left(a_{i} \in \operatorname{HE}\left(S_{i}, m_{i}\right)=Z_{(p)}^{*}\right)$ belongs to $\phi \operatorname{IE}(S)$ if and only if
(3.1.5) $(\theta(a) \wedge \theta(a))^{*}=\theta(a)_{*}$ on $[S \wedge S, S]$ for $\theta(a)=\prod_{i} a_{i} \in \mathrm{E}(S)$.

Here, by (3.1.3), we can identify [$S \wedge S, S$] with the direct sum of

$$
\begin{align*}
{\left[S_{\delta}, S_{i}\right] } & =\pi_{N(\delta)}\left(S^{n_{i}}\right) \otimes Z_{(p)} \quad \text { for } \quad 1 \leqq i \leqq l \tag{3.1.6}\\
\delta & =\left(\delta_{1}, \ldots, \delta_{2 l}\right) \in\{0,1\}^{2 l} \quad \text { and } \quad \sum_{j=1}^{l} \delta_{j} \neq 0 \neq \sum_{j=1}^{l} \delta_{l+j},
\end{align*}
$$

where $S_{\delta}=\wedge_{\delta_{j}=1} S_{j}=S_{(p)}^{N(\delta)}\left(S_{l+j}=S_{j}\right)$ and $N(\delta)=\sum_{j=1}^{l} \varepsilon_{j} n_{j}\left(\varepsilon_{j}=\delta_{j}+\delta_{l+j}\right)$; and by (1.7.2), we can identify $(\theta(a) \wedge \theta(a))^{*}\left(\right.$ resp. $\left.\theta(a)_{*}\right)$ with the multiplication by the element
(3.1.7) $a(\delta)=\prod_{i=1}^{l} a_{i}^{\varepsilon_{i}} \quad\left(\right.$ resp. $\left.a_{i}\right)$ in $Z_{(p)}^{*}$ on each summand $\pi_{N(\delta)}\left(S^{n_{i}}\right) \otimes Z_{(p)}$.

Thus, we see the following theorem, where (ii) follows from (i) and $\pi_{n}\left(S^{n}\right) \otimes$ $Z_{(p)}=Z_{(p)}$.

Theorem 3.2. Let $S(N)$ be a product H-space in (3.1.2). Then:
(i) $\mathrm{HE}(\mathrm{S}(N)) \cong \mathrm{I}(N) \subset\left(\mathrm{Z}_{(p)}^{*}\right)^{l}\left(\mathrm{Z}_{(p)}^{*}\right.$ is the group given in (1.6.3)), and the subgroup $\mathrm{I}(N)$ consists of all $a=\left(a_{1}, \ldots, a_{l}\right) \in\left(Z_{(p)}^{*}\right)^{l}$ satisfying (3.2.1) $a(\varepsilon) \cdot \alpha=a_{i} \cdot \alpha$ in $\pi(\varepsilon, i)=\pi_{N(\varepsilon)}\left(S^{n_{i}}\right) \otimes Z_{(p)}$ for any $\quad \alpha \in \pi(\varepsilon, i)$, for each $1 \leqq i \leqq l$ and each $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{0,1,2\}^{l}$, where

$$
\begin{equation*}
a(\varepsilon)=\prod_{j=1}^{l} a_{j}^{\varepsilon_{j}} \in Z_{(p)}^{*} \quad \text { and } \quad N(\varepsilon)=\sum_{j=1}^{l} \varepsilon_{j} n_{j} . \tag{3.2.2}
\end{equation*}
$$

(ii) If $\pi(\varepsilon, i)=\pi_{N(\varepsilon)}\left(S^{n_{i}} ; p\right)=0$ for any i and ε with $N(\varepsilon)>n_{i}$, e.g., if $2 \sum_{j} n_{j}$ $<n_{i}+2 p-3$ for $n_{i}>1$ by (3.1.1), in addition, then
(3.2.3) $\quad \mathrm{I}(N)=\left\{\left(a_{1}, \ldots, a_{l}\right) \in\left(Z_{(p)}^{*}\right)^{\prime} \mid a_{i}=a(\varepsilon)\right.$ in $Z_{(p)}^{*}$ if $\left.n_{i}=N(\varepsilon)\right\}$.

Now, we consider the special unitary group or the symplectic group by

$$
\begin{array}{r}
\text { putting }(G(l), g)=(S U(l+1), 1) \text { or }(S p(l), 2) \tag{3.3.1}\\
\text { and taking a prime } p>\max \{g l, 4\} .
\end{array}
$$

Then, the localization $G(l)_{(p)}$ of $G(l)$ at p is homotopy equivalent (\simeq) to $S U(l)_{(p)} \times S_{(p)}^{2 l+1} \simeq \prod_{i=1}^{l} S_{(p)}^{2 i+1}$ or $S p(l-1)_{(p)} \times S_{(p)}^{4 l-1} \simeq \prod_{i=1}^{l} S_{(p)}^{4 i-1}$, respectively, (cf. Lemma 4.3 below); and so Theorem 3.2 implies that

$$
\begin{align*}
& \operatorname{HE}\left(G(l)_{(p)}\right) \cong \operatorname{HE}\left(S\left(N_{l}\right)\right) \cong \mathrm{I}\left(N_{l}\right) \tag{3.3.2}\\
& \quad \text { for } N_{l}=\left(n_{1}, \ldots, n_{l}\right) \text { with } n_{i}=2 g i-(-1)^{g}(1 \leqq i \leqq l),
\end{align*}
$$

since $n_{l}-n_{1}=2 g(l-1)<2 p-3$ by (3.3.1).
Corollary 3.4. (i) $\mathrm{HE}\left(S U(l+1)_{(p)}\right) \subset \mathrm{HE}\left(S U(l)_{(p)}\right) \subset \mathrm{HE}\left(S U(5)_{(p)}\right) \subset$ $\left(Z_{(p)}^{*}\right)^{4}$ if $p>l \geqq 5$. If $p>l(l+2)$, then $\mathrm{HE}\left(\mathrm{SU}(l+1)_{(p)}\right)$ is isomorphic to

$$
Z_{(p)}^{*}(l \geqq 8), \quad\left(Z_{(p)}^{*}\right)^{9-l}(7 \geqq l \geqq 5), \quad\left(Z_{(p)}^{*}\right)^{l}(4 \geqq l \geqq 1) .
$$

(ii) $\quad \mathrm{HE}\left(S p\left(l_{(p)}\right) \subset \mathrm{HE}\left(S_{p}(l-1)_{(p)}\right) \subset \mathrm{HE}\left(S p(7)_{(p)}\right) \subset\left(Z_{(p)}^{*}\right)^{7}\right.$
if $p / 2>l \geqq 8$. If $p>l(2 l+1)$, then $\mathrm{HE}\left(S p()_{(p)}\right)$ is isomorphic to
$Z_{(p)}^{*}(l \geqq 13), \quad\left(Z_{(p)}^{*}\right)^{14-l}(12 \geqq l \geqq 10), \quad\left(Z_{(p)}^{*}\right)^{15-l}(l=9,8), \quad\left(Z_{(p)}^{*}\right)^{l}(7 \geqq l \geqq 1)$.
Proof. Take $a=\left(a_{1}, \ldots, a_{l}\right) \in \mathrm{I}\left(N_{l}\right)$ for N_{l} in (3.3.2). Then, since $n_{l}=$ $2 \cdot 3+2 l-5(g=1),=2(3+7)+4 l-21(g=2)$, the definition of $\mathrm{I}(N)$ in (3.2.1-2) shows that

$$
\begin{aligned}
a_{l}=a_{1}^{2} a_{l-3}(g=1, l \geqq 5),= & a_{1}^{2} a_{2}^{2} a_{l-5}(g=2, l \geqq 8), \\
& \text { and } \quad a^{\prime}=\left(a_{1}, \ldots, a_{l-1}\right) \in \mathrm{I}\left(N_{l-1}\right) ;
\end{aligned}
$$

and so $\mathrm{I}\left(N_{l}\right) \subset \mathrm{I}\left(N_{l-1}\right)$ by sending a to a^{\prime}. Thus, the first halves in (i) and (ii) hold.

Assume that $p>l\left(g l+g-(-1)^{g}\right)=\sum_{i} n_{i}$. Then $2 \sum_{i} n_{i}<n_{1}+2 p-3$ and so
(3.4.1) $\mathrm{I}\left(N_{l}\right)$ is given by (3.2.3) for $N=N_{l}$, and $\left(q^{n_{1}}, \ldots, q^{n_{1}}\right) \in \mathrm{I}\left(N_{l}\right)$ for any $q \in Z_{(p)}^{*}$,
by Theorem 3.2(ii). This shows the second halves arithmetically as follows.
(i) Let $g=1$ and $n_{i}=2 i+1$. Then the conditions for $\left(a_{1}, \ldots, a_{l}\right) \in \mathrm{I}\left(N_{l}\right)$ in (3.2.3) are nothing when $l \leqq 4$, and so $\mathrm{I}\left(N_{l}\right)=\left(Z_{(p)}^{*}\right)^{l}$. They consist of $a_{5}=a_{1}^{2} a_{2}$ when $l=5$, and

$$
a_{i}=a_{1}^{2} a_{i-3}(5 \leqq i \leqq l) \quad \text { and } a_{i}=a_{1} a_{2} a_{i-4}(6 \leqq i \leqq l) \quad \text { when } l=6,7 ;
$$

and so $\mathrm{I}\left(N_{5}\right) \cong\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right\}, \mathrm{I}\left(N_{6}\right) \cong\left\{\left(a_{1}, a_{2}, a_{4}\right)\right\}$ and $\mathrm{I}\left(N_{7}\right) \cong\left\{\left(a_{1}, a_{2}\right)\right\}$. Also, they contain $a_{8}=a_{1}^{2} a_{5}=a_{1} a_{2} a_{4}$ when $l=8$, and so $\mathrm{I}\left(N_{8}\right) \subset\left\{a_{1}\right\}$, which shows $\mathrm{I}\left(N_{l}\right) \cong Z_{(p)}^{*}$ for $l \geqq 8$ by the second half of (3.4.1) and the first half.
(ii) Let $g=2$ and $n_{i}=4 i-1$. Then the conditions for $\left(a_{1}, \ldots, a_{l}\right) \in \mathrm{I}\left(N_{l}\right)$ are nothing when $l \leqq 7$, and so $\mathrm{I}\left(N_{l}\right)=\left(Z_{(p)}^{*}\right)^{l}$. They consist of $a_{8}=a_{1}^{2} a_{2}^{2} a_{3}$ when $l=8$, and

$$
\begin{aligned}
a_{i} & =a_{1}^{2} a_{2}^{2} a_{i-5}(8 \leqq i \leqq l),=a_{1}^{2} a_{2} a_{3} a_{i-6}(9 \leqq i \leqq l),=a_{1} a_{2}^{2} a_{3} a_{i-7}(10 \leqq i \leqq l), \\
& =a_{1}^{2} a_{2} a_{4} a_{i-7}=a_{1}^{2} a_{3}^{2} a_{i-7}(11 \leqq i \leqq l),=a_{1} a_{2}^{2} a_{4}^{2}=a_{1} a_{2} a_{3}^{2} a_{4}(i=l=12)
\end{aligned}
$$

when $9 \leqq l \leqq 12$; and so $\mathrm{I}\left(N_{8}\right) \cong\left\{\left(a_{1}, \ldots, a_{7}\right)\right\}, \mathrm{I}\left(N_{9}\right) \cong\left\{\left(a_{1}, a_{2}, a_{3}, a_{5}, a_{6}, a_{7}\right)\right\}$, $\mathrm{I}\left(N_{10}\right) \cong\left\{\left(a_{1}, a_{2}, a_{6}, a_{7}\right)\right\}, \mathrm{I}\left(N_{11}\right) \cong\left\{\left(a_{1}, a_{2}, a_{7}\right)\right\}$ and $\mathrm{I}\left(N_{12}\right) \cong\left\{\left(a_{1}, a_{2}\right)\right\}$. Also they contain $a_{13}=a_{1}^{2} a_{2}^{2} a_{8}=a_{1}^{2} a_{2} a_{3} a_{7}$ when $l=13$, and so $\mathrm{I}\left(N_{13}\right) \subset\left\{a_{1}\right\}$ which shows $\mathrm{I}\left(N_{l}\right) \cong Z_{(p)}^{*}$ for $l \geqq 13$ by (3.4.1) and the first half. q.e.d.

Here, we remark on the rationalization $X_{(0)}$ of X. For the n-sphere S^{n} (n : odd), we have

$$
S_{(0)}^{n}=K(Q, n), \mathrm{E}\left(S_{(0)}^{n}\right)=\operatorname{aut} Q=Q^{*}(=Q-\{0\}: \text { the group of all units of } Q) ;
$$

and $\left[S_{(0)}^{n^{\prime}}, S_{(0)}^{n}\right]=\pi_{n^{\prime}}\left(S_{(0)}^{n}\right)=0$ if $n \neq n^{\prime},=Q$ if $n=n^{\prime}$. Thus, in the same way as Theorem 3.2 and Corollary 3.4, we see the following

Proposition 3.5. (i) For a sequence $1 \leqq n_{1}<\cdots<n_{l}$ of odd integers,

$$
\mathrm{HE}\left(\prod_{i=1}^{l} K\left(Q, n_{i}\right)\right) \cong \mathrm{I}(N) \subset\left(Q^{*}\right)^{l}
$$

where $\mathrm{I}(N)\left(N=\left(n_{1}, \ldots, n_{l}\right)\right)$ is given by (3.2.3) using Q^{*} instead of $Z_{(p)}^{*}$.
(ii) For the rationalizations $S U(l+1)_{(0)}$ and $S p(l)_{(0)}$, the conclusions of Corollary 3.4 also hold by putting $p=0$ and $Z_{(0)}^{*}=Q^{*}$.

In connection with Corollary 3.4, we note furthermore the following
Example 3.6. (i) $\mathrm{HE}\left(\mathrm{SU}(5)_{(p)}\right)$ is isomorphic to $\left(Z_{(p)}^{*}\right)^{4}$ if $p>23$, $\left\{a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{2} \equiv 1 \bmod 23\right\}$ if $p=23, \quad\left\{a_{1} a_{3} \equiv a_{2}^{2}\right.$ and $\left.a_{1} \equiv a_{2}^{4} a_{4}^{2} \bmod 19\right\}$ if $p=19$, $\left\{a_{i} \equiv q^{7+i} \bmod 17(1 \leqq i \leqq 4)\right.$ for some $\left.q \in Z_{(17)}^{*}\right\}$ if $p=17, \quad\left(U_{p}\right)^{4}$ if $13 \geqq p \geqq 7$, $\left\{a_{i} \in U_{5}(1 \leqq i \leqq 4), a_{1} a_{3} \equiv a_{2}^{2} \equiv a_{4}\right.$ and $\left.a_{4}^{2} \equiv 1 \bmod 25\right\}$ if $p=5$, where $\left\}\right.$ consists of all $\left(a_{1}, \ldots, a_{4}\right) \in\left(Z_{(p)}^{*}\right)^{4}$ with the relations contained in $\}$, (3.6.1) $U_{p}=1+p Z_{(p)}=\left\{q \in Z_{(p)}^{*} \mid q \equiv 1 \bmod p\right\}$ is the group in (1.6.7), and
(3.6.2) $\quad q_{1} \equiv q_{2} \bmod p^{r}\left(q_{k}=s_{k} / t_{k} \in Z_{(p)}^{*}\right)$ means $s_{1} t_{2} \equiv s_{2} t_{1} \bmod p^{r}(r \geqq 1)$.
(ii) $\mathrm{HE}\left(\mathrm{Sp}(7)_{(p)}\right)$ is isomorphic to $\left(Z_{(p)}^{*}\right)^{7}$ if $p>103$,
$\left\{a_{j} \equiv \prod_{i=1}^{7} a_{i}^{2} \bmod p\right\}(2 j=107-p) \quad$ if $103 \geqq p \geqq 97$, $\left\{a_{i} \equiv a_{1}^{2-i} a_{2}^{i-1}(1 \leqq i \leqq 5)\right.$ and $\left.a_{1}^{10} \equiv a_{2}^{15} a_{6}^{2} a_{7}^{2} \bmod 89\right\}$ if $p=89$, $\left\{a_{i} \equiv a_{1}^{2-i} a_{2}^{i-1}(1 \leqq i \leqq 7)\right.$ and $\left.a_{1}^{k} \equiv a_{2}^{k+9} \bmod p\right\}(2 k=p-33) \quad$ if $83 \geqq p \geqq 71$, and $\left(U_{p}\right)^{7}$ if $67 \geqq p \geqq 17$, where $\left\}\right.$ consists of all $\left(a_{1}, \ldots, a_{7}\right) \in\left(Z_{(p)}^{*}\right)^{7}$ with the relations in $\}$.

Proof. (i) for $p>23$ and (ii) for $p>103$ are in Corollary 3.4.
Consider (3.2.1) for $N=N_{l}=\left(n_{1}, \ldots, n_{l}\right)$ and a prime p with

$$
\begin{array}{lll}
l=4, n_{i}=2 i+1 & \text { and } & 5 \leqq p \leqq 23, \quad \text { or } \tag{3.6.3}\\
l=7, n_{i}=4 i-1 & \text { and } & 17 \leqq p \leqq 103 .
\end{array}
$$

Then $N_{l}(\varepsilon)=\sum_{j} \varepsilon_{j} n_{j} \leqq 2 \sum_{j} n_{j}=48$ or 210 for any $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{0,1,2\}^{l}$ and $N_{l}(\varepsilon) \neq n_{i}$ except for the trivial case $\varepsilon_{i}=1$ and $\varepsilon_{j}=0(j \neq i)$. Also, by Toda [16; Th. 13.4],
(3.6.4) $\pi(\varepsilon, i)=\pi_{N_{l}(\varepsilon)}\left(S^{n_{i}} ; p\right)\left(0<N_{l}(\varepsilon)-n_{i}<2 p(p-1)-2\right)$ is 0 except for

$$
\begin{equation*}
Z_{p} \text { if } N_{l}(\varepsilon)-n_{i}=2 k(p-1)-1(1 \leqq k<p) \text { or } 2 k(p-1)-2\left(n_{i} / 2<k<p\right) \tag{3.6.5}
\end{equation*}
$$

Further (3.6.2) is equivalent to hold $q_{1} \cdot \alpha=q_{2} \cdot \alpha$ in $Z_{p^{r}}$ for any $\alpha \in Z_{p^{r}}$. Thus,

$$
\begin{align*}
& \mathrm{I}\left(N_{l}\right)=\left\{\left(a_{1}, \ldots, a_{l}\right) \in\left(Z_{(p)}^{*}\right){ }^{l} \mid\right. \tag{3.6.6}\\
& \left.\quad a_{i} \equiv \prod_{j=1}^{l} a_{j}^{\varepsilon_{j}} \bmod p \text { if }(3.6 .5) \text { holds }\right\} \text { for } p \geqq 7 .
\end{align*}
$$

This and (3.3.2) imply the results for $p \geqq 7$ as follows, where \equiv denotes $\equiv \bmod p$.
(i) The case $l=4$ and $n_{j}=2 j+1$: Let $p=23,19$ or 17. Then (3.6.5) holds when and only when $N_{4}(\varepsilon)=48$ and $i=2, N_{4}(\varepsilon)=35+n_{i}$ and $i \leqq 3$, or $N_{4}(\varepsilon)=$ $31+n_{i}$, respectively; and so the condition in (3.6.6) consists of $a_{2} \equiv \tilde{a}\left(=\prod_{j=1}^{4} a_{j}^{2}\right)$ if $p=23$,

$$
\begin{aligned}
& a_{i} \equiv \tilde{a}\left(a_{1} a_{4-i}\right)^{-1}(1 \leqq i \leqq 3) \text { and } a_{1} \equiv \tilde{a} a_{2}^{-2} \\
& \qquad \quad\left(\Leftrightarrow a_{1} a_{3} \equiv a_{2}^{2} \text { and } a_{1} \equiv a_{2}^{4} a_{4}^{2}\right) \text { if } p=19, \\
& a_{i} \equiv \tilde{a}\left(a_{1} a_{6-i}\right)^{-1}(2 \leqq i \leqq 4), a_{i} \equiv \tilde{a}\left(a_{2} a_{5-i}\right)^{-1}(1 \leqq i \leqq 3) \text { and } a_{1} \equiv \tilde{a} a_{3}^{-2}
\end{aligned}
$$

if $p=17$. The relations for $p=17$ are equivalent to

$$
\begin{equation*}
a_{i} \equiv a_{i-1} q \equiv a_{1} q^{i-1}(2 \leqq i \leqq l) \quad \text { for some } q \in Z_{(p)}^{*} \tag{3.6.7}
\end{equation*}
$$

and the last one $a_{1}^{5} q^{8} \equiv 1$, which implies $a_{1} \equiv q^{8}$ by Fermat's theorem $q^{p-1} \equiv 1$.
Let $p=13$ or 7 . Then we can take $\left(N_{4}(\varepsilon), i\right)=(26,1)$ or $(32,4)$ in $(3.6 .5)$, and so

$$
a_{1} \equiv a_{1} a_{2} a_{4}^{2} \equiv a_{1} a_{3}^{2} a_{4} \equiv a_{2}^{2} a_{3} a_{4}, \text { which imply (3.6.7), and } a_{4} \equiv \tilde{a}\left(a_{3} a_{4}\right)^{-1}
$$

are in the condition in (3.6.6). These imply $a_{1}^{3} q^{7} \equiv 1 \equiv a_{1}^{5} q^{4}$ and so $q \equiv a_{i} \equiv 1$ $(1 \leqq i \leqq 4)$ since $q^{12} \equiv 1$. If $p=11$, then for $\left(N_{4}(\varepsilon), i\right)=(26,3)$ or $(42,1)$, we have similarly

$$
\begin{aligned}
& a_{3} \equiv a_{1} a_{2} a_{4}^{2},(3.6 .7) \text { and } a_{1} \equiv \tilde{a} a_{1}^{-2}, \quad \text { which imply } \\
& \qquad a_{1}^{3} q^{5} \equiv 1 \equiv a_{1}^{5} q^{12} \quad \text { and so } a_{i} \equiv 1(1 \leqq i \leqq 4)
\end{aligned}
$$

Thus $\mathrm{I}\left(N_{4}\right)=\left(U_{p}\right)^{4}$ for $13 \geqq p \geqq 7$, since $\left(U_{p}\right)^{4} \subset \mathrm{I}\left(N_{4}\right)$ is clear by (3.6.6).
(ii) The case $l=7$ and $n_{j}=4 j-1$: If $p=103,101$ or 97 , (3.6.5) holds when and only when $N_{7}(\varepsilon)=210$ and $i=(107-p) / 2$, and so the condition in (3.6.6) consists of $a_{i} \equiv \tilde{a}\left(=\prod_{j=1}^{7} a_{j}^{2}\right)$. If $p=89$, then we have $N_{7}(\varepsilon)=175+n_{i}=210-$ $\left(2 n_{1}+n_{2}+n_{6-i}\right)$ for $i \leqq 4$ in (3.6.5) and so

$$
\tilde{a} a_{i}^{-1} \equiv a_{1}^{2} a_{2} a_{6-i}(1 \leqq i \leqq 4), \equiv a_{1}^{2} a_{3} a_{5-i}(i=1,2), \equiv a_{1} a_{2} a_{3}^{2}(i=1) \text { in (3.6.6) }
$$

These are equivalent to $a_{i} \equiv a_{1} q^{i-1}(1 \leqq i \leqq 5)$ for some q and $a_{6}^{2} a_{7}^{2} a_{1}^{5} q^{15} \equiv 1$. If $p=83,79,73$ or 71 , then we have $N_{7}(\varepsilon)=2 p-3+n_{i}=210-\left(n_{1}+\tilde{n}+n_{j+1-i}\right)$ for $i \leqq j\left(j=6,7,7\right.$ or 7 , and $\tilde{n}=n_{2}+n_{3}, n_{2}+n_{4}, n_{3}+n_{6}$ or $n_{4}+n_{6}$, respectively) so that the condition in (3.6.6) is equivalent to (3.6.7) and $a_{1}^{13} q^{42} \equiv a_{1}^{4} q^{n}(2 n=99-p)$ ($\Leftrightarrow a_{1}^{9} q^{k+9} \equiv 1(2 k=p-33)$) similarly.

If $67 \geqq p \geqq 59$, then for $N_{7}(\varepsilon)=134$ and $i=j(=(69-p) / 2)$, we have $\tilde{a} a_{j}^{-1} \equiv$ $a_{1} a_{5} a_{7}^{2} \equiv a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4} a_{5}$ and (3.6.7), which imply $a_{1}^{9} q^{27-j} \equiv 1, a_{1}^{4} \equiv q^{3}$ and $a_{i} \equiv 1$ ($1 \leqq i \leqq 7$). If $53 \geqq p \geqq 17$, then we see $a_{i} \equiv 1(1 \leqq i \leqq 7)$ by taking ($\left.N_{7}(\varepsilon), i\right)$ to be

$$
\begin{aligned}
& (106, j),(110, j+1)(2 j=55-p) \text { for } 53 \geqq p \geqq 43 ; \\
& (86,2),(170,3) \text { for } p=41 ; \quad(86,4),(146,1) \text { for } p=37 ; \\
& (86,7),(121,1) \text { for } p=31 ;(58,1),(113,1) \text { for } p=29 ;
\end{aligned}
$$

and $(58, j),(54, j-1)(2 j=31-p)$ for $23 \geqq p \geqq 17$. Thus $\mathrm{I}\left(N_{7}\right)=\left(U_{p}\right)^{7}$ for $67 \geqq p \geqq 17$.

Finally, let $p=5, l=4$ and $n_{i}=2 i+1$. Then, in the same way as the case $p=13$ or 7 in (i), we see that the relations in (3.2.1) for $\pi(\varepsilon, i)=Z_{5}$ are equivalent to $a_{i} \equiv 1(1 \leqq i \leqq 4)$. On the other hand, by Toda [17; Th. 7.1-2],
(3.6.8) $\pi(\varepsilon, i)=\pi_{N_{4}(\varepsilon)}\left(S^{n_{i}} ; 5\right)\left(n_{i}<N_{4}(\varepsilon) \leqq 48\right)$ is Z_{25} if $\left(N_{4}(\varepsilon), n_{i}\right)=(43,5)$, $(45,7)$ or $(48,9)$, and Z_{5} or 0 otherwise.

Therefore, the relations in (3.2.1) for $\pi(\varepsilon, i)=Z_{25}$ consist of $a_{2} \equiv \tilde{a} a_{2}^{-1}, a_{3} \equiv \tilde{a} a_{1}^{-1}$ and $a_{4} \equiv \tilde{a} \bmod 25$, which are equivalent to $a_{1} a_{3} \equiv a_{2}^{2} \equiv a_{4}$ and $a_{4}^{2} \equiv 1 \bmod 25$ since $q^{20} \equiv 1 \bmod 25$.
q.e.d.

§4. $\operatorname{HE}(G)$ for $G=U(n), S U(n), S p(n)$

In this section, we prove the following
Theorem 4.1. Let G be the (special) unitary group $U(n)(n \geqq 3), S U(n)$ ($n \geqq 1$) or the symplectic group $\operatorname{Sp}(n)(n \geqq 1)$. Then, any $h \in \mathrm{HE}(G)$ satisfies the following (1) and (2):
(1) The localization $h_{(p)}: G_{(p)} \rightarrow G_{(p)}$ of h at a prime $p \geqq g n$ is homotopic to the identity map, where $g=1$ when $G=U(n)$ or $S U(n)$ and $g=2$ when $G=S p(n)$.
(2) $h^{*}=$ id on the integral cohomology group $H^{*}(G ; Z)$.

For example, when $n \geqq 3$, the complex conjugate C on $U(n)$ or $S U(n)$ satisfies $C^{*} \neq \mathrm{id}$, and so C is not an H-map with respect to some multiplication on $U(n)$ or $S U(n)$.

Corollary 4.2. The group $\operatorname{HE}(G)$ for G in Theorem 4.1 is finite and nilpotent.

Proof. If X is the k-skeleton of G for any k, then the group $[X, G]$ induced by the usual multiplication \bar{m} on G is nilpotent by [3]. Furthermore, we see by induction on k that this group is finitely generated, since so are the homotopy groups of G; and especially $[G, G]$ satisfies the maximal condition for subgroups. If $h \in \operatorname{HE}(G)$, then $1-h$ is of finite order in [G,G] by [5; Cor. 6.5], because $(1-h)_{(p)}=0$ for any $p \geqq g n$ by (1) of Theorem 4.1. Thus $\{1-h \mid h \in \operatorname{HE}(G)\}$ is contained in a finite subgroup of $[G, G]$; and so $\operatorname{HE}(G)$ is finite. (More generally,
so is $\operatorname{HE}(G, \bar{m})$ by [2; Th. C].) On the other hand, the kernel of the natural homomorphism $\mathrm{E}(G) \rightarrow$ aut $H_{*}(G ; Z)$ sending h to h_{*} is nilpotent by [18; Cor. 9.10] and [15]; and so is HE (G) by (2) of Theorem 4.1.
q.e.d.

To prove Theorem 4.1, we use the following notations as in (3.3.1-2) and (3.1.2):
(4.3.1) $G(l)=S U(l+1)$ or $S p(l)$, with usual multiplication $\bar{m}, \quad g=1$ or 2 , $N_{l}=\left(n_{1}, \ldots, n_{l}\right)$ with $n_{i}=2 g i-(-1)^{g}, \quad p$: a prime $>\max \{g l, 4\}$, $S_{i}=S_{(p)}^{n_{i}}, m_{i} \in \mathrm{M}\left(S_{i}\right)$ with (3.1.3), $\quad S\left(N_{l}\right)=\Pi S_{i}, m=\left(\prod m_{i}\right) T \in \mathrm{M}\left(S\left(N_{l}\right)\right)$.

Lemma 4.3. There exist a multiplication \tilde{m} on $G(l)$ and a homotopy equivalence
(4.3.2) e: $S\left(N_{l}\right) \simeq G(l)_{(p)}$ which is an H-map with respect to m and $\tilde{m}_{(p)}$, where $\tilde{m}_{(p)}$ is the multiplication on $G(l)_{(p)}$ induced from \tilde{m}.

Proof. The characteristic map $S^{n_{1}-1} \rightarrow G(l-1)$ of the principal bundle $G(l-1) \xrightarrow{j} G(l) \xrightarrow{q} S^{n_{1}}$ is proved by [4] to be of order ρ, where

$$
\rho=l!(g=1), \quad=(2 l-1)!(g=2, l \text { is odd }), \quad=2((2 l-1)!)(g=2, l \text { is even })
$$

Thus, we have the bundle map

$$
\tilde{\rho}: G(l-1) \times S^{n_{l}} \longrightarrow G(l) \quad \text { which covers } \rho=\rho \epsilon_{n_{l}}: S^{n_{l}} \longrightarrow S^{n_{l}}
$$

and these are p-equivalences since $p>g l$ and so $(\rho, p)=1$. Hence, a homotopy equivalence e in (4.3.2) can be defined inductively by

$$
\begin{equation*}
e=\tilde{\rho}_{(p)}\left(e \times \rho_{(p)}^{-1}\right): S\left(N_{l}\right)=S\left(N_{l-1}\right) \times S_{l} \rightarrow G(l-1)_{(p)} \times S_{l} \rightarrow G(l)_{(p)}, \tag{4.3.3}
\end{equation*}
$$

and we have the homotopy commutative diagram

where i is the inclusion, p is the projection and $f^{\prime}=f_{(p)}$ for $f=j$ or q.
On the other hand, for the generator $s_{l} \in H^{n_{l}}\left(S^{n_{l}} ; Z\right)$, we have
(4.3.5) $\quad H^{*}(G(l) ; Z)=\Lambda\left(x_{1}, \ldots, x_{l}\right)$ with $j^{*} x_{i}=x_{i}(i<l), x_{l}=q^{*} s_{l}$ and x_{i} $(1 \leqq i \leqq l)$ are primitive with respect to the usual multiplication \bar{m};
and by taking the localization $x^{\prime} \in H^{*}\left(X_{(p)} ; Z_{(p)}\right)$ of $x \in H^{*}(X ; Z)$,

$$
\begin{align*}
H^{*}\left(G(l)_{(p)}\right) & =\Lambda\left(x_{1}^{\prime}, \ldots, x_{l}^{\prime}\right) \text { with } j^{\prime *} x_{i}^{\prime}=x_{i}^{\prime}(i<l), x_{l}^{\prime}=q^{\prime *} s_{l}^{\prime}, \tag{4.3.6}\\
H^{*}\left(S\left(N_{l}\right)\right) & =\Lambda\left(y_{1}, \ldots, y_{l}\right) \text { with } i^{*} y_{i}=y_{i}(i<l), y_{l}=p^{*} s_{l}^{\prime},
\end{align*}
$$

and x_{i}^{\prime} and $y_{i}(1 \leqq i \leqq l)$ are primitive with respect to $\bar{m}_{(p)}$ and m in (4.3.1), respectively, where the coefficient ring is $Z_{(p)}$.

Then $y_{i}=e^{*} x_{i}^{\prime}(1 \leqq i \leqq l)$ by (4.3.4), and $x_{i}^{\prime}=e^{*-1} y_{i}$ are also primitive with respect to $m^{\prime}=e m\left(e^{-1} \times e^{-1}\right)$. Thus, by taking the rationalization $X_{(0)}=\left(X_{(p)}\right)_{(0)}$, the multiplications $\bar{m}_{(0)}$ and $m_{(0)}^{\prime}$ on $G(l)_{(0)}$, induced from $\bar{m}_{(p)}$ and m^{\prime}, respectively, give us the same Hopf algebra structure on $H^{*}\left(G\left(l_{(0)} ; Q\right)\right.$; and so $\bar{m}_{(0)}=m_{(0)}^{\prime}$.

Now, by [5; Cor. 5.13], we see immediately the following
(4.3.7) For a prime p, let \bar{p} denote the set of all primes $\neq p$, and consider also the localization $X_{\bar{p}}$ at \bar{p}. For a simple finite $C W$-complex X, assume that $X_{(p)}$ and $X_{\bar{p}}$ are H-spaces with multiplications m and m^{\prime}, respectively, and they induce the same one $m_{(0)}=m_{(0)}^{\prime}$ on $X_{(0)}=\left(X_{(p)}\right)_{(0)}=\left(X_{\bar{p}}\right)_{(0)}$. Then, X is an H-space with a multiplication \tilde{m} with $\tilde{m}_{(p)}=m$ on $X_{(p)}$ and $\tilde{m}_{\bar{p}}=m^{\prime}$ on $X_{\bar{p}}$.

Apply this for m^{\prime} and $\bar{m}_{\bar{p}}$ of above with $m_{(0)}^{\prime}=\bar{m}_{(0)}=\left(\bar{m}_{\bar{p}}\right)_{(0)}$. Then
(4.3.8) $e m\left(e^{-1} \times e^{-1}\right)=m^{\prime}=\tilde{m}_{(p)}$ and $\bar{m}_{\bar{p}}=\tilde{m}_{\bar{p}}$ for some $\tilde{m} \in \mathbf{M}(G(l))$.

The first equality means that e is an H-map with respect to m and $\tilde{m}_{(p)}$. q.e.d.
Proof of Theorem 4.1. In the first place, we prove the theorem in case that $G=S U(n)$ or $S p(n)$. If $G=S^{3}, S U(3)$ or $S p(2)$, then $\operatorname{HE}(G)=1$ by Example 1.5 and Theorem 2.6, and so the theorem is trivial. Therefore, we consider the group
(4.4.1) $G(l)$ in (4.3.1) for $l \geqq 3$ by using the notations given in (4.3.1).

Take any $h \in \operatorname{HE}(G(l))$. Then $h \in \operatorname{HE}(G(l), \bar{m})$ and so $h^{*} x_{i}$'s are also primitive with respect to \bar{m} in (4.3.5), and we have
(4.4.2) $\quad h^{*} x_{i}=\eta_{i} x_{i}$ in $H^{*}(G(l) ; Z)$ for some $\eta_{i}= \pm 1 \quad(1 \leqq i \leqq l)$.

Take a prime $p>g l$, and consider the localization $h^{\prime}=h_{(p)} \in \operatorname{HE}\left(G(l)_{(p)}, \tilde{m}_{(p)}\right)$ of $h \in \operatorname{HE}(G(l), \tilde{m})$ at p and $e^{-1} h^{\prime} e \in \operatorname{HE}\left(S\left(N_{l}\right), m\right)$ by \tilde{m} and e in (4.3.2). Then

$$
\begin{align*}
& \text { there is } \left.a=\left(a_{1}, \ldots, a_{l}\right) \in\left(Z_{(p)}^{*}\right)\right)^{l}=\prod_{i=1}^{l} \operatorname{HE}\left(S_{i}, m_{i}\right) \cong \operatorname{HE}\left(S\left(N_{l}\right), m\right) \tag{4.4.3}\\
& \text { with } e^{-1} h^{\prime} e=\theta(a)=\prod_{i=1}^{l} a_{i} \text { in } \operatorname{HE}\left(S\left(N_{l}\right), m\right),
\end{align*}
$$

by (3.1.2-4) since $n_{l}-n_{1}<2 p-3$. These together with (4.3.6) imply

$$
\begin{equation*}
a_{i}=\eta_{i}= \pm 1 \quad \text { in } Z_{(p)}^{*}=\operatorname{HE}\left(S_{i}, m_{i}\right) \quad \text { for } \quad 1 \leqq i \leqq l \tag{4.4.4}
\end{equation*}
$$

since $a_{i} \cdot y_{i}=\theta(a)^{*} y_{i}=\left(e^{-1} h^{\prime} e\right)^{*} y_{i}=e^{*} h^{*} x_{i}^{\prime}=e^{*}\left(\eta_{i} x_{i}^{\prime}\right)=\eta_{i} y_{i}$ in $H^{*}\left(S\left(N_{l}\right) ; Z_{(p)}\right)$.
We now fix any $i(1 \leqq i \leqq l)$ and any prime $p>g l$ (and so $p \geqq 5$), and
(4.4.5) put $n=n_{i}+2 p-3$ and take $\alpha \in \pi_{n}\left(S^{n_{i}} ; p\right)=\left[S_{(p)}^{n}, S_{i}\right]$ of order p,
by (3.1.1). Furthermore, consider the multiplication

$$
\begin{gather*}
m_{\delta}=m+i \alpha \pi_{\delta} \text { on } S\left(N_{l}\right) \text { for each } \delta=\left(\delta_{1}, \ldots, \delta_{2 l}\right) \in\{0,1\}^{2 l} \tag{4.4.6}\\
\text { with } n=N_{l}(\delta) \text { and } \sum_{j=1}^{l} \delta_{j} \neq 0 \neq \sum_{j=1}^{l} \delta_{l+j},
\end{gather*}
$$

where $N_{l}(\delta)=\sum_{j=1}^{l} \varepsilon_{j} n_{j}\left(\varepsilon_{j}=\delta_{j}+\delta_{l+j}\right), i: S_{i} \subset S\left(N_{l}\right)$ is the inclusion and

$$
\pi_{\delta}: S\left(N_{l}\right) \times S\left(N_{l}\right) \longrightarrow S_{\delta}=\wedge_{\delta_{j}=1} S_{j}=S_{(p)}^{n}\left(S_{l+j}=S_{j}\right)
$$

is the projection. Then the assumption that α is of order p and (4.3.8) imply

$$
\begin{aligned}
\left(e m_{\delta}\left(e^{-1} \times e^{-1}\right)\right)_{(0)} & =\left(e m\left(e^{-1} \times e^{-1}\right)\right)_{(0)} \\
& =\left(\tilde{m}_{(p)}\right)_{(0)}=\tilde{m}_{(0)}=\left(\tilde{m}_{\bar{p}}\right)_{(0)} \quad \text { on } G(l)_{(0)},
\end{aligned}
$$

and so (4.3.7) implies that $e m_{\delta}\left(e^{-1} \times e^{-1}\right)=\left(\tilde{m}_{\delta}\right)_{(p)}$ for some $\tilde{m}_{\delta} \in \mathrm{M}(G(l))$. Thus, $h \in \operatorname{HE}(G(l)) \subset \operatorname{HE}\left(G(l), \tilde{m}_{\delta}\right), h^{\prime}=h_{(p)} \in \operatorname{HE}\left(G(l)_{(p)}, e m_{\delta}\left(e^{-1} \times e^{-1}\right)\right)$ and

$$
\prod_{j=1}^{l} a_{j}=\theta(a)=e^{-1} h^{\prime} e \in \operatorname{HE}\left(S\left(N_{l}\right), m_{\delta}\right)(\text { cf. (4.4.3)) }
$$

For $a_{\delta}=\wedge_{\delta_{j}=1} a_{j}: S_{\delta} \rightarrow S_{\delta}\left(a_{l+j}=a_{j}\right)$, this together with (4.4.6) and (1.4.1) shows that

$$
i a_{i} \alpha \pi=\theta(a) i \alpha \pi=i \alpha \pi(\theta(a) \wedge \theta(a))=i \alpha a_{\delta} \pi \quad \text { in }\left[S\left(N_{l}\right) \wedge S\left(N_{l}\right), S\left(N_{l}\right)\right] ;
$$

and so the injectivities of i_{*} and π^{*} imply that

$$
\begin{equation*}
a_{i} \alpha=\alpha a_{\delta} \quad \text { in }\left[S_{\delta}, S_{i}\right]=\pi_{n}\left(S^{n_{i}} ; p\right) \tag{4.4.7}
\end{equation*}
$$

Furthermore, by (4.4.5) and (1.7.2), this means the following

$$
\begin{align*}
& \text { If }\left(\varepsilon_{1}, \ldots, \varepsilon_{i}\right) \in\{0,1,2\}^{l} \text { satisfies } n_{i}+2 p-3=\sum_{j=1}^{l} \varepsilon_{j} n_{j} \text {, then } \tag{4.4.8}\\
& \qquad \eta_{i}=\prod_{j=1}^{l} \eta_{j}^{\varepsilon_{j}} \text { where } \eta_{i}=a_{i}= \pm 1 \text { in }(4.4 .2-4) .
\end{align*}
$$

Now, this implies $\eta_{i}=1$ for $1 \leqq i \leqq l$ as follows, by noticing that η_{i} 's are independent of a prime $p>g l$; and we see the theorem by (4.4.2-4) and (4.3.2).
(i) The case $g=1, n_{j}=2 j+1$ and $l \geqq 3$: We can choose suitably a prime $p=2 q+1>l$ with $p \leqq 2 l+1$ (i.e. $q \leqq l$) by the classical result due to Čebyšev and $\left(\varepsilon_{1}, \ldots, \varepsilon_{l}\right) \in\{0,1,2\}^{l}$ with $n_{i}+2 p-3=\sum_{j=1}^{l} \varepsilon_{j} n_{j}$ and even ε_{j} for $j \geqq i$ so that (4.4.8) shows the following equalities, which imply $\eta_{i}=1$ inductively since $\eta_{i}= \pm 1$:

$$
\begin{aligned}
& \eta_{1}=\eta_{q}^{2} ; \quad \eta_{2}=\eta_{1}^{2} \eta_{q-1}^{2} \text { taking } p \geqq 7 ; \\
& \eta_{3}=\eta_{3}^{2} \text { and } \eta_{4}=\eta_{1}^{2} \eta_{2}^{2} \text { taking } p=5 \text { for } l \leqq 4 ; \\
& \eta_{i}=\eta_{1} \eta_{i-1} \eta_{q-1}^{2} \text { if } 3 \leqq i \neq q \text { and } \eta_{i}=\eta_{1} \eta_{i-3} \eta_{q}^{2} \text { if } i=q \\
& \quad \text { taking } p \geqq 11 \text { for } l \geqq 5 .
\end{aligned}
$$

(ii) The case $g=2, n_{j}=4 j-1$ and $l \geqq 3$: In the same way, by taking a prime $p=4 q+r>2 l(r= \pm 1)$ suitably with $r=-1$ for $l \leqq 9$ and with $p<4 l$ (i.e., $q \leqq l$, and $q<l$ if $r=1$) for $l \geqq 10$, (4.4.8) shows the following equalities, which imply $\eta_{i}=1$ inductively:
$\eta_{1}=\eta_{q}^{2}$ taking $p=11(l \leqq 5),=23(l \geqq 6), \quad \eta_{2}=\eta_{1}^{2} \eta_{2}^{2} \eta_{3}^{2}$ taking $p=19$,
$\eta_{3}=\eta_{q+1}^{2}$ taking $p=7(l=3),=11(l=4,5),=19(l \geqq 6), \quad$ for $\quad l \leqq 9$;
$\eta_{1}=\eta_{q}^{2}, \quad \eta_{2}=\eta_{1}^{2} \eta_{2}^{2} \eta_{q-2}^{2}, \quad \eta_{3}=\eta_{1} \eta_{2} \eta_{3}^{2} \eta_{q-3}^{2}$ taking $p>23$ if $r=-1$,
$\eta_{1}=\eta_{1}^{2} \eta_{2}^{2} \eta_{q-2}^{2}, \quad \eta_{2}=\eta_{q+1}^{2}, \quad \eta_{3}=\eta_{1}^{2} \eta_{2}^{2} \eta_{q-1}^{2} \quad$ if $r=1, \quad$ for $\quad l \geqq 10$;
$\eta_{i}=\eta_{1}^{2} \eta_{2} \eta_{i-2} \eta_{q-1}^{2}(i \leqq q),=\eta_{1}^{2} \eta_{2} \eta_{q-2} \eta_{q-1} \eta_{i-1}(q<i)$ taking $p>11$ if $r=-1$,
$\eta_{i}=\eta_{1}^{2} \eta_{2} \eta_{i-1} \eta_{q-1}^{2}(i \neq q),=\eta_{1}^{2} \eta_{2} \eta_{i-3} \eta_{q}^{2}(i=q)$ taking $p>17$ if $r=1$,

$$
\text { for } 4 \leqq i \leqq l \text {. }
$$

Finally, we prove the theorem when $G=U(n)=S^{1} \times S U(n)(n \geqq 3)$. Take any

$$
(\varepsilon, h) \in \operatorname{HE}(U(n)) \quad \text { with } \quad \varepsilon= \pm 1, h \in \mathrm{HE}(S U(n)) \text { and (2.5.1) }
$$

for $Y=S U(n)$ by Example 2.5(i). Then $(\varepsilon \wedge h \wedge h)^{*}=h_{*}$ on [$\left.S^{1} \wedge Y \wedge Y, Y\right]$ by (2.5.1) and $h_{(p)} \sim 1$ by the theorem for $Y=S U(n)$, where $p \geqq 5$ is a prime with $n \leqq p<2 n$. Therefore $(\varepsilon \wedge 1 \wedge 1)^{*}=\mathrm{id}$ on $\left[\left(S^{1} \wedge Y \wedge Y\right)_{(p)}, Y_{(p)}\right]$ and so on $\left[\left(S^{1} \wedge S^{3} \wedge S^{p-2} \wedge S^{p}\right)_{(p)}, S_{(p)}^{5}\right]=\pi_{2 p+2}\left(S^{5} ; p\right)=Z_{p} . \quad$ Thus $\varepsilon=1$ and the theorem for $G=U(n)$ is proved.
q.e.d.

References

[1] J. F. Adams: The sphere, considered as an H-space mod p, Quart. J. Math. Oxford (2), 12 (1961), 52-60.
[2] M. Arkowitz and C. R. Curjel: On maps of H-spaces, Topology, 6 (1967), 137-148.
[3] I. Berstein and T. Ganea: Homotopical nilpotency, Illinois J. Math., 5 (1961), 99-130.
[4] R. Bott: A note on the Samelson product in the classical groups, Comment. Math. Helv., 34 (1960), 249-256.
[5] P. Hilton, G. Mislin and J. Roitberg: Localization of Nilpotent Groups and Spaces, North-Holland Mathematics Studies 15 (1975), Notas de Matemática (55).
[6] I. M. James: On H-spaces and their homotopy groups, Quart. J. Math. Oxford (2), 11 (1960), 161-179.
[7] K. Maruyama: Note on self H-maps of $S U(3)$, Mem. Fac. Sci. Kyushu Univ. Ser. A, 38 (1984), 5-8.
[8] K. Maruyama and S. Oka: Self- H-maps of H-spaces of type (3, 7), Mem. Fac. Sci. Kyushu Univ. Ser. A, 35 (1981), 375-383.
[9] -: Note on some exotic multiplication on $S U(n)$, Mem. Fac. Sci. Kyushu Univ. Ser. A, 38 (1984), 61-64.
[10] M. Mimura: On the generalized Hopf homomorphism and the higher composition, Part II: $\pi_{n+i}\left(S^{n}\right)$ for $i=21$ and 22, J. Math. Kyoto Univ., 4 (1965), 301-326.
[11] R. C. O'Neill: On H-spaces that are $C W$-complexes I, Illinois J. Math., 8 (1964), 280290.
[12] N. Sawashita: On the self-equivalences of H-spaces, J. Math. Tokushima Univ., 10 (1976), 17-33.
[13] -: Self H-equivalences of H-spaces with applications to H-spaces of rank 2, Hiroshima Math. J., 14 (1984), 75-113.
[14] D. Sullivan: Geometric Topology, Part I: Localization, Periodicity, and Galois Symmetry, M.I.T. Press, Cambridge, 1970.
[15] -: Infinitesimal computations in topology, I.H.E.S. Publ. Math., 47 (1977), 269-331.
[16] H. Toda: Composition Methods in Homotopy Groups of Spheres, Annals of Math. Studies 49, Princeton Univ. Press, 1962.
[17] -: On iterated suspensions I, J. Math. Kyoto Univ., 5 (1965), 87-142.
[18] C. W. Wilkerson: Applications of minimal simplicial groups, Topology, 15 (1976), 111-130.

Department of Mathematics, Faculty of Engineering, Tokushima University and
Department of Mathematics, Faculty of Science, Hiroshima University

