
HIROSHIMA MATH. J.
16(1986), 651-663

Oscillation theorems for nonlinear differential systems
with general deviating arguments

P. MARUSIAK

(Received December 20, 1985)

1. Introduction

The oscillation theory of nonlinear differential systems with deviating
argements has been developed by many authors. Most of them have studied
two-dimensional differential systems; see, for example, Kitamura and Kusano
[2-4], Shevelo, Varech and Gritsai [8], and Varech and Shevelo [9, 10]. The
oscillation results for ^-dimensional systems with deviating arguments have been
given by Foltynska and Werbowski [1], the present author [5, 6] and Seda [7].

The purpose of this paper is to obtain oscillation criteria for the nonlinear
differential system with general deviating arguments of the form:

(Sr) y\(t) = Pi(t)Myi+l(hi+l(t))l i = 1, 2,..., n - 1,

y'n(t) = ( - l ^O/ .O ' i t f i t t ) ) , r = 1, 2,

where the following conditions are assumed to hold:
(1) a) pt: [0, oo)->[0, oo), i = l , 2,..., n, are continuous and not identically

zero on any infinite subinterval of [0, oo), and

Pi(t)dt= oo, i = 1, 2,...,n - 1;

b) hi'. [0, oo)->K are continuous and i im^^ ht(t)= oo, i= l , . . . , n;
c) fi'. R^R are continuous and w/f(w)>0 for u#0, i = 1, 2,..., n.
Denote by W the set of all solutions y(t)=(yi(t\...9 yn(t)) of the system

(Sr) which exist on some rayC^, oo)c [0, oo) and satisfy sup {X?=i I^OI; t*z T} > 0
for all

DEFINITION 1. A solution ye Wis called oscillatory if each component has
arbitrarily large zeros.

A solution yeWis called nonoscillatory (resp. weakly nonoscillatory) if each
component (resp. at least one component) is eventually of constant sign.

DEFINITION 2. We shall say that the system (S t) has the property A if for n
even every solution y e W is oscillatory and for n odd it is either oscillatory or
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( ^ I ) yt 0 = 1> 2,..., n) tend monotonically to zero as t-»oo.
We shall say that the system (S2) has the property B if for n even every solution

y e W is either oscillatory or (Pj) holds or
(P'I) Iĵ il 0'=l> 2,..., «) tend monotonically to 00 as f-»oo,
and for n odd it is either oscillatory or (P2) holds.

We introduce the following notations:
i) Let T: [0, oo)->R be a continuous function such that z(t)St and r(t)^oo

as f->oo. We define

yt(t) = sup {5 ̂  0; T(5) < f} for all t > 0;

ii) Let ike{l, 2,..., n}, fce{l, 2,..., n - 1 } , r, S G [ 0 , 00). We define:

(2)

It is easy to prove that the following identities hold:

(3) Ik(t, s; pik9..., ph) = \ Pi^I^^t, x; pik,..., ph)dx,
Js

(4) Ik(t, 5; pfc>..., pl2) = (-l)fci,(5, r; pfl,..., pik).

To obtain main results we need the following lemmas:

LEMMA 1. Suppose that the conditions (la)-(lc) are satisfied. Let y =
0>i>--> yn)£ W be a nonoscillatory solution of(Sr) on the interval [0, 00), a^O.

I) Then there exist an integer le {1, 2,..., n}, wi'f/i n + r+ / odd or / = n,
= a sucn that for t^.t0

t)>o, 1 = 1,2,...,/,

(6,) ( - l ) / + ^(0^ i (0 > 0, i = /, / + 1,..., n.

II) /n addition let l im,^ |^(0l=Lh OgL^oo. Then

(7) / > 1, Lt > 0 =* l im,^ \yt(t)\ = 00, i = 1, 2,..., I - 1,

I < n, Lt < 00 => lim^oo yf(0 = 0» 1 = / +• 1,..., n.

PROOF, a) Let r = l . From Lemma 1 of [5] we get the assertions of
Lemma 1 in the case I), b) Let r — 2. Without loss of generality we may suppose
that 3>i(0'>0, >?i(«i(0)>0 for t^tt^a. Because of (la), (lc), the n-th equation
of (S2) implies that yn(t) is nondecreasing on [tu 00). Then either yn(t)>0 or
>>/i(0<0 f°r t^.t2^ti' i) If yn(t)>0 for t^t2, it is easy to prove that yt(t)>0
for t^t3^t2, / = !,..., n - 1 . ii) Let yn(t)<0 for t^t2. Then in view of the
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(n - l ) - s t equation of (52) we get j'i-iCOj'iW^O f° r t^h- Then by the case a)
with n replaced by n — 1, there exist an integer / e { l , 2,...,n —1} with n + l odd
and a f o ^ 2 such that (5,), (6Z) hold.

The assertions in the case II) follow from (5Z), (6Z).

LEMMA 2. ([5, Lemma 1]) Let yeW be a weakly nonoscillatory solution
of (Sr) on [a, oo). Then there exists a T^a such that y is nonoscillatory on
IT, oo).

Furthermore we shall consider the system (Sr) or the form

(Sr) y't(t) = pt(t)yi+ t(t), i = 1, 2,..., n - 2,

(*-(0)),

M)), r = l, 2,

where the conditions (la)-(lc) hold and
(Id) /„_i(w),/n(w) are nondecreasing functions of u.

LEMMA 3. ([5, Lemma 4]) Suppose that (la)-(ld) are satisfied. Let
y = (yu..., yn)e W be a solution of(Sr) on \_t0, oo). Then the following relations
hold:

(8) yt(t) = Z 7 = O ( - 1 ) ' W J ) / / S , ' ; Pi+j-i>-> Pi)

+ (-l)m+i \ >;i+m+1(x)pi+m(x)/m(x, t; pi+m_!,..

/or m = 0, l, . . . ,n - i - 2, i = 1, 2,..., n - 2, t, se [ r 0 , oo);

(9) y£s) = Zjij,-1 (-iyyi+/i)I£t, s; pt+j-u..., Pi)

for i = 1, 2,...,n - 1, r, se [ r 0 , oo).

LEMMA 4. Suppose that (la)-(ld) ar^ satisfied Let y = (^i,.--» yn) e ff be a
nonoscillatory solution of (Sr) on [a, oo) with yi(t)>0 on [a, oo). Then there
exist a to^.a and an integer Ze{l, 2,..., n} with n + r+l odd or l = n such that
(5/H7) hold. Moreover

(10,) yi(t) ^ (-1)"+' T p . - iWJ, , - , . ^ , to)fn-i(yJLhJis)))ds
Jto

for / = 2, 3 , . . . , n - l , i = 1, 2 J — 1, t ^ t0;

(10n) ^
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for i = 1, 2,...,n - 1, t ^ t0,

where

In-i-tis, t\ p w - 2 , . . . , Pi, Pi,---, Pi-i), 2^1 ^n-2

In-i-iis, t0; p h . . . , p n _ 2 ) , 1 = n - 1.

P R O O F . S u p p o s e tha t le{2, 3,...,n-l}, i = l, 2,..., l-l. P u t t i n g m-
l — i — 1, s = t0, x = u in (8) and then using (4) and (5/), we have

(11) y£t) ^ T jtfiOp,.!(!!)/,_,_!(*, ii; A , . . . , p,-2)dK, r ̂  t0.
Jto

On the other hand, we put i = /, 5 = u in (9) and then use (6) to get

(12) ylu) ^ i-l)n+l r ^ - t W / n - J - l ^ , W; Pn-2,-.., Pi)-

f.-AuJLhJLx)))^ for r

Substituting (12) in (11), we obtain

Jto

for ^ r ^ y j t o ) , where

(14) Hz(x, r0) = \ /w- /_1(x, u; pM-2,..., pi)Pi~i(u).
Jto

I i - i - t i x , u; P i , . . . , P i - 2 ) d u , f o r x ^ t 1 .

i) Let 2^l^n — 2. In view of (3), / / , can be written in the form

(15) Hfa, t0) = /n_j(x, tQ\ pn_2 , . . . , ^ , p ^ ^ f - i - ^ x , • ; ph..., Pt-2))-

Using the following relation for t0 ^ s ̂  x:

-iOc, M; Pf,..., p z - 2 y M
o

^ \ p ^ ^ M ^ . ^ ^ s , M; pf,..., pl-2)du = I^iis, t0; ph..., p^t)
Jto

and then using (2), (3) n — l times in (14), we obtain
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(16) Ht(x9 t0) ^ ln-i-x{x, t0; Pn-2>--,Ph Ph'-iPi-i)-

ii) Let / = « — 1. Then with regard to / 0 = 1, (14) implies

Hn-i(x, t0) = \ pn-2(M)In-i-2(x, u; p h . . . , pn-3)du

Jto

= In-i-l(x> f0l Ph'-> Pn-l)'

If we put (16) and the last equality in (13) we get (10j).
Let l = n. Putting t = t0, s = tin (9) and then using (4), (5J, we obtain (10J.
The proof of Lemma 4 is complete.

2. Main results

DEFINITION 3. System (Sr) is called (a, /f)-superlinear, if there exist positive
numbers a, j8 such that a/?> 1 and

M for ,M| > ,„,, „„ > o,1 ^ ; JAM
i = n - 1, n, yn_, = a, yB =/?.

Let me {1, 2,..., n}. We denote

r7B_2(*, T; pn_2 , . . . , p.) for 1 ^ m ^ 2,

(17) J™_2(<( T) = /._2(t, T; p . _ l v . . . pm, p2 , . . . , pm_!) for 2 ^ m ^ n - 1,

I. In-2{t, T; p 2 , - ; P n - i ) f o r 2 ^ m = n ;

THEOREM 1. L̂ ^ t/ie system (Sr) be (a, f$)-su pier linear. Suppose that
there exist continuous increasing functions g, h: [0, oo)->/? such that

(18)

(19) h(t) ^ max {/in(0, 3-1(0}» where g'1 indicates the inverse function of g.

If

(20) T pn_l(t)J
l
n-2(t,T)fn_l(LP(h(t)))dt=cv for / = 1, 2,

pt(t)J
l
n-2(t,T)fn^(LP(h(t)))dt=K for 1 = 3 ,4 , . . . ,*

(r)

/or et;ery constant L>0, r/ẑ w r/î  system ( S j /ias r/ze property A and the system
(S2) has the property B.



656 P. MARUSIAK

PROOF. Suppose that (Sr) has a weakly nonoscillatory solution y =
(.Vi >•••> yn)

 e W. Then, by Lemma 2, y is nonoscillatory. Without loss of gener-
ality we may suppose that yl(t)>0, yi(h1(t))>0 for t^:t1>0. Then the n-th
equation of (Sr) implies ( — l)ry'n(t)}£0 for t^tx and it is not identically zero on
any infinite interval of [tu oo). Then, by Lemma 4, there exist a t2^tl and an
integer / e { l , 2,..., n} with n + r + / odd or l = n such that (5,)-(8), (11) hold for

A) Consider the system (Sj), i.e. r = l and n + l is even. Integrating the
n-th equation of ( S j from t ( ^ r2) to oo, we have

(21) ^ ( 0 ̂  yn(t) - yn(co) =

I) Let / ^ 2 . Then, yx is an increasing function and therefore there exist
C > 0 and t3^t2 such that y ^ / i ^ r ^ ^ C for t^t3. Using the last inequality,
(21) implies

(22) ^(0 ̂  UQ J ^n(s)^S = LP(0

where L=fn(C). Because the system (5X) is (a, ̂ )-superlinear, in view of (22)

and }>i(fei(0) = C> w e

(23) /._,(yn(h(t))) Z

(24)

If we put (24) in (21), then using (18), (19) and the monotonicity of ylf we get

yn(t) ^ M

or

(25) JB(/J(0) ^ MyMKtWPiKt)) ^ M(yi(t)yP(h(t)),

for ^ 7 ^ 3 ) = ^ .
i) Let 2 < / g n (« + / is odd). Putting i = 2, (0 = Tt in (10,), (10n), and using

(19), the monotonicity of h, yn,fn-t, (4), (17) and (23), we obtain

(26,) y2{t) ̂  J^ Vn- i(s)h-3(s,
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(26J y2(t) ^fm-i(yJih(t))) ^ p._1(s)/._3(r, s; p2,..., pn-2)ds

^ J"-2(t> T l ) ) ' - T l '

respectively. Combining (25) with (26), we get

(27) ^ ( O ^ C - v ^ O ^ - ^ L P W O M - ^ , ^ ) , ^ T l 9 y = aj8.

Multiplying (27) by Pi(t)(y1(t))~
y and then using the first equation of (S j , we get

(28) / 1 ( 0 O ' i ( 0 r y = C-yp^f^^LPihitWl-iit, 7\) , t=Tx.

Integrating (28) from T2 = yh{Tx) to T, and then letting T->OO, we have

which contradicts (20f) for I ̂  3.

ii) Let 1 = 2 = n. If we put the second equation in the first equation of
(Sx) and then use (19), (23) and (25), we get

/i(0 0>i(0)-y = C-yPl(t)MLP(h(t))).

Integrating the last inequality from 7\ to T and letting T-> OO, we get a contradiction
to (20,) for l = 2 = n.

iii) Let l = 2<n. Putting 1 = 2 in (9) and using (6), (19), the monotonicity
of h, yn, /„_ t , we obtain

(29) y2(s) = [Pn-Mfn-tiyMxWn-si*, s; pH-29..., p2)dx.
Js

Combining (25) with (23) and using the monotonicity of yl9 from (29) we get

(30) y2(s) = C-y(yM)y rpw-1(x)/n_1(LP(/i(x)))/n_3(x, s; p. .2 , . . . , p2)dx.
Js

Multiplying (30) by Pi(s)(y1(s))~y and using the first equation of (St), we have

lI_1(x)/w_3(x, s; pH-29...,p2).

fn.l(LP(h(x)))dx.

Integrating the last inequality from 7\ to t, we get

(s) (' (x)I. { }

y —i

fn^{LP{h{x)))dxds £ \' pB_1(LP(/i(x)))^_2(x, T,)dx,
jTi
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which contradicts (202) as t-+oo.
II) Let 1 = 1 (n is odd). Then yt(t) | K as 11 oo, where K=0. Assume

that K>0. If we put i = l, 5=7^ in (9), and use (6), (19) and the monotonicity
of ft, yn9fn-i> we obtain

yt(Tx) =

for t=T2 = yJiT^). Further using (22), we have

= f pII-i(xVi.2(x, Tt)fn-t(LP(h(x)))dx9

which contradicts (20J as f-»oo. Therefore X = 0, limr_+0O<);1(0 = 0. Then by
(7) Inn,-* yt(t) = O for i = l, 2,..^, n.

B) Consider the system (52), i.e. r = 2 and n + / is odd.
I) By virtue of Lemma 3, (5n) holds. Then the n-th equation of (S2) implies,

in view of )>i(fti(0)>0, (la) and (lc), that yn(t) is a nondecreasing function and
therefore limf-,oo^II(0 = i-»^oo. Then it follows from (7) that l im r _ G O ^0 = °o
for i = l , 2,..., n — 1. We shall prove that Lw = oo. Suppose that Ln<co. In
view of the monotonicity of yn and y1? there exist T2^t0, Kt>0 and C > 0 such
that

(31) K1 = yn(hn(t)) = Ln,

(32) CZyMt)) for f ^ T 2 .

Integrating the n-th equation of (S2) and using (18), (31) and the monotonicity of
/„, yl9 we get

(33) Ln = j p j L s t f M h A s W s ^ fn{yi(g{t)))P{t\ t=r2.

In view of (32), the inequality (33) implies

(34) Ln=fn(C)P(h(t)) = LP(h(t)\ L = fn(C), t^T3 = yh(T2).

Because the system (S2) is (a, /f)-superlinear, in view of (32)-(34) and (19) we have

(35) Ln ^ M(yi(g(h(tWP(h(t)) ^ M{yt{t)YP{h{i)\ M = LC~e

(36) Jn-!(Ln) Z _ _ _ _ _ _ (_„) , t 2: 13 .

a) Let n > 2. From (10J for i = 2, t0 = T4, in view of (31) and (17), we get

(37)
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Multiplying (37) by/n_1(LB)p1(f)0'i(0)~y and then using (35), (36) and the first
equation of (S2), we have

(38) /IOXJIC))"7 ^ r n \ C-'p^fn-^LPihitW"-^ T3).
Jn-lK^n)

b) Let n = 2. From the first equation of (S2) and in view of (31) we obtain
/ i (0^Pi (0 / i (^ i )> t^T2. Multiplying the last inequality by L*(yx{i))-y and
then using (35) and (36), we get (38) for n = 2 ( J o = 1). Integrating (38) from T3

to oo, we get a contradiction to (20n). Therefore Ln=oo and l im^^ j f ( 0 = o o >
i = l, 2,..., ii.

II) Let / e {1, 2,..., n -1}. Then (6) implies that yn{t) < 0 for t ̂  *2 and it is
an increasing function. Integrating the n-th equation of (S2) from t (^t2) to
GO, we have

— j>w(0 ̂  \ pn(s)/w(3^i(fti(s)))ds, ^ ̂  fl 2 -

Further proceeding in the same way as in the cases A-I), A-II) of this proof except
that yn(t) is replaced by — yn(t) (>0), we get a contradiction to (20,) for Z=l,
2,..., n — 1. In the case n is even and / = 1 we obtain l im^^ yf(0

 = ^ f° r I = l̂
2,..., n.

The proof of Theorem 1 is complete.

Theorem 1 represents a certain generalization of Theorem 5 in [4].

THEOREM 2. Let the system (Sr) be (a, P)-superlinear. Suppose that

(39) hn(t) <; t, gx(t) ^ min {h^t), t} on [0, oo),

where g\(t) ̂  0 on [0, oo), l i m , ^ gt(t) = oo.

(40,) T {P(t)Ydt= oo

/ o r / = 3, 4,..., «,

ie system (Sx) foas r/ie property A, and the system (S2) has the property B.

PROOF. Let ̂  = (^1,..., yn)e W be a weakly nonoscillatory solution of (Sr).
Then by Lemma 2 it is nonoscillatory. Let y1(t)>0, yi(hl(t))>0 for r ^ ^ > 0 .
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Proceeding in the same way as in the proof of Theorem 1, we see that (5,)-(8),
(11) hold for t^t2^tv Let T2^t2 be so large that g^i)^^ hn(i)^t2 for t^T2.

A) Consider the system (SJ, i.e. r = l and n + Z is even. From the n-th
equation of (Sj) we get (21).

I) Let / ̂  2. Proceeding in the same way as in the case A-I) in the proof of
Theorem 1, we get (22)-(24). Combining (24) and (21) and using (39) and the
monotonicity of yn9 yu we have

(41) yn(gx(t)) ^ yJLt) ̂  M J"

and (22) implies

(42) yn(gx(i))^LP(i) for t^T2.

i) Let l = n or 2 < / ^ n - 2 . Putting i = 2, to = T2 in (10^), (10J and using
(39), the monotonicity of gu yn, fn_l9 (5,), (17) and the superlinearity of (5^),
we obtain

(43,) y2(t) ^ fn_ x(yJit)) ( % „ . ,(8)1 n_ 3(sy T2)ds

- A T2)

= ^(LPU))^ (y^yJi-^t, T2), I = 3, 4,..., n - 2,

or

(43B) y2{i) ̂ / n - i (y n (0 ) [' pn-l(s)ln-3(t, s; p2,..., pn-2)ds

> fn-l\LP\t)) / (t\\a In (t T \ t > T
TLP(t)Y~ Jn-2\l> ll)'> l = i 2 »

respectively.

From (43) and in view of (39) we get

(44)

for t^T3 = ygi(T2). Combining (44) with (41), we have

(45) y2(gi(t)) ^ c-y '"-ffffyfiP Jln-2(gi(t), T2) .
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Multiplying (45) by Pi(0i(O)0i(OO'i(0i(O))~7 a n d using the first equation of
(St), we get

y'i(9iO))g[(t) > c-y ,

Integrating (46) from T3 to 00, we obtain a contradiction to (40() for / ^ 3 .
ii) Let 1 = 2 = n. If we put the second equation in the first equation of

(St) and use (39), (23) and (41), then we get

O) ̂  Pi(0i(t))fi(y2<0i(im

Integrating the last ineqaulity from T3 to oo, we have a contradiction to (40j)
for/ = 2 = n.

iii) Let l = 2<n. If we put i = 2 in (9) and use (7), (39), the monotonicity
of >>„,/„_!, we obtain

(47) y2(s) ^

Combining (23) with (25) and then using the monotonicity of yl9 gu we obtain
from (47)

(48) y2(9i(s

because ^1(^1(s))^^1(s). Multiplying (48) by Pxig^sW^iy^M))'7 and
using the first equation of (Sx), we get

= <" P\\Q\\S))9\\S) \ Pn-l\x)>

IH-3(x9 gi(s); pH-29...9 p2)fn-1(L(P(x)))dx.

Integration of the above from T2 to t yields

> \ Pi(9i(s))g[(s) \ pB_1(x)/w_3(x, g^s); pn-2,..., p2).
JT2 Jgi(s)

fn.x{LP{x))dx = p n 1 ( ) / n
gi(T2)

/n_3(x, w; pw-2 , . . . , p2)dudx
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which contradicts (402)
II) Let 1 = 1 (n is odd). Then yt(t) I K as 11 oo, where K^O. Assume

that K>0. If we put i = l, s^^ in (9) and use (7), (39), the monotonicity of
yn,fn-u

 anc* (22), then we obtain

2(x9 T i ; Pn_2 , . . . , Pl)dx
Ti

97l(t)

Since ^iKO"*0 0 a s *~*°o, the last inequality gives a contradiction to (40^. There-
fore K = 0, i.e. l im^o oy1(0 = 0. Then it follows from (7) that l i m , ^ y£t) = O
for i = l, 2,..., n.

B) Consider the system (S2), i.e. r = 2 and nH-/ is odd.
I) By virtue of Lemma 3, (5n) holds. Exactly as in the case B-I) of the

proof of Theorem 1 we get l im^^ yi(t)= oo for i= 1, 2,..., n — 1. We shall prove
that lim^oo yn(f) = LM=oo. Suppose that 0<L n <oo. Proceeding as in the case
B-I), we get (31)-(33), in which we replace g(t) by g^t). Combining (33) with
(32) gives

(49) Ln^LP(gi(t)\ L=fn(C\ t=T3.

Because the system (S2) is (a, jS)-superlinear, in view of (32) and (49) we have

(50) Ln ̂  M{yi{gi{tWP{t\ M = LC-e

(51) • / » - l ( L » ) = {LP{gAt))Y ( n ) ' - 3 '

a) Let n>2. From (10J for i=2, to = T3, in view of (31) and (17) we
obtain (37). From (37) we get

i(«iy;-2(ffi(0, T3), t^T4 = y#I(T3).

Multiplying the last inequality by/B_!(Ln) and using (51) and (50), we have

(52) fm-1mdy2(jg1(t)) Z

If we use the first equation of (S2), (52) implies
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(t), T3)(P(t))" for t*T4.

b) Let n = 2. From the first equation of (52), in view of (31) we obtain

for t^T2. Multiplying the last inequality by

)-y and using (50), (51), we get (53) for n = 2 (J0 = l). Inte-

grating (53) from T4 to oo, we have a contradiction to (40n). Therefore Ln=oo,

i.e. \imt^00yi(t)=oo for i = l, 2,...,n

II) Let Ze{l, 2,...,n —1}. If we proceed as in the cases A-I), A-II) of

this proof by replacing yn(t) by — yn(t), we obtain a contradiction to (40j) for

1 = 1, 2,..., n — \. In the case where n is even and / = 1 we have l i m , ^ yf(f) = O

for i = 1, 2,..., n. The proof of Theorem 2 is complete.
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