Oscillation theorems for nonlinear differential systems with general deviating arguments

P. Marušiak
(Received December 20, 1985)

1. Introduction

The oscillation theory of nonlinear differential systems with deviating argements has been developed by many authors. Most of them have studied two-dimensional differential systems; see, for example, Kitamura and Kusano [2-4], Shevelo, Varech and Gritsai [8], and Varech and Shevelo [9, 10]. The oscillation results for n-dimensional systems with deviating arguments have been given by Foltynska and Werbowski [1], the present author [5, 6] and Šeda [7].

The purpose of this paper is to obtain oscillation criteria for the nonlinear differential system with general deviating arguments of the form:

$$
\begin{array}{ll}
y_{i}^{\prime}(t)=p_{i}(t) f_{i}\left(y_{i+1}\left(h_{i+1}(t)\right)\right), & i=1,2, \ldots, n-1, \tag{r}\\
y_{n}^{\prime}(t)=(-1)^{r} p_{n}(t) f_{n}\left(y_{1}\left(h_{1}(t)\right)\right), & r=1,2,
\end{array}
$$

where the following conditions are assumed to hold:
(1) a) $p_{i}:[0, \infty) \rightarrow[0, \infty), i=1,2, \ldots, n$, are continuous and not identically zero on any infinite subinterval of $[0, \infty)$, and

$$
\int^{\infty} p_{i}(t) d t=\infty, \quad i=1,2, \ldots, n-1
$$

b) $h_{i}:[0, \infty) \rightarrow R$ are continuous and $\lim _{t \rightarrow \infty} h_{i}(t)=\infty, i=1, \ldots, n$;
c) $f_{i}: R \rightarrow R$ are continuous and $u f_{i}(u)>0$ for $u \neq 0, i=1,2, \ldots, n$.

Denote by W the set of all solutions $y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$ of the system $\left(S_{r}\right)$ which exist on some $\operatorname{ray}\left[T_{y}, \infty\right) \subset[0, \infty)$ and satisfy sup $\left\{\sum_{i=1}^{n}\left|y_{i}(t)\right| ; t \geqq T\right\}>0$ for all $T \geqq T_{y}$.

Definition 1. A solution $y \in W$ is called oscillatory if each component has arbitrarily large zeros.

A solution $y \in W$ is called nonoscillatory (resp. weakly nonoscillatory) if each component (resp. at least one component) is eventually of constant sign.

Definition 2. We shall say that the system $\left(S_{1}\right)$ has the property A if for n even every solution $y \in W$ is oscillatory and for n odd it is either oscillatory or
(P_{1}) $\quad y_{i}(i=1,2, \ldots, n)$ tend monotonically to zero as $t \rightarrow \infty$.
We shall say that the system $\left(S_{2}\right)$ has the property B if for n even every solution $y \in W$ is either oscillatory or $\left(P_{1}\right)$ holds or
(P_{2}) $\quad\left|y_{i}\right|(i=1,2, \ldots, n)$ tend monotonically to ∞ as $t \rightarrow \infty$, and for n odd it is either oscillatory or $\left(P_{2}\right)$ holds.

We introduce the following notations:
i) Let $\tau:[0, \infty) \rightarrow R$ be a continuous function such that $\tau(t) \leqq t$ and $\tau(t) \rightarrow \infty$ as $t \rightarrow \infty$. We define

$$
\gamma_{\tau}(t)=\sup \{s \geqq 0 ; \tau(s)<t\} \quad \text { for all } \quad t>0 ;
$$

ii) Let $i_{k} \in\{1,2, \ldots, n\}, k \in\{1,2, \ldots, n-1\}, t, s \in[0, \infty)$. We define:
(2) $I_{0}=1$,
$I_{k}\left(t, s ; p_{i_{k}}, \ldots, p_{i_{1}}\right)=\int_{s}^{t} p_{i_{k}}(x) I_{k-1}\left(x, s ; p_{i_{k-1}}, \ldots, p_{i_{1}}\right) d x$.
It is easy to prove that the following identities hold:
(3) $I_{k}\left(t, s ; p_{i_{k}}, \ldots, p_{i_{1}}\right)=\int_{s}^{t} p_{i_{1}}(x) I_{k-1}\left(t, x ; p_{i_{k}}, \ldots, p_{i_{2}}\right) d x$,
(4) $I_{k}\left(t, s ; p_{i_{k}}, \ldots, p_{i_{1}}\right)=(-1)^{k} I_{k}\left(s, t ; p_{i_{1}}, \ldots, p_{i_{k}}\right)$.

To obtain main results we need the following lemmas:
Lemma 1. Suppose that the conditions (1a)-(1c) are satisfied. Let $y=$ $\left(y_{1}, \ldots, y_{n}\right) \in W$ be a nonoscillatory solution of $\left(S_{r}\right)$ on the interval $[a, \infty), a \geqq 0$.
I) Then there exist an integer $l \in\{1,2, \ldots, n\}$, with $n+r+l$ odd or $l=n$, and $t_{0} \geqq a$ such that for $t \geqq t_{0}$

$$
\begin{equation*}
y_{i}(t) y_{1}(t)>0, \quad i=1,2, \ldots, l, \tag{l}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{l+i} y_{i}(t) y_{1}(t)>0, \quad i=l, l+1, \ldots, n \tag{l}
\end{equation*}
$$

II) In addition let $\lim _{t \rightarrow \infty}\left|y_{l}(t)\right|=L_{l}, 0 \leqq L_{l} \leqq \infty$. Then

$$
\begin{align*}
& l>1, L_{l}>0 \Rightarrow \lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=\infty, \quad i=1,2, \ldots, l-1 \tag{7}\\
& l<n, L_{l}<\infty \Rightarrow \lim _{t \rightarrow \infty} y_{i}(t)=0, \quad i=l+1, \ldots, n .
\end{align*}
$$

Proof. a) Let $r=1$. From Lemma 1 of [5] we get the assertions of Lemma 1 in the case I). b) Let $r=2$. Without loss of generality we may suppose that $y_{1}(t)>0, y_{1}\left(h_{1}(t)\right)>0$ for $t \geqq t_{1} \geqq a$. Because of (1a), (1c), the n-th equation of $\left(S_{2}\right)$ implies that $y_{n}(t)$ is nondecreasing on $\left[t_{1}, \infty\right)$. Then either $y_{n}(t)>0$ or $y_{n}(t)<0$ for $t \geqq t_{2} \geqq t_{1}$. i) If $y_{n}(t)>0$ for $t \geqq t_{2}$, it is easy to prove that $y_{i}(t)>0$ for $t \geqq t_{3} \geqq t_{2}, i=1, \ldots, n-1$. ii) Let $y_{n}(t)<0$ for $t \geqq t_{2}$. Then in view of the
($n-1$)-st equation of $\left(S_{2}\right)$ we get $y_{n-1}^{\prime}(t) y_{1}(t) \leqq 0$ for $t \geqq t_{2}$. Then by the case a) with n replaced by $n-1$, there exist an integer $l \in\{1,2, \ldots, n-1\}$ with $n+l$ odd and a $t_{0} \geqq t_{2}$ such that $\left(5_{l}\right),\left(6_{l}\right)$ hold.

The assertions in the case II) follow from (5_{l}), (6_{l}).
Lemma 2. ([5, Lemma 1]) Let $y \in W$ be a weakly nonoscillatory solution of $\left(S_{r}\right)$ on $[a, \infty)$. Then there exists a $T \geqq a$ such that y is nonoscillatory on $[T, \infty)$.

Furthermore we shall consider the system $\left(\bar{S}_{r}\right)$ or the form

$$
\begin{align*}
& y_{i}^{\prime}(t)=p_{i}(t) y_{i+1}(t), \quad i=1,2, \ldots, n-2 \tag{S}\\
& y_{n-1}^{\prime}(t)=p_{n-1}(t) f_{n-1}\left(y_{n}\left(h_{n}(t)\right)\right), \\
& y_{n}^{\prime}(t)=(-1)^{r} p_{n}(t) f_{n}\left(y_{1}\left(h_{1}(t)\right)\right), \quad r=1,2
\end{align*}
$$

where the conditions (1a)-(1c) hold and
(1d) $f_{n-1}(u), f_{n}(u)$ are nondecreasing functions of u.
Lemma 3. ([5, Lemma 4]) Suppose that (1a)-(1d) are satisfied. Let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a solution of $\left(\bar{S}_{r}\right)$ on $\left[t_{0}, \infty\right)$. Then the following relations hold:

$$
\begin{align*}
& y_{i}(t)=\sum_{j=0}^{m}(-1)^{j} y_{i+j}(s) I_{j}\left(s, t ; p_{i+j-1}, \ldots, p_{i}\right) \tag{8}\\
& \quad+(-1)^{m+1} \int_{s}^{t} y_{i+m+1}(x) p_{i+m}(x) I_{m}\left(x, t ; p_{i+m-1}, \ldots, p_{i}\right) d x \\
& \quad \text { for } \quad m=0,1, \ldots, n-i-2, i=1,2, \ldots, n-2, t, s \in\left[t_{0}, \infty\right) ; \\
& y_{i}(s)=\sum_{j=0}^{n-i-1}(-1)^{j} y_{i+j}(t) I_{j}\left(t, s ; p_{i+j-1}, \ldots, p_{i}\right) \tag{9}\\
& \quad+(-1)^{n-i} \int_{s}^{t} p_{n-1}(x) I_{n-i-1}\left(x, s ; p_{n-2}, \ldots, p_{i}\right) f_{n-1}\left(y_{n}\left(h_{n}(x)\right)\right) d x \\
& \text { for } \quad i=1,2, \ldots, n-1, \quad t, s \in\left[t_{0}, \infty\right) .
\end{align*}
$$

Lemma 4. Suppose that (1a)-(1d) are satisfied Let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a nonoscillatory solution of $\left(\bar{S}_{r}\right)$ on $[a, \infty)$ with $y_{1}(t)>0$ on $[a, \infty)$. Then there exist a $t_{0} \geqq a$ and an integer $l \in\{1,2, \ldots, n\}$ with $n+r+l$ odd or $l=n$ such that (5_{l})-(7) hold. Moreover

$$
\begin{align*}
& y_{i}(t) \geqq(-1)^{n+l} \int_{t_{0}}^{t} p_{n-1}(s) \bar{I}_{n-i-1}\left(s, t_{0}\right) f_{n-1}\left(y_{n}\left(h_{n}(s)\right)\right) d s \tag{l}\\
& \text { for } \quad l=2,3, \ldots, n-1, \quad i=1,2, \ldots, l-1, \quad t \geqq t_{0} \\
& y_{i}(t) \geqq \int_{t_{0}}^{t} p_{n-1}(s) I_{n-i-1}\left(t, s ; p_{i}, \ldots, p_{n-2}\right) f_{n-1}\left(y_{n}\left(h_{n}(s)\right)\right) d s \tag{n}
\end{align*}
$$

$$
\text { for } \quad i=1,2, \ldots, n-1, \quad t \geqq t_{0},
$$

where

$$
\bar{I}_{n-i-1}\left(s, t_{0}\right)=\left\{\begin{array}{l}
I_{n-i-1}\left(s, t ; p_{n-2}, \ldots, p_{l}, p_{i}, \ldots, p_{l-1}\right), \quad 2 \leqq l \leqq n-2 \\
I_{n-i-1}\left(s, t_{0} ; p_{i}, \ldots, p_{n-2}\right), \quad l=n-1 .
\end{array}\right.
$$

Proof. Suppose that $l \in\{2,3, \ldots, n-1\}, i=1,2, \ldots, l-1$. Putting $m=$ $l-i-1, s=t_{0}, x=u$ in (8) and then using (4) and (5 $)$, we have

$$
\begin{equation*}
y_{i}(t) \geqq \int_{t_{0}}^{t} y_{l}(u) p_{l-1}(u) I_{l-i-1}\left(t, u ; p_{i}, \ldots, p_{l-2}\right) d u, \quad t \geqq t_{0} \tag{11}
\end{equation*}
$$

On the other hand, we put $i=l, s=u$ in (9) and then use (6) to get

$$
\begin{align*}
& y_{l}(u) \geqq(-1)^{n+l} \int_{u}^{t} p_{n-1}(x) I_{n-l-1}\left(x, u ; p_{n-2}, \ldots, p_{l}\right) . \tag{12}\\
& \qquad f_{n-1}\left(u_{n}\left(h_{n}(x)\right)\right) d x \text { for } t \geqq u .
\end{align*}
$$

Substituting (12) in (11), we obtain

$$
\begin{align*}
& y_{i}(t) \geqq(-1)^{n+l} \int_{t_{0}}^{t}\left(\int_{u}^{t} p_{n-1}(x) I_{n-l-1}\left(x, u ; p_{n-2}, \ldots, p_{l}\right) .\right. \tag{13}\\
&\left.f_{n-1}\left(y_{n}\left(h_{n}(x)\right)\right) d x\right) p_{l-1}(u) I_{l-i-1}\left(t, u ; p_{i}, \ldots, p_{l-2}\right) d u \\
& \geqq(-1)^{n+l} \int_{t_{0}}^{t} p_{n-1}(x) H_{l}\left(x, t_{0}\right) f_{n-1}\left(y_{n}\left(h_{n}(x)\right)\right) d x
\end{align*}
$$

for $t \geqq t_{1}=\gamma_{h_{n}}\left(t_{0}\right)$, where

$$
\begin{align*}
& H_{l}\left(x, t_{0}\right)=\int_{t_{0}}^{x} I_{n-l-1}\left(x, u ; p_{n-2}, \ldots, p_{l}\right) p_{l-1}(u) . \tag{14}\\
& \quad I_{l-i-1}\left(x, u ; p_{i}, \ldots, p_{l-2}\right) d u, \quad \text { for } \quad x \geqq t_{1} .
\end{align*}
$$

i) Let $2 \leqq l \leqq n-2$. In view of (3), H_{l} can be written in the form

$$
\begin{equation*}
H_{l}\left(x, t_{0}\right)=I_{n-l}\left(x, t_{0} ; p_{n-2}, \ldots, p_{l}, p_{l-1} I_{l-i-1}\left(x, \cdot ; p_{i}, \ldots, p_{l-2}\right)\right) \tag{15}
\end{equation*}
$$

Using the following relation for $t_{0} \leqq s \leqq x$:

$$
\begin{aligned}
& \int_{t_{0}}^{s} P_{l-1}(u) I_{l-i-1}\left(x, u ; p_{i}, \ldots, p_{l-2}\right) d u \\
& \quad \geqq \int_{t_{0}}^{s} p_{l-1}(u) I_{l-i-1}\left(s, u ; p_{i}, \ldots, p_{l-2}\right) d u=I_{l-i}\left(s, t_{0} ; p_{i}, \ldots, p_{l-1}\right)
\end{aligned}
$$

and then using (2), (3) $n-l$ times in (14), we obtain

$$
\begin{equation*}
H_{l}\left(x, t_{0}\right) \geqq I_{n-i-1}\left(x, t_{0} ; p_{n-2}, \ldots, p_{l}, p_{i}, \ldots, p_{l-1}\right) . \tag{16}
\end{equation*}
$$

ii) Let $l=n-1$. Then with regard to $I_{0}=1$, (14) implies

$$
\begin{aligned}
H_{n-1}\left(x, t_{0}\right) & =\int_{t_{0}}^{x} p_{n-2}(u) I_{n-i-2}\left(x, u ; p_{i}, \ldots, p_{n-3}\right) d u \\
& =I_{n-i-1}\left(x, t_{0} ; p_{i}, \ldots, p_{n-2}\right) .
\end{aligned}
$$

If we put (16) and the last equality in (13) we get $\left(10_{l}\right)$.
Let $l=n$. Putting $t=t_{0}, s=t$ in (9) and then using (4), (5_{n}), we obtain $\left(10_{n}\right)$.
The proof of Lemma 4 is complete.

2. Main results

Definition 3. System $\left(\bar{S}_{r}\right)$ is called (α, β)-superlinear, if there exist positive numbers α, β such that $\alpha \beta>1$ and

$$
\frac{\left|f_{i}(u)\right|}{|u|^{\gamma_{i}}} \geqq \frac{\left|f_{i}(v)\right|}{|v|^{\gamma_{i}}} \quad \text { for }|u|>|v|, u v>0
$$

$$
i=n-1, n, \gamma_{n-1}=\alpha, \gamma_{n}=\beta
$$

Let $m \in\{1,2, \ldots, n\}$. We denote

$$
\begin{align*}
J_{n-2}^{m}(t, T)= & \left\{\begin{array}{l}
I_{n-2}\left(t, T ; p_{n-2}, \ldots, p_{1}\right) \text { for } 1 \leqq m \leqq 2, \\
I_{n-2}\left(t, T ; p_{n-1}, \ldots, p_{m}, p_{2}, \ldots, p_{m-1}\right) \text { for } 2 \leqq m \leqq n-1, \\
I_{n-2}\left(t, T ; p_{2}, \ldots, p_{n-1}\right) \text { for } 2 \leqq m=n ;
\end{array}\right. \tag{17}\\
& P(t)=\int_{t}^{\infty} p_{n}(s) d s .
\end{align*}
$$

Theorem 1. Let the system $\left(\bar{S}_{r}\right)$ be (α, β)-suplerlinear. Suppose that there exist continuous increasing functions $g, h:[0, \infty) \rightarrow R$ such that

$$
\begin{equation*}
g(t) \leqq h_{1}(t), \lim _{t \rightarrow \infty} g(t)=\infty \tag{18}
\end{equation*}
$$

(19) $\quad h(t) \geqq \max \left\{h_{n}(t), g^{-1}(t)\right\}$, where g^{-1} indicates the inverse function of g. If

$$
\begin{align*}
& \int_{\gamma_{h}(T)}^{\infty} p_{n-1}(t) J_{n-2}^{l}(t, T) f_{n-1}(L P(h(t))) d t=\infty \quad \text { for } \quad l=1,2, \tag{20}\\
& \int_{\gamma_{h}(T)}^{\infty} p_{1}(t) J_{n-2}^{l}(t, T) f_{n-1}(L P(h(t))) d t=\infty \quad \text { for } \quad l=3,4, \ldots, n
\end{align*}
$$

for every constant $L>0$, then the system $\left(\bar{S}_{1}\right)$ has the property A and the system $\left(\bar{S}_{2}\right)$ has the property B.

Proof. Suppose that $\left(\bar{S}_{r}\right)$ has a weakly nonoscillatory solution $y=$ $\left(y_{1}, \ldots, y_{n}\right) \in W$. Then, by Lemma 2, y is nonoscillatory. Without loss of generality we may suppose that $y_{1}(t)>0, y_{1}\left(h_{1}(t)\right)>0$ for $t \geqq t_{1}>0$. Then the n-th equation of $\left(\bar{S}_{r}\right)$ implies $(-1)^{r} y_{n}^{\prime}(t) \geqq 0$ for $t \geqq t_{1}$ and it is not identically zero on any infinite interval of $\left[t_{1}, \infty\right)$. Then, by Lemma 4, there exist a $t_{2} \geqq t_{1}$ and an integer $l \in\{1,2, \ldots, n\}$ with $n+r+l$ odd or $l=n$ such that $\left(5_{l}\right)-(8)$, (11) hold for $t \geqq t_{2}$.
A) Consider the system $\left(\bar{S}_{1}\right)$, i.e. $r=1$ and $n+l$ is even. Integrating the n-th equation of $\left(\bar{S}_{1}\right)$ from $t\left(\geqq t_{2}\right)$ to ∞, we have

$$
\begin{equation*}
y_{n}(t) \geqq y_{n}(t)-y_{n}(\infty)=\int_{t}^{\infty} p_{n}(s) f_{n}\left(y_{1}\left(h_{1}(s)\right)\right) d s, \quad t \geqq t_{2} . \tag{21}
\end{equation*}
$$

I) Let $l \geqq 2$. Then, y_{1} is an increasing function and therefore there exist $C>0$ and $t_{3} \geqq t_{2}$ such that $y_{1}\left(h_{1}(t)\right) \geqq C$ for $t \geqq t_{3}$. Using the last inequality, (21) implies

$$
\begin{equation*}
y_{n}(t) \geqq f_{n}(C) \int_{t}^{\infty} p_{n}(s) d s=L P(t) \tag{22}
\end{equation*}
$$

where $L=f_{n}(C)$. Because the system $\left(\bar{S}_{1}\right)$ is (α, β)-superlinear, in view of (22) and $y_{1}\left(h_{1}(t)\right) \geqq C$, we have

$$
\begin{gather*}
f_{n-1}\left(y_{n}(h(t))\right) \geqq \frac{f_{n-1}(L P(h(t)))}{(L P(h(t)))^{\alpha}}\left(y_{n}(h(t))\right)^{\alpha}, \quad t \geqq t_{3}, \tag{23}\\
f_{n}\left(y_{1}\left(h_{1}(t)\right)\right) \geqq M\left(y_{1}\left(h_{1}(t)\right)\right)^{\beta}, \quad t \geqq t_{3}, \quad M=C^{-\beta} L . \tag{24}
\end{gather*}
$$

If we put (24) in (21), then using (18), (19) and the monotonicity of y_{1}, we get

$$
y_{n}(t) \geqq M \int_{t}^{\infty} p_{n}(s)\left(y_{1}(g(s))\right)^{\beta} d s \geqq M\left(y_{1}(g(t))\right)^{\beta} P(t), \quad t \geqq t_{3},
$$

or

$$
\begin{equation*}
y_{n}(h(t)) \geqq M y_{1}(g(h(t)))^{\beta} P(h(t)) \geqq M\left(y_{1}(t)\right)^{\beta} P(h(t)), \tag{25}
\end{equation*}
$$

for $t \geqq \gamma_{h}\left(t_{3}\right)=T_{1}$.
i) Let $2<l \leqq n\left(n+l\right.$ is odd). Putting $i=2, t_{0}=T_{1}$ in $\left(10_{l}\right)$, $\left(10_{n}\right)$, and using (19), the monotonicity of h, y_{n}, f_{n-1}, (4), (17) and (23), we obtain

$$
\begin{align*}
y_{2}(t) & \geqq \int_{T_{1}}^{t} p_{n-1}(s) \bar{I}_{n-3}\left(s, T_{1}\right) f_{n-1}\left(y_{n}\left(h_{n}(s)\right)\right) d s \tag{l}\\
& \geqq\left(y_{n}(h(t))\right)^{\alpha} \frac{f_{n-1}(L P(h(t)))}{(L P(h(t)))^{\alpha}} J_{n-2}^{l}\left(t, T_{1}\right), \quad t \geqq T_{1}, \\
l & =3,4, \ldots, n-2,
\end{align*}
$$

$$
\begin{align*}
y_{2}(t) \geqq & f_{n-1}\left(y_{n}(h(t))\right) \int_{T_{1}}^{t} p_{n-1}(s) I_{n-3}\left(t, s ; p_{2}, \ldots, p_{n-2}\right) d s \tag{n}\\
& \geqq\left(y_{n}(h(t))\right)^{\alpha} \frac{f_{n-1}(L P(h(t)))}{(L P(h(t)))^{\alpha}} J_{n-2}^{n}\left(t, T_{1}\right), \quad t \geqq T_{1},
\end{align*}
$$

respectively. Combining (25) with (26), we get

$$
\begin{equation*}
y_{2}(t) \geqq C^{-\gamma}\left(y_{1}(t)\right)^{\gamma} f_{n-1}(L P(h(t))) J_{n-2}^{l}\left(t, T_{1}\right), \quad t \geqq T_{1}, \quad \gamma=\alpha \beta . \tag{27}
\end{equation*}
$$

Multiplying (27) by $p_{1}(t)\left(y_{1}(t)\right)^{-\gamma}$ and then using the first equation of $\left(\bar{S}_{1}\right)$, we get

$$
\begin{equation*}
y_{1}^{\prime}(t)\left(y_{1}(t)\right)^{-\gamma} \geqq C^{-\gamma} p_{1}(t) f_{n-1}(L P(h(t))) J_{n-2}^{l}\left(t, T_{1}\right), \quad t \geqq T_{1} \tag{28}
\end{equation*}
$$

Integrating (28) from $T_{2}=\gamma_{h}\left(T_{1}\right)$ to τ, and then letting $\tau \rightarrow \infty$, we have

$$
\int_{T_{2}}^{\infty} p_{1}(t) J_{n-2}^{l}\left(t, T_{1}\right) f_{n-1}(L P(h(t))) d t \leqq \frac{C^{\gamma} y_{1}\left(T_{2}\right)}{\gamma-1}<\infty,
$$

which contradicts $\left(20_{l}\right)$ for $l \geqq 3$.
ii) Let $l=2=n$. If we put the second equation in the first equation of (\bar{S}_{1}) and then use (19), (23) and (25), we get

$$
y_{1}^{\prime}(t)\left(y_{1}(t)\right)^{-\gamma} \geqq C^{-\gamma} p_{1}(t) f_{1}(L P(h(t))) .
$$

Integrating the last inequality from T_{1} to τ and letting $\tau \rightarrow \infty$, we get a contradiction to $\left(20_{l}\right)$ for $l=2=n$.
iii) Let $l=2<n$. Putting $i=2$ in (9) and using (6), (19), the monotonicity of h, y_{n}, f_{n-1}, we obtain

$$
\begin{equation*}
y_{2}(s) \geqq \int_{s}^{t} p_{n-1}(x) f_{n-1}\left(y_{n}(h(x))\right) I_{n-3}\left(x, s ; p_{n-2}, \ldots, p_{2}\right) d x \tag{29}
\end{equation*}
$$

Combining (25) with (23) and using the monotonicity of y_{1}, from (29) we get

$$
\begin{equation*}
y_{2}(s) \geqq C^{-\gamma}\left(y_{1}(s)\right)^{\gamma} \int_{s}^{t} p_{n-1}(x) f_{n-1}(L P(h(x))) I_{n-3}\left(x, s ; p_{n-2}, \ldots, p_{2}\right) d x . \tag{30}
\end{equation*}
$$

Multiplying (30) by $p_{1}(s)\left(y_{1}(s)\right)^{-\gamma}$ and using the first equation of $\left(\bar{S}_{1}\right)$, we have

$$
\begin{array}{r}
y_{1}^{\prime}(s)\left(y_{1}(s)\right)^{-\gamma} \geqq C^{-\gamma} p_{1}(s) \int_{s}^{t} p_{n-1}(x) I_{n-3}\left(x, s ; p_{n-2}, \ldots, p_{2}\right) \\
f_{n-1}(L P(h(x))) d x .
\end{array}
$$

Integrating the last inequality from T_{1} to t, we get

$$
\begin{aligned}
& \frac{C^{\gamma}\left(y_{1}\left(T_{1}\right)\right)^{1-\gamma}}{\gamma-1} \int_{T_{1}}^{t} p_{1}(s) \int_{s}^{t} p_{n-1}(x) I_{n-3}\left(x, s ; p_{n-2}, \ldots, p_{2}\right) . \\
& \quad f_{n-1}(L P(h(x))) d x d s \geqq \int_{T_{1}}^{t} p_{n-1}(L P(h(x))) J_{n-2}^{2}\left(x, T_{1}\right) d x
\end{aligned}
$$

which contradicts $\left(20_{2}\right)$ as $t \rightarrow \infty$.
II) Let $l=1$ (n is odd). Then $y_{1}(t) \downarrow K$ as $t \uparrow \infty$, where $K \geqq 0$. Assume that $K>0$. If we put $i=1, s=T_{1}$ in (9), and use (6), (19) and the monotonicity of h, y_{n}, f_{n-1}, we obtain

$$
y_{1}\left(T_{1}\right) \geqq \int_{T_{2}}^{t} p_{n-1}(x) f_{n-1}\left(y_{n}(h(x))\right) I_{n-2}\left(x, T_{1} ; p_{n-2}, \ldots, p_{1}\right) d x
$$

for $t \geqq T_{2}=\gamma_{n}\left(T_{1}\right)$. Further using (22), we have

$$
y_{1}\left(T_{1}\right) \geqq \int_{T_{2}}^{t} p_{n-1}(x) J_{n-2}^{1}\left(x, T_{1}\right) f_{n-1}(L P(h(x))) d x,
$$

which contradicts $\left(20_{1}\right)$ as $t \rightarrow \infty$. Therefore $K=0, \lim _{t \rightarrow \infty} y_{1}(t)=0$. Then by (7) $\lim _{t \rightarrow \infty} y_{i}(t)=0$ for $i=1,2, \ldots, n$.
B) Consider the system $\left(\bar{S}_{2}\right)$, i.e. $r=2$ and $n+l$ is odd.
I) By virtue of Lemma 3, $\left(5_{n}\right)$ holds. Then the n-th equation of $\left(\bar{S}_{2}\right)$ implies, in view of $y_{1}\left(h_{1}(t)\right)>0$, (1a) and (1c), that $y_{n}(t)$ is a nondecreasing function and therefore $\lim _{t \rightarrow \infty} y_{n}(t)=L_{n} \leqq \infty$. Then it follows from (7) that $\lim _{t \rightarrow \infty} y_{i}(t)=\infty$ for $i=1,2, \ldots, n-1$. We shall prove that $L_{n}=\infty$. Suppose that $L_{n}<\infty$. In view of the monotonicity of y_{n} and y_{1}, there exist $T_{2} \geqq t_{0}, K_{1}>0$ and $C>0$ such that

$$
\begin{align*}
& K_{1} \leqq y_{n}\left(h_{n}(t)\right) \leqq L_{n} \tag{31}\\
& C \leqq y_{n}(g(t)) \quad \text { for } \quad t \leqq T_{2} . \tag{32}
\end{align*}
$$

Integrating the n-th equation of $\left(\bar{S}_{2}\right)$ and using (18), (31) and the monotonicity of f_{n}, y_{1}, we get

$$
\begin{equation*}
L_{n} \geqq \int_{t}^{\infty} p_{n}(s) f_{n}\left(y_{1}\left(h_{1}(s)\right)\right) d s \geqq f_{n}\left(y_{1}(g(t))\right) P(t), \quad t \geqq T_{2} \tag{33}
\end{equation*}
$$

In view of (32), the inequality (33) implies

$$
\begin{equation*}
L_{n} \geqq f_{n}(C) P(h(t))=L P(h(t)), \quad L=f_{n}(C), \quad t \geqq T_{3}=\gamma_{h}\left(T_{2}\right) . \tag{34}
\end{equation*}
$$

Because the system $\left(\bar{S}_{2}\right)$ is (α, β)-superlinear, in view of (32)-(34) and (19) we have

$$
\begin{equation*}
L_{n} \geqq M\left(y_{1}(g(h(t)))^{\beta} P(h(t)) \geqq M\left(y_{1}(t)\right)^{\beta} P(h(t)), \quad M=L C^{-\beta}\right. \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
f_{n-1}\left(L_{n}\right) \geqq \frac{f_{n-1}(L P(h(t)))}{(L P(h(t)))^{\alpha}}\left(L_{n}\right)^{\alpha}, \quad t \geqq T_{3} . \tag{36}
\end{equation*}
$$

a) Let $n>2$. From $\left(10_{n}\right)$ for $i=2, t_{0}=T_{4}$, in view of (31) and (17), we get

$$
\begin{equation*}
y_{2}(t) \geqq f_{n-1}\left(K_{1}\right) J_{n-2}^{n}\left(t, T_{3}\right), \quad t \geqq T_{3} . \tag{37}
\end{equation*}
$$

Multiplying (37) by $f_{n-1}\left(L_{n}\right) p_{1}(t)\left(y_{1}(t)\right)^{-\gamma}$ and then using (35), (36) and the first equation of (\bar{S}_{2}), we have

$$
\begin{equation*}
y_{1}^{\prime}(t)\left(y_{1}(t)\right)^{-\gamma} \geqq \frac{f_{n-1}\left(K_{1}\right)}{f_{n-1}\left(L_{n}\right)} C^{-\alpha} p_{1}(t) f_{n-1}(L P(h(t))) J_{n-2}^{n}\left(t, T_{3}\right) . \tag{38}
\end{equation*}
$$

b) Let $n=2$. From the first equation of $\left(\bar{S}_{2}\right)$ and in view of (31) we obtain $y_{1}^{\prime}(t) \geqq p_{1}(t) f_{1}\left(K_{1}\right), t \geqq T_{2}$. Multiplying the last inequality by $L_{n}^{\alpha}\left(y_{1}(t)\right)^{-\gamma}$ and then using (35) and (36), we get (38) for $n=2\left(J_{0}=1\right)$. Integrating (38) from T_{3} to ∞, we get a contradiction to $\left(20_{n}\right)$. Therefore $L_{n}=\infty$ and $\lim _{t \rightarrow \infty} y_{i}(t)=\infty$, $i=1,2, \ldots, n$.
II) Let $l \in\{1,2, \ldots, n-1\}$. Then (6) implies that $y_{n}(t)<0$ for $t \geqq t_{2}$ and it is an increasing function. Integrating the n-th equation of $\left(\bar{S}_{2}\right)$ from $t\left(\geqq t_{2}\right)$ to ∞, we have

$$
-y_{n}(t) \geqq \int_{t}^{\infty} p_{n}(s) f_{n}\left(y_{1}\left(h_{1}(s)\right)\right) d s, \quad t \geqq t_{2}
$$

Further proceeding in the same way as in the cases A-I), A-II) of this proof except that $y_{n}(t)$ is replaced by $-y_{n}(t)(>0)$, we get a contradiction to $\left(20_{l}\right)$ for $l=1$, $2, \ldots, n-1$. In the case n is even and $l=1$ we obtain $\lim _{t \rightarrow \infty} y_{i}(t)=0$ for $i=1$, $2, \ldots, n$.

The proof of Theorem 1 is complete.
Theorem 1 represents a certain generalization of Theorem 5 in [4].
Theorem 2. Let the system $\left(\bar{S}_{r}\right)$ be (α, β)-superlinear. Suppose that

$$
\begin{align*}
& h_{n}(t) \leqq t, g_{1}(t) \leqq \min \left\{h_{1}(t), t\right\} \quad \text { on } \quad[0, \infty) \tag{39}\\
& \text { where } g_{1}^{\prime}(t) \leqq 0 \quad \text { on }[0, \infty), \lim _{t \rightarrow \infty} g_{1}(t)=\infty
\end{align*}
$$

If

$$
\begin{gather*}
\int_{\gamma_{g_{1}(T)}}^{\infty} p_{n-1}\left(g_{1}(t)\right) g_{1}^{\prime}(t) J_{n-2}^{l}\left(g_{1}(t), T\right) \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(P\left(g_{1}(t)\right)\right)^{\alpha}}(P(t))^{\alpha} d t=\infty \tag{l}\\
\text { for } \quad l=1,2, \\
\int_{\gamma_{s_{1}(T)}}^{\infty} p_{1}\left(g_{1}\left(g_{1}(t)\right) g_{1}^{\prime}(t) J_{n-2}^{l}\left(g_{1}(t), T\right) \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(P\left(g_{1}(t)\right)\right)^{\alpha}}(P(t))^{\alpha} d t=\infty\right. \\
\text { for } \quad l=3,4, \ldots, n,
\end{gather*}
$$

then the system $\left(\bar{S}_{1}\right)$ has the property A, and the system $\left(\bar{S}_{2}\right)$ has the property B.
Proof. Let $y=\left(y_{1}, \ldots, y_{n}\right) \in W$ be a weakly nonoscillatory solution of $\left(\bar{S}_{r}\right)$. Then by Lemma 2 it is nonoscillatory. Let $y_{1}(t)>0, y_{1}\left(h_{1}(t)\right)>0$ for $t \geqq t_{1}>0$.

Proceeding in the same way as in the proof of Theorem 1, we see that (5_{l})-(8), (11) hold for $t \geqq t_{2} \geqq t_{1}$. Let $T_{2} \geqq t_{2}$ be so large that $g_{1}(t) \geqq t_{2}, h_{n}(t) \geqq t_{2}$ for $t \geqq T_{2}$.
A) Consider the system $\left(\bar{S}_{1}\right)$, i.e. $r=1$ and $n+l$ is even. From the n-th equation of (\bar{S}_{1}) we get (21).
I) Let $l \geqq 2$. Proceeding in the same way as in the case A-I) in the proof of Theorem 1, we get (22)-(24). Combining (24) and (21) and using (39) and the monotonicity of y_{n}, y_{1}, we have

$$
\begin{align*}
y_{n}\left(g_{1}(t)\right) & \geqq y_{n}(t) \geqq M \int_{t}^{\infty} p_{n}(s)\left(y_{1}\left(h_{1}(s)\right)\right)^{\beta} d s \tag{41}\\
& \geqq M\left(y_{1}\left(g_{1}(t)\right)\right)^{\beta} P(t), \quad t \geqq T_{2}
\end{align*}
$$

and (22) implies

$$
\begin{equation*}
y_{n}\left(g_{1}(t)\right) \geqq L P(t) \quad \text { for } \quad t \geqq T_{2} . \tag{42}
\end{equation*}
$$

i) Let $l=n$ or $2<l \leqq n-2$. Putting $i=2, t_{0}=T_{2}$ in $\left(10_{l}\right)$, $\left(10_{n}\right)$ and using (39), the monotonicity of $g_{1}, y_{n}, f_{n-1},\left(5_{l}\right),(17)$ and the superlinearity of $\left(\bar{S}_{1}\right)$, we obtain

$$
\begin{align*}
y_{2}(t) & \geqq f_{n-1}\left(y_{n}(t)\right) \int_{T_{2}}^{t} p_{n-1}(s) \bar{I}_{n-3}\left(s, T_{2}\right) d s \tag{l}\\
& \geqq f_{n-1}\left(y_{n}(t)\right) J_{n-2}^{l}\left(t, T_{2}\right) \\
& \geqq \frac{f_{n-1}(L P(t))}{(L P(t))^{\alpha}}\left(y_{n}(t)\right)^{\alpha} J_{n-2}^{l}\left(t, T_{2}\right), \quad l=3,4, \ldots, n-2,
\end{align*}
$$

or

$$
\begin{align*}
y_{2}(t) & \geqq f_{n-1}\left(y_{n}(t)\right) \int_{T_{2}}^{t} p_{n-1}(s) I_{n-3}\left(t, s ; p_{2}, \ldots, p_{n-2}\right) d s \tag{n}\\
& \geqq \frac{f_{n-1}(L P(t))}{(L P(t))^{\alpha}}\left(y_{n}(t)\right)^{\alpha} J_{n-2}^{n}\left(t, T_{2}\right), \quad t \geqq T_{2},
\end{align*}
$$

respectively.
From (43) and in view of (39) we get

$$
\begin{equation*}
y_{2}\left(g_{1}(t)\right) \geqq \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(L P\left(\left(g_{1}(t)\right)\right)^{\alpha}\right.} J_{n-2}^{l}\left(g_{1}(t), T_{2}\right)\left(y_{n}(t)\right)^{\alpha} \tag{44}
\end{equation*}
$$

for $t \geqq T_{3}=\gamma_{g_{1}}\left(T_{2}\right)$. Combining (44) with (41), we have

$$
\begin{align*}
& y_{2}\left(g_{1}(t)\right) \geqq C^{-\gamma} \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(P\left(g_{1}(t)\right)\right)^{\alpha}} J_{n-2}^{l}\left(g_{1}(t), T_{2}\right) . \tag{45}\\
&\left(y_{1}\left(g_{1}(t)\right)\right)^{\nu}(P(t))^{\beta}, \quad t \geqq T_{3} .
\end{align*}
$$

Multiplying (45) by $p_{1}\left(g_{1}(t)\right) g_{1}^{\prime}(t)\left(y_{1}\left(g_{1}(t)\right)\right)^{-\gamma}$ and using the first equation of (\bar{S}_{1}), we get

$$
\begin{align*}
& \frac{y_{1}^{\prime}\left(g_{1}(t)\right) g_{1}^{\prime}(t)}{\left(y_{1}\left(g_{1}(t)\right)\right)^{\alpha}} \geqq C^{-\gamma} p_{1}\left(g_{1}(t)\right) g_{1}^{\prime}(t) \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(P\left(g_{1}(t)\right)\right)^{\alpha}} \tag{46}\\
& J_{n-2}\left(g_{1}(t), T_{2}\right)\left(P_{1}(t)\right)^{\alpha}, t \geqq T_{3}
\end{align*}
$$

Integrating (46) from T_{3} to ∞, we obtain a contradiction to $\left(40_{l}\right)$ for $l \geqq 3$.
ii) Let $l=2=n$. If we put the second equation in the first equation of (\bar{S}_{1}) and use (39), (23) and (41), then we get

$$
\begin{aligned}
y_{1}^{\prime}\left(g_{1}(t)\right) & \geqq p_{1}\left(g_{1}(t)\right) f_{1}\left(y_{2}\left(g_{1}(t)\right)\right) \\
& \geqq C^{-\gamma} p_{1}\left(g_{1}(t)\right)\left(y_{1}\left(g_{1}(t)\right)\right)^{\gamma} \frac{f_{1}\left(L P\left(g_{1}(t)\right)\right)(P(t))^{\alpha}}{\left(L\left(g_{1}(t)\right)\right)^{\alpha}}, \quad t \geqq T_{2} .
\end{aligned}
$$

Integrating the last ineqaulity from T_{3} to ∞, we have a contradiction to (40_{l}) for $l=2=n$.
iii) Let $l=2<n$. If we put $i=2$ in (9) and use (7), (39), the monotonicity of y_{n}, f_{n-1}, we obtain

$$
\begin{equation*}
y_{2}(s) \geqq \int_{s}^{t} p_{n-1}(x) I_{n-3}\left(x, s ; p_{n-2}, \ldots, p_{2}\right) f_{n-1}\left(y_{n}(x)\right) d x \tag{47}
\end{equation*}
$$

Combining (23) with (25) and then using the monotonicity of y_{1}, g_{1}, we obtain from (47)

$$
\begin{align*}
& y_{2}\left(g_{1}(s)\right) \geqq C^{-\gamma}\left(y_{1}\left(g_{1}(s)\right)\right)^{\gamma} \int_{g_{1}(s)}^{t} p_{n-1}(x) \tag{48}\\
& I_{n-3}\left(x, g_{1}(s) ; p_{n-2}, \ldots, p_{2}\right) f_{n-1}(L P(x)) d x
\end{align*}
$$

because $g_{1}\left(g_{1}(s)\right) \leqq g_{1}(s)$. Multiplying (48) by $p_{1}\left(g_{1}(s)\right) g_{1}^{\prime}(s)\left(y_{1}\left(g_{1}(s)\right)\right)^{-\gamma}$ and using the first equation of $\left(\bar{S}_{1}\right)$, we get

$$
\begin{aligned}
\frac{y_{1}^{\prime}\left(g_{1}(s)\right) g_{1}^{\prime}(s)}{\left(y_{1}\left(g_{1}(s)\right)\right)^{\gamma}} & \geqq C^{-\gamma} p_{1}\left(g_{1}(s)\right) g_{1}^{\prime}(s) \int_{g_{1}(s)}^{t} p_{n-1}(x) \\
& I_{n-3}\left(x, g_{1}(s) ; p_{n-2}, \ldots, p_{2}\right) f_{n-1}(L(P(x))) d x .
\end{aligned}
$$

Integration of the above from T_{2} to t yields

$$
\begin{gathered}
\infty>\int_{T_{2}}^{t} p_{1}\left(g_{1}(s)\right) g_{1}^{\prime}(s) \int_{g_{1}(s)}^{t} p_{n-1}(x) I_{n-3}\left(x, g_{1}(s) ; p_{n-2}, \ldots, p_{2}\right) . \\
f_{n-1}(L P(x)) d x=\int_{g_{1}\left(T_{2}\right)}^{g_{1}(t)} p_{n-1}(x) f_{n-1}(L P(x)) \int_{\gamma\left(T_{2}\right)}^{x} p_{1}(u) . \\
=\int_{T_{2}}^{t} p_{n-1}\left(x, u ; p_{n-2}, \ldots, p_{2}\right) d u d x \\
\left.g_{1}(s)\right) g_{1}^{\prime}(s) J_{n-2}^{l}\left(g_{1}(s), T_{2}\right) f_{n-1}\left(L P\left(g_{1}(s)\right)\right) d s,
\end{gathered}
$$

which contradicts $\left(40_{2}\right)$
II) Let $l=1$ (n is odd). Then $y_{1}(t) \downarrow K$ as $t \uparrow \infty$, where $K \geqq 0$. Assume that $K>0$. If we put $i=1, s=T_{1}$ in (9) and use (7), (39), the monotonicity of y_{n}, f_{n-1}, and (22), then we obtain

$$
\begin{aligned}
y_{1}\left(T_{1}\right) & \geqq \int_{T_{1}}^{t} p_{n-1}(x) f_{n-1}\left(y_{n}(x)\right) I_{n-2}\left(x, T_{1} ; P_{n-2}, \ldots, p_{1}\right) d x \\
& \geqq \int_{g_{1}^{-1}\left(T_{1}\right)}^{g_{1}^{-1}(t)} p_{n-1}\left(g_{1}(s)\right) g_{1}^{\prime}(s) J_{n-2}^{1}\left(g_{1}(t), T_{1}\right) . \\
& \frac{f_{n-1}\left(L P\left(g_{1}(s)\right)\right)}{\left(P\left(g_{1}(s)\right)\right)^{\alpha}}\left(P_{1}(s)\right)^{\alpha} d s .
\end{aligned}
$$

Since $g_{1}^{-1}(t) \rightarrow \infty$ as $t \rightarrow \infty$, the last inequality gives a contradiction to $\left(40_{1}\right)$. Therefore $K=0$, i.e. $\lim _{t \rightarrow \infty} y_{1}(t)=0$. Then it follows from (7) that $\lim _{t \rightarrow \infty} y_{i}(t)=0$ for $i=1,2, \ldots, n$.
B) Consider the system $\left(\bar{S}_{2}\right)$, i.e. $r=2$ and $n+l$ is odd.
I) By virtue of Lemma 3, $\left(5_{n}\right)$ holds. Exactly as in the case B-I) of the proof of Theorem 1 we get $\lim _{t \rightarrow \infty} y_{i}(t)=\infty$ for $i=1,2, \ldots, n-1$. We shall prove that $\lim _{t \rightarrow \infty} y_{n}(t)=L_{n}=\infty$. Suppose that $0<L_{n}<\infty$. Proceeding as in the case B-I), we get (31)-(33), in which we replace $g(t)$ by $g_{1}(t)$. Combining (33) with (32) gives

$$
\begin{equation*}
L_{n} \geqq L P\left(g_{1}(t)\right), \quad L=f_{n}(C), \quad t \geqq T_{3} . \tag{49}
\end{equation*}
$$

Because the system $\left(\bar{S}_{2}\right)$ is (α, β)-superlinear, in view of (32) and (49) we have

$$
\begin{align*}
& L_{n} \geqq M\left(y_{1}\left(g_{1}(t)\right)\right)^{\beta} P(t), \quad M=L C^{-\beta} \tag{50}\\
& f_{n-1}\left(L_{n}\right) \geqq \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(L P\left(g_{1}(t)\right)\right)^{\alpha}}\left(L_{n}\right)^{\alpha}, \quad t \geqq T_{3} . \tag{51}
\end{align*}
$$

a) Let $n>2$. From $\left(10_{n}\right)$ for $i=2, t_{0}=T_{3}$, in view of (31) and (17) we obtain (37). From (37) we get

$$
y_{2}\left(g_{1}(t)\right) \geqq f_{n-1}\left(K_{1}\right) J_{n-2}^{n}\left(g_{1}(t), T_{3}\right), \quad t \geqq T_{4}=\gamma_{g_{1}}\left(T_{3}\right) .
$$

Multiplying the last inequality by $f_{n-1}\left(L_{n}\right)$ and using (51) and (50), we have

$$
\begin{align*}
f_{n-1}\left(L_{n}\right) y_{2}\left(g_{1}(t)\right) \geqq & \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(P\left(g_{1}(t)\right)\right)^{\alpha}} C^{-\gamma}\left(y_{1}\left(g_{1}(t)\right)\right)^{\nu} . \tag{52}\\
& (P(t))^{\alpha} f_{n-1}\left(K_{1}\right) J_{n-2}^{n}\left(g_{1}(t), T_{3}\right), \quad t \geqq T_{4} .
\end{align*}
$$

If we use the first equation of $\left(\bar{S}_{2}\right)$, (52) implies

$$
\begin{align*}
& \frac{y_{1}^{\prime}\left(g_{1}(t)\right) g_{1}^{\prime}(t)}{\left(y_{1}\left(g_{1}(t)\right)\right)^{\gamma}} \geqq \frac{f_{n-1}\left(K_{1}\right)}{f_{n-1}\left(L_{n}\right)} C^{-\gamma} p_{1}\left(g_{1}(t)\right) g_{1}^{\prime}(t) . \tag{53}\\
& \quad \frac{f_{n-1}\left(L P\left(g_{1}(t)\right)\right)}{\left(P\left(g_{1}(t)\right)\right)^{\alpha}} J_{n-2}^{n}\left(g_{1}(t), T_{3}\right)(P(t))^{\alpha} \text { for } t \geqq T_{4} .
\end{align*}
$$

b) Let $n=2$. From the first equation of $\left(\bar{S}_{2}\right)$, in view of (31) we obtain $y_{1}^{\prime}\left(g_{1}(t)\right) \geqq p_{1}\left(g_{1}(t)\right) f_{1}\left(K_{1}\right)$ for $t \geqq T_{2}$. Multiplying the last inequality by $f_{1}\left(L_{1}\right) g_{1}^{\prime}(t)\left(y_{1}\left(g_{1}(t)\right)\right)^{-\gamma}$ and using (50), (51), we get (53) for $n=2\left(J_{0}=1\right)$. Integrating (53) from T_{4} to ∞, we have a contradiction to $\left(40_{n}\right)$. Therefore $L_{n}=\infty$, i.e. $\lim _{t \rightarrow \infty} y_{i}(t)=\infty$ for $i=1,2, \ldots, n$
II) Let $l \in\{1,2, \ldots, n-1\}$. If we proceed as in the cases A-I), A-II) of this proof by replacing $y_{n}(t)$ by $-y_{n}(t)$, we obtain a contradiction to $\left(40_{l}\right)$ for $l=1,2, \ldots, n-1$. In the case where n is even and $l=1$ we have $\lim _{t \rightarrow \infty} y_{i}(t)=0$ for $i=1,2, \ldots, n$. The proof of Theorem 2 is complete.

References

[1] I. Foltynska and J. Werbowski, On the oscillatory behaviour of solutions of system of differential equations with deviating arguments. In Qual. Theory Diff. Equat. Amsterdam (1981) 1, 243-256.
[2] Y. Kitamura and T. Kusano, On the oscillation of a class of nonlinear differential systems with deviating argument, J. Math. Anal. Appl. 66 (1978), 20-36.
[3] Y. Kitamura and T. Kusano, Asymptotic properties of solutions of two-dimensional differential systems with deviating argument, Hiroshima Math. J. 8 (1978), 305-326.
[4] Y. Kitamura and T. Kusano, Oscillation and a class of nonlinear differential systems with general deviating arguments, Nonlinear Anal. 2 (1978), 537-551.
[5] P. MaruSiak, On the oscillation of nonlinear differential systems with retarded arguments, Math. Slov. 34 (1984), 73-88.
[6] P. Marusiak, Oscillatory properties of solutions of nonlinear differential systems with deviating arguments, Czech. Math. J. 36 (1986), 223-231.
[7] V. Šeda, On nonlinear differential systems with deviating arguments, Czech. Math. J. (to appear).
[8] V. N. Shevelo, N. V. Varech and A. G. Gritsai, Oscillatory properties of solutions of systems of differential equations with deviating arguments (in Russian). Ins. of Math. Ukrainian Acad. of Sciences, Kijev Reprint 85.10 (1985), 3-46.
[9] N. V. Varech and Shevelo V. N, On the conditions of the oscillation of the solutions of differential system with retarded arguments (in Russian). Kačestv. metody teori dif. uravnenij s otklonijajuščimsia argumentom, Kijev (1977), 26-44.
[11] N. V. Varech and V. N. Shevelo, On some properties of solutions of differential systems with retarded arguments, Ukrain. Math. J. 34 (1982), 1-8.

Katedra matematiky, VŠDS
$\binom{$ Marxa-Engelsa 15}{01088 Žilina, Czechoslovakia }

